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SUMMARY 1 

Influenza virus is a major human pathogen that causes annual epidemics and 2 

occasional pandemics. Moreover, the virus causes outbreaks in poultry and other 3 

animals, such as pigs, requiring costly and laborious countermeasures. Therefore, 4 

influenza virus has a substantial impact on health and the global economy. Here, we 5 

review entry of this important pathogen into target cells, an essential process by 6 

which viral genomes are delivered from extracellular virions to sites of 7 

transcription/replication in the cell nucleus. We summarize current knowledge on the 8 

interaction of influenza viruses with their receptor, sialic acid, and highlight the 9 

ongoing search for additional receptors. We describe receptor-mediated endocytosis 10 

and the recently discovered macropinocytosis as alternative virus uptake pathways, 11 

and illustrate the subsequent endosomal trafficking of the virus with advanced live 12 

microscopy techniques. Release of virus from the endosome and import of the viral 13 

ribonucleoproteins into the host cell nucleus are also outlined. Although a focus has 14 

been on viral protein function during entry, recent studies have revealed exciting 15 

information on cellular factors required for influenza virus entry. We highlight these, 16 

and discuss both established entry inhibitors targeting viral and host factors, as well 17 

as the latest prospects for designing novel ‘anti-entry’ compounds. New entry 18 

inhibitors are of particular importance for current efforts to develop the next 19 

generation of anti-influenza drugs – entry is the first essential step of virus replication 20 

and is an ideal target to block infection efficiently.  21 
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INTRODUCTION 22 

Influenza A virus (IAV), the causative agent of influenza, is a large burden to the 23 

economy and public health world-wide.  With waterfowl as the primary reservoir the 24 

virus is able to infect a wide variety of birds and mammals, including humans. Due to 25 

this trait, zoonotic spillovers occur occasionally and can lead to pandemics with 26 

severe consequences for the human population.  The swine origin H1N1 virus from 27 

the 2009 pandemic and the H5N1 and H7N9 avian influenza viruses are recent 28 

examples of animal viruses that acquired the potential to infect and cause disease in 29 

humans. A detailed understanding of the viral lifecycle is required to assess or 30 

predict the impact of circulating as well as newly emerging viruses but also to 31 

develop anti-influenza drugs. The entry process of the virus represents a favorable 32 

target for drug development since inhibition of this first step of virus infection should 33 

result in an efficient block of virus propagation. One possibility is to target viral 34 

proteins essential for entry, e.g. the receptor-binding protein hemagglutinin (HA). An 35 

alternative approach is to target cellular proteins required for entry. While in the latter 36 

case toxicity could represent an obstacle this strategy would offer the advantage that 37 

resistance is less likely to occur. In addition, many viruses use similar entry routes 38 

and so it is conceivable that broad-spectrum antivirals could be developed. 39 

IAV belongs to the family Orthomyxoviridae and possesses a segmented, negative-40 

sense RNA genome. Unlike most RNA viruses, IAV replicates in the nucleus. 41 

Therefore, the virus has to overcome several barriers on its way to the site of 42 

replication and, simultaneously, avoid being recognized by the innate immune 43 

system. IAV entry is a dynamic process which requires the completion of six 44 

individual steps: Attachment to target cells (I), internalization into cellular 45 

compartments (II), endosomal trafficking to the perinuclear region (III), fusion of viral 46 
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and endosomal membranes (IV), uncoating (V), and import of the viral genome into 47 

the nucleus (VI) (fig. 1).  Here, we summarize how the virus manages to successfully 48 

enter target cells and to transport its genetic material to the nucleus. Furthermore, we 49 

discuss which host factors are required by the virus to complete these processes and 50 

which inhibitors are available to block individual steps of the IAV entry pathway.   51 

 52 

INFLUENZA A VIRUS ATTACHMENT TO HOST CELLS 53 

Sialic acid is the receptor for influenza A virus 54 

The initial step of the viral entry process is the attachment of IAV to the host cell. The 55 

primary receptor for IAV is N-acetylneuraminic acid (also called sialic acid) and this 56 

receptor is recognized and bound by the viral membrane protein, HA (Palese and 57 

Shaw 2007). Sialic acid is the distal residue in oligosaccharide chains of N- and O-58 

linked glycoproteins and –lipids. Often, sialic acid is attached to the underlying 59 

galactose by α-2,3 or α-2,6 linkages. This linkage and the resulting structural 60 

consequences influence how well IAV can bind to its receptor.  61 

HA is a multifunctional IAV protein mediating virus attachment and fusion. There are 62 

18 different HA subtypes known of which 16 circulate in waterfowl and two subtypes 63 

(H17, H18) have been isolated from bats (Tong et al. 2012; Tong et al. 2013). Of 64 

note H17 and H18 do not bind to sialic acid; the receptor for these viruses is not yet 65 

known (Sun et al. 2013; Tong et al. 2013; Zhu et al. 2013b). HA is expressed as a 66 

trimer on the virion surface. The stalk region of HA containing the fusion peptide 67 

connects the HA to the virion envelope by a short hydrophobic sequence (Skehel and 68 

Wiley 2000). This region is heavily glycosylated on conserved epitopes, which 69 

appear to be required for stability and structure of the molecule (Roberts et al. 1993). 70 
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The globular head is also glycosylated but the glycosylation pattern and -type can be 71 

highly variable in different HA subtypes.  The receptor binding pocket (RBP) is 72 

located on the distal end of the HA trimer at the globular head (fig. 2a) and is highly 73 

conserved among different HA subtypes. Mutations in residues of the RBP and those 74 

in close proximity can drastically alter the receptor specificity of HA (Connor et al. 75 

1994; Liu et al. 2009; Xu et al. 2010). Sialic acid has been shown to occupy the 76 

whole RBP and to be the major point of contact between the virus and the cell  (Weis 77 

et al. 1988). The interaction between sialic acid and HA is believed to be of low 78 

affinity. To increase the overall strength of the interaction multiple HA molecules are 79 

used to bind to several glycoproteins resulting in high avidity-binding to the cell 80 

surface  (Sauter et al. 1989).  81 

The structure and conformation of HA determines receptor specificity of IAV. It is well 82 

established that avian strains prefer sialic acid receptors with a α-2,3 linkage, while 83 

human IAV strains generally possess a high receptor specificity for α-2,6 linked sialic 84 

acid (Weis et al. 1988; Gamblin et al. 2004; Stevens et al. 2006b). In addition, studies 85 

using glycan arrays have shown that modifications on the underlying sugar chains 86 

are also recognized by HA and influence the binding of HA to sialic acid (Stevens et 87 

al. 2006a). More recent data suggest that the linkage of sialic acid is not the only 88 

determinant of receptor binding specificity but that the topological structure of sialic 89 

acid contributes to specificity and affinity of HA binding to sialic acid. It was shown 90 

that human IAV strains preferentially bind to long, umbrella-shaped sialic acid 91 

molecules with α-2,6 linkage, while avian strains generally bind to short sialic acid 92 

molecules that adopt a cone-like structure (Chandrasekaran et al. 2008). There are 93 

also reports that alternative glycosylations can be recognized by certain IAV strains, 94 

e.g. it was shown that N-glycolylneuraminic acid linked to galactose by α-2,3 linkage 95 
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can serve as receptor for IAV in the duck intestine (Ito et al. 2000).Recent structural 96 

studies on receptor binding of H5 and H7 viruses further developed our 97 

understanding of differential receptor specificity: For an H5N1 virus that had been 98 

selected to transmit in the ferret model it was shown that binding of α-2,6 sialic acid 99 

occurred in a similar orientation as in pandemic human viruses (Xiong et al. 2013a). 100 

In contrast, the orientation of sialic acid was different when the avian H5 was 101 

analyzed in combination with α-2,6 sialic acid. HA from an H7N9 virus that has 102 

recently emerged in China was able to bind α-2,6 sialic acid efficiently but in a 103 

different orientation compared to human pandemic viruses (Steinhauer 2013; Xiong 104 

et al. 2013b). Moreover, these recent studies also suggest that not only efficient 105 

binding to α-2,6 sialic acid might be required for human receptor specificity but also a 106 

reduction in binding efficiency to α-2,3 sialic acid. For the impact of receptor 107 

specificity on tropism, host range and pathogenicity of IAV we refer to (Matrosovich 108 

et al. 2009; Imai and Kawaoka 2012; Wilks et al. 2012). 109 

Often, virus entry is a multi-step process in which abundant, low affinity receptors are 110 

utilized for initial contact of viral particles with the cell. Subsequently, binding of high 111 

affinity receptors results in complete attachment and may trigger uptake of a particle. 112 

While it is generally accepted that sialic acid is the main receptor for IAV, there is still 113 

debate whether IAV requires additional host factors for successful attachment and 114 

entry into target cells. It has been observed that IAV binding to sialylated receptors 115 

does not always result in internalization of the virus into the host cell (Carroll and 116 

Paulson 1985). Furthermore, some desialylated cells retain the ability to bind IAV 117 

(Stray et al. 2000; Thompson et al. 2006) indicating that sialic acid might not be the 118 

sole receptor required for IAV attachment. Annexin V and 6-sulfo sialyl Lewis X 119 

receptors have been proposed as potential additional receptors for IAV attachment 120 
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(table 1) (Huang et al. 1996; Gambaryan et al. 2008).  Furthermore, IAV was able to 121 

attach to but not infect cells with a defect in complex N-glycosylation, suggesting the 122 

requirement of an additional factor other than sialic acid for efficient virus infection 123 

(Chu and Whittaker 2004). These results were later refined as it was found that 124 

proteins containing N-linked glycans are of importance for virus entry via 125 

macropinocytosis while clathrin-mediated endocytosis (both discussed later) was not 126 

affected by the absence of N-linked glycosylation and that entry of IAV was 127 

completely dependent on the presence of sialic acid (de Vries et al. 2012). For 128 

dendritic cells and macrophages, there are studies indicating that C-type lectin 129 

receptors such as macrophage mannose receptor (MMR), macrophage galactose-130 

type lectin (MGL) and Dendritic Cell-Specific Intercellular adhesion molecule-3-131 

Grabbing Non-integrin (DC SIGN) may also act as receptors for IAV entry (Reading 132 

et al. 2000; Wang et al. 2008; Upham et al. 2010; Londrigan et al. 2011). However, it 133 

remains to be determined whether these receptors alone are sufficient or whether 134 

additional co-receptors are required for viral uptake.  135 

Inhibitors of virus attachment 136 

Inhibition of virus attachment might be an attractive strategy for inhibiting IAV 137 

infection at the earliest step. Several approaches to block the interaction between HA 138 

and sialic acid have been proposed (table 2). Inhibitors can work by either binding to 139 

the HA globular head to prevent interactions with the receptor or they can act on the 140 

receptor sialic acid. Monoclonal antibodies (mAbs) that bind HA are the most 141 

prominent example of inhibitors acting on the virus. Numerous mAbs have been 142 

generated and found to inhibit virus replication in cell culture and animal models 143 

(reviewed in (Martinez et al. 2009)). Importantly, most mAbs which target the globular 144 

head of HA bind and neutralize only the HA they were generated against and a few 145 
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closely related HAs. However, in recent years broadly neutralizing mAbs that bind 146 

conserved epitopes in HA have been developed and these antibodies show promise 147 

as inhibitors of many different influenza virus strains (Corti and Lanzavecchia 2013). 148 

Two types of antibodies can be distinguished: Antibodies binding conserved epitopes 149 

in the globular head (Yoshida et al. 2009; Whittle et al. 2011; Ekiert et al. 2012) and 150 

antibodies recognizing conserved sites in the stem of HA (reviewed in (Ekiert and 151 

Wilson 2012)). The latter type of antibodies do not inhibit attachment but block fusion 152 

and are therefore discussed in the section on viral fusion. Antibodies that recognize 153 

conserved epitopes in the globular head can block attachment of different influenza 154 

virus subtypes and hold promise for the development of antiviral drugs.  155 

Besides the mAbs soluble sialic acid analogues that block the RBP of HA have been 156 

suggested as potent inhibitors of IAV infection. Both, soluble α-2,3 and α-2,6 linked 157 

sialic acid, can be found in mucus as well as in exosomes released from airway 158 

epithelial cells (Baum and Paulson 1990; Kesimer et al. 2009; Roberts et al. 2011). 159 

Recent studies propose several synthetic receptor mimics that bind to the RBP for 160 

use as antiviral compounds (Kimura et al. 2000; Terabayashi et al. 2006; Nicol et al. 161 

2012).  It was also shown that sialic acid peptide mimics that bind the RBP of HA can 162 

block infection with seasonal H1N1 and H3N2 viruses (Matsubara et al. 2010).  163 

Moreover, potent antiviral effects of liposomes loaded with such sialic acid analogues 164 

were observed (Hendricks et al. 2013). In addition, the development of receptor-165 

binding compounds that decrease the amount of available binding partners for HA, 166 

has also been followed (Matsubara et al. 2009). An interesting strategy to inhibit virus 167 

attachment is the use of sialidases, which remove sialic acid from epithelial cell 168 

surfaces.  DAS181 is a compound consisting of a bacterial sialidase derived from 169 

Actinomyces viscosus linked to amphiregulin that is currently in phase II clinical trials. 170 
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The conjugation of the sialidase to amphiregulin containing an epidermal-growth-171 

factor-like domain is required for the effective targeting of epithelial cells. DAS181 172 

possesses antiviral activity against a broad variety of influenza A and B viruses in cell 173 

culture (Nicholls et al. 2013).  174 

 175 

ENTRY ROUTES USED FOR INFLUENZA A VIRUS INTERNALIZATION 176 

Internalization of IAV 177 

Upon attachment to the host cell IAV is taken up into the cell. Imaging studies 178 

revealed early that the virus enters the cell by receptor-mediated endocytosis 179 

(Patterson et al. 1979; Matlin et al. 1981; Yoshimura et al. 1982). It was shown that 180 

cold-bound virus was –upon raising the temperature to 37°C- not fusing at the 181 

plasma membrane. Virus uptake occurred within minutes after the temperature raise 182 

as the half life time of attached viral particles to become resistant to treatment with 183 

sialidases was between 10-15 minutes (Matlin et al. 1981). IAV was internalized into 184 

mainly clathrin-coated but also into uncoated vesicles. This already suggested that 185 

IAV is able to utilize multiple endocytosis routes, not only clathrin-mediated 186 

endocytosis. Later, it was demonstrated that the virus can still infect cells defective in 187 

clathrin- and caveolin-dependent pathways (Sieczkarski and Whittaker 2002).  In line 188 

with these data, imaging studies with single viral particles showed that IAV can utilize 189 

clathrin- and non-clathrin entry routes in parallel (Rust et al. 2004). Recent studies 190 

identified macropinocytosis as alternative pathway exploited by IAV (de Vries et al. 191 

2011). Macropinocytosis refers to the uptake of large-sized cargo through the actin-192 

dependent formation of large endocytic vesicles called macropinosomes. IAV enters 193 

the cell by clathrin-mediated endocytosis in the absence of serum and this pathway 194 

can be efficiently blocked using the dynamin inhibitor dynasore. However, if serum is 195 
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present during infection, IAV is taken up into cells by dynamin-dependent and –196 

independent entry routes. A complete block of internalization was only achieved 197 

when cells were treated with dynasore in combination with EIPA (de Vries et al. 198 

2011). EIPA is an inhibitor of Na+/H+ exchangers, which was shown to block 199 

macropinocytosis by preventing elevation of the cytosolic pH which in turn affects 200 

activation of GTPases required for actin remodeling (Koivusalo et al. 2010). Further 201 

studies showed that the choice of entry route is likely to be cell type dependent (De 202 

Conto et al. 2011) and that filamentous IAV preferentially uses macropinocytosis for 203 

internalization (Rossman et al. 2012). The latter can explain earlier observations on 204 

the entry process of filamentous IAV: It had been demonstrated that acidification of 205 

endosomes was required but dynamin seemed to be dispensable (Sieczkarski and 206 

Whittaker 2005). 207 

To date it is not clear whether binding of HA to sialylated glycans is sufficient to 208 

initiate internalization of viral particles. Several studies indicate that additional 209 

receptors may be required to orchestrate virus uptake (table 1).  It was demonstrated 210 

that the formation of clathrin-coated pits occurs at faster pace at virus-attached spots 211 

than in other areas at the cell surface (Rust et al. 2004). These data indicate that IAV 212 

specifically triggers its uptake via clathrin-mediated endocytosis and is therefore 213 

likely to interact with additional cell surface receptors to activate downstream 214 

signaling processes required for internalization.  The adaptor protein Epsin-1 215 

localizes to attachment sites of IAV and this coincides with the formation of clathrin-216 

coated pits at that site. In addition, knockdown of Epsin-1 inhibited clathrin-mediated 217 

endocytosis of IAV but not of other ligands such as transferrin (Chen and Zhuang 218 

2008). Therefore, Epsin-1 is an adaptor recruited specifically for clathrin-mediated 219 
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IAV entry indicating that IAV triggers certain pathways that differ from classical 220 

clathrin-mediated endocytosis events.  221 

There is growing evidence that receptor tyrosine kinases (RTKs) may play an 222 

important role in the uptake of IAV particles. It could be shown that IAV attachment 223 

activates EGFR and that activated EGFR promotes virus uptake into target cells. 224 

Similar results were obtained for the c-Met kinase so the authors speculate that IAV 225 

attachment to the cell surface results in lipid raft formation which serves as signaling 226 

platform to trigger RTK activation leading to virus internalization (Eierhoff et al. 2010). 227 

Recently, it has been demonstrated that activation of phosphoinositide-specific 228 

phospholipase γ1 (PLCγ1) - which acts downstream of EGFR - is required for entry 229 

of H1N1 viruses (Zhu et al. 2013a). Interestingly, in this study both, H1N1 and H3N2 230 

viruses were able to activate EGFR following attachment but only H1N1 viruses also 231 

activated PLCγ1. These results indicate that different IAV subtypes are capable of 232 

specifically activating distinct signaling pathways to facilitate entry. Supporting 233 

evidence for involvement of RTKs in IAV entry came from inhibitor studies showing 234 

that many RTK inhibitors decrease IAV internalization by macropinocytosis (de Vries 235 

et al. 2011). Indeed, N-linked glycans, present on membrane receptors, have shown 236 

to be important for IAV entry in the presence of serum (de Vries et al. 2012). 237 

Nevertheless, the authors clearly demonstrate that IAV entry was dependent on sialic 238 

acid under all experimental conditions. In summary there is evidence for activation of 239 

common RTK cascades involving PKC, MEK/ERK and PI3K/AKT by IAV infection, 240 

but it remains to be determined how these pathways contribute to virus entry into 241 

host cells.  242 

 243 

 244 
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Inhibitors of internalization 245 

Compounds that inhibit virus endocytosis would be of great clinical use as a large 246 

array of viruses enter cells by endocytosis. However, most inhibitors used in tissue 247 

culture experiments such as dynasore or EIPA are cytotoxic in higher concentrations 248 

and prolonged exposure and are therefore not suitable for clinical use. Also RTK 249 

inhibitors are problematic as most currently available compounds lack specificity and 250 

target a variety of RTK. An interesting compound is Lj001 which affects membrane 251 

fluidity and -curvature through (1)02-mediated lipid oxidation. Therefore, its antiviral 252 

activity is restricted to enveloped viruses (Wolf et al. 2010; Vigant et al. 2013).  253 

 254 

ENDOSOMAL TRAFFICKING OF INFLUENZA A VIRUS 255 

From early to late endosomes 256 

The endosomal system is well described as a cellular sorting system for incoming 257 

extracelluar material and intracellular vesicles (reviewed in (Mellman 1996)). 258 

Influenza viruses are taken up by endocytosis or macropinocytosis and exploit the 259 

transport system via distinct endosomal stages and concomitant changes in pH to 260 

release their viral RNPs into the cytoplasm. Upon internalization by either uptake 261 

pathway, receptor-mediated endocytosis or macropinocytosis, the virus first localizes 262 

to early endosomes and then reaches late endosomes. Endosomal trafficking is 263 

known to be a non-linear pathway with a multitude of different branches leading to 264 

degradation of extracellular compounds and membrane recycling (Steinman et al. 265 

1983). Here, we focus on how IAV exploits the endosomal pathway.  266 

Before influenza A virus reaches its fusion site it has to pass different stages of the 267 

endocytic machinery, which is assembled and constantly renewed around the 268 

internalized virus particles (Rust et al. 2004; Cocucci et al. 2012). A difficulty in 269 
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detecting these stages of viral trafficking is the short time span viruses remain in the 270 

endosomal compartment. Penetration of viral ribonucleoprotein complexes (vRNPs) 271 

into the cytoplasm can be detected already after several minutes following virus 272 

binding to the cell and vRNPs reach the nucleus within the first hour (Martin and 273 

Helenius 1991). For the aim of visualizing viruses along the endosomal trafficking 274 

pathway, synchronized infection was established as an important tool that allows 275 

monitoring early infection events (Matlin et al. 1981). It has been demonstrated that 276 

endosomal trafficking of the virus involves actin- and microtubule-dependent 277 

processes (Nielsen et al. 1999; Sun and Whittaker 2007; De Conto et al. 2012). 278 

Using single virus trajectories from imaging fluorescently-labelled virions, viral 279 

transport was dissected into three different stages (Lakadamyali et al. 2003): First, 280 

the virus is transported in the cell-periphery and this process was demonstrated to be 281 

actin-dependent. This is followed by the second stage which is marked by rapid 282 

dynein-directed movement. Finally, moving of virions along microtubules to the 283 

perinuclear region can be defined as stage three. This transport pattern correlates to 284 

a large extend with well-established endosomal routes: Early endosomes (EE) 285 

containing cargo are transported away from the cell surface via actin dependent 286 

transport. EEs are then transported via the motorproteins kinesin-1 and dynein along 287 

microtubules towards the nucleus. Simultaneously, EEs constantly exchange 288 

vesicles with the trans Golgi network thereby undergoing a maturation process 289 

(reviewed in (Huotari and Helenius 2011)). Rab5 and additional proteins such as 290 

EEA1 (early endosomal autoantigen 1) and PI(3)K (phosphatidyl-inositol-3-OH 291 

kinase), are major regulators of this maturation process and are used as marker 292 

proteins to stain EEs (fig. 3)  (Bucci et al. 1992; Mu et al. 1995; Simonsen et al. 1998; 293 

Christoforidis et al. 1999a; Christoforidis et al. 1999b; Fujioka et al. 2011). Late 294 

endosomes (LE) are formed from EEs during their microtubule-dependent transport 295 
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into the perinuclear region by acquiring intraluminal vesicles during vesicle exchange 296 

with lysosomes or other late endosomes (Luzio et al. 2007; Huotari and Helenius 297 

2011). LE contain integral membrane proteins such as LAMP1 (lysosomal membrane 298 

protein 1) and their pH drops down from 6.8-5.9 in EEs to 6.0-4.8 in LE (Maxfield and 299 

Yamashiro 1987). The progression from EE to LE is indicated by the so called “Rab 300 

Switch” from Rab5 for EE to Rab 7 for LE (Rink et al. 2005). Rab proteins are cellular 301 

GTPases that are recruited to vesicle membranes and play a key role in regulating 302 

endosomal trafficking. Different Rab proteins are required for different steps in 303 

vesicular transport, although some of them are following their endosomal 304 

compartments throughout maturation of endosomes (Zerial and McBride 2001).  305 

With respect to IAV infection, both Rab5 and Rab7 have been shown to be required 306 

(Sieczkarski and Whittaker 2003). Moreover, protein kinase C βII (PKCβII) has been 307 

linked to IAV trafficking in endosomes. Infection of cells pretreated with inhibitors 308 

against PKCβII leads to the accumulation of viral particles in LE, without fusion taking 309 

place (Sieczkarski et al. 2003). Other important players in LE trafficking are histone 310 

deacetylases. Depletion of histone deacetylase 8 (HDAC8) resulted in dysregulation 311 

of microtubule organization, centrosome function and maturation of LE to lysosomes 312 

and subsequently in a decrease in viral replication (Yamauchi et al. 2011). 313 

Furthermore, Cullin 3 which is a scaffolding protein for an E3 ubiquitin ligase complex 314 

was shown to be required for IAV entry at the level of LE (Huotari et al. 2012). 315 

Importantly, depletion of cullin 3 also inhibited trafficking of other cargos such as 316 

epidermal growth factor (EGF) indicating that this pathway is required for transport of 317 

a variety of cargos and is not solely used by IAV.  318 
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FUSION OF INFLUENZA A VIRUS  319 

Fusion between viral and endosomal membrane 320 

Preceeding the nuclear transport of IAV fusion of viral and endosomal membranes is 321 

required to release vRNPs into the cytoplasm. This process is driven by a low pH 322 

environment and the class I fusion protein of IAV, the HA. LE posses an acidic 323 

environment and thus facilitate the induction of influenza virus HA-dependent fusion 324 

at pH 5.0 (Maeda and Ohnishi 1980; Daniels et al. 1985; White and Wilson 1987). 325 

Interestingly, HAs of different subtypes display varying pH optima for fusion and HAs 326 

of human isolates require lower pHs than avian isolates of the same subtype 327 

(Galloway et al. 2013). During the acidification process of endosomes, proton pumps 328 

which deliver protons into the endosomal lumen and thereby ensure stepwise 329 

acidification, exhibit a crucial function (Galloway et al. 1983; Perez and Carrasco 330 

1994). These so called v-ATPases consist of two complexes, one membrane 331 

associated V0 complex and a soluble cytosolic V1 complex, which hydrolyzes ATP 332 

as the driving force of acidification (reviewed in (Forgac 2007)). Once IAV is in the 333 

acidic environment of LE, HA undergoes conformational changes which expose the 334 

fusion peptide and position it towards the endosomal membrane (fig. 2b) (Carr and 335 

Kim 1993; Bullough et al. 1994; Chen et al. 1999). It was shown that intermediate 336 

stages dependent on pH and membrane proximity exist (Korte et al. 1999; Leikina et 337 

al. 2002). Following the final conformational changes, the fusion peptide is inserted 338 

into the target membrane which brings the viral and endosomal membranes into 339 

close proximity (Tsurudome et al. 1992; Weber et al. 1994; Durrer et al. 1996). Of 340 

note, while the crystal structures of pre- and post-fusion HA have been solved the 341 

structures of the intermediate stages are not known so far and can only be modeled 342 

based on the pre- and post-fusion structures. For the fusion process it was shown 343 
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that several HA trimers promote membrane fusion by simultaneous conformational 344 

changes and release of folding energy (Markovic et al. 2001). To proceed with fusion 345 

between viral and endosomal membranes, HA trimers tilt at the fusion site and the 346 

outer leaflets of the membranes interact with each other in a hemifusion stage 347 

(Tatulian et al. 1995; Chernomordik et al. 1998). Finally, both membranes fuse and a 348 

so-called fusion pore is established (Spruce et al. 1989; Melikyan et al. 1993a; 349 

Melikyan et al. 1993b). Through this fusion pore vRNPs can be released into the 350 

cytoplasm.  351 

Limited information is available regarding cellular factors required for fusion of IAV. 352 

As discussed above, the vATPase complex is essential for acidification of the 353 

endosome, a prerequisite for fusion. Only very recently, the tetraspanin CD81 has 354 

been identified as another cellular player in the fusion process (He et al. 2013). 355 

Approximately 50% of internalized IAV localized to CD81- and Rab5-positive 356 

endosomes and fusion was observed to occur in these vesicles. In the absence of 357 

CD81 fusion was reduced by 50%. It is currently unknown how CD81 contributes to 358 

fusion but CD81 seems to mark a productive entry route for IAV.  359 

Inhibitors of fusion 360 

Inhibition of viral fusion can be achieved by inhibition of acidification in endosomes 361 

(table 2). One of the most potent inhibitors for this purpose is Bafilomycin A1 (BafA1). 362 

Bafilomycins belong to the family of macrolide antibiotics that were shown to inhibit 363 

vacuolar-type proton pumps involved in viral entry (Bowman et al. 1988; Ochiai et al. 364 

1995). Similar effects were shown for diphyllin and SaliPhe, other v-type ATPase 365 

inhibitors (Huss and Wieczorek 2009; Konig et al. 2010; Muller et al. 2011). Small 366 

molecules that bind to the stem region of HA and thereby hinder the conformational 367 

changes required for fusion represent another class of fusion inhibitors. The first 368 
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compound of this group to be discovered was TBHQ which has been crystallized in 369 

complex with HA (Bodian et al. 1993; Russell et al. 2008). Later on, several 370 

compounds that act in a similar way have been described: BMY-27709, CL-385319, 371 

RO5464466, stachyflin and 4c (Luo et al. 1997; Plotch et al. 1999; Yoshimoto et al. 372 

1999; Vanderlinden et al. 2010; Zhu et al. 2011). Unfortunately, resistance mutations 373 

in HA can develop rapidly within few passages of the virus and confer resistance to 374 

this type of compound. Arbidol has also been identified as an inhibitor of membrane 375 

fusion. Mutations rendering viruses resistant to arbidol have been mapped to HA and 376 

seem to impact acid stability of HA (Leneva et al. 2009). Of note, arbidol is approved 377 

as anti-influenza drug in Russia. Alternatively, the stem region of HA can be targeted 378 

by broadly neutralizing antibodies as mentioned above (Corti and Lanzavecchia 379 

2013). Such antibodies bind to a region of HA that is conserved even between 380 

different subtypes and this enables the antibodies’ potential to inhibit many different 381 

strains of IAV (Okuno et al. 1993; Throsby et al. 2008; Ekiert et al. 2009; Sui et al. 382 

2009; Corti et al. 2011). While they do not prevent binding to the host cell they 383 

interfere with the conformational changes required for fusion. These antibodies 384 

represent promising drug candidates but also could help to design a vaccine that 385 

provides protection against a broad range of IAV strains. 386 

 387 

UNCOATING 388 

Release of vRNPs into the cytoplasm 389 

Upon fusion of viral and endosomal membranes IAV uncoating is completed with the 390 

release of the viral RNPs into the cytosol. This process requires coordinated action of 391 

the viral proteins M2 and M1. In the intact virus particle M1 forms a structured layer 392 

underneath the viral membrane which can be visualized by electron microscopy 393 
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(Ruigrok et al. 2000; Calder et al. 2010; Fontana et al. 2012; Fontana and Steven 394 

2013). It is assumed that M1 plays a crucial role for the architecture of the virion by 395 

linking the viral membrane containing the glycoproteins with the RNPs in the virus 396 

core. While the expression of viral glycoproteins can result in production of virus-like 397 

particles even in the absence of M1 the matrix protein is required for production of 398 

infectious virions (virus assembly is reviewed in (Rossman and Lamb 2011)). This is 399 

supported by the observation that M1 determines the shape of the virion: Exchange 400 

of M1 is sufficient to change the morphology of virions from spherical to filamentous 401 

(Roberts et al. 1998; Bourmakina and Garcia-Sastre 2003; Elleman and Barclay 402 

2004). It is currently unclear how M1 interacts with the viral membrane and/or 403 

glycoproteins; specific binding domains have not yet been mapped (Zhang and Lamb 404 

1996; Schmitt and Lamb 2005). For the interaction of M1 with the vRNPs it could be 405 

demonstrated that the middle domain of M1 is responsible for binding to NP on the 406 

RNP (Noton et al. 2007).  407 

During the uncoating process the interaction of M1 with the viral membrane as well 408 

as the interaction of M1 with the vRNPs has to be released in order to allow complete 409 

uncoating and subsequent transport of the RNPs into the nucleus. This requires the 410 

activity of the viral protein M2. M2 was identified in 1981 as the second protein 411 

encoded by segment 7 of IAV (Lamb and Choppin 1981). It was found to form 412 

tetramers that are present in virions (Zebedee and Lamb 1988; Holsinger and Lamb 413 

1991; Sugrue and Hay 1991)  and it was described to possess ion channel activity 414 

selective for monovalent ions (Pinto et al. 1992; Chizhmakov et al. 1996). 415 

Interestingly, the ion channel activity of M2 is regulated by pH: With lower pH the ion 416 

channel activity increases and histidine 37 of M2 is crucial for this regulation (Pinto et 417 

al. 1992).  The transmembrane pore of the channel is lined by a series of amino 418 
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acids that all lie on the same side of an alpha-helix; four of these helices from the 419 

four monomers form the channel (Grambas et al. 1992; Pinto et al. 1992; Wang et al. 420 

1993; Stouffer et al. 2008). During the entry process of IAV the ion channel activity of 421 

M2 is required for uncoating: Upon acidification of the endosome M2 mediates proton 422 

influx from the endosome into the virion resulting in a decrease of the pH within the 423 

virus particle (Wharton et al. 1994). This M2-mediated change in pH is required for 424 

the detachment of M1 from the vRNPs resulting in the release of the vRNPs into the 425 

cytoplasm  (Zhirnov 1990). Furthermore, it was observed that M1 separates from the 426 

RNPs before they are imported into the nucleus (Bukrinskaya et al. 1982; Martin and 427 

Helenius 1991). Interestingly, this initial RNP nuclear import can be blocked by 428 

expression of M1 but brief low pH treatment can in turn relieve the block mediated by 429 

M1 (Bui et al. 1996). These observations have lead to the current model in which the 430 

pH drop in the virion within the endosome causes conformational changes in M1 and 431 

subsequently the interaction between the RNPs and M1 is weakened or lost. The 432 

changes in M1 conformation have been visualized by electron microscopy: The 433 

helical structure of the M1 layer in the virion is lost in acid-treated virions (Calder et 434 

al. 2010; Fontana et al. 2012). Before the loss of the M1 structure rearrangements in 435 

the M1 layer could be detected (Fontana and Steven 2013). It is currently unclear 436 

how the conformational change occurs but it was suggested that the linker region 437 

between the N- and C-terminal domain of M1 is important: In vitro the linker peptide 438 

changed its conformation upon pH drop but only in the presence of zinc ions, which 439 

have been detected in influenza virions  (Elster et al. 1994; Okada et al. 2003). Not 440 

much is known about the involvement of cellular factors in this process yet. Very 441 

recently, the E3 ubiquitin ligase Itch was reported to be required for efficient 442 

uncoating (Su et al. 2013). The authors could demonstrate that Itch gets 443 
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phosphorylated and recruited to endosomes upon IAV infection where it ubiquitinates 444 

M1 and thereby facilitates release of the vRNPs.  445 

Inhibitors of uncoating 446 

Amantadine is the best known example for an inhibitor of M2. Its antiviral activity was 447 

first described in 1964 (Davies et al. 1964). Later it was found that it targets the M2 448 

protein of influenza A virus and thereby exerts its antiviral function (Skehel et al. 449 

1978; Hay et al. 1985). Rimantadine is structurally similar and also blocks M2; 450 

together this drug class is called adamantanes. Unfortunately, resistance to the 451 

adamantanes can be achieved by just a single amino acid change in M2 and this has 452 

no or very little impact on viral fitness (Hay et al. 1986; Hayden et al. 1991; Sweet et 453 

al. 1991). Moreover, resistance to the adamantanes is widespread since the 454 

beginning of the 21st century  and therefore current guidelines do not recommend the 455 

use of adamantanes (Bright et al. 2005). A recent study reported on the development 456 

of novel M2 inhibitors that can block adamantane-sensitive as well as resistant 457 

strains (Wang et al. 2013). It is therefore conceivable that novel M2-inhibiting drugs 458 

might become available for clinical use in the future (table 2).  459 

 460 

NUCLEAR IMPORT OF VIRAL RNPs 461 

Import of vRNPs into the nucleus 462 

After completion of the uncoating process the RNPs are transported into the nucleus. 463 

Already early studies observed that NP accumulates in the nucleus while M1 464 

distributes between cytoplasm and nucleus (Martin and Helenius 1991). Given the 465 

size of the vRNPs it was hypothesized that an active, energy-dependent process 466 

would mediate their import. Of note, also RNPs microinjected into the cytoplasm of 467 
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cells were capable of entering the nucleus (Kemler et al. 1994). In 1995, O’Neill and 468 

co-workers demonstrated that the viral RNA was not able to enter the nucleus; 469 

addition of NP was required. Moreover, they could show that at 0°C NP docks to the 470 

nuclear envelope in the presence of karyopherins and is imported into the nucleus 471 

upon addition of the cellular import factors Ran and p10 proteins and a temperature 472 

shift to 20°C (O'Neill et al. 1995). This clearly showed that viral RNPs are imported 473 

via the cellular karyopherin import pathway. All protein components of the RNP, the 474 

three polymerase subunits and NP, possess nuclear localization signals (NLS). 475 

Nevertheless,  import of the RNP only depends on the NLS in NP (O'Neill et al. 1995; 476 

Cros and Palese 2003). First, an unconventional NLS in the N-terminus was 477 

described in NP (Wang et al. 1997). Later on, a second bi-partite NLS was identified 478 

between amino acids 198-216 (Weber et al. 1998) as well as a third one around 479 

amino acids 320-400 (Bullido et al. 2000). For import of the RNPs the unconventional 480 

NLS seems to be the most important one (Cros and Palese 2003). On the cellular 481 

side karyopherins alpha 1, alpha 3 and alpha 5 have been identified as the main 482 

importins for RNPs (table 1) (O'Neill et al. 1995; Wang et al. 1997; Melen et al. 2003). 483 

Also CSE1L, a cellular factor required for cycling of karyopherins between nucleus 484 

and cytoplasm, has been shown to be required for import of RNPs early in infection 485 

(Konig et al. 2010). Later in infection when the individual polymerase proteins get 486 

imported the NLS on the polymerase subunits become important and other 487 

karyopherins are involved. This topic is reviewed in (Hutchinson and Fodor 2012). 488 

Upon import into the nucleus the karyopherins bind to RanGTP, which results in 489 

release of cargo and this marks the end of the viral entry process.  490 

  491 
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OUTLOOK 492 

Entry of IAV into target cells is the very first step of the viral life cycle and as such is 493 

crucial for the establishment of infection. The receptor specificity of the virus’ HA 494 

determines tropism of the virus, thereby contributing to outcome of disease, and 495 

potentially virus spread between susceptible hosts. In recent years our understanding 496 

of the differential receptor specificity between avian and mammalian influenza 497 

viruses has greatly improved and exciting structural insights have been obtained. 498 

However, more work is still required to fully understand and predict receptor 499 

specificity of all HA subtypes. For entry into target cells the virus relies on and 500 

exploits existing cellular pathways of transporting cargo, thus the entry process is a 501 

complex interplay between virus and host cell. Advances in live cell microscopy are 502 

of great value in tracking virions during entry in real-time and in monitoring the 503 

interaction of the virus with cellular factors and compartments. Novel findings indicate 504 

that virus uptake and -trafficking may not be equal to that of other cargo transported 505 

into the cell. Instead, IAV specifically recruits factors facilitating entry and activates 506 

signaling molecules such as RTKs within minutes after infection. Future studies will 507 

shed light on how these host factors contribute to virus entry on a molecular level. 508 

The increasing insight into these processes can be exploited to develop means of 509 

inhibiting the virus early in infection. Novel treatment options may be specifically 510 

directed against IAV, or be of broad antiviral efficacy if targeting entry routes used by 511 

several viruses. In the near future, we may obtain a detailed insight into the cell 512 

biology of IAV entry and profit from newly developed antivirals targeting host factors 513 

rather than viral proteins, thereby minimizing the occurrence of resistance as 514 

observed with the M2 and NA inhibitors. 515 

 516 
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Figure legends 978 

Fig. 1: Schematic representation of the influenza A virus entry process. 979 

Fig. 2: Structure of hemagglutinin 980 

a) Structure of the hemagglutinin of influenza A virus A/SouthCarolina/1918 based on 981 

(Gamblin et al. 2004; PDB accession no. 1RUZ). The trimeric complex of HA is 982 

shown with one monomer highlighted in colour. HA1 is depicted in red, HA2 in blue 983 

and the receptor binding site in green. 984 

b) The pre- and post fusion conformations of HA are shown (Bullough et al. 1994; 985 

PDB accession no. 1HTM). For the post fusion conformation only the structure of the 986 

part represented in blue could be resolved. HA1 was not included in the structure and 987 

was modelled on according to (Palese and Shaw 2007). 988 

Fig. 3: Super resolution microscopy of influenza A virus in endosomes 989 

A549 lung epithelial cells were infected with influenza A virus (A/WSN/33, MOI of 25) 990 

for 30-180 minutes. Virus was added to the cells in an inital cold binding step to 991 

synchronize the infection process. Cells were fixed and stained for DAPI and NP (a), 992 

DAPI, NP and EEA1 (b1) or NP and EEA1 (b2-b4). Images were acquired by 993 

standard immunofluorescence microscopy (CLSM – confocal laser scanning 994 

microscopy, a, b1) or super resolution microscopy (STED – stimulated emission 995 

depletion, b2-b4). In b3-b4 rendered (IMARIS) images of viral particles within 996 

endosomes are shown. In b4 the transparency of the endosomal staining was 997 

increased to allow visibility of viral particles inside the respective endosome.  998 
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Table 1: Host factors involved in IAV entry 

host factor entry strep reference 
sialic acid attachment Palese and Shaw, 2007 
C-type lectins attachment reviewed by Londrigan et al., 2011 
annexin V attachment Huang et al., 1996 
6-sulfo sialyl Lewis X attachment Gambaryan et al., 2008 
dynamin internalization Roy et al., 2000(Roy et al. 2000) 

actin internalization 
Gottlieb et al., 1993(Gottlieb et al. 
1993) 

clathrin internalization Matlin et al., 1981 
epsin-1 internalization Chen et al., 2008 
EGFR internalization Eierhoff et al.., 2010 
c-Met kinase internalization Eierhoff et al., 2010 
PLC-γ1 internalization Zhu et al., 2013 
Rab 5 endosomal trafficking Sieczkarski et al., 2003 
Rab7 endosomal trafficking Sieczkarski et al., 2003 
PKC βII endosomal trafficking Sieczkarski et al., 2003 
cullin 3 endosomal trafficking Huotari et al., 2012 
HDAC8 endosomal trafficking Yamauchi et al., 2011 

vATPase endosomal acidification 
Guinea et al., 1995(Guinea and 
Carrasco 1995) 

CD81 fusion He et al., 2013 
ITCH uncoating Su et al., 2013 
karyopherin (α1; α3; α5) import Wang et al., 1997 
Ran import O’Neill et al., 1995 
p10 import O’Neill et al., 1995 
CSE1L import Konig et al., 2010 
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Table 2: Inhibitors of IAV entry 

 

inhibitor entry step potential as drug reference 
mAbs (HA-RBP) attachment yes reviewed by 

Clementi et al., 2012 
(Clementi et al. 
2012) 

SA mimics attachment yes reviewed by 
Vanderlinden et al.,  
2013 (Vanderlinden 
and Naesens 2013) 

SA binders attachment yes reviewed by 
Vanderlinden et al.,  
2013 

Sialidases 
e.g. DAS181 

attachment yes/phase II trial reviewed by Nicholls 
et al., 2013 

Dynasore internalization laboratory use De Vries et al., 2011 
EIPA internalization laboratory use De Vries et al., 2011 
Receptor tyrosine 
kinase inhibitors 

internalization  Eierhoff et al., 2010 
and De Vries et al., 
2012 

Lj001 internalization yes Wolf et al., 2010 
Bafilomycin A1 endosomal 

acidification 
laboratory use Guinea et al., 1995 

mAbs (HA stalk) fusion yes reviewed by Corti et 
al., 2013 (Corti and 
Lanzavecchia 2013) 

Small molecule 
inhibitors (HA 
stalk) 

fusion yes reviewed by 
Vanderlinden et al., 
2013 

Amantadine uncoating approved Davies et al., 1964 
Rimantadine uncoating approved Rabinovich et al., 

1969 (Rabinovich et 
al. 1969) 

benzyl-substituted 
amantadine 
derivatives 

uncoating yes Wang et al., 2013 

importazole import laboratory use Chou et al., 2013 

(Chou et al. 2013) 

 

 





Figure 2: Kinetics of IAV entry
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Figure 3: Super resolution microscopy of influenza A virus in endosomes
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A549 lung epithelial cells were infected with influenza A virus (A/WSN/33, MOI of 25) for 60 minutes. Virus was added to the cells in an inital cold binding step to synchronize the

infection process. Cells were fixed and (A) standard immunofluorescence microscopy (CLSM – confocal laser scanning microscope) for DAPI, NP and EEA1 signal or (B‐D) super resolution
microscopy (STED – stimulated emission depletion) for NP and EEA1 was carried out. In C/D rendered (IMARIS) images of viral particles within endosomes are shown. In D the

transparency of the endosomal staining was increased to allow visibility of viral particles inside the respective endosome.
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