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Abstract—Most fast k-nearest neighbor (k-NN) algorithms exploit metric

properties of distance measures for reducing computation cost and a few can work

effectively on both metric and nonmetric measures. We propose a cluster-based

tree algorithm to accelerate k-NN classification without any presuppositions about

the metric form and properties of a dissimilarity measure. A mechanism of early

decision making and minimal side-operations for choosing searching paths largely

contribute to the efficiency of the algorithm. The algorithm is evaluated through

extensive experiments over standard NIST and MNIST databases.

Index Terms—Nearest neighbor classification, nonmetrics, metrics, cluster tree.
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1 INTRODUCTION

THE k-nearest neighbor (k-NN) classification has been extensively
used as a powerful nonparametric technique of pattern recognition
[1]. However, the exhaustive k-NN search, which requires
intensive dissimilarity computations—particularly for a large
training set, becomes unacceptable. Accelerating the k-NN search
has been an active research field in the past three decades. While
nonmetric dissimilarity measures have been briefly explained in
pattern recognition literature, most of the existing fast algorithms
for the k-NN search are effective only with metric dissimilarity
measures.

Algorithms for speeding-up the k-NN search fall into two
categories: template condensation and template reorganization.
Template condensation removes redundant patterns in a template
set [2], [3], [4], [5] and template reorganization restructures
templates for efficient search of k nearest neighbors [6], [7], [8],
[9], [10], [11]. Incorporating the template condensation rules into
template reorganization leads to an innovative algorithm, the
condensation-based tree algorithm by Brown [12].

While a number of template reorganization algorithms rely on
the essential properties (e.g., the triangle inequality) of metric
dissimilarity measures [6], [9], [11], [13], the others, which are
applicable for nonmetrics, are only effective in low-dimensional
feature spaces [8], [10], [14]. One exception is the condensation-
based tree algorithm, which is applicable for any dissimilarity
measure, metric, or nonmetric. Algorithms exploiting the triangle
inequality of metrics are more efficient in searching and classifica-
tion [15]. However, many applications of pattern recognition in
high-dimensional feature spaces often employ nonmetric dissim-
ilarity measures for better performance, i.e., ‘p distances (0 < p < 1)
[15], �2-statistic (or �2-distance) [16], Kullback-Leibler divergence
(KL) [17], Jeffrey-divergence (JD) [17], the Sokal-Michener measure
(SM) [18], Hausdorff distance [19], and deformable models [20], etc.
The aforementtioned measures, except the SM measure, violate the
triangle inequality. Deformable models are even not symmetric and
SM measure does not obey relexitivity. Therefore, for these
applications, most existing algorithms that accelerate k-nearest
neighbor classification are either inapplicable or ineffective.

The condensation-based tree algorithm, however, is not suffi-

ciently efficient. The algorithm requires intensive sorting operations

in intermediate nodes when performing classification and the

computation cost of sorting becomes substantial although dissim-

ilarity computations can be largely pruned. Given an n-level

condensation tree with the same depth in all branches and with the

nodes evenly distributed, each intermediate node in the tree has the

same number of immediate subnodes. With a recognition margin p, a

constant percentage of subnodes in each node will be followed.

Under these conditions, for a classification with L nodes visited, the

number of intermediate nodes traversed is estimated as: Lðð1þpÞn�1Þ
ð1þpÞnþ1�1

.

For example, givenn ¼ 5 and p ¼ 0:2, there are 0:75 � L intermediate

nodes traversed, that is, 75 percent of the nodes visited have to

perform sorting operation; given n ¼ 10 and p ¼ 0:2, 80.7 percent of

the nodes visited need sorting operation.
In the rest of the paper, we first propose a cluster-based tree

algorithm for accelerating k-NN classification without any pre-
suppositions about the metric form and properties of dissimilarity
measures, then evaluate its effectiveness in comparison with the
exhaustive k-NN and the condensation-based tree algorithm
through extensive experiments on the standard NIST and MNIST
databases.

2 THE CLUSTER TREE ALGORITHM

Let T ¼ fZi 2 �; i ¼ 1; 2; � � �mg denote a set of training templates.
Each template Zi 2 T has a class label CðZiÞ. The objective is to
efficiently find the k-nearest neighbors of a test pattern X (X2�) in
T based on a dissimilarity measure dð�; �Þ.

The cluster-based algorithm consists of two phases: tree
generation and classification. Different from the existing tree
classification methods, this algorithm introduces class-conditional
clustering and establishes two decision levels for early decision
making. A decision level in a tree is a level where each node and
its subnodes have a unique class label. Thus, at a decision level, the
class of an unseen template can be decided using k-nearest
neighbor classification.

2.1 Cluster-Based Tree Generation

Given a set T of m templates, the bottom level of the tree, B,
consists of all templates in T . Obviously, B is a decision level.
Another decision level, the hyperlevel, is generated through class-
conditional clustering over T . In the hyperlevel, each node (called
hypernode) is the cluster center of certain templates in T with the
same class label. T c represents a set of cluster centers at a level
above the bottom.

For a template Z 2 T , its local properties are measured: 1) �ðZÞ,
the dissimilarity betweenZ and its nearest neighborwith a different
class label, 2) �ðZÞ, a set of all neighbors which have the same class
label as Z and are less than �ðZÞ distant from Z, and 3) ‘ðZÞ, the size
of the set �ðZÞ. Similarly, we define the local properties of a cluster
center Y 2 T c for a given threshold �: 1)�cðY Þ, a set of all neighbors
which are less than � far from Y , and 2) ‘cðY Þ, the size of the set
�cðY Þ. By the definition, �cðY Þ may contain cluster centers
belonging to different pattern classes.

A cluster tree is generated as follows:

Step 0: Initialize the cluster tree to be a single level B without
node.

Step 1: Compute the localities of each template Z in T , i.e., �ðZÞ,
�ðZÞ, and ‘ðZÞ. Then, rank all templates in T in descendant order
of ‘ð�Þ.

Step 2:Take the templatewith the biggest ‘ð�Þ,Z1, as a hypernode,
and copy all templates of �ðZ1Þ as nodes at the bottom level of the
tree,B. Then, remove all templates in�ðZ1Þ from T , and set up a link
between Z1 and each pattern of �ðZ1Þ in B.

Step 3: Repeat Step 1 and Step 2 until T becomes empty. At this
point, the cluster tree is configured with a hyperlevel, H, and a
bottom level, B.
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Step 4: Select a threshold � and cluster all templates in H so that
radius of each cluster is smaller or equal to �. All cluster centers
form another level of the cluster tree, P.

Step 5: Increase the threshold � and repeat Step 4 for all nodes at
the level P until a single node is left in the resulting level.

Generation of the hyperlevel is a process of class-conditional
clustering, that is, templates belonging to the same class are
grouped together. Building-up of the levels above the hyperlevel is
based only on nearness among a set of nodes. Specifically, the
clustering procedure in Step 4 is to iterate Step 1 and Step 2 based
on the localities of the cluster centers (previously defined) at the
current level. All cluster centers are actual data points so that the
same dissimilarity measure can be used in both the tree generation
and the classification phases.

Selection of the threshold � is critical for generating a cluster
tree. Obviously, � should be an increasing function of the number
of iterations at Step 4 so that clusters have greater abstraction
capacity than their descendants. Let �ðiÞ be the threshold for the ith
iteration, a simple solution is �ðiÞ ¼ �i � � �i

1þi , where � is a
constant and �i and �i represent the mean and the standard
deviation of the dissimilarities between the nodes at the current
level, respectively.

The hyper level H and the bottom level B are “meaningful”
since a decision can be made at the two levels, but the levels above
the hyperlevel are “meaningless,” i.e., the class of a given template
cannot be decided at those levels, instead, they act as routes to
direct the search downward.

The computation complexity is estimated as follows:. Building
up the hyperlevel H (Step 1 to Step 3) takes Oð

Pm
i¼1 ilgiÞ �

Oðm2lgmÞ time in the worst-case. Let n ðn << mÞ be the number of
nodes in H, building up the levels above H will take at most
Oðn2lgnÞ time. Thus, the computation complexity for generating a
complete cluster tree is Oðm2lgmÞ, where m is the size of the
template set for growing the tree.

2.2 Classification

An unseen template X is classified through adaptively searching
the trained cluster tree.

Step 0: Compute dissimilarity between X and each node at the
top level of the cluster tree, and choose the � nearest nodes as a
node set Lx.

Step 1: Compute dissimilarity between X and each subnode
linked to the nodes in Lx, and again choose the � nearest nodes,
which are used to update the node set Lx.

Step 2: Repeat Step 1 until the hyperlevel in the tree. When the
searching stops at the hyperlevel, Lx consists of � hypernodes.

Step 3: Search Lx for the hypernodes: Lh = fY jdðY ;XÞ �
�ðY Þ; Y 2 Lxg. If all nodes in Lh have the same class label, then
this class is associated to X and the classification process stops;
otherwise, go to Step 4.

Step 4: Compute the dissimilarity between X and every
subnode linked to the nodes in Lx, and choose the k nearest
templates. Then, take a majority voting among the k nearest
templates to decide the class label of X.

At the hyperlevel, the class of a given template X is decided only
if all clusters (the elements in Lh) into which X falls have the same
class label. Due to this strict condition, the recognition rate in the
hyperlevel is quite high. The algorithm terminates searching at the
hyperlevel for most testing templates. Once the algorithm fails in
classifying X at the hyperlevel (that is, the clusters into which X falls
have at least two different class labels.), it further searches the
bottom level, where a final decision will be made.

The k nearest neighbors of X can be found by slightly
modifying the classification procedure. In Step 3, if all nodes in
Lh have the same class label, the k nearest templates are chosen
from all subnodes (the bottom level) linked to the nodes in Lh;
otherwise, the k nearest templates are obtained by following Step 4.

The bigger the value of �, the more dissimilarity computations
are carried out with higher accuracy of recognition results. Notice
that the cluster tree requires very limited sorting operations, so the
cost of side operation is very low.

3 PERFORMANCE EVALUATION

The standard NIST and MNIST handwritten numeral databases
are used as benchmarks to compare the proposed algorithm with
the exhaustive k-NN and the condensation-based tree algorithm.

3.1 Feature Extraction and Dissimilarity Measure

Gradient-based binary features are extracted from binary hand-
written numeral images. Specifically, the binary features for each
image consist of 512 bits corresponding to gradient (192 bits),
structural (192 bits), and concavity (128 bits) features [18].

Let X and Y be two N-dimensional binary vectors. The

dissimilarity between X and Y is given by a generalized Sokal-

Michener dissimilarity measure [21], [22]: DðX;Y Þ = N �X�Y
� �X�Y , where 0 � � � 1 and X and Y are the complement

vectors of X and Y , respectively.
When � ¼ 1, Dð�; �Þ becomes the metric Manhattan distance, but

when � 6¼ 1, Dð�; �Þ is nonmetric because it violates reflexitivity. A
number of experiments of k-NN classification using Dð�; �Þ show
that nonmetric versions of Dð�; �Þ (with � around 0:5) always
outperforms the metric one [22]. SM dissimilarity measure has
been proven to obey the triangle inequality and possess a special
property: In certain subspaces, the sum of any two dissimilarities is
always bigger than any single one [22]. This special property
actually disables fast k-NN methods exploiting the triangle
inequality like the branch and bound algorithm [9].

In the subsequent experiments, Dð�; �Þ is parameterized by � ¼
0:5 and computed using efficient bit-based operations.

3.2 Experimental Settings

For generating cluster trees, the constant � in �ðiÞ is set as 2. Each
test set is repeatedly classified through a trained cluster tree by
tuning �.

Since there aremultiple parameterswith the condensation-based
tree algorithm, a number of condensation trees have to be grown in
order to find the best one. For all condensation trees, the tree margin is
set as 0:20 and the maximum number of immediate subnodes
allowed for each intermediate node is 80 percent of the one for the
root. For each training set, 10 condensation trees are generated by
using 10 different maximum numbers (f50 � jjj ¼ 1; 2; . . . ; 10g) of
immediate subnodes allowed at the root. For convenience, we use
Condense (j) to represent a condensation tree with maximum
j subnodes allowed for the root. For each condensation tree, the
corresponding test set is recognized repeatedly by tuning the
recognition margin.

For each test, overall recognition accuracy, average recognition
time per numeral, and average number of dissimilarity computa-
tions per numeral are recorded. Recognition time does not include
the time for feature extraction. Classification performance of a tree
is also characterized by computation cost versus classification
accuracy. Specifically, two relation curves, average number of
dissimilarity computations versus classification accuracy (D-A
curve) and average recognition time versus classification accuracy
(T-A curve), are sketched for performance comparison.

All experiments in this section were performed on an
UltraSPARC workstation with an 800MHz CPU, 512MB RAM,
and SunOS 5.8.

3.3 Experiments on NIST Database

NIST handwritten numeral database was collected among census
employees. The nist_hsf0 set with 53,449 handwritten numeral
images was taken for growing cluster and condensation trees, and
the nist_hsf1 set with 53,313 handwritten numerals was used for
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testing. The exhaustive k-NN achieves an accuracy 99.25 percent
with an average of 20.68 milliseconds per numeral.

Growing the cluster tree took 45 minutes. The resulting cluster
tree includes four levels, with 28, 252, 1,564, and 53,449 nodes from
the top to the bottom levels, respectively. Growing a condensation
tree is faster than training a cluster tree. Growing Condense (100)
took about 17 minutes and growing Condense (400) required only
12 minutes. Condense (400) consistently outperforms all the other
condensations trees.

Fig. 1a compares D-A curves with the cluster tree and four
condensation trees. Fig. 1b compares T-A curves of the five trees. In
our pursuit of a classifier with both high accuracy and high speed,
the settings for a classifier, which lead to low accuracy or long
recognition time, are not of interest.D-A andT-A curveswith regard
to themost useful settings for the five trees are enlarged in Fig. 1. For
any recognition accuracy varying from 99 percent to 99.28 percent,
the cluster tree requires 76 percent to 90 pecent of the dissimilarity
computations needed by Condense (400) and takes only one-fourth
to half of the recognition time used by Condense (400). In other
words, under the same recognition accuracy, classification by the
cluster tree is two to four times faster than by the best condensation
tree. A more detailed comparison can be seen in Table 1.

Moreover, with the settings leading to the same accuracy as
the exhaustive k-NN classification, the cluster tree requires only
1,826 dissimilarity computations, about one-thirtieth of the
computations for the exhaustive search, and uses only 1.179 milli-
seconds per numeral, 16.5 times faster than the exhaustive search.

3.4 Experiments on MNIST Database

The MNIST handwritten numeral database was created by mixing
NIST’s Special Database 3 (SD-3) and Special Database 1 (SD-1). As
the samples in SD-1 were written by high-school students, the
MNIST database is more difficult to recognize than the NIST
database. We used the MNIST database provided by LeCun et al.
[23]. The training set includes 60,000 samples with a half from SD-3

and another half from SD-1, and the test set contains 5,000 samples
from SD-3 and 5,000 samples from SD-1. Without using artificially
distorted images for training, the best recognition rate based on the
MNIST database is around 99 percent (99.05 percent for LeNet-5,
99 percent for SVM, 98.9 percent for LeNet-4, and k-NN with the
tangent distance) [23].

In our experiments, the gray-scale images in the training and
the test sets are first binarized by a given threshold (35 for our
experiment), then the binary images are used for binary feature
extraction. Although more complicated binarization algorithm and
skew correction will lead to higher recognition accuracy rate, they
are not important for our comparison purpose. The algorithmic
parameters for generating and testing cluster and condensation
trees based on the MNIST database are the same as those over the
NIST database. The exhaustive k-NN classification achieves an
accuracy rate 98.24 percent with 23.26 milliseconds per numeral.
The resulting cluster tree has four levels with 29, 337, 2,888, and
60,000 nodes, respectively. Notice that here, the number (2,888) of
hypernodes almost doubles that (1,564) from the NIST training set,
indicating that the MNIST database is much more diversified than
the NIST one, thus more difficult to recognize. Out of the
10 condensation trees, Condense (400) still performs the best.

Table 2 compares the cluster tree and the best condensation
tree with the settings leading to high speed and high accuracy.
The proposed algorithm is still much faster than the condensation
tree algorithm. Different from the results based on the NIST
database, here, the accuracy rates are lower than the one using the
exhaustive k-NN.

With longer recognition time, the proposed fast algorithm can
actually approach the accuracy rate of the exhaustive k-NN. For
example, this algorithm can correctly classify 98.13 percent samples
of the test set with 10.123 milliseconds per image, about a half of the
time using the exhaustive k-NN. However, with about the same time
the condensation tree can achieve an accuracy rate 98.31 percent,
even better than the accuracy rate 98.24 percent using the exhaustive
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Fig. 1. Performance comparison of five trees: (a) number of dissimilarity computations versus classification accuracy and (b) average recognition time (milliseconds per

numeral) versus recognition accuracy. The inside graphs magnify the performance of high accuracy and high speed.

TABLE 1
Comparison of the Recognition Performance of the Cluster Tree and the Best Condensation Tree (Condense (400)) Based on the NIST Database

Computation represents the average number of dissimilarity computations and time means the average recognition time in milliseconds per numeral.



k-NN. Essentially, the proposed cluster tree algorithm improves the
search efficiency with a cost of very small accuracy loss while the
condensation-based tree algorithm can keep (even increase) accu-
racy with relatively long search time.

3.5 Analysis

The results from the extensive experiments consistently reveal the
superior performance of the proposed fast algorithm. Not only
does the algorithm substantially alleviate the computation cost of
k-NN search with only minimal accuracy loss, but it also performs
classification much faster than the condensation-based tree
algorithm (considering settings leading to high speed and high
accuracy). Two factors contribute to the efficiency of a cluster tree:
a mechanism of early decision making and minimal side-
operations for choosing searching paths. Additional experiments
also show that most test samples are recognized at the hyperlevel
with very high reliability, and only a small percentage have to be
classified at the bottom level. Classification through a condensa-
tion tree suffers from intense sorting operations in intermediate
nodes, resulting in much longer recognition time than through a
cluster tree.

In both the tree generation and the classification phases, the
cluster tree algorithm does not make any presuppositions about
the metric form and properties of a dissimilarity measure, thus it is
applicable to any k-NN problem with any dissimilarity measure,
metric, or nonmetric. Notice that the cluster tree algorithm can be
easily tuned to fit any trade off between accuracy and speed by
changing the value of �. The bigger �, the higher accuracy but low
recognition speed. When � is big enough, a cluster tree will have
the same accuracy as the exhaustive k-NN classification. But, if � is
too small, the branches selected will not be sufficient enough to
capture the variation in a testing image and more likely lead to a
wrong classification. Obviously, � may vary at different levels.
Further, � may also vary with testing templates by applying the
idea of the recognition margin in the condensation tree. Optimization
of � is our future work.

As the proposed algorithm is essentially a lossy classification
method, in general, it is not efficient for recognition with accuracy
rate very close to or above that of the exhaustive k-NN. We have
seen the possibility to improve the cluster-based tree algorithm by
incorporating the principles in the condensation-based tree
algorithm which is less efficient but lossless.

4 CONCLUSIONS

We propose a cluster-based tree algorithm to accelerate k-nearest
neighbor classification without any presuppositions about the
metric form and properties of dissimilarity measures. Amechanism
of early decision making and minimal side-operations for choosing
searching paths largely contribute to the efficiency of classification
through a cluster tree. The proposed algorithm substantially
improves the search efficiency with minimal accuracy loss.
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TABLE 2
Performance Comparison of the Cluster Tree and the Best Condensation Tree (Condense (400)) Based on the MNIST Database
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