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Abstract

In this thesis, I explore using silhouettes of polyhedral light sources for real-time shading.
The central problem that I solved for this was to efficiently determine the silhouette for a
shading point in a fragment shader. I present a simple solution for convex polyhedra that
can be executed entirely in the shader. I also present a more sophisticated method that
requires a preprocessing phase but provides better performance and can be applied to non-
convex polyhedra as well. This method consists of an algorithm for finding the silhouette
of any polyhedron, an algorithm and data structure based on binary space partitioning for
storing precomputed silhouettes for every point in the scene, and the algorithm for using
that data structure in the shader.

Furthermore, I explain how to use silhouettes for area light shading with linearly trans-
formed cosines and for ray tracing with solid angle sampling. For solid angle sampling, I
use a technique for sampling spherical triangles, which means that I have to triangulate
the silhouette. I present a simple and efficient way of doing so for convex and star-shaped
light sources. For other light sources, I explain how to modify the data structure used to
find the silhouette to store triangulated silhouettes instead.

I tested the performance of my techniques for a variety of light sources and found that they
give relevant performance improvements over simpler techniques that do not use silhou-
ettes. For the tested light sources, the techniques are well suited for real-time applications
on current graphics hardware.
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Zusammenfassung

In dieser Arbeit befasse ich mich mit der Verwendung von Silhouetten polyedrischer
Lichtquellen für Echtzeit-Shading. Das zentrale Problem, das ich hierfür gelöst habe ist
die effiziente Bestimmung der Silhouette für einen Oberflächenpunkt in einem Fragment-
Shader. Für konvexe Polyeder beschreibe ich eine einfache Lösung, die vollständig im
Shader ausgeführt werden kann. Außerdem präsentiere ich eine weitere Methode, die
zwar eine Vorberechnungsphase erfordert, dafür aber schnellere Berechnung im Shader
ermöglicht und auch für nicht-konvexe Polyeder verwendet werden kann. Diese Meth-
ode besteht aus einem Algorithmus zur Bestimmung der Silhouetten, einem Algorithmus
und zugehöriger Datenstruktur basierend auf Binary Space Partitioning zur Bereitstel-
lung vorberechneter Silhouetten für jeden Punkt in einer Szene und dem Algorithmus zur
Verwendung dieser vorberechneten Daten im Shader.

Ich erkläre außerdem, wie ich Silhouetten für Beleuchtungsberechnung mit linear trans-
formierten Kosinusverteilungen (linearly transformed cosines, LTCs) und für Raytracing
mit Raumwinkelabtastung (solid angle sampling) verwende. Für die Raumwinkelabtas-
tung nutze ich eine Methode für die Abtastung sphärischer Dreiecke und muss daher die
Silhouette zunächst triangulieren. Hierfür beschreibe eine einfache und effiziente Meth-
ode für konvexe und sternförmige Lichtquellen. Für andere Lichtquellen beschreibe ich
eine Abwandlung meiner Methode zur Vorberechnung von Silhouetten, mit der auch die
Triangulierungen vorberechnet werden.

Ich habe die Effizienz meiner Verfahren für eine Auswahl von Lichtquellen geprüft und
bin zu dem Ergebnis gekommen, dass sie im Vergleich zu einfacheren Verfahren, die keine
Silhouetten verwenden relevante Verbesserungen bieten. Für die geprüften Lichtquellen
sind die Verfahren gut für Echtzeitanwendungen auf aktueller Grafikhardware geeignet.
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1. Introduction

Calculating shading of a surface due to direct illumination is an important problem in
computer graphics. In real-time applications, light sources are commonly approximated
using point and directional lights for the simplicity of the resulting lighting calculations.
Area lights reproduce the appearance of many real-world light sources more accurately but
shading them is significantly more expensive and the formulas are difficult to derive for
many commonly used shading models. To alleviate this, several cheaper approximations
have been proposed and used, including one that replaces the cosine-weighted BRDF that
models the reflective properties of a surface by a simpler function from the family of
linearly transformed cosines (LTCs) [HDHN16]. Various light shapes, including arbitrary
polygons, can be used for real-time shading using this technique.

I explore an efficient approach to extending shading with LTCs to polyhedral light sources
by replacing them with their silhouette polygon as seen from the shading point. I describe
algorithms for calculating the silhouette of polyhedra as well as methods for moving the
bulk of necessary computations to a preprocessing phase, which makes the presented tech-
nique suitable for real-time applications. While the silhouette generally depends on the
shading point, I identify cells in the scene where the overall structure of the silhouette
remains the same. I precompute this for each cell once per unique light source and then
determine the exact silhouette at the time of shading. I organize the cells using Binary
Space Partitioning (BSP) to allow for fast indexing of the precomputed data. I describe
each of the main components of my technique for convex light sources first and then explain
how to overcome the additional challenges arising from non-convex ones.

The ability to use polyhedral light sources efficiently is of great practical significance as
any solid can be approximated by a polyhedron. Light sources in reality and fiction have
a wide variety of complex shapes that cannot always be recreated accurately with other
geometric primitives. Examples include various kinds of light fixtures, neon signs, hot
metal objects, and some depictions of fictional objects and materials like magical items.
Furthermore, sophisticated tools for modeling polyhedra are readily available and widely
used. Polyhedral light shading therefore enables artists to apply their workflows and
experience from 3D-modeling of other objects to light sources. Similarly, many techniques
for scanning real objects produce polyhedral descriptions of the scanned object.

While LTCs make it easy to calculate shading for an unoccluded light source, they don’t
reproduce shadows cast by other objects in the scene. Recent developments in graphics
hardware make ray tracing a viable approach for soft real-time shadows. Particularly good
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4 1. Introduction

results are achieved using solid angle sampling. While solid angle sampling is possible using
just the polyhedron’s faces, I describe how using polyhedron silhouettes as produced by
the techniques presented here speeds up the process. I use a solid angle sampling technique
for triangles [Pet20] that I extend to polyhedra by triangulating their silhouettes.

After explaining my techniques, I evaluate how practical they are by showing their qual-
ity and limitations in example renderings and by discussing performance metrics that I
measured for various example light sources. I conclude the thesis by reflecting on the
presented techniques, their advantages, and their limitations and by outlining my ideas
for improving them with further research.
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2. Related Work

Area light shading for various light shapes has already been explored in great detail. One
approach [WLWF08] approximates an area light by replacing it with a single point light
chosen dynamically for each surface point. The position of this point light is chosen as
the point that maximizes the BRDF. The intensity of the point light is determined by
integrating the intensity distribution of the light source over a disk around the point light.
Empirical estimates are used to determine the radius of the disk. A more recent technique
[HDHN16] for polygonal lights uses the actual shape of the light source but approximates
the cosine-weighted BRDF with an LTC, which is then integrated analytically for a spher-
ical polygon. This technique forms the basis for large parts of this thesis and is described
in more detail in 3.4. Shading with LTCs does not reproduce shadows but a separate pub-
lication [HHM18] describes how to combine it with stochastic raytraced soft shadows. To
do so, shading is calculated three times: once analytically with the approximated BRDF,
once with a Monte Carlo ray tracing approach with shadowing, and once with the same
approach and the same random numbers but ignoring shadowing. The ratio of the last
two is then multiplied with the first one to give the final result. This results in noise-free
shading except for the penumbra, which exhibits the typical noise of stochastic shadows.
A denoising technique is applied to the shadow term to reduce the noise in the penumbra
while details from textures and normal maps are preserved. A different combination of ray
tracing and LTCs [DGJ+20] uses LTCs as an approximation of the BRDF for pathguiding.
Using the approximated BRDF, more rays are cast in the directions that have the greatest
effect on the result.

Ray tracing for area light shading yields better results when a sampling technique is used
that distributes samples uniformly over the solid angle of the light source. A technique for
solid angle sampling of triangles exists [Arv95] and can be extended to polygons and poly-
hedra by triangulating them. A method based on rejection sampling has been presented
for disks and cylinders [Gam16]. Instead of sampling the solid angle of the light source
directly, a spherical rectangle that contains the solid angle of the light source is sampled
until a sample that lies within the solid angle of the light source is found.

An analytic approach to calculating shadows in scenes of opaque convex polyhedra and
convex polyhedral light sources [DG09] determines boundaries of umbra and penumbra
as polygons. This is made possible by first building a data structure that partitions the
scene using a set of planes that they call visual event surfaces where relevant changes to
the view of the scene occur. I use a similar approach in section 5.

5



6 2. Related Work

Different types of contours and silhouettes of polyhedra have been studied in various
contexts. A survey [IFH+03] compares many different techniques for detecting contour
edges, mostly for highlighting edges in depictions of polyhedra for artistic purposes or to
make the shape more easily recognizable. Many of the presented algorithms rely on screen-
space pixel buffers but analytically determined silhouettes are also explored to some extent.
Arthur Appel introduces the notion of quantitative invisibility [App67] as the number of
surface points between the observer and the background. This plays an important role in
algorithms for determining silhouettes as the silhouette is what separates an object from
the background, i.e. the set of points where the quantitative invisibility changes between
one and zero. A complete and efficient algorithm based on a sweep line approach [KW97]
uses this idea to analytically determine the silhouette of a polyhedron. However, this
algorithm uses a planar projection of the polyhedron, such as a perspective or orthographic
projection, which is not always possible in polyhedral light shading. Furthermore, the
algorithm does not appear to be well suited for being used in a fragment shader. For
example, it requires an efficient sorting algorithm, which is challenging in a fragment
shader.

It is worth noting that the inverse problem, namely finding a solid that produces a set
of given silhouettes has also been explored in great detail. For example, [FB09] describes
an efficient algorithm for use in computer vision that produces a polyhedral model from
polygon silhouettes.
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3. Basics

My work is based on research on a wide range of topics. In this section, I give an overview
of some of the concepts and techniques of these areas of research that are particularly
relevant for my thesis. I explain the fundamentals of area light shading and BRDFs, give
an introduction to the relevant concepts of spherical geometry and briefly explain the
techniques of polygonal light shading with LTCs and with Monte Carlo integration and
solid angle sampling.

3.1 BRDF
To shade a surface, it is necessary to describe how light reflects off that surface. A common
way of doing so is with a BRDF, which is defined by the following equation [PJH16]:

f(x, ~ωi, ~ωo) = dLo(x, ~ωo)
Li(x, ~ωi)(~n · ~ωi)d~ωi

(3.1)

• Li and Lo are the incoming and outgoing radiance

• ~ωi and ~ωo are the directions of incoming and outgoing light

• f(x, ~ωi, ~ωo) is the BRDF

• ~n is the normal vector

The BRDF takes a direction of incoming radiance and one of outgoing radiance. It returns
a value that is a measure of how much of the incoming radiance is reflected in the given
direction.

While the BRDF could be measured and passed to a shader directly, this results in im-
practically large amounts of data and is logistically difficult in projects that require many
different materials or many slight variations of a material. To solve this, analytical de-
scriptions of BRDFs for various materials have been developed that are then parameterized
with more compact and intuitive properties of the surface, such as color or roughness. The
two that I mainly used are given below.

Lambert
Lambert diffuse lighting models ideally diffuse surfaces as reflecting light equally in all
directions. The BRDF is therefore simply a constant that is a measure of the brightness
or color of the surface [SM09].

f(~ωi, ~ωo) = const. (3.2)

7



8 3. Basics

While there are more accurate diffuse BRDFs for realistic materials, Lambert lighting is
noteworthy in the context of shading with LTCs because it already is a cosine distribution,
which means that using LTCs does not introduce any approximation error.

GGX

GGX [WMLT07] is a physically based specular BRDF for surfaces of varying roughness.
It is based on the Torrance-Sparrow lighting model as described in [TS67] which models a
surface as consisting of many small, randomly arranged mirrors called microfacets (figure
3.1). By assuming certain statistical distributions for the arrangement of these microfacets,
a BRDF can be derived. The general formula for a Torrance-Sparrow BRDF is

f(~ωi, ~ωo) = F (~ωi,~h)D(~n,~h)G(~ωi, ~ωo, ~n)
4|~ωi · ~n||~ωo · ~n|

(3.3)

• ~h is the unit vector halfway between ~ωi and ~ωo

• F is the Fresnel term. A common approximation for this is

F (~ωi,~h) = (1− ~ωi · ~h)5 (3.4)

• D describes the distribution of the microfacets. For GGX, D is given by

D(~n,~h) = α2

π((1 + (α2 − 1)(~n · ~h)2)2
(3.5)

where α is the roughness of the surface between one for ideally rough surfaces and
zero for perfect mirrors.

• G describes how much microfacets shadow and mask each other. For GGX, G is
given by

G(~ωi, ~ωo, ~n) = G1(~ωi, ~n)G1(~ωo, ~n) (3.6)

G1(~ω, ~n) = 2
1 +

√
1 + a2(( 1

~n·~ω )2 − 1)
(3.7)

Figure 3.1: Light rays (incoming red, reflected blue) are reflected by the microfacets
(black) of a surface (gray).
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3.2. Rendering Equation and Area Lights 9

3.2 Rendering Equation and Area Lights
Illumination of a surface point in a three-dimensional scene is described by the rendering
equation [ICG86] as follows:

Lo(x, ~ωo) = Le(x, ~ωo) +
∫

Ω
Li(x, ~ωi)f(x, ~ωi, ~ωo) max{0, ~ωi · ~n}d~ωi (3.8)

• Lo(x, ~ω) is the outgoing radiance at a surface point x in a direction ~ω

• Le(x, ~ω) is the radiance emitted by a surface point x in a direction ~ω

• Li(x, ~ω) is the incoming radiance at a surface point x from a direction ~ω

• f(x, ~ωi, ~ωo) is a BRDF of the surface

• ~n is the normal vector of the surface at x

• Ω is the unit sphere

The outgoing radiance is the sum of the radiance emitted by the surface itself and the
reflected radiance. The reflected radiance is an integral over the unit sphere because
light can hit the surface from any direction and be reflected in a different direction. The
integrand is the product of incoming radiance, the BRDF, and the clamped dot product
of incoming light direction and surface normal. The clamped dot product accounts for the
effect that light hitting the surface at a smaller angle is distributed over a larger area.

In this general version of the rendering equation, light can hit a surface point from any
direction as described by Li(x, ~ω). An important subproblem of calculating the total
outgoing radiance is to only consider the light that has not been reflected yet (direct
light). This subproblem is easier to solve, especially if the light sources have relatively
simple shapes. Point and directional lights are commonly used to keep lighting calculations
simple but other shapes are also used, such as spheres, disks, rectangles, and polygons. To
distinguish them from point and directional lights, light sources that are not infinitesimally
small are called area lights. The contributions of each light source to the integral can be
calculated separately and then summed up to give the value of the integral.

For area lights, it is still necessary to calculate an integral but the integrand is now zero
for any direction that is not in the solid angle of the light source. The solid angle of a
light source for a shading point is the set of directions that point from the shading point
towards a point on the light source:

ΩS(x) =
{

p− x
||p− x||

| p ∈ S
}

(3.9)

• S is a light source,

• x is a shading point,

• ΩS(x) is the solid angle of S as seen from x.

To further simplify the calculation, I restrict light sources to Lambertian emitters, i.e.
light sources that emit the same radiance from each surface point and in each direction.
With this simplification, the radiance reflected by a surface point from a single, unoccluded
light source is described by the following equation:

Lo(x, ~ωo) = Li

∫
ΩS(x)

f(x, ~ωi, ~ωo) max{0, ~ωi · ~n}d~ωi (3.10)

• ΩS(x) is the solid angle of the light source as seen from x,

9



10 3. Basics

• Li is the incoming radiance, which is now the same for each direction in the solid
angle of the light source and can therefore be moved outside the integral.

This means that the challenging part of shading consists mainly of determining the solid
angle of the light source and integrating the cosine-weighted BRDF over that solid angle.
Nonetheless, this is often difficult depending on the shape of the light source and the
BRDF.

3.3 Spherical Triangles and Polygons
As explained in section 3.2, the solid angle of a light source is an important concept for
area light shading. So far, the solid angle was defined in a very general way but because I
deal with polyhedral light sources in this thesis, it is useful to also have more specialized
ways of describing the solid angles of specifically these light sources. The solid angle of
a polyhedron is a spherical polygon. For solid angle sampling, I will triangulate these
spherical polygons to obtain an equivalent set of spherical triangles. In this section, I
explain spherical triangles and polygons and how I represent them for the algorithms and
data structures I describe.

The solid angle of a polyhedron is the union of the solid angles of its polygonal faces. The
solid angle of a polygon is a spherical polygon (figure 3.2). The boundary of that spherical

Figure 3.2: A spherical polygon (red) that is created by projecting a polygon (blue) onto
a sphere.

polygon is the projection of the edges of the polygon. When a line segment is projected
onto a sphere, it becomes a great circle arc. A great circle is a a circle with the same
radius and center as the sphere. The great circle arc corresponding to a line segment is
simply the shortest connection of the projections of its endpoints on the sphere. In this
thesis, I will only use great circle arcs that are projections of line segments so I simply use
their endpoints to describe them.

The solid angle of a polyhedron is a spherical polygon as well. However, it is not necessarily
the projection of any single planar polygon as it can be longer than π. This raises the
question of what the inside of a spherical polygon is. If a spherical polygon was always a
projection of a polygon then one could simply say that its inside is the side that corresponds
to the inside of the polygon. For the solid angle of a polyhedron, it makes sense that the
inside must be the side that corresponds to the interior of the polyhedron. In other words,

10



3.4. Polygonal Light Shading with Linearly Transformed Cosines 11

the projection of a point inside the polyhedron must also be inside its solid angle. If
however a spherical polygon is just given as a set of edges then there is no way of telling
which side is the inside. One way of adding that information would be to also store a point
inside the spherical polygon along with the set of edges. In this thesis, however, I chose
a different way. I describe each edge as an ordered pair of endpoints and define that the
edges of a spherical polygon must be counter-clockwise around its inside, meaning that the
inside must be on the left of each edge. This aligns with the commonly used convention in
computer graphics that counter-clockwise edge loops describe filled shapes while clockwise
edge loops describe holes to be cut out from a shape. It also has the advantage that for any
single edge it is always clear, which side of the edge is the inside of the spherical polygon.

For solid angle sampling, I triangulate the solid angle of a light source, i.e. I split the
spherical polygon into multiple spherical triangles. A spherical triangle in this thesis is
always the projection of a triangle so I simply use its three vertices to represent it. At first
I also require a triangulation to use only the vertices of the spherical polygon but I drop
this requirement in section 6.2.2 for practical reasons. My goal is still to use mostly the
vertices of the spherical polygon but sometimes it is necessary to add additional ones.

3.4 Polygonal Light Shading with Linearly Transformed Cosines
Shading with LTCs [HDHN16] is an efficient and accurate approximation for polygonal
light sources. The cosine weighted BRDF is approximated by a spherical distribution from
the class of LTCs, which can efficiently be integrated analytically over a polygon. I will
later extend this technique to polyhedral light sources but first, I explain how to use it for
polygonal ones as described in the original paper.

A spherical distribution assigns a density to every point on the unit sphere. A linearly
transformed spherical distribution is obtained by applying a linear transformation to the
direction vectors of a spherical distribution. The linear transformation is represented by
a 3× 3 matrix. The density of a linearly transformed spherical distribution for a direction
~ω is given by

D̂(~ω) = D

(
M−1~ω

||M−1~ω||

)
|M−1|
||M−1~ω||3

(3.11)

• D is the original spherical distribution

• D̂ is the linearly transformed spherical distribution

• M is the matrix encoding the linear transformation

An important property of linearly transformed spherical distributions in the context of area
light shading is that the integral of the transformed spherical distribution over a polygon
is equivalent to integrating the original spherical distribution over a different polygon that
is obtained by applying the inverse transformation to the original one:∫

P
D̂(~ω)d~ω =

∫
M−1P

D(~ω)d~ω (3.12)

This means that if D is a distribution that can be integrated easily over a polygon then the
same is true for D̂. A distribution where that is the case is the clamped cosine distribution:

Dc(~ω) = max

0, ~ω ·

0
0
1


 (3.13)

To integrate the clamped cosine distribution over a polygon, the polygon is first clipped
to the upper hemisphere. This has the effect that the parts of the polygon where the dot

11



12 3. Basics

product is negative and would therefore be clamped to zero are excluded from the integral.
The integral for the clipped polygon is then given by a sum over a closed-form expression
for each edge of the polygon [BRW89]:

∫
P
Dc(~ω) = 1

2π
∑

(a,b)∈E

arccos(a · b)

 a× b
||a× b||

·

0
0
1


 (3.14)

E is the set of edges of the polygon, given as tuples of start and endpoint. The points are
given as unit vectors since only their direction from the shading point matters, not their
distance to it. Note that the order of start and endpoint matters. Swapping them flips the
sign of the contribution of the edge. Edges should be given such that they form a closed
edge loop around the interior of the polygon. The sign of the result reflects whether the
edge loop is clockwise or counterclockwise.

The clamped cosine distribution corresponds to the Lambert lighting model if the surface
normal is the positive z-axis of the coordinate system. Integrating it over a polygon is
equivalent to Lambert shading for a polygonal light source. That the normal corresponds
to the positive z-axis can be ensured by choosing the coordinate system accordingly. Var-
ious other lighting models are approximated by applying a linear transformation to the
clamped cosine distribution. For example, specular reflection resembles a clamped cosine
distribution that has been transformed to have its maximum in the reflected view direction
and that has been scaled to give a certain size of the specular highlight. The transforma-
tion is generally not constant as it may depend on several parameters such as the view
direction or the roughness of the surface.

Because calculating the transformation matrix that best approximates the desired BRDF
is too expensive to happen during shading, it is precalculated for a large number of config-
urations of all its parameters and stored in a lookup table. Note that for isotropic BRDFs,
the view direction is only a one-dimensional parameter since the rotation of the surface
around the normal has no effect on the result. The coordinate system used for lighting
calculations can therefore be rotated freely around the surface normal. In particular, it can
be chosen such that one of its two remaining axes (that are not the surface normal) is as
close as possible to the view direction. This choice of the coordinate system is illustrated
in figure 3.3. The view direction in this coordinate system is then uniquely determined by

Figure 3.3: In the coordinate system used for shading with LTCs, the Z-axis (blue) is the
surface normal and the X-axis (red) is as close as possible to the view direction
(black), so that the view direction always lies in the XZ-plane and is therefore
uniquely determined by its angle to the Z-axis.

its angle to the surface normal. If roughness is chosen as an additional parameter for the

12



3.5. Monte Carlo Integration 13

transformation matrix as is useful for specular reflection then a two-dimensional lookup
table is necessary, which in practice is easily possible with sufficient accuracy.

Finding the matrix that best approximates the BRDF is a non-linear optimization problem
that is solved with the Nelder-Mead method [NM65] in the example code provided with
the paper. The error function that is minimized is the numerically calculated L3 error
of the approximation. To calculate the error, Monte Carlo integration (section 3.5) with
importance sampling is used.

To sum up the technique, the following steps are necessary to calculate shading with LTCs:

1. Precalculate a lookup table that stores the inverse of the transformations that best
approximate the cosine-weighted BRDF for all configurations of the parameters it
depends on (excluding the direction of incoming light),

2. In the fragment shader, determine the parameters for the lookup table and read the
inverse transformation matrix,

3. Transform the light source into the coordinate system of the shading point and apply
the inverse transformation matrix,

4. Clip the light source to the upper hemisphere,

5. Calculate the integral.

3.5 Monte Carlo Integration
Polygonal light shading with LTCs calculates the shading integral analytically. Another
option is to calculate it numerically. One way of doing so is Monte Carlo integration,
which I explain in this section based on a paper by Shirley et al. [SWZ96].

Monte Carlo integration is a randomized algorithm that approximates an integral over a
domain numerically by taking several samples from the domain and calculating a sum over
these samples. The expected value of a function of a random variable is an integral over
the domain of the random variable:

E[f(X)] =
∫

S
f(x)p(x)dµ(x) (3.15)

• S is a domain,

• f is a function defined on S,

• µ is a measure on S,

• p is a probability density on S,

• X is a random variable in S with probability density p.

In the most simple case where S is an interval [a, b] in R, µ is the Lesbesque measure and
X is uniform in S, this simply means that

E[f(X)] = 1
|a− b|

∫ b

a
f(x)dx (3.16)

However, I will use integrals over solid angles and with non-uniform distributions so the
more general form is necessary. The expected value and thereby the integral can be
approximated numerically using a sum over random samples instead:

E[f(X)] =
∫

S
f(x)p(x)dµ(x) ≈ 1

N

N∑
i=1

f(xi) (3.17)

13



14 3. Basics

• x1, x2, ..., xN are instantiations of X.

For large N , this approximation converges almost certainly towards the correct value
according to the law of large numbers. The integral of f(x)p(x) can therefore be approx-
imated with a simple randomized algorithm. To use this in practice, equation 3.17 is
rearranged so that an integral of just f(x) is approximated instead:

∫
S
f(x)dµ(x) ≈ 1

N

N∑
i=1

f(xi)
p(xi)

(3.18)

The choice of p affects the variance of the approximation. If p is proportional to f , then
f(x)
p(x) is constant and the variance therefore zero. That distribution is usually not known
but choosing one that is close to being proportional to f already reduces the variance
compared to other distributions. This approach is known as importance sampling. Another
approach is to pick a distribution that makes sampling more efficient so that more samples
are calculated in the same time.

3.6 Solid Angle Sampling
For area light shading, a function must be integrated over the solid angle of the light
source. If this is done with Monte Carlo integration then a sampling technique for the
solid angle of the light source is required. Solid angle sampling typically gives better results
than area sampling. I explain the difference between the two in this section.

Area sampling refers to sampling the surface of the light source uniformly and using the
direction from the shading point to that point as the sample. This however does not
give a uniform distribution over the solid angle of the light source so a geometry term is
introduced into equation 3.18. The density of the distribution depends on the distance
of the sample to the shading point and on the angle between the surface normal and the
vector from the shading point to the sample. Parts of the light source that are further
away or are viewed at a smaller angle have a smaller solid angle and should therefore
contribute less to the result. The following geometry term must be used:

pg(x) = (x− s) · ~n
||x− s||2

(3.19)

• s is the shading point,

• ~n is the surface normal at the sample.

This almost always increases the variance of the Monte Carlo integration, compared to
uniform sampling of the solid angle. Greater variance gives more noisy results because on
average, the result deviates more from the correct value.

Solid angle sampling on the other hand refers to picking samples uniformly from the
solid angle of the light source. This eliminates the geometry term, which leads to lower
variance. Sampling the solid angle of most light sources is more difficult than sampling
their area. Nonetheless, solutions for many relevant types of light sources have been
found. For example, a technique for sampling the solid angle of a triangle exists [Arv95],
which can be extended to polygons by first triangulating the polygon. The technique
first splits a spherical triangle into two smaller ones by adding a new arc from one of its
vertices to the opposite side. The solid angle of the first sub-triangle is picked uniformly
between zero and the total solid angle. The sampling direction is then picked with an
appropriate distribution from the arc splitting the triangle. Overall this results in a uniform
distribution over the spherical triangle.

14



3.6. Solid Angle Sampling 15

Figure 3.4: To sample a spherical triangle, the triangle (blue) is first split into two by
adding a new arc (red). The solid angle of the first smaller triangle (light blue)
is chosen uniformly between zero and the total solid angle. The sample (black)
is then taken from the new arc.
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4. Finding Silhouettes for Polyhedral
Light Shading with LTCs

As described in 3.4, LTCs can be used to efficiently shade polygonal light sources but many
real-world light sources are not flat and are therefore not approximated well when using
this technique directly. In this section, I extend the technique first to convex polyhedral
light sources and then to non-convex ones. My approach replaces the light source with its
silhouette polygon so an important problem I discuss in this section is how I determine
the silhouette of a polyhedron. In this context, I also explain the concept of the contour
of a polyhedron, which is a superset of the silhouette and the first step for finding the
silhouette.

As established in equation 3.10, the relevant characteristics of the light source for area light
shading are its emitted radiance Li and its solid angle ΩL(x). Therefore, the same result is
achieved when the light source is replaced with one that preserves these two characteristics.
Since LTCs work well with polygons, it makes sense to replace a polyhedral light source
with an equivalent polygonal light source. One way of doing this would be to make each
face of the polyhedron a separate polygonal light source but this has two disadvantages:

First, polygonal light shading with LTCs mainly consists of evaluating an expression for
every edge of the light source. If this needs to be done for every edge of every front-
facing face of a polyhedral light source then all edges that belong to two front-facing faces
are calculated twice and their contributions cancel out. This means that a considerable
amount of processing time is wasted on inconsequential calculations.

Second, non-convex polyhedra can occlude themselves. If faces are treated as separate
light sources then the directions where two faces overlap are counted twice, leading to a
wrong result. For example, overlapping parts of the light source cause the corresponding
parts of a specular highlight to appear much brighter than they should. While this is
just one effect of the limitation that shading with LTCs does not reproduce shadows, it is
visually distinct and in some scenes very noticeable. Ignoring shadowing for other objects
merely results in a lack of shadows while ignoring self-occlusion of light sources adds bright
artifacts to the scene (figure 4.1).

Instead, I therefore replace the light source with the interior of its silhouette as seen from
the shading point. This solves both of the problems described above.

16



4.1. Contour and Silhouette of a Polyhedron 17

Figure 4.1: A specular highlight with bright artifacts due to treating each face as a separate
light source (left) and the correct specular highlight without artifacts (right)

4.1 Contour and Silhouette of a Polyhedron
In other literature, the term silhouette is used for mainly two different concepts that I call
silhouette and contour in my thesis. I follow the definitions used by Kettner and Welzl
[KW97], which I explain in this section. While my technique mostly revolves around
silhouettes, the contour is also relevant as it is a superset of the silhouette and finding the
contour is the first step of my techniques for finding the silhouette. Figure 4.2 compares
the contour and silhouette of a polyhedron.

Figure 4.2: The contour (left) and silhouette (right) of a polyhedron

The silhouette is what separates the polyhedron from the background when it is viewed
from a given point (in my thesis always the shading point). More precisely, the silhouette
is the subset of a polyhedron where the projection of each point in that subset lies on
the boundary of the projected polyhedron. The projection of the silhouette is a spherical
polygon. If the shading point is coplanar with a face of the polyhedron then that entire face
may be part of the silhouette by the definition above. However, I will mostly ignore these
cases as the probability of this happening for a random point in a scene is zero and any
case where it does happen can be dealt with by applying an arbitrarily small translation
to the shading point. I therefore assume that the silhouette consists of segments of edges
of the polyhedron, as is the case for all other points. This simplifies my algorithms for
finding silhouettes.

17



18 4. Finding Silhouettes for Polyhedral Light Shading with LTCs

The contour is the subset of the edges of the polyhedron where exactly one of the two
faces adjacent to each edge is facing an observer located at a given point. Equivalently
to this, the two faces adjacent to a contour edge as seen by the observer lie on the same
side of the edge. This is also a necessary condition for a silhouette edge since any edge
where the two faces lie on opposite sides of the edge clearly has parts of the polyhedron
touching it on either side (namely the two adjacent faces). Therefore, it cannot separate
the polyhedron from the background. My approach to finding the silhouette is to first find
the contour and then reject the segments of it that do not belong to the silhouette.

Whether a face is front-facing is determined by the sign of the dot product of its normal
and the vector from any point on the face to the observer:

f is front-facing ⇐⇒ ~n · (F −O) > 0 (4.1)

• f is a face of the polyhedron,

• ~n is the normal of f ,

• F is a point on f ,

• O is the observer.

Whether an edge is a contour edge is therefore given by the sign of this expression (a
negative sign indicates a contour edge):

(~n1 · (E −O))(~n2 · (E −O)) (4.2)

• ~n1 and ~n2 are the normals of the two adjacent faces

• E is a point on the edge (and therefore on both faces)

4.2 Convex Polyhedra
Convex polyhedra are an important subclass of polyhedra. Many problems are easier to
solve for convex polyhedra and polyhedral light shading is no exception to this. In this
section, I describe my technique for convex polyhedral light shading with LTCs. I explain
how I find the silhouette and how I clip the silhouette to the upper hemisphere so that I
can integrate a clamped cosine distribution as described in section 3.4.

A convex polyhedron is one where the line segment connecting any two points inside the
polyhedron is contained entirely in the polyhedron. A convex polyhedron is the intersection
of a finite set of half-spaces and each of its faces lies in the plane of one of those half-spaces.
Many problems are easier to solve for convex shapes than for non-convex ones and finding
the silhouette is no exception to this. It has already been established that the silhouette
consists of segments of contour edges. For convex polyhedra, determining these segments
is trivial once the contour is known: every contour edge is a silhouette edge.

To understand why this is the case, let c be a convex contour edge. The two adjacent
faces of c lie on the same side of it as seen by the observer. The intersection I of the
corresponding half-spaces also lies entirely on that side of c. The polyhedron is a subset
of I so it must lie entirely on that side of c as well. Because c is an edge of the polyhedron
but the polyhedron is only on one side of it as seen from the shading point, it must be a
silhouette edge.

With these considerations, my algorithm for finding the silhouette of a convex polyhedron
is very straightforward: iterate over all edges of the polyhedron and emit those that are
contour edges (equation 4.2) as silhouette edges.
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4.2. Convex Polyhedra 19

To use this algorithm for polyhedral light shading, I pass the light source to the shader
as a buffer containing one element for each edge of the polyhedron. Each element stores
the start and endpoint of the edge as well as the two normals of the adjacent faces. The
order of the edges is irrelevant as their contributions to the result are simply summed
up. However, as mentioned in section 3.4, the order of start and endpoint of each edge
matters. Each edge should be oriented such that the interior of the silhouette is always
on the left-hand side of the edge so that the edges could be arranged to form a counter-
clockwise edge loop. This is a problem because the silhouette polygon is not known when
the edge-buffer is created. An interesting observation in this context is that the correct
direction of the edge is always counter-clockwise not just around the silhouette but also
around the adjacent face that is facing the observer. Recall that always exactly one of the
two adjacent faces is front-facing since the edge would not be a contour edge otherwise.
Knowing this, I choose the direction of an edge such that it is correct under the assumption
that the first one of the adjacent faces is front-facing. If at the time of shading I determine
that this is not the case, I simply swap start and endpoint since a polyhedron edge is
always clockwise around one of its adjacent faces and counter-clockwise around the other
one.

Another problem I had to solve is clipping the silhouette to the upper hemisphere to
account for the clamping in the cosine distribution as described in section 3.4. To do so,
I categorize each edge as one of three cases:

1. The edge is entirely in the upper hemisphere and is simply taken as it is,

2. The edge is entirely in the lower hemisphere and is ignored entirely,

3. One endpoint of the edge is in the upper hemisphere, the other one in the lower
hemisphere.

In the last case, the edge must be shortened so that only the segment in the upper hemi-
sphere remains. To do so, I replace the point in the lower hemisphere with the point where
the edge intersects the XY-plane:

Bnew = A+ Az

Az −Bz
(B −A) (4.3)

(A,B) is the edge and B is in the lower hemisphere.

This correctly clips all existing edges but clipping can also create new edges where the
polygon intersects the XY-plane. For convex polyhedra, at most one such edge is created
because no more than two silhouette edges intersect the XY-plane. The new edge connects
these two intersections if they exist.

In summary, I implement convex polyhedral light shading with LTCs and silhouettes as
following:

1. Store the edges of the polyhedron along with the normals of the adjacent faces in a
buffer. Each edge must be oriented such that it is counter-clockwise around the first
adjacent face,

2. For each edge:

• Ignore the edge unless it is a contour edge,

• Transform the edge into the coordinate system of the shading point and apply
the LTC-transformation,

• Ignore the edge if it is entirely in the lower hemisphere,
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20 4. Finding Silhouettes for Polyhedral Light Shading with LTCs

Figure 4.3: To clip this projected silhouette of a cube, it is split into a part in the upper
hemisphere (red) and one in the lower one (blue), which is then discarded. One
new edge (yellow) is created in the clipping plane to close the shape.

• Clip the edge if it is partially in the lower hemisphere and store the intersection
with the XY-plane,

• Flip the edge if the first face is back-facing,

• Calculate the contribution of the edge and add it to the result,

3. Calculate the contribution of the new edge connecting the two intersections and add
it to the result.

In section 4.3, I describe a different technique for clipping the silhouette of any polyhedron
(not just convex ones), which is more complicated but similarly fast so one may choose to
implement clipping that way for convex polyhedra as well.

4.3 Non-Convex Polyhedra
Two new problems arise when the technique described above is extended to non-convex
polyhedra: First, determining the contour edge segments that are silhouette edges is more
difficult because a segment of a contour edge can now be directly in front of or directly
behind a different part of the polyhedron and may therefore not separate the polyhedron
from the background. If that happens, it is necessary to split the contour edge into multiple
segments and reject some of them. Second, more than one new edge may be created when
clipping the silhouette, which makes finding the new edges much more difficult. In this
section, I describe how I solved these two problems in principle. My technique for finding
the silhouette is not fast enough for real-time shading as it is but, in section 5, I solve this
problem by moving significant parts of it to a preprocessing phase.

To find the silhouette edges, I first generate a larger set of contour edge segments that
contains all the desired segments but also makes it easy to reject the undesired ones. When
projected onto the sphere around the shading point, the silhouette consists of closed edge
loops. Therefore, a silhouette edge starts and ends where other silhouette edges start
or end. This also means that every silhouette edge starts and ends on another contour
edge because each silhouette edge is a segment of a contour edge. I will use the term
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4.3. Non-Convex Polyhedra 21

apparent intersection of a pair of edges to refer to the direction where the projections of
the edges intersect, i.e. the direction where the edges appear to intersect as seen from the
shading point. If every silhouette edge starts and ends at an apparent intersection with
another contour edge then cutting contour edges into segments at these points yields a set
of contour edge segments from which the silhouette can be assembled.

To determine the apparent intersection of two edges, I first determine the planes that their
projections (which are great circle arcs) lie in. These planes contain the shading point and
the two endpoints of the edge. The apparent intersection of the edges must lie in the
intersection of the two planes. If the planes are not parallel, their intersection is the line
through the shading point that is orthogonal to both normals. This leaves two points for
the intersection. If either of them lies on both arcs then it is the apparent intersection of
the two edges. I determine the two candidates using three cross products:

p1 = ((a1 − s)× (a2 − s))× ((b1 − s)× (b2 − s)) (4.4)

• (a1, a2) and (b1, b2) are the edges,

• s is the shading point.

To find all apparent intersections, I iterate over all pairs of contour edges, which requires
quadratic time and is therefore not ideal for a fragment shader. If the polyhedron is
projected into a plane, a sweep line algorithm [KW97] would solve the problem faster.
However, this does not appear to be well suited for a fragment shader either as it requires
an efficient sorting algorithm. Also, adapting it to spherical projections rather than planar
ones is not trivial. This is one of the reasons why I extensively use preprocessing as
described in section 5.

The next step after splitting the contour edges into segments is to iterate over those
segments and decide whether they are silhouette edges or must be discarded. A segment
must be discarded if and only if it is directly in front of or directly behind a different part
of the polyhedron. To test whether this is true for a single point on the edge, I use a
ray-polyhedron intersection test. If the ray through the point on the segment does not
intersect the polyhedron (other than at the edge that the point lies on) then this point
must lie on the silhouette. Testing a single point for each segment is sufficient because the
edges have already been segmented as much as necessary. It is no longer possible for a
part of a segment to be a silhouette edge while another part is not. These considerations
lead to the following algorithm for finding silhouette edges:

1. Find the contour edges,

2. Find the apparent intersections of contour edges,

3. Split the contour edges at the apparent intersections,

4. Return all segments where the ray through the midpoint does not intersect the
polyhedron at any other point.

Unfortunately, this part of the algorithm is not well suited for being executed in a fragment
shader either. While GPU ray tracing does exist, tracing one or more rays for each contour
edge is still a relatively slow process. Again, I refer to section 5, where I explain how to
precompute this part of the algorithm.

Clipping the silhouette to the upper hemisphere has to happen in the shader and seems
to be a challenging task at first. Clipping each silhouette edge works exactly as for convex
polyhedra but finding the new edges in the clipping plane is more difficult because there can
be more than one, which means that it is not obvious which pairs of intersections between
edges and the XY-plane should be connected by a new edge. One way of doing so would
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22 4. Finding Silhouettes for Polyhedral Light Shading with LTCs

be to sort the intersections by their polar angle in the plane and then connect neighboring
points by an edge if that edge would be inside the polygon. However, finding the edges
is not actually necessary. I found a more efficient way of calculating the contribution of
the new edges to the shading integral by reevaluating how the edges would be used in the
formula. Equation 3.14 calculates the shading integral as the sum of an expression for
each edge: ∫

P
D(~ω) = 1

2π
∑

(a,b)∈E

arccos(a · b)

 a× b
||a× b||

·

0
0
1




Figure 4.4: To clip this projected silhouette of a non-convex polyhedron, it is split into a
part in the upper hemisphere (red) and one in the lower one (blue), which is
then discarded. Contrary to convex polyhedra, multiple new edges (yellow)
are necessary to close the shape.

The contribution of each edge is a product of two factors. The first one is simply the angle
between the endpoints of the edge. The second one is equal to +1 or −1 for all of the new
edges. All newly created edges lie in the XY-plane. Therefore, the cross product of the two
endpoints is parallel to the Z-axis and because the cross product is then normalized, its Z-
coordinate has an absolute value of one. This means that the second factor is merely a sign
that determines whether the angle covered by the edge should be added to or subtracted
from the sum. Using the arccosine of the dot product is just one way of calculating the
angle between two unit vectors in the plane. Another one is to take the difference of the
polar angles of the endpoints:

angle(A,B) = atan2(By, Bx)− atan2(Ay, Ax) (4.5)

Note that this gives a signed angle with the same sign as one would get from the second
factor in the previous equation. With this method of calculating the angle, I rewrite the
contribution of the new edges in the clipping plane as a sum of an expression for each
endpoint of a new edge. Therefore, I no longer need to find pairs of intersections with the
XY-plane that form a new edge. All that remains to be done is finding the correct sign for
each intersection. The sign indicates whether the new edge starts at the intersection or ends
there. Because the silhouette edges are always counter-clockwise around the polyhedron,
this can be determined simply by checking if the edge intersecting the XY-plane is directed
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upwards or downwards. The complete formula for calculating the integral is now:

∫
P
D(~ω) = 1

2π
∑

(a,b)∈E

arccos(a · b)

 a× b
||a× b||

·

0
0
1


+ 1

2π
∑
i∈I

atan2(iy, ix)s(i) (4.6)

• E now contains only the clipped silhouette edges, not the new edges from clipping

• I contains all points where a silhouette edge intersects the XY-plane

• s(i) is +1 if the edge of i is directed upwards and −1 otherwise

To speed up the calculation of the second sum, I use the atan2 sum identity:

atan2(y1, x1) + atan2(y2, x2) = atan2(y1x2 + y2x1, x1x2 − y1y2)
atan2(y1, x1)− atan2(y2, x2) = atan2(y1x2 − y2x1, x1x2 + y1y2)

(4.7)

That way, I only calculate one atan2 in total, instead of two for each new edge.
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5. Precomputed Silhouettes with Binary
Space Partitioning

Finding the silhouette of a polyhedron using the techniques described so far is relatively
expensive for a fragment shader. The method for convex light sources works well in practice
but it requires iterating over all edges of the light source, even though usually only very
few of them are silhouette edges. The method for non-convex light sources on the other
hand requires complicated operations like finding all intersections in a set of great circle
arcs and intersecting rays with the light source. In both cases, I identified intermediate
results that require a significant portion of the processing time and can be precomputed.
These intermediate results are chosen such that a single one is always valid for all points
inside of a convex polyhedral cell. I store these cells in a BSP-tree so that the correct one
for a given point can be found quickly. BSP refers to a common technique for partitioning
three-dimensional scenes. A BSP-tree is a binary tree where each inner node stores a plane
and each leaf node represents a cell. To determine which cell contains a given point, the
tree is traversed starting at the root and traversing to the right child whenever the point
is on the positive side of the plane and to the left one otherwise. This results in convex
polyhedral cells. The tree structure makes finding the correct cell relatively fast compared
to iterating over all of them.

5.1 Convex Polyhedra
Finding the silhouette of a convex polyhedron mainly consists of finding the contour edges.
Whether an edge is a contour edge only depends on whether the adjacent faces are front-
facing or back-facing. As an observer moves through the scene, faces only transition
between being front-facing and back-facing if the observer moves from one side of the
plane that the face lies in to the other. This means that as long as the observer stays
on the same side of each face of a convex polyhedron, the set of contour edges stays the
same. I therefore use these planes as the partitioning planes for a BSP-tree. Figure 5.1
visualizes the planes and the cells they create. The set of contour edges is then the same
for all points in the same cell (figure 5.2). In the fragment shader, I determine the cell
that the shading point lies in by traversing the tree and then fetch the precomputed set
of contour edges from the corresponding leaf. Using this technique improves performance
in several ways:

• Instead of iterating over all edges of the light source, the fragment shader now iterates
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Figure 5.1: The planes of the faces of a cube (left) and a tetrahedron (right), partitioning
space into 27 and 15 cells respectively (one of these cells is the polyhedron
itself).

Figure 5.2: The silhouette of a cube from two different points in the same cell (left and
middle) and from a point in a different one (right). The silhouette consists of
the same edges for the first two but of different ones for the third one.

over faces of the light source. A polyhedron always has fewer faces than edges
(because each face has at least three edges and each edge belongs to two faces).

• In most cases, not all faces need to be tested. Often a leaf node is reached after only
a few inner nodes.

• I store the precomputed silhouettes as an ordered list of points where each point is
connected to its two neighbors. This has the advantage that each vertex of the sil-
houette only needs to be transformed and normalized once. If the silhouette is given
as an unordered list of edges then each vertex must be transformed and normalized
once for each of the two adjacent edges.

• I precompute the silhouette as a counter-clockwise edge loop, which makes flipping
edges in the fragment shader unnecessary.

5.2 Non-Convex Polyhedra
The technique for convex light sources is not well suited for non-convex ones. I could
of course determine the contour edges in the same way but for non-convex light sources,
finding the contour edges would only solve a relatively minor problem while the main
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26 5. Precomputed Silhouettes with Binary Space Partitioning

problem of finding the right segments of these contour edges remains just as difficult as
before. Nonetheless, I decided to stick with the same core idea and adapt it to non-
convex shapes. My goal was to precompute and store the entire overall structure of the
silhouette, including the start and endpoints of each segment. I had to solve two problems
for that: First, a silhouette edge can end at the apparent intersection of two edges, which
is not a static point in three-dimensional space. It can move to any point along the two
edges depending on the position of the observer. This means that the point itself cannot
be precomputed. Second, the planes of the faces of the light source are not sufficient
for partitioning the scene. Because the precomputed data now also contains information
about intersections of contour edges, I had to further subdivide the scene such that the
same apparent intersections between edges exist for all points in a cell.

To solve the first problem, I decided to store each silhouette edge not as a pair of points
directly but as a pair of descriptions of how the actual points should be calculated in the
shader. I distinguish two possible cases: either the point is a vertex of the light source
or it is the apparent intersection of two edges of the light source. In theory, the first
case is just a special case of the second one since any vertex of the light source is also the
intersection of three or more edges but it is more efficient to treat them differently. To find
the apparent intersection of two edges, four vertices must be fetched (the four endpoints
of the two edges). This is slower than fetching a single vertex and the first case is far more
common for most practically relevant light shapes.

For the second problem, I made the observation that the sets of points from where two
edges appear to intersect are bounded by the planes that three of the four endpoints of the
edges lie in. This became clear to me by examining the border cases where one endpoint
of one edge appears to lie on the other edge. For that to happen, that endpoint, the other
edge, and the observer must be coplanar (figure 5.3). This observation is relevant for

Figure 5.3: Two edges viewed from a point where they do not appear to intersect (left),
one where they just begin to (middle) and one where they clearly do (right).
Note that three endpoints and the observer are coplanar in the second image.

finding a valid set of partitioning planes because the precomputed data as described above
captures which edges are contour edges and how these edges intersect. My first approach
was therefore to use these four planes for each pair of edges as the partitioning planes.
Interestingly, this would already include the planes that the faces of the polyhedron lie
in and therefore be a superset of the planes I chose for convex polyhedra. This works
but results in impractically large sets of planes (4n2 if n is the number of edges). The
first obvious optimization is to remove duplicates. Every endpoint of an edge is also the
endpoint of at least two more edges, which results in each plane being added multiple
times. The second optimization I made is to ignore pairs of edges that only appear to
intersect if at least one of them is not a contour edge. Because I’m only interested in

26



5.3. Building the Tree 27

intersections between contour edges, these pairs are irrelevant. However, this may also
remove some of the planes that the faces of the polyhedron lie in so I add these again
because they are still relevant for determining which edges are contour edges. With these
two optimizations, the set becomes sufficiently small for many practically relevant light
sources.

5.3 Building the Tree
Building the BSP-tree is not difficult in principle and not fundamentally different from
building a BSP-tree for any other purpose. Nonetheless, a few details are specific to this
problem and some choices need to be made about the overall structure of the algorithm.
In this section, I explain my implementation, which consists of three steps: finding the
partitioning planes, generating the overall structure of the tree, and calculating the data
for each leaf node. The focus of this section is on the second step as the other two have
already been discussed in the previous sections. However, I briefly go over the other two
again to clarify the input and output of the second step. For the second step, I first explain
how to find a valid tree and then how I refined the algorithm to find more balanced ones.

For convex light sources, the partitioning planes are simply the planes that the faces of
the light source lie in. For non-convex ones, that set of planes is extended by four planes
for certain pairs of edges to account for apparent intersections between contour edges. In
both cases, the output of the first step is simply a list of planes.

Similarly, the third step requires the same input for both convex and non-convex light
sources. All that is needed to precompute the data for each leaf is the polyhedron itself
and one representative point inside each cell. I then execute the silhouette algorithm for
each of those points and store the intermediate results in the corresponding leaves. No
additional knowledge about the cells is required.

The second step is therefore well isolated from the other two and works the same way
in both cases. I use a recursive algorithm that starts at the root and invokes itself for
each child node that it generates unless that node is a leaf. In each invocation, I have to
pick one of the partitioning planes to be used for the current node. The plane mainly has
to fulfill the requirement that it actually splits the cell represented by the current node,
meaning that the cell is not entirely on one side of the plane. If none of the planes fulfill
this requirement, then the node must be a leaf node as it cannot be split further. Often
several of the given planes fulfill the requirement. In principle, any of these is a valid
choice but some lead to a more balanced tree than others. This is discussed in more detail
towards the end of this section.

Using BSP for precomputed silhouettes differs slightly from using it as an acceleration
structure for ray tracing or collision detection. My goal is not to partition a given set of
primitives using any planes useful for that purpose. Rather, I have a given set of planes
and need to subdivide the entire three-dimensional space as far as possible with these
planes. This means that I have to explicitly pass the cell represented by the current node
to the algorithm in some way, instead of passing a subset of the given primitives. This is
necessary for two important tasks. First, it allows me to determine whether a plane splits
the cell into two non-empty parts and therefore to pick the right planes and to figure out
which nodes are leaves. Second, it allows me to calculate a point that is representative of
the cell of each leaf and that I can therefore use to generate the silhouette data for that
leaf.

I considered multiple ways of representing the current cell. One complication is that a cell
may be unbounded. In particular, the root node represents the entire three-dimensional
space. To simplify the algorithm, I restricted it to a large bounding box. This box can be
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28 5. Precomputed Silhouettes with Binary Space Partitioning

chosen arbitrarily large so that it contains the entire scene. With this restriction, every
cell is a (bounded) convex polyhedron, which enables a variety of different representations.
The one that I decided to use is to store the convex polyhedron as a list of edges. This
keeps all necessary operations relatively simple. To test whether a plane splits the cell into
two non-empty parts, it is sufficient to test if there are endpoints of edges on both sides
of the plane. To get a representative point inside a cell, I simply calculate the arithmetic
mean of the endpoints. To split a cell with a plane, I first split each edge and then create
new edges where the faces of the polyhedron intersect the plane. I do this by sorting
all intersections of edges with the plane in counter-clockwise order and then connecting
neighbors in that sorted list with edges. This is possible because the cells are convex
polyhedra and their intersection with the plane is therefore a convex polygon.

As mentioned before, the choice of the plane for each node affects how balanced the
tree is. Balanced trees have shorter paths from the root to the leaves, which improves
performance because fewer planes need to be tested. A major problem I encountered in
trying to generate a balanced tree was that when I create a node, I do not have a useful
metric for how balanced a cut is. One may be tempted to prefer planes that give an even
cut with respect to the volume of the cell but since the leaf cells typically vary wildly in
volume and larger ones are not necessarily more important, this is not a big improvement
over picking planes randomly. I noticed however that because the scene is partitioned as
far as possible with the given planes, the final cells are the same, no matter how the tree is
built. This means that a good tree for the given planes is simply a tree that organizes these
cells well, or, even simpler, one that organizes the representative points that I generate
for each cell well. These points are not known when the tree is being built but only when
it is completed. However, since they are the same for any tree built from these planes, I
decided to simply build two trees. I use the first one only to get the representative points
and then build the second one using these points to select the plane for each node. To get
a well-balanced tree, I always select the plane that gives the evenest split of the remaining
points. Generating the second tree is relatively simple. There is no longer any need for
dealing with polyhedral cells, I simply partition a list of points using a set of planes.

5.4 Shader Implementation Details
Once the tree is built, it must be passed to the shader for the light source. The shader
traverses the tree to find the cell of the shading point and then iterates over the pre-
computed data, using it directly for shading. My implementation avoids register spilling,
which would occur if the silhouette was first stored entirely in GPU registers and then
indexed dynamically. In this section, I explain in detail how I implemented my technique
in a fragment shader. I also explain my storage formats, which I designed to keep memory
usage and the amount of data read from buffers low.

I store the precomputed data in two buffers. The first buffer contains the structure of
the tree as a list of nodes, the second one the precomputed silhouette data for each cell.
I use the same format to store inner nodes and leaf nodes, although their data serves a
slightly different purpose. Each node stores a plane and two indices. The indices are signed
integers. Their sign indicates whether they refer to a position in the first or the second
buffer. An inner node has one positive index for each child, a leaf node one negative index
for the beginning of the precomputed data, and one for the end of it. In leaf nodes, the
fields for storing the plane are unused.

For convex light sources, the precomputed data in the second buffer is an ordered list of
points that describes the silhouette polygon. Each point is stored in 32 bits, either as
an index into a list of the vertices of the light source or directly as three integers (two
with eleven bits, one with ten) that are then scaled to the bounds of the light source.
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The second option has lower but usually sufficient precision and requires only one lookup,
rather than one for the index and one for the point.

For non-convex light sources, the data is an unordered list of silhouette edges stored as
pairs of points. The reason why I do this differently than for convex ones is that the
silhouette of a non-convex polyhedron can have holes and can therefore not always be
described as a single edge loop. Each endpoint of an edge is either a vertex of the light
source or the apparent intersection of two edges of the light source. I decided to limit
my implementation to shapes with no more than 256 vertices. This enables me to store
any such point in 32 bits just as for convex light sources. I store an apparent intersection
of two edges as the four indices of the endpoints of the two edges. A vertex of the light
source uses the same format but stores the same index four times. This makes the two
cases easy to distinguish without any additional field.

I store all vertices of the light source as well as the partitioning planes in the local coor-
dinate system of the light source. I traverse the tree in local coordinates and I apply an
affine transformation to transform the vertices to world space. This allows me to move,
rotate and scale light sources without recreating the buffers. This also means that multiple
light sources can share the same buffers, which reduces overall memory usage significantly
in scenes with many instances of the same light source.

The shader consists of two loops: one that traverses the tree and one that iterates over the
precomputed data. The first loop fetches a node in each iteration and performs the plane
test to find the next node. It stops when a leaf is reached. The second loop then iterates
over the range given in the leaf node and immediately adds each edge to the integral. The
full silhouette is never stored in registers and no register spilling occurs due to indexing
parts of the silhouette. The only new data that persists over multiple iterations of the
loop are the partial sums from equation 4.6.
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6. Using Silhouettes for Solid Angle
Sampling

As mentioned before, a major limitation of shading with LTCs is that it does not account
for shadowing. As an alternative to LTCs that does support shadows, I use ray tracing with
solid angle sampling based on a technique for solid angle sampling of triangles [Pet20] that
is based on Arvo’s technique [Arv95] but improves the numerical stability. To apply this
to polyhedral lights, it is necessary to triangulate the solid angle of the light source. This
could be done by triangulating the faces of the polyhedron but that has the disadvantage
that it often produces more triangles than necessary as it also represents geometry inside
the silhouette which is not relevant for shading and that some samples must be discarded
as they are shadowed by the light source itself. Instead, I triangulate the silhouette of
the light source, which results in a smaller number of triangles and takes care of self-
occlusion without discarding samples. I found simple and efficient solutions for convex
and star-shaped polyhedra. For other polyhedra, I use a similar preprocessing technique
as for finding the silhouette. In doing so I encountered the problem that a triangulation
is not necessarily valid for an entire BSP cell, and to find one that is, I had to resort to a
randomized algorithm that is likely but not guaranteed to give a correct result.

6.1 Convex and Star-Shaped Polyhedra
Triangulating the silhouette of a convex polyhedron is trivial: I simply construct a triangle
fan around the first vertex. Because the polyhedron is convex, any line segment connecting
two of its vertices is entirely within the polyhedron, and its projection therefore entirely
within the silhouette. Any arc connecting a vertex with any other vertex is therefore a
valid edge for triangulation.

I use a very similar technique for non-convex polyhedra as well if they are star-shaped. A
star-shaped set is one that contains a point that I will call its center, such that any point
in the set can be connected to the center with a line segment that is entirely within the
set. I triangulate the silhouette of a star-shaped polyhedron by constructing a triangle
fan around the projection of the center. Similarly to convex polyhedra, this is possible
because any line segment connecting a point of the polyhedron with the center is entirely
within the polyhedron, and its projection therefore entirely within the silhouette. Any
arc connecting a silhouette vertex with the projected center is therefore a valid edge for
triangulation. If the center lies on the silhouette, degenerate triangles with solid angle
zero are created. These triangles receive no samples.
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Figure 6.1 shows examples of triangle fans for a convex and a star-shaped polyhedron.
Many practically relevant light sources are covered by these two cases and constructing
a triangle fan in the shader takes almost no time compared to sampling the triangles. I
therefore recommend using this approach whenever possible, instead of the one described
in section 6.2. Despite using precomputed triangulations, it does not perform better than
using a triangle fan.

Figure 6.1: Triangulations of the silhouettes of a convex polyhedron (left) and a star-
shaped polyhedron (right).

6.2 General Polyhedra
While triangulating silhouettes of convex and star-shaped polyhedra is relatively easy,
solving the problem for any polyhedron proved to be quite difficult. Finding a triangulation
directly in the shader did not seem promising to me so I decided to extend my BSP-
based preprocessing technique so that I could also use it to precompute triangulations of
silhouettes, instead of just the silhouettes themselves. In the first part of this section, I
explain my algorithm for triangulating silhouettes in the preprocessing phase. However,
not all silhouettes have a triangulation using just the vertices of the silhouette. In the
second part of this section, I explain these cases and how I handle them by using additional
vertices for the triangulation. In theory, this enables me to triangulate any silhouette but
using precomputed triangulations further complicates the algorithm as a triangulation is
not just required to be valid for a single shading point but an entire cell. I address this
problem in the last part of this section with a randomized algorithm that tries multiple
triangulations and tests them for a set of random samples.

6.2.1 Triangulation Algorithm

Since the silhouettes consist of relatively few edges and performance is not as relevant in
the preprocessing phase as in the shader, I use a simple but slow triangulation algorithm.
It should be noted that polyhedron silhouettes commonly have holes and can therefore
not be assumed to be simple polygons. This prevents me from using some common tri-
angulation techniques such as ear clipping. My algorithm represents the silhouette as an
undirected graph and then simply tries to connect each pair of vertices by a diagonal. If
the diagonal intersects an existing edge (other than at the endpoints), it is invalid and
therefore skipped. By changing the order in which diagonals are tested and added, many
different triangulations of the same polygon can be found. This will later be relevant for
finding a triangulation for each cell of the BSP-tree. When all diagonals have been tried,
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I assume that the polygon has been triangulated. Some silhouettes however cannot be
triangulated this way because edges longer than π would be needed and I require edges to
be the shortest connection of their endpoints, which is always shorter than π. I address
this in section 6.2.2.

My next step is to find the triangles for the triangulation in the graph. I do this by first
finding all cycles of length three and then eliminating unwanted ones. Clearly, each cycle of
length three forms a spherical triangle but only some of them are part of the triangulation
(figure 6.2). The algorithm may create edges outside the silhouette, for example, to connect
the two vertices around a concave corner. This can result in triangles that are outside the
silhouette and it can create triangles made of multiple smaller ones. These triangles
should therefore not be added to the triangulation. I first reject all triangles that contain
another vertex, so that only “atomic” triangles remain. I then perform a ray-polyhedron
intersection test for each triangle to reject the triangles outside of the silhouette. If the
ray from the shading point through the center of a triangle does not hit the polyhedron
then the triangle is outside of the silhouette.

Figure 6.2: A spherical polygon (red), the diagonals added by the triangulation algorithm
(black) and the four different spherical triangles (blue) that can be found in
the graph. Only the last two are used for the triangulation. The first one is
rejected because it contains another vertex, the second one is rejected because
it is outside the silhouette, which is checked with a ray polyhedron intersection
test.

6.2.2 Handling Cases Where No Triangulation Exists

Some spherical polygons do not have triangulations if only great circle arcs shorter than
π are allowed. An example of this is shown in figure 6.3. Contrary to line segments in
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Figure 6.3: A polyhedron (green) and shading point (black) where the silhouette has no tri-
angulation that uses only arcs shorter than π (left) and the silhouette projected
onto the sphere (right). Note that the interior that needs to be triangulated
(green) is the larger part of the sphere and that no diagonal shorter than π
can be added.

the plane, there are always two great circle arcs connecting two points on the sphere and
only one of them is the shortest connection. Spherical triangles are usually understood as
projections of triangles onto the sphere, which means that each edge must be the shorter
arc connecting the two vertices. Some spherical polygons however are such that the longer
arc between two vertices is required to triangulate them. I solve this problem by adding
additional vertices when necessary. These additional vertices allow bridging distances
greater than π with multiple edges. A special case of this is the approach I previously
described for star-shaped polyhedra where the center is also used in the triangulation.
Only one additional point is necessary to triangulate any spherical polygon where each
edge is shorter than π [O’R08]. However, since I need a triangulation to be valid for an
entire BSP cell, I instead use the set of all vertices of the light source that are endpoints
of concave edges. The projection of any edge of the polyhedron is always shorter than π
so adding these vertices enables the algorithm to use the projections of the concave edges
for the triangulation. If two vertices of the silhouette are further than π apart then they
must be separated by concave edges since the projection of any convex set is shorter than
π in all directions (if the shading point is outside of it). Therefore, no edge longer than π
is necessary for the triangulation after these vertices have been added.

Allowing my algorithm to use additional points is easy: I simply add them to the graph
and the algorithm will try to connect them to the other vertices. However, this means
that the algorithm will always use them, whether they are needed or not, which can lead
to a significantly higher triangle count than necessary. Instead, I pass two separate sets
of points to the algorithm: required points that are used in the silhouette and optional
points that only aid in finding a triangulation. I first try to triangulate the silhouette
using just the required points. I then remove all optional points that are already inside of
a triangle since they are not necessary to triangulate that part of the silhouette. I then
add the new edges that are possible with the remaining optional points and add the new
triangles created that way to the result.

6.2.3 Precomputation with Binary Space Partitioning
Because my triangulation algorithm for non-star-shaped polyhedra is not fast and simple
enough to be used in the shader directly, I decided to move it to the preprocessing phase
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where I already determine the silhouettes. The idea is very simple: instead of storing
a set of edges as pairs of points for each cell, I store a set of triangles as sets of three
points. Each point is stored exactly as before in one of the two possible formats described
in section 5.4. This also works for the new optional points as described in section 6.2.2
since those are also just vertices of the light source. A triangulation that is valid for one
point in a BSP cell is not necessarily valid for all other points in the cell. A triangle that
is correct for one point may flip when moving to another point, resulting in a back-facing
triangle that can be partially outside the silhouette and that can intersect other triangles
(figure 6.4).

Figure 6.4: The same triangulation viewed from a point where it is correct (left) and from
one where it is not (right). One triangle (red) flips, is partially outside the
silhouette and intersects other triangles. The two points are in the same BSP
cell.

While not every possible triangulation for a point is valid for the entire cell, some usually
are (figure 6.5). My algorithm cannot just be used to find a single triangulation but also

Figure 6.5: A different triangulation for the situation in figure 6.4 that does not have the
same problem.

to find a large variety of triangulations for the same shading point and polyhedron by
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changing the order in which new edges are tested and added. It is likely that one of them
works for the entire cell as a triangle flipping like in figure 6.4 is a relatively rare occurrence.
Testing whether a triangulation is valid for a given point is easy: I simply test if any of
the triangles is back-facing when viewed from that point. However, testing whether it
is correct for the entire cell is difficult. It may seem as if testing the triangulation for
each vertex of the convex polyhedral cell is sufficient and that would certainly be true if
the triangulation only used fixed points in space. However, a vertex of the silhouette can
also be the apparent intersection of two edges, which changes position depending on the
shading point. This means that even if a triangulation is valid for both endpoints of a
line segment, it may still be invalid somewhere in between (figure 6.6). A triangulation

Figure 6.6: A triangle that flips twice as the observer moves in a straight line from left to
right. The first (red) and second (yellow) vertex are fixed points in space while
the third one (blue) is the apparent intersection of two lines (gray). From the
first to the second picture, the triangle flipped as the first vertex has passed
the second one in the projection because they are at different depth. From the
second to the third picture, the triangle flipped again as the third vertex has
moved to a much higher position because the two lines are at different depth.

is therefore not necessarily valid for an entire convex polyhedron just because it is valid
for its vertices. It may still be the case for the cells that I actually use but even if it is, it
seems very difficult to prove.

I am therefore stuck with only being able to verify a triangulation for individual points so
I decided to use a randomized algorithm to test a triangulation for an entire cell: I take
a large number of samples from the cell and test whether the triangulation is valid for
each of them. This is not a guarantee that it is valid for the whole cell but with larger
numbers of samples, it is increasingly unlikely that it is not. There are mainly two ways
of generating these samples. Either they are generated for each cell as linear combinations
of the vertices of the cell or they are generated globally and then assigned to the cell that
they are in. I decided to use the first option because it avoids traversing the tree for
each sample. Choosing the weights for the linear combination uniformly results in a large
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number of samples near the center and very few samples near the boundary. This is a bad
distribution for this purpose because triangulations commonly fail only near the boundary
of the cell. As a very simple but effective solution to this, I use the third power of the
uniformly generated weights to push samples closer to the boundary.

My complete algorithm consists of generating random triangulations for a point in the cell
and testing the triangulation for random samples in the cell. I use the first triangulation
that is valid for all samples. Note that testing a triangulation for a point is very cheap
compared to finding a triangulation so using hundreds of samples is viable. Still, finding a
method that guarantees that the triangulation is valid for the entire cell would be preferable
and is an interesting problem for further research.
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7. Results

In this section, I present the results that I achieved with the techniques described in
this thesis. I show example renderings created with them and I give and explain my
measurements for how well the techniques perform for various polyhedra. This includes
measurements of run times of the shaders and of the preprocessing phase as well as the
size of the precomputed data.

7.1 Rendered Results
The following renderings were created with the techniques I described to demonstrate what
results can be achieved with them.

Figure 7.1 compares ray tracing with shading with LTCs in a simple scene, demonstrating
the strengths and weaknesses of the two approaches. LTCs produce noise-free results
quickly but they do not take shadowing into account. Ray tracing does produce correct
shadows but it is computationally expensive and produces noisy images. My techniques
improve the performance of both approaches so the best fit for each use case can be used
or the two can even be combined [HHM18].

Figure 7.2 demonstrates correct shading of an object surrounded by a light source. While
this is not unique to polyhedral light sources, most other commonly used types of light
sources are convex (e.g. disks, rectangles, spheres, cylinders) so that situations like this
cannot occur with a single light source. Handling them correctly with my techniques
requires representing silhouettes as spherical polygons instead of simply projecting light
sources into a plane with a standard perspective projection.

Figures 7.3 and 7.4 show more complete and realistic use cases with multiple light sources
and other objects. Many objects are approximated well by polyhedra so having an efficient
technique for using them as light sources gives artists a great deal of freedom in how they
illuminate a scene. LTCs and ray tracing are already used for other types of light sources
in popular game engines and my techniques are easy to integrate into existing workflows
and renderers.
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Figure 7.1: A cube light source partially occluded by another object rendered once with
LTCs (top) and twice with ray tracing with solid angle sampling (bottom).
The first image with ray tracing was made with 16 samples, the second one
with 256. The version with ray tracing has shadows but is more expensive and
produces a noisy result. Using more samples is slower but reduces the noise.
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Figure 7.2: The reflection of a light source surrounding a cylinder. This demonstrates
correct treatment of cases where the light source cannot be projected into a
plane using a standard perspective projection.

Figure 7.3: A bedroom illuminated by three polyhedral light sources.
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Figure 7.4: Neon letters reflected in the facade of a building. Each letter is a separate
polyhedral light source.
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7.2 Run Times
The techniques I present are meant and suitable for real-time applications. The most
important property in this context is the time used for shading in each frame. The mea-
surements I present in this section show that interactive framerates are achieved for a large
range of light sources on modern graphics hardware. Another concern is the preprocessing
time necessary for each unique polyhedron. This would typically happen before an appli-
cation is shipped or at least only once when the scene is loaded so it is not as relevant as
the processing time used for each frame. Nonetheless, short preprocessing times facilitate
development and testing and expand the possible use cases of the techniques. My mea-
surements show acceptable times for the tested polyhedra but faster preprocessing may be
desirable for specific use cases where it affects the user experience.

I measured run times for a variety of different polyhedra, including convex, star-shaped,
and non-star-shaped ones as listed in table 7.1 and shown in figure 7.5. I refer to them
by the names in this table throughout this section. Of course, they are all polyhedra so
“sphere” for example is just a sphere approximation, not an actual sphere.

Figure 7.5: The polyhedra used for performance measurements. Top row: “cube”, “cone”,
“cylinder”, “icosahedron”, “sphere”. Bottom row: “corner”, “extruded cube”,
“hole”, “bowl”.

7.2.1 Shading

I measured shading times in a deferred renderer so shading is largely independent of the
complexity of the other objects in the scene. The scene I used for performance measure-
ments consists of one light source at a time and some simple geometry covering the entire
screen in the background. All measurements were performed on an Nvidia GTX 1070 TI
at a resolution of 1024× 768 pixels.

For the variant using LTCs, I compared three different approaches. The first method
treats each face as a separate light source (although I still only used one draw call for the
entire polyhedron), the second one determines the silhouette in the shader and the last one
uses precomputed silhouettes. I did not implement the second one for non-convex light
sources so I do not have results for those. Note also that using one light source per face
produces less accurate results for non-convex light sources than using silhouettes as the
latter does not handle self-occlusion of the light source properly (figure 4.1). I measured
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Table 7.1: Names and relevant metrics of the example polyhedra shown in figure 7.5. The
table lists vertex counts, edge counts, face counts and whether the polyhedra
are convex or star-shaped.

Name Vertices Edges Faces Convex Star-shaped
Cube 8 12 6 Yes Yes
Cone 13 24 13 Yes Yes
Cylinder 24 36 14 Yes Yes
Icosahedron 12 30 20 Yes Yes
Sphere 42 120 80 Yes Yes
Corner 12 18 8 No Yes
Extruded cube 32 60 30 No Yes
Hole 16 24 10 No No
Bowl 16 24 11 No No

Table 7.2: Shading times for the example polyhedra using three different variants of shad-
ing with LTCs. The first method treats the faces of the polyhedron as individual
light sources, the second one calculates the silhouette in the shader and the third
one uses precomputed silhouettes.

Polyhedron Individual Faces Silhouettes Precomputed Silhouettes
Cube 0.79 ms 0.38 ms 0.36 ms
Cone 1.49 ms 0.64 ms 0.51 ms
Cylinder 2.23 ms 0.89 ms 0.70 ms
Icosahedron 1.85 ms 0.67 ms 0.46 ms
Sphere 7.16 ms 2.45 ms 0.80 ms
Corner 1.18 ms - 0.89 ms
Extruded cube 3.47 ms - 1.93 ms
Hole 1.42 ms - 1.00 ms
Bowl 1.53 ms - 0.71 ms

only the time used for the deferred shading pass of the light source, not the time used for
the entire frame. I calculated both specular and diffuse shading with one LTC for each of
those (Lambert and GGX). The timings are listed in table 7.2.

The results show a significant performance gain from using silhouettes instead of one
light source per face. Using precomputed silhouettes improves performance significantly
for more complex objects but only slightly for simple ones. Notably, using silhouettes
performs better even for non-convex polyhedra, despite being more accurate.

For the variant using ray tracing and solid angle sampling, I compared my techniques for
triangulating the silhouette to using the triangulated polyhedron faces. I used one sample
per pixel and I did not do any actual ray tracing because that would dominate the timings,
especially on my hardware since it does not have dedicated ray-tracing cores. Instead, I
simply used every sample without checking if it is occluded. Just like for the technique
with LTCs, I only measured the deferred shading pass. The timings are listed in table 7.3.

The results show a noticeable performance improvement from using silhouettes but espe-
cially for simple light sources, the difference is smaller than with LTCs. This matches my
expectations since the expensive calculations for solid angle sampling are performed per
triangle, not per edge. The number of triangles is not much lower for simple shapes when
using silhouettes. For light sources where many faces are entirely inside the silhouette,
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Table 7.3: Shading times for the example polyhedra using Monte Carlo integration with
solid angle sampling of the triangulated faces of the polyhedra and of their
triangulated silhouettes. One sample per pixel was used.

Polyhedron Triangulated Faces Triangulated Silhouettes
Cube 0.89 ms 0.72 ms
Cone 1.34 ms 1.03 ms
Cylinder 2.66 ms 1.28 ms
Icosahedron 1.29 ms 0.86 ms
Sphere 5.03 ms 1.46 ms
Corner 1.44 ms 0.99 ms
Extruded Cube 3.71 ms 2.04 ms
Hole 2.04 ms 1.58 ms
Bowl 1.57 ms 0.84 ms

such as the sphere approximation, the difference is much more significant.

Overall the results demonstrate that the techniques I presented are indeed suitable for
real-time applications and are in most cases a significant improvement over using the faces
of the light source directly.

7.2.2 Precomputation

Using precomputed silhouettes has the potential to greatly reduce shading times but a
relatively expensive preprocessing phase is necessary instead. Moving most calculations
to the preprocessing phase has the advantage that they are only performed once per light
source, when possible even at design time so that it does not affect the user experience.
Preprocessing is commonly used in real-time computer graphics, for example for occlusion
culling and indirect lighting so integrating even a long preprocessing phase into existing
workflows should rarely be a problem. However, preprocessing time is still relevant as
shorter ones enable faster development and enable a wider range of use cases. Some
applications may benefit from creating new types of light sources dynamically, which
imposes a more strict limit on acceptable preprocessing times.

I measured preprocessing times for the same polyhedra as the shading times. The calcu-
lations were performed single-threaded on an AMD Ryzen 5 3600 at a clock frequency of
3.59 GHz. I implemented the algorithms in C#. Table 7.4 lists the timings I measured
for precalculating the BSP-tree and the silhouette for each leaf. For the triangulated
silhouettes, I used 256 samples per cell to verify the triangulation.

The results show acceptable timings for precomputing the silhouettes of the tested poly-
hedra but they also show a rapid increase in preprocessing time as the complexity of the
polyhedron increases. To some extent, this is an inherent problem of the technique. The
number of leaves in the tree already increases rapidly and on top of that, each silhouette
takes longer to determine for more complex polyhedra. However, my choice of algorithms
also contributed to it. A faster method for finding silhouettes of non-convex polyhedra is
likely possible, for example by modifying the algorithm described by Kettner and Welzl
[KW97] to also apply it to spherical projections of polyhedra.

Triangulated silhouettes are significantly slower to precompute with my technique than
just the silhouettes. This is mostly due to the relatively slow triangulation algorithm I use
but also due to having to try multiple triangulations for some cells. Note that preprocessing
is not necessary for star-shaped polyhedra, even though some are listed in the table.
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44 7. Results

Table 7.4: Number of elements and approximate total size of the precomputed buffers for
the example polyhedra for the various types of preprocessing that I use. The
total size was calculated assuming 20 bytes per node and four bytes per vertex.

Silhouettes of convex polyhedra
Polyhedron Time Nodes Silhouette vertices Total size
Cube 0.0034 s 53 138 1.6 kB
Cone 0.025 s 418 1,838 15 kB
Cylinder 0.0016 s 436 2,674 19 kB
Icosahedron 0.027 s 1,828 6,245 62 kB
Sphere 3.7 s 147,660 947,142 6,700 kB

Silhouettes of non-convex polyhedra
Polyhedron Time Nodes Silhouette edges Total size
Corner 0.023 s 332 1,165 16 kB
Extruded Cube 0.92 s 5,232 44,569 460 kB
Hole 0.022 s 414 1,215 18 kB
Bowl 0.010 s 198 407 7.2 kB

Triangulated Silhouettes
Polyhedron Time Nodes Silhouette triangles Total size
Corner 0.15 s 332 853 17 kB
Extruded Cube 14 s 5,232 40,027 580 kB
Hole 0.23 s 414 1,022 21 kB
Bowl 0.073 s 198 271 7.2 kB

7.3 Size of Precomputed Data
To efficiently execute the shader, the precomputed data must be loaded in graphics mem-
ory. This means that keeping the data small is desirable to keep more memory free for
other purposes like storing textures and models or for loading more light sources at the
same time. I store the precomputed data in two buffers. The first one contains one entry
for each node of the tree (including leaves in my implementation), the second one contains
one entry for each vertex of a silhouette, for each edge of a silhouette, or for each triangle
of a triangulated silhouette depending on which variation of the technique is used. The
number of elements in these buffers and their total size for the example light sources is
given in table 7.4.

This shows that for light sources of similar complexity to the tested ones, memory usage is
usually not a problem on modern desktop graphics hardware, which typically has several
gigabytes of memory available. However, just like the preprocessing time, the size of the
data also grows rapidly with the complexity of the light source. I outline two possible
approaches for reducing the size of precomputed data to allow for more complex light
sources in section 8.
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8. Conclusion and Future Work

To conclude this thesis, I reflect on the presented techniques and my findings in evaluating
their usefulness for real-time rendering. I also explain the limitations of my techniques
and outline my ideas for extending or improving them.

Polyhedral approximations of three-dimensional objects are commonly used in computer
graphics due to their versatility, simplicity, and the many good tools for creating them.
However, mainly for performance reasons, they are rarely used as light sources for real-
time shading. Simpler primitives like spheres and rectangles are far more widespread but
do not represent the large variety of light sources that exist in the real world well. The
techniques I presented in this thesis are an important step for making polyhedral light
sources more useful in real-time applications. Using the silhouette of a polyhedral light
source for shading improves the performance of shading with LTCs as well as of solid angle
sampling for ray tracing. Furthermore, it handles self-occlusion of the light source, which
poses a problem for both techniques.

I presented multiple variations of my techniques. Based on my performance measurements,
I recommend using precomputed silhouettes whenever possible as they provided shorter
shading times in all cases. The variant without preprocessing for convex polyhedra has
the advantage that the light source can be animated but this is very limited due to the
requirement that the light source has to be convex at all times. Nonetheless, it may be
useful in some specific use cases. For solid angle sampling, I recommend using triangle
fans for convex and star-shaped polyhedra. Precomputing triangulations the way I do it
only makes sense for non-star-shaped polyhedra where I did not find a simpler solution.

Aside from the algorithms for finding silhouettes, my implementation of area light shading
with Monte Carlo integration is very simple and could be improved in various ways. I only
described uniform solid angle sampling but even better results are achievable by combining
my techniques for finding the silhouette of a polyhedron with BRDF importance sampling
techniques for polygonal or triangular light sources. I also recommend using denoising
techniques to achieve less noisy results with fewer samples.

A limitation of my techniques is that the size of the precomputed data grows rapidly with
the complexity of the light source. While it is acceptable for the tested light sources, it is
still concerning with regards to more complex light sources that may become interesting
as graphics hardware continues to improve. It may however be possible to significantly
reduce the size by storing each edge of the silhouette as far up in the tree structure as
possible. The tree subdivides the scene as far as necessary for knowing the entire silhouette
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of each cell. However, most silhouette edges are the same for entire subtrees, rather than
being decided in the last inner node. These edges could already be stored at the root of
the subtree that they are valid for. Modifying my technique to store silhouettes that way
is an interesting problem for further research. The algorithm for building the tree needs
to be modified to detect these cases and store the edges accordingly. To achieve the best
compression, the tree may need to be restructured to give the largest possible subtrees for
each edge.

A different approach to solve the same problem is splitting complex polyhedra into multiple
smaller ones and generating one tree for each of them. To properly handle self-occlusion
of the light source, this requires an efficient algorithm for determining the union of two
spherical polygons in the fragment shader. This is almost certainly slower than using a
single BSP-tree but it may still be considerably faster than finding the silhouette entirely
in the shader and it would significantly reduce the total size of the precomputed data.

To use precomputed triangulations of silhouettes, I use a randomized algorithm that is not
guaranteed to give a correct result. The main problem is testing whether a triangulation
is valid for all shading points in a convex polyhedron. I do this by testing a large number
of random samples but it would be preferable to find a deterministic algorithm for this.
Alternatively, one could also try to solve the problem of how the BSP cells need to be
subdivided further to guarantee that any triangulation that is valid for one point is valid
for the entire cell.

Overall I believe my techniques to be already quite useful in practice in their current state
but improving them as described above would allow them to be used with less care in an
even larger range of applications.
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