
Arbitrum:
Fast, Scalable, Private Smart Contracts

2
Arbitrum: Fast, Scalable, Private Smart Contracts

Arbitrum is a Layer 2 cryptocurrency platform that makes smart contracts scalable, fast,
and private. Arbitrum interoperates closely with Ethereum, so Ethereum developers can
easily cross-compile their contracts to run on Arbitrum. Arbitrum achieves these goals
through a unique combination of incentives, network protocol design, and virtual machine
architecture.

This white paper explains what Arbitrum achieves for developers, how Arbitrum works,
and where you can get more information.

WHY USE ARBITRUM?

Why should you use Arbitrum rather than sticking with plain Ethereum? Or from some
other platform?

Arbitrum has four main advantages: scalability, privacy, the AnyTrust Guarantee of correct
execution, and interoperation with Ethereum. No other solution combines these benefi ts.

Scalability
During normal Arbitrum operation, decentralized apps (dapps) only have to touch the
main chain on startup or when they send or receive currency outside of Arbitrum. Other
interactions can happen entirely offchain, with quick turnaround and guarantees of
fi nality. Even in abnormal cases, the burden on the main chain is small compared to other
solutions.

Privacy
Only the participants who validate a dapp’s execution need to know what is in the dapp’s
code or storage. All that is published on-chain are cryptographic hashes of the dapp’s
state, and information about the dapp’s public actions, such as sending and receiving
calls, messages, and currency. The dapp developer can choose their own validators.

The dapp creator can choose to let the dapp’s user see its internals if desired, and user’s
machines can verify the information if they receive it, but this disclosure is strictly optional,
depending on the needs of each dapp.

AnyTrust Guarantee
Unlike many other state channel, sidechain, or private chain solutions, Arbitrum guarantees
correct execution as long as any one validator of a dapp acts honestly—even if all of the

3
Arbitrum: Fast, Scalable, Private Smart Contracts

other validators collude to (try to) cheat. Most other approaches require majority-honest
or two-thirds-honest assumptions, or else require moving the entire state of a contract to
the main chain in case of a dispute.

The AnyTrust Guarantee is especially nice if you are a validator. You can stand up for your
own rights and force the dapp to give you the behavior and currency that you deserve, no
matter what anybody else does. If all of the parties interested in a dapp are allowed to be
validators, then everybody has a guarantee of correct behavior.

Interoperability with Ethereum
Arbitrum is interoperable with Ethereum. You write your dapp in Solidity, then use the
open source Arbitrum compiler to generate Arbitrum-ready code. You can also transfer
ether or any other Ethereum-based token back and forth between Ethereum and Arbitrum.

HOW TO RUN YOUR DAPP ON ARBITRUM

Suppose you’re a developer who has written a dapp for the Ethereum platform. Arbitrum
interoperates with Ethereum, so you can move your dapp over to Arbitrum and get better
speed, scalability, and, if you desire, greater privacy.

You’re starting with a dapp—or you’re planning to develop one—that’s made up of some
contracts written in Solidity, along with a browser-based front end. Here’s how use
Arbitrum with your dapp.

First, you compile your Solidity contracts using the Arbitrum compiler. This creates an
Arbitrum executable fi le. If you’d like, you can use Truffl e to manage the compilation and
deployment of your code.

Next, you identify a set of validators who will track your dapp’s execution and make sure
it is correct. Anybody can be a validator, and every contract creator gets to choose their
own validators. The next section talks about how you might choose validators in some
common use cases.

Lastly, you have the option of designating a set of observers. Observers get to see what
the contract is doing but, unlike validators, observers aren’t responsible for enforcing
correctness.

4
Arbitrum: Fast, Scalable, Private Smart Contracts

Arbitrum’s AnyTrust Guarantee says that as long as even a single one of your dapp’s
validators is online and acting honestly, your dapp will execute correctly. If you or
someone you trust is a validator for a dapp, you can be confi dent that your dapp will
execute correctly—even if all of the other validators are malicious.

When you’re ready to launch your dapp, you send an Ethereum message to the EthBridge—
the component that connects Arbitrum to Ethereum—telling it to launch your contract on
Arbitrum, and identifying the contract’s validators.

Your dapp is now up and running on Arbitrum . Users of your dapp can launch your existing
front-end interface in their browsers. The front end will automatically interact with the
running dapp through behind-the-scenes messaging with your validators.

Thanks to the EthBridge, you and your users can interact with your dapp, or send ether or
any other Ethereum-based token to your dapp, and the dapp can send ether or tokens to
any Ethereum user or to any contract on Arbitrum or Ethereum. You do this by depositing
funds into your Arbitrum wallet, which is managed by the EthBridge.

The software you need to do all of this—the Arbitrum compiler, the EthBridge, and a
validator implementation—is all available from Offchain Labs via GitHub. Of course, it’s
all open source.

Coming soon: multi-language support: The fi rst release of Arbitrum will run contract code
written in Solidity. We know that many developers would prefer to write their code in
a different programming language. That’s why we’re developing a compiler toolchain
that allows standard languages such a C/C++, Python, Go, and Rust to be compiled to
Arbitrum.

USE CASES

Arbitrum’s design is versatile and can be used to run just about any dapp or smart contract
effi ciently. When setting up your dapp on Arbitrum, the key decision is how to choose the
validators. You’ll probably want to use different approaches for different categories of
smart contracts.

Let’s look at some use cases.

5
Arbitrum: Fast, Scalable, Private Smart Contracts

Use case: A two-player game. For many applications, it’s natural to have everyone who
interacts with the contract be a validator. Say Alice and Bob want to bet on a game of
chess. They create a dapp, written in Solidity and compiled for Arbitrum, that encodes

Alice’s Front-End

Ethereum Chain

Bob’s Front-End

Alice’s Validator

EthBridge

Bob’s Validator

6
Arbitrum: Fast, Scalable, Private Smart Contracts

the rules of chess: it checks that moves are legal and when the game ends, authorizes
payment to the winner. They deploy it as an Arbitrum Virtual Machine (VM).

Alice and Bob are the natural validators for this VM. Each of them trusts at least one
validator—themselves—to be honest, so thanks to AnyTrust they both know the VM will
execute correctly. Alice knows that Bob tries to cheat and falsely claim that he won the
game, she can force the VM to pay out the coin correctly. Bob has a similar guarantee.
If Alice or Bob doesn’t want to be a validator, they can name somebody they trust to be a
validator instead. They can each name two or three validators if they want, just to be extra
sure.

A two-player game is a good example of an Arbitrum State channel, which we will describe
in the appendix.

Use case: An open contest. Suppose Alice is stumped on a Sudoku puzzle and announces,
“I will hereby pay 1 ETH to the fi rst person who provides the solution.” This can easily be
run as an Arbitrum VM. Alice encodes her puzzle as well as the rules of Sudoku in Solidity
and compiles it into an Arbitrum VM. She deposits 1 ETH into the VM, and the VM will
send that prize to whoever fi rst proposes the correct solution. If Bob wants to submit
a solution, he fi rst sends the VM a cryptographic commitment to both his identity and
his answer (to ensure his place in line). He then sends another message opening the
commitment. The VM will check Bob’s solution, and if it is valid, it will send Bob the prize.

How should Alice choose the set of validators? It is no longer feasible to allow every
contract participant to name a validator, because anybody in the world can potentially
participate by proposing a solution.

Once again this is much easier thanks to Arbitrum’s AnyTrust guarantee, which says
that the execution of the VM can only go wrong if all of the validators collude. Alice can
choose a diverse set of validators with real known identities and reputations who are
highly unlikely to all collude. In Arbitrum you can always add more validators to mitigate
the risk of universal collusion.

Now Bob can look at the list of validators, and as long as he trusts at least one of them,
he knows that the contract will give him the payment he earned solving Alice’s Sudoku.

This contest use case is a good example of an AnyTrust sidechain, which we will look at
further in the appendix.

7
Arbitrum: Fast, Scalable, Private Smart Contracts

Use case: Private blockchain. While public blockchains like Ethereum are powerful, many
enterprises are now turning to private, or permissioned, blockchains to coordinate with
other players in their sector. Some banks, for example, are considering consortium
blockchains as an interbank settlement solution. Other sectors are using permissioned
blockchains to track products through their supply chain.

Private blockchains, as their name suggests, have signifi cant privacy benefi ts. Only the
participating nodes may see what happens on the private chain; it remains shielded from
the rest of the world.

Private blockchains generally abandon the energy ineffi cient proof-of-work consensus
that is used to secure public blockchains such as Bitcoin and Ethereum. Since the set
of nodes is known and fi xed, quorum-based solutions such as Byzantine Fault Tolerant
(BFT) protocols from the distributed systems world can be used to gain consensus.
These protocols usually have an honesty requirement that some fraction of the validators
(generally ⅔) must remain honest in order to reach consensus and make progress.

The ⅔ honesty assumption can be troublesome when choosing the validators for a
consortium blockchain. Consider the supply chain example. On the one hand, it makes
sense to include a wide variety of businesses, both big and small, from every step of the
supply chain, as validators. On the other hand, some of the larger, more reputable players
may not want to include too many lesser-known players, lest ⅓ of the participants form a
cartel and prevent correct execution. In such a setting, one has to be very careful in which
nodes to allow as validators.

Here again Arbitrum’s AnyTrust guarantee is just what is needed. In an Arbitrum private
blockchain, the logic and rules of the private chain are encoded inside an Arbitrum VM,
and the nodes of the private chain become the validators of the Arbitrum VM. Choosing
which nodes to allow into the chain is no longer a big issue. Arbitrum’s AnyTrust property
allows you to add as many validators as you want. As long as your node (or any other)
remains honest, the addition of more validators cannot hurt you and correct execution is
guaranteed.

Arbitrum’s privacy model is identical to that provided by a private blockchain: the
permissioned set of participants can see all of the blockchain data, but it is completely
opaque to the outside world.

8
Arbitrum: Fast, Scalable, Private Smart Contracts

Arbitrum thus provides an ideal solution for enterprises launching private blockchains, as
it signifi cantly reduces risks associated with choosing participants. You no longer need
to be convinced that two-thirds of your peers will be honest. Actually, you don’t have to
trust any of your peers. Thanks to AnyTrust, you can unilaterally enforce correct behavior.

HOW ARBITRUM WORKS

If you’re interested in the nuts and bolts of how Arbitrum really works, you can read the
code; or you can dive into some of the deep details by reading the academic paper1 that
Arbitrum is based on, although that’s a snapshot from May 2018, so it’s missing some
important features of today’s Arbitrum. Or … keep reading and we’ll summarize it.

We’ll explain the nuts and bolts of Arbitrum in terms of its three main components: the
compiler, the EthBridge, and validators.

The Arbitrum compiler takes a group of contracts written in Solidity, and compiles and
links them together into a single executable fi le that can run on the Arbitrum Virtual
Machine (AVM) architecture. (Why did we design our own VM architecture? Because it
lets us reduce the on-chain footprint of a VM, which makes things go faster. See below
for a detailed explanation.)

Because many dapps are written as a group of contracts rather than a single contract, the
Arbitrum compiler can take all of the contracts in your dapp and compile them together
into a single deployable unit. To avoid confusion between a compiled Arbitrum program
and the multiple contracts that make it up, we call the whole thing a Virtual Machine (or
VM) when it’s running.

The EthBridge is a dapp running on Ethereum. As the name implies, its job is to serve as
a bridge between Ethereum-land and Arbitrum-land. Anyone in Ethereum-land can call the
EthBridge to interact with Arbitrum-land, for example to launch an Arbitrum VM, to make a
call to a contract running on Arbitrum, or to send ether or any token to an Arbitrum VM. If
an Arbitrum VM sends ether or tokens to you, the EthBridge will pass them on to you. And
the EthBridge knows the status of everything in Arbitrum so you can make non-mutating
calls to it (costing zero gas) to follow what’s happening in Arbitrum-land (except for the
internals of private VMs).

1 Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W. Felten. “Arbitrum: Scalable, private smart contracts.” In 27th
USENIX Security Symposium, pp. 1353-1370. 2018. Available at https://www.usenix.org/system/fi les/conference/usenixsecurity18/sec18-kalodner.pdf

9
Arbitrum: Fast, Scalable, Private Smart Contracts

The EthBridge’s other important job is to referee disputes between validators. As
described below, the Arbitrum protocol and AVM architecture make dispute resolution
very fast and cheap, as well as imposing strong disincentives against entering disputes
in the fi rst place. But if a dispute does occur, the EthBridge will referee it to preserve the
AnyTrust Guarantee.

Validators are the workhorses of Arbitrum—and they do that work almost entirely off-
chain. Recall that every running VM has its own validators who are chosen by the dapp
creator. Those validators keep track of the state of the VM and advance the VM’s state by
emulating the instructions in the VM’s code.

A VM’s validators know everything about the current state of that VM. The EthBridge just
keeps track of the cryptographic hash of each VM’s state. We can think of that hash as a
commitment by the VM’s validators to the complete state.

The common case: fast path
Most of the time, a VM’s validators will agree on what the VM does. Each validator will
emulate some steps of execution by the VM, and then the validators will compute the
cryptographic hash of the resulting state. If the validators are all behaving correctly, they
will agree on the new state hash. They will then make a joint digital signature recording the
VM’s evolution from the old state hash to the new state hash. That’s called a unanimous
assertion. The EthBridge will accept any unanimous assertion as correct. (That’s
consistent with the AnyTrust Guarantee, because assuming that at least one validator
is honest, anything that was endorsed by all validators must have been endorsed by an
honest validator.)

Usually a VM’s validators will be able to string together a whole sequence of unanimous
assertions, without needing to bother the EthBridge or put anything on the main chain.
A unanimous assertion is like a voucher that can always be taken to the main chain
(via the EthBridge); or you can hang onto a voucher until you get a newer, more up-to-
date voucher. Honest validators will do this for you, so you have a guarantee of fi nality
in unanimously asserted transactions, even before they’re submitted to the EthBridge
to be put on the main chain. This mode of execution can give fi nality very quickly—it
requires only agreement and a digital signature from your VM’s chosen validators—while
still supporting the AnyTrust Guarantee of correctness.

10
Arbitrum: Fast, Scalable, Private Smart Contracts

1. Asserter:

2. Challenger:

3. Asserter:

4. Challenger:

5. Asserter:

6. Challenger:

 Asserter:

 Challenger:

 Asserter: [One-Step Proof]

H0 HN

 Wrong!

H0 HN/2

 Wrong!

H0 HN/4 HN/4 HN/2

 Wrong!

Hi Hi+1

 Wrong!

HN/2 HN

N/2

N/4 N/4

1

N/2

...

11
Arbitrum: Fast, Scalable, Private Smart Contracts

If a validator isn’t available
Occasionally a validator might be unavailable or offl ine. In this case, unanimous agreement
can’t be reached. To make progress, any validator can make a disputable assertion: an
on-chain claim, submitted via the EthBridge, that asserts what the correct next state hash
and actions of the VM are. After this disputable assertion, the other validators have a time
window, whose length is determined by the dapp creator, to dispute the assertion if they
believe it incorrect. If the problem is just that one validator is unavailable, the assertion
will be honest and correct, and nobody will dispute it. After the dispute window closes, the
EthBridge will accept the assertion as correct, allowing the VM to make progress.

As soon as the unavailable validator comes back online, the validators will go back to the
normal, unanimous, off-chain operation of the VM.

If a validator is dishonest
The most challenging case arises when a dishonest validator tries to cheat. This is the
case where many state channel approaches get into trouble and have to move the full
state of the dapp onto the main chain, which can be very expensive and slow. This case
is where Arbitrum really shines.

There are two things a dishonest validator might try to do. First, they might try to corrupt
the execution of the VM by making a disputable assertion that is false in the hopes that
the EthBridge will accept that assertion. Second, they might let somebody else make a
truthful disputable assertion and then start a bogus dispute about it.

Arbitrum deters misbehavior by requiring validators to put down a deposit or “stake” that
is held by the EthBridge. If a validator gets caught cheating, it will forfeit its stake. (Half
of the cheater’s stake goes to the other party in the dispute. The other half is burned (that
is, destroyed). When the VM completes, validators who haven’t been caught cheating will
get their stake back.

Arbitrum’s dispute resolution protocol is designed to resolve disputes very effi ciently, by
identifying a cheating party while requiring a minimum of on-chain activity. The dispute
plays out as a contest between an asserter (who claims their disputable assertion is
correct) and a challenger (who claims that the same assertion is wrong), with the
EthBridge acting as referee.

12
Arbitrum: Fast, Scalable, Private Smart Contracts

Dispute resolution
The dispute resolution protocol goes in two stages. First, the players narrow down their
disagreement, using an on-chain bisection protocol, until they are disagreeing about a
single step of the VM’s computation. Then the asserter sends a one-step proof—a proof of
correctness for the execution of a single VM instruction—to the EthBridge which checks
that tiny proof.

The bisection protocol starts when the asserter claims that a VM starting with state-hash
X can execute N instructions, resulting in state-hash Y, and the challenger responds that
this is false.

The asserter is required to bisect their assertion into two half-size assertions, each
involving the execution of N/2 instructions, which fi t together to give the initial assertion.
Then the challenger has to pick one those two halves to challenge. If either player fails to
act within a time limit, they lose. After one round of bisection, the size of the dispute has
been cut in half to N/2 steps.

The process continues with further bisections. After a logarithmic number of bisections
(logarithmic in the number of instructions executed, N), the dispute has been narrowed to
a single step: the dispute will be over whether or not a VM starting with state-hash Y can
execute a single instruction to get to the state-hash Z.

At this point the asserter has to give a one-step proof to the EthBridge, containing the
information that the EthBridge needs to quickly verify that the one-step assertion is
correct. Or perhaps the asserter will fail to provide a valid one-step proof. Either way, the
dispute is resolved.

We won’t go into the details of one-step proofs here—we’re pretty deep in the weeds
already. Suffi ce it to say that Arbitrum’s custom VM architecture comes into play here,
making the one-step proof small (a few hundred bytes at most) and quick to check
(costing about 90,000 Ethereum gas, or about four cents at current prices).

By making disputes relatively cheap to resolve, and imposing a substantial penalty on the
loser, Arbitrum strongly disincentivizes attempts to cheat, but even if a dispute occurs
this doesn’t impose a huge on-chain impact. In the common case, validators will agree
and progress will occur off-chain, with only occasional touches to the main chain.

13
Arbitrum: Fast, Scalable, Private Smart Contracts

THE BOTTOM LINE

Arbitrum can do what other smart contract scalability solutions can’t. Arbitrum makes
your dapp scalable, by moving almost all of its activity off-chain and making your dapp’s
cost independent of the size of its code and data. Arbitrum preserves privacy by letting you
choose who gets to see what your dapp is doing. Arbitrum gives you confi dence in your
dapp’s correctness due to the AnyTrust Guarantee which lets you pick your validators and
requires only one honest validator to ensure correct behavior. And Arbitrum is compatible
with Ethereum.

If you’re developing a dapp and you care about scalability, privacy, security, and ease of
development, we invite you to try Arbitrum.

GETTING STARTED WITH ARBITRUM

For information on the status of Arbitrum, and instructions on how to download the
Arbitrum code and get started, see the developer quickstart guide at https://developer.
offchainlabs.com.

ABOUT OFFCHAIN LABS
Offchain Labs, Inc. is a New Jersey based startup that aims to make smart contracts
more private, secure, and scalable using a combination of protocol design, incentives, and
virtual machine architecture. Led by Princeton Professor of Computer Science Ed Felten
and a team of academics and PhD technologists, Offchain Labs has invented Arbitrum, a
blockchain-agnostic Layer 2 scaling solution that incentivizes parties to agree off-chain
how a virtual machine would act in order to improve transaction throughput, speed, and
privacy.

For more information on Offchain Labs, see https://offchainlabs.com

14
Arbitrum: Fast, Scalable, Private Smart Contracts

APPENDIX: ARBITRUM, STATE CHANNELS, AND SIDE CHAINS

Blockchain experts sometimes ask us, “Is Arbitrum a state channel, or is it a sidechain?”
The answer is that it isn’t exactly either one. We think of Arbitrum as a more general
approach that can be used in a state-channel style, or in a sidechain style.

Using Arbitrum in State Channel Style
State channels. We talked above about the example of a two-player chess game, where
each player themselves served as a validator. Choosing the validators this way is not
limited to chess and it’s not even limited to two-party VMs. Any VM that has a fi xed set
of participants who are known ahead of time can operate in this style by allowing each
participant to name (or themselves be) a validator.

This approach, where a fi xed number of participants each represent their own interest
by unanimously agreeing to off-chain activity and reporting the results on-chain, bears a
close resemblance to state channel constructions, and indeed we sometimes call this an
Arbitrum state channel.

Arbitrum state channels have signifi cant benefi ts over most other state channel
approaches:

Progress doesn’t require unanimity. Traditional state channels are highly effi cient
when all participants can reach unanimous agreement about what a contract did off-
chain. Indeed, in this case Arbitrum state channels behave exactly like traditional state
channels.

It’s not always possible though for validators to unanimously agree off-chain. There
might be a dispute among the validators as to what occurred off-chain, or one party
might crash or lose internet connectivity. Traditional state channels cannot differentiate
between these two failure cases. Whenever unanimous agreement can’t be reached—
for any reason—traditional state channels can no longer make progress off-chain, and
require the contract’s code to be executed on-chain.

Arbitrum differentiates between non-unanimity due to lack of availability and non-
unanimity due to a dispute. Only in case of a true dispute does Arbitrum’s lightweight
dispute resolution protocol run. If one validator goes offl ine, Arbitrum still allows for
execution without having running the code on-chain.

15
Arbitrum: Fast, Scalable, Private Smart Contracts

Ultimately, it’s every validator’s responsibility to ensure that they are available enough
to monitor and ensure the correctness of a smart contract’s execution by deterring
bad behavior by other validators. However, if one validator shirks this responsibility,
Arbitrum allows the other validators to continue executing the VM. Crucially, Arbitrum
guarantees that other validators will not be able to abuse this feature by pretending
that an available validator is absent.

Effi cient dispute resolution. In any state channel system disputes between validators
may arise Arbitrum makes dispute resolution highly effi cient. The cost of resolving a
dispute is small, and is independent of how big a VM’s code is or how much storage
it uses. (See the main text of this white paper for details.) Traditional state channels
give no such guarantee. The on-chain dispute resolution can be large, complex, and
expensive to run; it also sacrifi ces VM privacy.

Ease of development. Traditional state channels can put a signifi cant burden on the
developer by requiring smart contracts to be coded so that state transitions can be
run either on- or off-chain. in a very specifi c way that specifi es state transitions in
a way that allows for each transition to be run on-chain when off-chain agreement
is not reached. kDevelopers are restricted as they must make sure that each state
transition in their protocol is simple enough to run on-chain if necessary. Complex
state transitions that would require too much gas can’t easily be supported.

Arbitrum, in contrast, allows the developer to write code in the normal way. In fact, the
Arbitrum compiler can take existing Ethereum contracts and convert them to Arbitrum
contracts with no extra development work.

Whereas in traditional state channels the state transitions are higher level protocol
transitions, in Arbitrum state channels, the state transitions are the virtual machine
instructions in the compiled code. These are generated by the compiler, not specifi ed
by the user. Moreover, the set of virtual machine instructions is identical for every
contract, no matter what the higher level code is doing. Thus, the on-chain component
for Arbitrum needs only to be able to execute the virtual machine instructions, but it
does not need to be customized for each individual application.

Arbitrum AnyTrust Sidechains
Running an open contest on Arbitrum, as we saw in the main body of this white paper,
is an example of “open world” contracts, in which there are no fi xed sets of participants

16
Arbitrum: Fast, Scalable, Private Smart Contracts

and sets of designated validators must be chosen to represent the varied interests of all
participants. Other examples include betting and prediction markets in which anyone in
the world is free to bet on the outcome of a particular event. In these settings, the set of
validators operates a sidechain. Anybody else can interact with the sidechain, and it is
guaranteed to operate correctly so long as any single validators is honest and available.
The AnyTrust property distinguishes Arbitrum sidechains from many other proposals.
Complex protocols and threshold honesty assumptions are not needed. All that’s needed
to guarantee correct execution of contract code is that a single validator remains honest
and available.

Contract isolation. No matter how hard one tries to choose a robust set of high-reputation
validators, it’s unlikely that everyone in the world will be satisfi ed. It’s important to
remember that the validators can only affect the execution of the particular contract for
which they are designated. In particular, even if they are all dishonest, they cannot harm
any other contract or system component, so you can safely ignore any contract whose
validators you do not trust.

