
Future Generation Computer Systems 124 (2021) 215–229

L
a

b

p
i
m
(
c

E
t
h
e
l
S
a
p

p
t
l
t
d

(
v

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Triggerflow: Trigger-based orchestration of serverless workflows
Aitor Arjona a,∗, Pedro García López a, Josep Sampé a, Aleksander Slominski b,
ionel Villard b

Universitat Rovira i Virgili, Tarragona, Spain
IBM Watson Research, NY, USA

a r t i c l e i n f o

Article history:
Received 8 January 2021
Received in revised form 7 May 2021
Accepted 1 June 2021
Available online 7 June 2021

Keywords:
Event-based
Orchestration
Serverless

a b s t r a c t

As more applications are being moved to the Cloud thanks to serverless computing, it is increasingly
necessary to support the native life cycle execution of those applications in the data center.

But existing cloud orchestration systems either focus on short-running workflows (like IBM
Composer or Amazon Step Functions Express Workflows) or impose considerable overheads for
synchronizing massively parallel jobs (Azure Durable Functions, Amazon Step Functions). None of them
are open systems enabling extensible interception and optimization of custom workflows.

We present Triggerflow: an extensible Trigger-based Orchestration architecture for serverless work-
flows. We demonstrate that Triggerflow is a novel serverless building block capable of constructing
different reactive orchestrators (State Machines, Directed Acyclic Graphs, Workflow as code, Federated
Learning orchestrator). We also validate that it can support high-volume event processing workloads,
auto-scale on demand with scale down to zero when not used, and transparently guarantee fault
tolerance and efficient resource usage when orchestrating long running scientific workflows.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Serverless Function as a Service (FaaS) is becoming a very
opular programming model in the cloud thanks to its simplic-
ty, billing model and inherent elasticity. The FaaS programming
odel is considered event-based, since functions are activated

triggered) in response to specific Cloud Events (like a state
hange in a disaggregated object store like Amazon S3).
The FaaS model has also proven ideally suited (PyWren [1],

xCamera [2]) for executing embarrassingly parallel computing
asks. But both PyWren and ExCamera required their own ad-
oc external orchestration services to synchronize the parallel
xecutions of functions. For example, when the PyWren client
aunches a map job with N functions, it waits and polls Amazon
3 until all the results are received in the S3 bucket. ExCamera
lso relied on an external Rendezvous server to synchronize the
arallel executions.
Lambda creator Tim Wagner recently outlined [3] that Cloud

roviders must offer new serverless building blocks to applica-
ions. In particular, he foresees new services like fine-grained,
ow-latency orchestration, execution data flows, and the ability
o customize code and data at scale to support the emerging
ata-intensive applications over Serverless Functions.

∗ Corresponding author.
E-mail addresses: aitor.arjona@urv.cat (A. Arjona), pedro.garcia@urv.cat

P.G. López), josep.sampe@urv.cat (J. Sampé), aslom@us.ibm.com (A. Slominski),
illard@us.ibm.com (L. Villard).
ttps://doi.org/10.1016/j.future.2021.06.004
167-739X/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
The reality is that existing serverless orchestration systems
are not designed for long-running data analytics tasks [4,5]. Ei-
ther they are focused on short-running highly interactive work-
flows (Amazon Express Workflows, IBM Composer) or impose
considerable overheads for synchronizing massively parallel jobs
(Azure Durable Functions, Amazon Step Functions, Google Cloud
Workflows).

We present Triggerflow, a novel building block for composing
event-based services. As more applications are moved to the
Cloud, this service will enable to control the life-cycle of those
applications in a reactive and extensible way. The flexibility of the
system can also be used to transparently optimize the execution
of tasks in reaction to events.

The major contributions of this paper are the following:

1. We present a Rich Trigger framework following an Event-
Condition-Action (ECA) architecture that is extensible at all
levels (Event Sources and Programmable Conditions and
Actions). Our architecture ensures that composite event
detection and event routing mechanisms are mediated by
reactive event-based middleware.

2. We demonstrate Triggerflow’s extensibility and universal-
ity creating atop it a state machine workflow orchestrator,
a DAG engine, an imperative Workflow as Code (using
event sourcing) orchestrator, integration with an external
scheduler like Lithops [6] and a Federated Learning orches-
trator. We also validate performance and overhead of our
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2021.06.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.06.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:aitor.arjona@urv.cat
mailto:pedro.garcia@urv.cat
mailto:josep.sampe@urv.cat
mailto:aslom@us.ibm.com
mailto:villard@us.ibm.com
https://doi.org/10.1016/j.future.2021.06.004
http://creativecommons.org/licenses/by/4.0/


A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

2

m
A
i

i
t
e
o
f
r
a
c

i
p
P
a
t

t
P
t
r
w
a
a

t
S
a
a
A

c
T
f
d
w
d
s

s
o
d

orchestration solution compared to existing Cloud Server-
less Orchestration systems like Amazon Step Functions,
Amazon Express Workflows, Azure Durable Functions and
IBM Composer.

3. We demonstrate how Triggerflow is reactive and scales
on demand, using an event-based autoscaler component
that provisions resources to the system only when events
are produced. With scale to zero, Triggerflow follows a
serverless-like pay-per-use model, making an efficient use
of compute resources.

4. We finally propose a generic implementation of our model
over standard CNCF or Open Source production-grade tech-
nologies like Kubernetes, KEDA, Knative and CloudEvents.
We validate that our system can support high-volume
event processing workloads, auto-scale on demand and
transparently optimize scientific workflows. The project is
available as open-source in [7].

. Related work

FaaS is based on the event-driven programming model. In fact,
any event-driven abstractions like triggers, Event Condition
ction (ECA) and even composite event detection were already
nspired by the veteran Active Database Systems [8].

Event-based triggering has also been extensively employed
n the past to provide reactive coordination of distributed sys-
ems [9,10]. Event-based mechanisms and triggers have also been
xtensively used [11–14] in the past to build workflows and
rchestration systems. The ECA model including trigger and rules
its nicely to define the transitions of finite state machines rep-
esenting workflows. In [15], they propose to use synchronous
ggregation triggers to coordinate massively parallel data pro-
essing jobs.
An interesting related work is [14]. They leverage compos-

te subscriptions in content-based publish/subscribe systems to
rovide decentralized Event-based Workflow Management. Their
ADRES system supports parallelization, alternation, sequence,
nd repetition compositions thanks to content-based subscrip-
ions in a Composite Subscription Language.

More recently, a relevant article [16] has surveyed the in-
ersections of the Complex Event Processing (CEP) and Business
rocess Management (BPM) communities. They clearly present
he existing challenges to combine both models and describe
ecent efforts in this area. We outline that our paper is in line
ith their challenge ‘‘Executing business processes via CEP rules",
nd our novelty here is our serverless reactive and extensible
rchitecture.
In serverless settings, the more relevant related work aiming

o provide reactive orchestration of serverless functions is the
erverless trilemma [17] from IBM. In their paper, the authors
dvocate for reactive run-time support for function orchestration,
nd present a solution for sequential compositions on top of
pache OpenWhisk.
Recently, effort from the CNCF community has been put into

reating a standard specification for Serverless Workflows [18].
hey propose a declarative definition of a workflow as a YAML
ile that contains descriptions for CloudEvents to consume, event-
riven invocation of serverless functions and state transitions for
orkflow data management and control flow logic. The idea is to
efine an abstract definition that can be interpreted by different
ystems thus ensuring portability and to avoid vendor lock-in.
A plethora of academic works are proposing different so-called

erverless orchestration systems like [19–24]. However, most
f them rely on centralized serverful components like VMs or
edicated resources that do not scale down to zero. Instead, the
216
orchestrator component is active during the whole workflow exe-
cution. This results in inefficient resource usage for long-running
workflows because the orchestrator will stand idle most of the
time waiting for long tasks to finish. Other use functions calling
functions patterns which complicate their architectures and fault
tolerance. None of them offer extensible trigger abstractions to
build different orchestrators.

Another related work is [25]. The authors compare Durable
Functions (workflow as code) and triggers for workflow orches-
tration. They claim that using triggers is possible for workflow
orchestration but that it is not ideal. The main drawbacks are
that (i) it is necessary to create different queues/directories for
each step, (ii) triggers cannot wait for the completion of multi-
ple previous steps, and (iii) triggers are not suitable for correct
error handling. This is true for conventional triggers. However,
in this article we will see that using a Rich Trigger framework
can resolve these problems. With extended trigger logic we can
specify rules to filter events (to avoid creating multiple queues)
and to aggregate events (to perform a multiple join). With event
replay and checkpointing we can also guarantee fault tolerance
(Section 3.4). In fact, we demonstrate how using dynamic and
flexible triggers we can orchestrate workflows defined as code
(Section 5.3).

All Cloud providers are now offering cloud orchestration and
function composition services like IBM Composer, Amazon Step
Functions, Azure Durable Functions, or Google Cloud Workflows.

IBM Composer service is in principle designed for
short-running synchronous composition of serverless functions.
IBM Composer generates a state machine representation of the
workflow to be executed with IBM Cloud Functions. It can rep-
resent sequences, conditional branching, loops, parallel, and map
tasks. However, fork/join synchronization (map, parallel) blocks
on an external user-provided Redis service, limiting their appli-
cability to short running tasks.

Amazon offers two main services: Amazon Step Functions
(ASF) and Amazon Step Functions Express Workflows (ASFE).
The Amazon States Language (based on JSON) permits to model
task transitions, choices, waits, parallel, and maps in a standard
way. ASF is a fault-tolerant managed service designed to support
long-running workflows and ASFE is designed for short-running
(less than five minutes) highly intensive workloads with relaxed
fault-tolerance.

Microsoft’s Azure Durable Functions (ADF) represents work-
flows as code using C# or Javascript, leveraging async/await con-
structs and using event sourcing to replay workflows that have
been suspended. ADF does not support map jobs explicitly, and
only includes a Task.whenAll abstraction enabling fork/join pat-
terns for a group of asynchronous tasks.

Google Cloud offers Google Cloud Workflows service. Work-
flows in Google Cloud Workflows are represented as a series
of steps with basic logical flow control like conditions or loops.
Every step makes an HTTP request that can be used, for example,
to trigger a Google Cloud Function. It is not designed for broad
parallel tasks as it lacks the map primitive present in other
systems like ASF.

Two previous papers [4,5] have compared public FaaS orches-
tration services for coordinating massively parallel workloads.
In those studies, IBM Composer offered the fastest performance
and reduced overheads to execute map jobs whereas ASF or ADF
imposed considerable overheads. We will also show in this paper
how ASFE obtains good performance for parallel workloads.

None of the existing cloud orchestration services is offering
an open and extensible trigger-based API enabling the creation
of custom workflow engines. We demonstrate in this paper that
we can use Triggerflow to implement existing models like ASF
or Airflow DAGs. Triggerflow is not just another scheduler, but
a reactive meta-tool to build reactive orchestrators leveraging
Kubernetes standard technologies.



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

2

p
s
c
e
d
o
m

b
s
o
a
C

s
c
t
t
d
b

n
T
i
t
s
e
u
l

(
t
s
t
s
b
e

3

A
C
f
O
(
a
g
p

T
t
e
e
f

δ

D
f
A
o
p
w
T
p

.1. Cloud event routing and Knative Eventing

Event-based architectures are gaining relevance in Cloud
roviders as a unifying infrastructure for heterogeneous cloud
ervices and applications. Event services participate in the entire
loud control loop from event production in event sources, to
vent detection using monitoring services, to event logging and
ata analytics of existing event workflows, and finally to service
rchestration and event reaction thanks to appropriate filtering
echanisms.
The trend is to create cloud event routers, specialized rule-

ased multi-tenant services, capable of filtering and triggering
elected targets in the Cloud in response to events. Amazon is
ffering EventBridge, Azure offers EventGrid, and Google and IBM
re investing in the open Knative Eventing project and CNCF
loudEvents standard.
The Knative project was created to provide streamlined

erverless-like experience for developers using Kubernetes. It
ontains a set of high-level abstractions related to scalable func-
ions (Knative Serving) and event processing (Knative Eventing)
hat allows the description of asynchronous, decoupled, event-
riven applications built out of event sources, sinks, channels,
rokers, triggers, filters, sequences, etc.
The goal of Knative is to allow developers to build cloud

ative event-driven serverless applications on those abstractions.
he value of Knative is to encapsulate well tested best practices
n high-level abstractions that are native to Kubernetes: cus-
om resource definitions (CRDs) for new custom resources (CRs)
uch as event sources. Abstractions allow developers to describe
vent-driven application components and have late-binding to
nderlying (possibly multiple) messaging and eventing systems
ike Apache Kafka and NATS among others.

Triggerflow aims to leverage existing event routing technology
Knative Eventing) to enable extensible trigger-based orchestra-
ion of serverless workflows. Triggerflow includes advanced ab-
tractions not present in Knative Eventing like dynamic triggers,
rigger interception, custom filters, termination events, and a
hared context among others. Some of these novel services may
e adopted in the future by event routing services to make it
asier to compose, stream, and orchestrate tasks.

. Triggerflow architecture

We can see in Fig. 1 an overall diagram of the Triggerflow
rchitecture. The Trigger service follows an extensible Event-
ondition-Action architecture. The service can receive events
rom different Event Sources in the Cloud (Kafka, RabbitMQ,
bject Storage, timers). It can execute different types of Actions
containers, functions, VMs), and it can also enable the cre-
tion of custom filters or Conditions from third-parties. The Trig-
er service also provides a shared persistent context repository
roviding durability and fault tolerance.
We define Triggerflow as a Rich Trigger framework. A Rich

rigger framework differs from a regular triggering framework in
hat the former contains built-in programmable abstractions for
xtended event processing logic like composite event detection,
vent aggregation, event routing or stateful event processing and
iltering, all with transparent fault tolerance.

Fig. 1 also shows the basic API exposed by Triggerflow: create-
Workflow initializes the context for a given workflow, addTrigger
adds a new trigger (including event, conditions, actions, and con-
text), addEventSource permits the creation of new event sources,
and getState obtains the current state associated to a given trigger
or workflow.

Different applications and orchestrators can benefit from
serverless awakening and rich triggering by using this API to build
different orchestration services like Airflow-like DAGs, ASF state

machines or Workflow as Code clients like Lithops [6].

217
3.1. Design goals

Let us establish a number of design goals that must be sup-
ported in the proposed architecture:

1. Support for Heterogeneous Workflows: The main idea is to
build a generic building block for different types of orches-
trators. The system should support enterprise workflows
based on Finite State Machines, Directed Acyclic Graphs,
and Workflow as Code systems.

2. Extensibility and Computational Reflection: The system
must be extensible enough to support the creation of
novel workflow systems with special requirements like
specialized scientific workflows. The system must support
introspection and interception mechanisms enabling the
monitoring and optimization of existing workflows.

3. Serverless design: The system must be reactive, and only
execute logic in response to events, like state transitions.
Serverless design also entails pay per use, flexible scaling,
and dependability.

4. Performance: The system should support high-volume
workloads like data analytics pipelines with numerous
parallel tasks. The system should exhibit low overheads for
both short-running and long-running workflows.

3.2. Trigger service

Our proposal is to design a purely event-driven and reactive
architecture for workflow orchestration. Like previous works [11–
13], we propose to handle state transitions using event-based
triggering mechanisms. The novelty of our approach precisely
relies on the aforementioned design goals: support for hetero-
geneous workflows, extensibility, serverless design, and perfor-
mance for high volume workloads.

We follow an Event Condition Action architecture in which
triggers (active rules) define which action must be launched
in response to Events or to Conditions evaluated over one or
more Events. The system must be extensible at all levels: Events,
Conditions, and Actions. Let us introduce some definitions:

Definition 1 (Workflow). We can represent a workflow as a Finite
State Machine (FSM) being a 6-tuple with M = (

∑
in, Ctx, S, s, F ,

), in this 6-tuple:

1.
∑

in: the set of input events
2. Ctx: the set of context variables
3. S: the set of states which map to Actions in the ECA model
4. s: initial state, linked to an initial event
5. F: end state, linked to a final Termination event
6. δ: state-transition function: δ : S ×

∑
→ S, based on the

ECA triggers

efinition 2 (Trigger (δ)). can be defined as the state transition
unction. The trigger is a 4-tuple with (Event, Context, Condition,
ction) that moves one state to the following when the condition
n input events holds. In this case, the trigger launches the ap-
ropriate action which corresponds to the next state. Each action
ill in turn fire events that may be captured by another trigger.
riggers can be transient and dynamic (activated on demand) or
ersistent if they remain always active.

Its components are:

• Event: Events are the atomic piece of information that drive
flows in Cloud applications. We rely on the standard CNCF
CloudEvents version 1.0 specification to represent events. To

match an event to its trigger, the subject and type fields of



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

a
a
C
t
i
a
s
p

D
b
t

z
f
i

a
e
a
i

Fig. 1. Triggerflow architecture.
i
a
b
t
c
g
r

u
i
s

3

r
e
v
s
s
r

a CloudEvent are used. We use the subject field to match
the event to its corresponding trigger, and the type field
to describe the type of the event. Termination and failure
events use this type field to notify success (and result) or
failure (and code or error information).

• Context: The context is a fault-tolerant key–value data
structure that contains the state of the trigger during its
lifetime. It is also used to introspect the current trigger
deployment, to modify the state of other triggers or to
dynamically activate/deactivate triggers.

• Condition: Conditions are active rules (user-defined code)
that filter events to decide if they match in order to launch
the corresponding action. Conditions evaluate rules over
primitive events (single) or over composite (group) events.
Composite event information like counters may be stored
in the Context. Conditions produce a boolean result that
represents whether the trigger has to be fired or not.

• Action: Actions are the computations (user-defined code)
launched in response to matching Conditions in a trigger.
An Action can be used to asynchronously invoke a serverless
function or launch a VM or container in the Cloud.

The Trigger life-cycle is as follows: An event is produced
t some source. The event is consumed by the system, which
ctivates the matching trigger. The event is processed by the
ondition function. If the Condition results to be positive, then
he event is processed by the Action function. When the Action
s executed, we consider that the trigger has been fired. When
trigger has been fired, it can be disabled or maintained in the
ystem, depending on if the trigger is configured as transient or
ersistent.

efinition 3 (Mapping Workflows to Triggers). A workflow can
e mapped to a set of Triggers (∆) which contains all state
ransitions (δ triggers) in the State Machine.

We will show in next sections how different workflows (Ama-
on Step Functions) and Directed Acyclic Graphs (Apache Air-
low) can be transformed to a set of triggers (∆), which is the
nformation needed by the Trigger service to orchestrate them.

For example, to transform a DAG into triggers, a trigger is
dded for every edge (workflow transition) of the graph. In a DAG,
very node has its own unique ID, so the termination event from
task will contain as subject its ID to fire the trigger that handles

ts termination and invokes the next step in the workflow.
218
Thanks to the extensibility of the trigger architecture, any
workflow abstraction that can be expressed as a Finite State
Machine, can be translated into triggers and orchestrated by
Triggerflow. For example, Triggerflow could orchestrate DAGs
defined in other Domain Specific Languages (DSL) like DAX or
Common Workflow Language (CWL), but a syntactic parser is
needed for translation of those workflow DSL to triggers that can
be interpreted and operated by Triggerflow. Also, basic triggers
can be used to build more complex or specialized workflows that
fit in a event-based and asynchronous scenario. For example, a set
of custom triggers can be configured to pre-process or filter inter-
mittent events that are originated from sensors. In Section 5.4 we
describe a custom workflow to orchestrate a Federated Learning
pipeline.

Definition 4 (Substitution Principle). A Workflow must comply
with an Action according to triggering (initialization) and final-
ization (Termination Event). A homogeneous treatment of Work-
flows and Actions permits nested workflow composition and
iterations.

Definition 5 (Dynamic Trigger Interception). Any trigger can be
ntercepted dynamically and transparently to execute a desired
ction. Interception code is also performed with triggers. It must
e possible to intercept triggers by condition identifier or by
rigger identifier. The condition identifier represents each existing
ondition in Triggerflow, for example a map condition that ag-
regates all events in a parallel invocation. The trigger identifier
epresents the unique ID that each trigger receives on creation.

We can introspect workflows, triggers, conditions, and actions
sing the Context. And we can intercept any trigger in the system
n a transparent way using the Rich Trigger API. This opens the
ystem to customize code and data in a very granular way.

.3. Benefits and tradeoffs of event-based orchestration

Event-based and reactive orchestration might not be the natu-
al way to orchestrate a workflow. However, there are some ben-
fits of using this approach that make event-based orchestration
iable. First, the event bus is decoupled from the orchestration
ystem, which is better suited for Cloud environments. This also
implifies the fault tolerance of the system if the event bus can
esend uncommitted events. Also, we can leverage event bus



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

s
c
e
a
a
p
A
c
e
(
f

f
T
i
s
s
c
d
f
w
r
N
m
p
r
t

3

o
i
d
i

e
u
c
s
w
t
o
f
t
t
a
e

ervices available in the Cloud like SQS on AWS that automati-
ally scale on demand and provide pay-per-use billing. By using
vents, we can reactively provision the orchestrator when events
re produced, meaning that Triggerflow can autoscale to zero
nd only have allocated resources when state transitions take
lace. Finally, events are commonly used for service integration.
lthough Triggerflow is oriented mainly to FaaS orchestration, it
an also orchestrate other services in the Cloud if they produce
vents, like containers that are executed in Container as a Service
like AWS Fargate) or a batch job running in a VM that has
inished (like AWS Batch on self-managed EC2 instances).

The main disadvantage of using events and triggers for work-
low orchestration is that Triggerflow only acts as a control plane.
ask control and data flow are delegated to the application that
s being orchestrated by Triggerflow. For example, when using
erverless functions, the application has to rely on disaggregated
torage services (like AWS S3) to pass data between tasks, be-
ause events are not meant to send large pieces of data. Also,
ebuggability is commonly poor in event-based systems. Trigger-
low offers an event log and event replay as options to debug a
orkflow. However, many of these problems could be solved by
unning a workflow management engine (like Pegasus, Airflow,
extflow, Argo...) on top of Triggerflow. These systems would
anage the task and data plane while delegating the control
lane to Triggerflow, thus benefiting from a reactive, scalable and
esource-efficient orchestration in addition to the tools offered by
he workflow management engine (GUIs, monitoring, logging...).

.4. Fault tolerance

In order to make Triggerflow tolerant to failures, we rely
n the fault tolerance of the infrastructure where Triggerflow
s deployed, the eventing service and the database. Regarding
eployment fault tolerance, each system handles it differently, so
t is explained in the next corresponding sections.

The event bus is required to guarantee at-least-once deliv-
ry. With at-least-once delivery, events can be duplicated and
nordered. Triggerflow uses the CloudEvent standard, which in-
ludes a unique ID tag for every event. Repeated events with the
ame ID are discarded at the event consuming phase. Dealing
ith unordered messages depends on the kind of event composi-
ion that is taking place. In general, we can distinguish two types
f event composition: aggregation and sequence. For aggregation,
or example, a counter, the order of the messages does not alter
he final result. For sequence, only events that activate the trigger
hat is at the head of the sequence are processed, other events
re delayed until the triggers that they activate are enabled. For
xample, in the sequence A → B, only the trigger A is enabled

at first. If the event that activates B is consumed first, it is put
into a Dead Letter Queue (DLQ), since B is disabled. Eventually,
the event that activates A will be consumed, which activates and
fires trigger A. Once trigger A is fired, trigger B is enabled and
events on the DLQ will be processed again, this time activating
correctly trigger B.

Each time a trigger is fired, a checkpoint of the current work-
flow state is persisted in storage: all contexts from triggers that
have been activated are stored to the database and all events
consumed until that moment are committed to the event broker.
For example, if the system fails in mid of an aggregation event
composition, the trigger will have been activated multiple times
but not fired, so its state has not been checkpointed. At system
restart, the event broker will send again uncommitted events,
so the state will be eventually be restored as it was before the
system failure. In this regard, trigger conditions are evaluated
multiple times, while trigger actions are executed only once. So,
the condition function is required to be idempotent. Also, the
database is required to be consistent and highly available.
219
4. Prototype implementation

Triggerflow has been implemented with Python 3.8 for the ap-
plication layer and Go 1.15 for the system layer. Triggerflow can
be deployed on Kubernetes along with two kind of autoscalers:
one is Knative, which follows a push-based mechanism to pass
the events from the event source to the appropriate worker, and
another one with Kubernetes Event-driven Autoscaling (KEDA),
where the worker follows a pull-based mechanism to retrieve the
events directly from the event source. We created the prototypes
on top of the IBM Cloud infrastructure, leveraging the services in
its catalog to deploy the different components of our architecture.
These components are the following:

• A Front-end RESTful API, where a user connects to interact
with Triggerflow.

• A Database, responsible for storing workflow information,
such as triggers, context, etc.

• A Controller, responsible for creating the workflow workers
in Kubernetes.

• The workflow workers (TF-Worker hereafter), responsible
for processing the events by checking the triggers’ condi-
tions, and applying the actions.

In our implementation, each workflow has its own TF-Worker.
In other words, the scalability of the system is provided at
workflow-level and not at TF-Worker level. In the validation (Sec-
tion 6), we demonstrate how each TF-Worker provides enough
event ingestion rate to process large amounts of events per
second.

In our system, the events are logically grouped in what we
call workflows. The workflow abstraction is useful, for example,
to differentiate and isolate the events from multiple workflows,
allowing to share a common context among the (related) events.

4.1. Deployment on Knative

We mainly benefit from the Knative auto-scaler component
in Knative Serving and the routing/filtering service in Knative
Eventing.

Any serverless reactive architecture requires a managed multi-
tenant component that is constantly running, monitoring event
sources, and only launching actions in response to specific events.
In this way, the tenant only pays for the execution of actions in
response to events, and not for the constant monitoring of event
services. For example, in OpenWhisk, when we create a trigger for
a Function (like an Object Storage trigger), the system is in charge
of monitoring the event source and only launching the function
in response to events.

In Knative Eventing, each tenant will have an Event Source
that receives all events they are interested in (and have access
to). We register a Knative Eventing Trigger for each workflow
in the system. The filtering capabilities of Knative Eventing Trig-
gers permit to route events of this workflow to the appropriate
TF-Worker, which will activate the corresponding Triggerflow
triggers.

Each event is tagged with a unique workflow identifier. We
have created a customized functions runtime, which generates
function termination events to the desired message stream that
include the selected workflow identifier. If Triggerflow must re-
ceive events from services which do not include this workflow ID,
a generic filtering service will match conditions to the incoming
event (like ‘‘all events of this object storage bucket belong to
this workflow"), tag the event, and route it to the tenant’s Event
Source.



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

e
W
p
a
a

l
o

4

t
r
m
f
h
i
e
o

b
f
t
a

m
T
p
p
i
c

t
o
i
K
c
r
d
t
j

u
t
t
t
t
a

F
t
i
(
i
t
f

g
g
a
e
o
T
t

s
a
e

c
T
o
b
E
n
e
m

5

t
p
a

5

(
f
T
n

f
d
i
l

s
e
o
c
t

c
o
t

Fig. 2. Prototype deployment on KEDA.

As each event contains a unique identifier per workflow, it is
asy for Knative Eventing to route this event to the selected TF-
orker. The TF-Worker is then launched by Knative Serving to
rocess the event, but it will also scale to zero if no more events
re produced in a period. This ensures the serverless scale to zero
nd pay-as-you-go qualities for our Triggerflow service.
Regarding fault tolerance, Knative Eventing guarantees ‘‘at

east once" message delivery, and automatic detection and restart
f failed workers.

.2. Deployment on KEDA

One of the hardest problems in event-driven applications is
o deal with reliability and scalability. Event systems may be
eceiving events as soon as they are created (‘‘pushed’’) or they
ay process them when they are ready (‘‘pull’’ or ‘‘poll’’) and

or both cases they need to deal with capacity limits and error
andling. Knative is very well suited for push-based scaling as
t can auto-scale based on incoming HTTP requests containing
vents. Kubernetes Event-driven Autoscaling (KEDA) is the best
ption now for event-based configurable pull-based scaling.
We have also implemented Triggerflow entirely on top of Ku-

ernetes using the KEDA project [26]. KEDA offers pull-based con-
igurable event queue monitoring and reactive scalable instan-
iation of Kubernetes containers. KEDA also offers configurable
uto-scaling mechanisms to scale up or down to zero.
In this case, the Triggerflow Controller integrates KEDA for the

onitoring of Event Sources and for launching the appropriate
F-Workers, and scaling them to zero when necessary. It is also
ossible to configure different parameters in KEDA like the queue
olling interval, scale-out interval, and number of events scal-
ng interval. Different types of workflows may require different
onfiguration parameters.
The advantage here is that our TF-Workers connect directly to

he event stream (Kafka, Redis Streams) using the native protocol
f the platform. This permits to handle more events per second
n a single pod. In contrast, with the Knative implementation,
native Channels and Subscriptions are used. Knative Eventing
onsumes the event from the stream and then routes it via HTTP
equest to the corresponding TF-Worker Knative service. As we
emonstrate in the validation, using KEDA allows us to handle in-
ensive workloads from scientific workflows coordinating parallel
obs over thousands of serverless functions.

Fig. 2 shows a high-level perspective of our implementation
sing KEDA. In this deployment, Triggerflow works as follows:
hrough the client, an user must firstly create an empty workflow
o the Triggerflow registry, and reference an event source that
his workflow will use. Then, the user can start adding triggers
o it (1). All the information is persisted in the database (for ex-
mple, Redis) (2). Then, immediately after creating the workflow,
220
the front-end API communicates with the Triggerflow controller
(3), deployed as a single stateless pod container (service) in
Kubernetes, to create the auto-scalable TF-Worker in KEDA (4).
rom this moment, KEDA is responsible to scale up and down
he TF-Workers (5). In KEDA, as stated above, the TF-Worker
s responsible for communicating directly to the event source
6) to pull the incoming events. Finally, TF-Workers periodically
nteract with the database (7) to keep the local cache of available
riggers updated, and to store the context (checkpointing) for
ault-tolerance purposes.

Regarding fault tolerance, message delivery policies are now
uaranteed by the messaging middleware. For example, Kafka
uarantees that no messages are lost while N−1 topic replicas are
vailable. The Kubernetes scheduler will also restart failed work-
rs. In this case, the TF-Worker uses batching to commit groups
f events to Kafka once they have been correctly processed. If the
F-Worker fails, Kafka will just resend the non-committed events
o the TF-Worker and thus ensuring message delivery.

In our Redis implementation, we use Redis both as event
tream (Redis Streams), and as persistent store (for the Context
nd events). Again, if the TF-Worker fails, all events are in the
vent store, so it will continue with the non-processed events.
Currently, some experimental work [27] is being done to in-

orporate KEDA autoscaler to Knative Event Sources components.
hen, we would be able to deploy Triggerflow directly on top of
ne unified event router technology. It is also possible that some
uilding blocks of Triggerflow could be moved to the Knative
venting kernel. For example, the Knative Eventing community is
ow considering more advanced filtering mechanisms (complex
vent processing). In that case, our TF-Worker could delegate
any tasks to the underlying event router.

. Use cases

To demonstrate the flexibility that can be achieved using
riggers with programmable conditions and actions, we have im-
lemented three different workflow models that use Triggerflow
s the underlying serverless and scalable workflow orchestrator.

.1. Directed acyclic graphs

When a workflow is described as a Directed Acyclic Graph
DAG), the vertices of the graph represent the tasks of the work-
low and the edges represent the dependencies between tasks.
he fact that a DAG does not have cycles implies that there are
o cyclic dependencies, which would be impossible to fulfill.
The orchestration platforms that rely on DAGs for their work-

low description, such as Apache Airflow, handle the depen-
encies between tasks with their downstream relatives attribute,
.e. upon a completion of a task execution, these orchestrators
ook for what tasks have to be executed after the completed task.

However, from a trigger-based and reactive orchestration per-
pective, it is more compelling to know what tasks have to be
xecuted before a certain one, i.e. what are the dependencies
f every task, their upstream relatives. With this information, we
an register a trigger to activate a task’s execution when all
ermination events from its upstream relatives are present.

If we assume that, upon a task completion, a termination event
ontaining the ID of the completed task is produced, then we can
rchestrate a DAG by adding a trigger for every vertex (task) with
he following information:

• As activation events of the trigger, we will register the
termination events that are produced by tasks that execute
before the current task, i.e. its dependencies.



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

t
f
d
s
i
l

e
t
h
t
l
c
p

e
c
t
a
i

5

s
A

z
i
t
t
e
a

Fig. 3. Triggers that connect the tasks of an example DAG.

• As condition, we count the number of events the trigger has
to aggregate before executing the current task (for example,
a join of a map execution or the number of branches to join).

• As action, we register the actual task to be executed, ideally
an asynchronous task such as an invocation of a serverless
function.

To handle a map-join trigger condition, before actually making
he invocation requests, we use the introspect context feature
rom the activated trigger action to dynamically modify the con-
ition of the trigger that will aggregate the events, to set the
pecific number of expected functions to be joined. This is used
n the case that the iterator which we map onto has a variable
ength depending on the workflow execution.

Furthermore, this approach gives us the opportunity to handle
rrors during a workflow runtime. Special triggers can be added
hat activate when a task fails, so that the trigger action can
andle the task’s error and halt the workflow execution until
he error is solved. After error resolution (retry, skip or try-catch
ogic), the workflow’s execution can be resumed by activating the
orresponding trigger that would have been executed in the first
lace, as if there had not been an error.
The DAGs interface implementation is inspired by Airflow’s

xtensible DAG definition based on the Operator abstraction. Ac-
ording to Airflow’s core ideas, an Operator describes what is
he actual work logic that is carried out by a task. Airflow offers
wide variety of operators to work with out of the box, but

t can be extended through the implementation of plugins. This
approach is well suited to Triggerflow’s architecture, thanks to
its flexible programmatic trigger actions and conditions.

To illustrate this approach, Fig. 3 depicts how a simple DAG
with call async, maps, and branches is orchestrated using triggers.

.2. State machines and nested workflows

Amazon Step Functions bases its workflow description on a
tate machine defined by a declarative JSON object using the
mazon States Language DSL.
Similarly to Airflow’s DAGs, a state machine definition in Ama-

on States Language (ASL) only takes into consideration what
s the next state to execute for each of them. However, from a
rigger perspective, it is needed to figure out what states need
o be executed before a given one. Then, we can add a trigger for
very state transition that is activated by state termination events

nd handles the state machine flow logic.

221
Nevertheless, a distinctive feature that ASL provides is that
a state can be a sub-state machine. For instance, the primitives
map and parallel, map and branch to an entire state machine,
rather than a single task like in the DAG interface. To manage
this feature, we need a special event that is produced when a
state machine ends. For map and branch joins, we will then join
those sub-state machines instead of single states. To do so, we
identify each sub-state machine with a unique tag in the scope of
the execution. By doing so, we also comply with the substitution
principle of the serverless trilemma.

To produce state machine termination events, we need to
activate triggers from within a trigger action/condition function,
as state machine joining is detected in there. To do so, the
worker’s event sink internal buffer was made accessible through
the context object so that a trigger action/condition function can
internally produce events that activate the necessary subsequent
triggers.

In an Amazon Step Functions execution, the states can transfer
their output to the input of the following state. To reproduce
this functionality, we transfer data by passing it through the
termination events. This way, the output of a state can be parsed
from the consumed event in the trigger action and used as input
for the following state.

If we consider a state machine to be itself a state, we can
seamlessly compose ASL definitions in other state machines with
its triggers and connections. Amazon Step Functions, however, is
more limited in terms of task extensibility since we are given
a closed set of state types. We will explain here how these are
processed with triggers:

• Task and Pass states: These state types carry out the actual
workflow computational logic, the rest of the state types
only manage the state machine flux. The Task state relies on
the asynchronous Lambda invoked to signal the next trigger
upon its termination, whereas the Pass state signals itself its
termination event.

• Choice state: The choice state type defines a set of possible
outcomes that execute depending on some basic boolean
logic that can compare numbers, timestamps, and strings.
The trigger approach for this state is simple: for all possible
outcomes apply the condition defined in the Choice state
to the condition field of the trigger that handles its state
execution.

• Parallel state: This state type defines a set of sub-state
machines that run in parallel. In this case, we will iterate
each sub-state machine and collect their IDs. Finally, we add
a trigger that is activated whenever any of those sub-state
machines ends, but it is only executed when it has been
signaled by every sub-state machine.

• Map state: Similarly to the Parallel state type, this state
defines a single sub-state machine that executes for every
element in an iterable data structure input in parallel. Before
executing the sub-state machines, we first add a trigger that,
during its action execution, checks the length of the iterable
object (which is the number of parallel state machines,
unknown until execution), and registers it to the trigger
context that handles the sub-state machines termination
stating how many of them it should wait for.

• Wait state: The Wait state type waits for a certain amount
of seconds, or until a timestamp is reached before contin-
uing. It can be implemented by registering the activation
event production that activates the trigger to an external
time-based scheduler.

• Fail and Succeed states: The Fail and Succeed states stop the
execution of the state machine and determine if it executed
successfully or failed. It can be implemented assigning spe-
cial actions to their triggers that end the execution of the

workflow.



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

t

5

n
F
D
f
A
c
w
e

a
f
s
t
l

i
n
f
a
s

Fig. 4. Triggers representation of an ASF state machine.

Fig. 4 depicts how an ASF state machine is orchestrated by
riggers.

.3. Workflow as code and event sourcing

The trigger service is also useful to reactively invoke an exter-
al scheduler because of state changes caused by some condition.
or example, Workflow as Code systems like Lithops or Azure
urable Functions represent state transitions as asynchronous
unction calls (async/await) inside code written in Python or C#.
synchronous invocations and futures in Lithops or async/await
alls in Azure Durable Functions simplify code so developers can
rite synchronous-like code that suspends and continues when
vents arrive.
The model supported by Azure Durable Functions is reactive

nd event-based, and it relies on event sourcing to restart the
unction to its current state. We can use dynamic triggers to
upport external schedulers like Durable Functions that suspend
heir execution until the next event arrives. For example, let us
ook at this Lithops code:

import lithops

def my_function(x):
return x + 3

lith = lithops.FunctionExecutor()
future = lith.call_async(my_function , 2)
result = future.result() # result = 5
futures = lith.map(my_function , range(result))
print(lithops.get_result(futures)) # prints "[3 , 4, 5,

6, 7]"

In this code, the functions call_async and map are used to
nvoke one or many functions. Lithops code like this is executed
ormally in the client in a notebook, which is usually adequate
or short running workflows. But what if we want to execute
long-running workflow with Lithops in a reactive way? The

olution is to run this Lithops code in Triggerflow reacting to
222
Fig. 5. Life cycle of an event sourcing-enabled workflow as code with Lithops
as external scheduler.

events. Here, prior to perform any invocation, Lithops can register
the appropriate triggers, for example:

call_async(my_function, 3): Inside this code we will dynam-
ically register a function termination trigger.

map(my_function, range(res)): Inside this code we will dy-
namically register an aggregate trigger for all functions in the
map.

After trigger registration for each function, the function can be
invoked and the orchestrator function could decide to suspend
itself. It will be later activated when the trigger fires.

To ensure that this Lithops code can be restarted and continue
from the last point, we use event sourcing. When the orchestrator
code is launched, an event sourcing action will re-run the code
acquiring the results of functions from termination events. It will
then be able to continue from the last point.

In our system prototype, the event sourcing is implemented in
two different ways: native and external scheduler.

In the native scheduler, the orchestration code is executed
inside a Triggerflow Action. Our Triggerflow system enables then
to upload the entire orchestration code as an action that interacts
with triggers in the system. When Triggerflow detects events that
match a trigger, it awakens the native action. This code then
relies on event sourcing to catch up with the correct state before
continuing the execution. In the native scheduler, the events can
be retrieved efficiently from the context and thus accelerate the
replay process. If no events are received in a period, the action
will be scaled to zero. This guarantees reactive execution of event
sourced code.

In the external scheduler, we use Lithops Serverless Frame-
work [6], where the orchestration code is run in an external
system, like a Cloud Function. Then, thanks to our Triggerflow
service, the function can stop its execution each time it invokes
for example a map(), recovering their state (event sourcing) when
it is awaken by our TF-Worker once all map() function activations
finished their execution. Moreover, to use our event sourcing
version of Lithops, it is not required any change in the user’s
code. This means that the code is completely portable between
the local-machine and the Cloud, so users can decide where to
run their Lithops workflows without requiring any modification.
The life cycle of a workflow using an external scheduler can be
seen in Fig. 5.

5.4. Specialized workflows: Federated learning orchestrator

We have leveraged the flexibility of Triggerflow to implement
a Federated Learning orchestrator using triggers. Federated learn-
ing consists of training a machine learning model in a distributed

and iterative way, where each server or client trains the model



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

u
s
s
t
t
g
w
s
l
a
s
c
t
t
a
a
s
n
o
p
s
n
a
t

w
t
L
u
r
r
c

c
i
t
t
(
e
a

f
c
b

i
f
s
s
o

s
d
s

f
m
i
u
t
e
f

e
a
d
s
i
e

6

4
f
P
2
1
c
t
R

6

s
w
h

e
e
t
c
t
e
w
1
r
A
p
t
c

s
i
1
t
s

Fig. 6. Federated learning workflow orchestrator diagram.

sing a local and private portion of the whole dataset. A central
erver acts as an orchestrator for the whole process: it is respon-
ible for selecting the candidate clients for each round, transmit
he initial model to each of them, and then wait for the clients
o send back their trained models. It then aggregates the results
enerating a unique model. The central server can then decide
hether the model is accurate enough and stop the process or to
tart another round to increase the model accuracy. In a federated
earning scenario, clients are heterogeneous and may be unreli-
ble, they do not know each other and they cannot share data
ince that data could be sensitive or confidential (for example,
linical patient data from a hospital). Those clients participate in
he training process in an unpredictable way, meaning that the
otal number of clients might fluctuate greatly during the process,
s some of them can unexpectedly fail or leave the client pool
t any given moment. A common methodology for the controller
erver is using a centralized architecture, but this approach does
ot scale. Distributed architectures do scale, but at the expense
f complicating fault tolerance. For example, in [28], the authors
ropose a distributed approach based on actors. However, they
tate that if an aggregator actor fails, the clients that are con-
ected to it are lost, which leads to data loss. Either way, in both
pproaches the controller service is running during the whole
raining process, which might take several hours.

We can leverage Triggerflow’s flexibility to build a custom
orkflow made of triggers that act as a loosely coupled fault-
olerant and serverless-like controller service for the Federated
earning process. The workflow is designed as a cyclic process
sing two triggers: the aggregator trigger, which controls training
ounds and updates the model with the partially aggregated
esults, and the round trigger, that decides when to restart the
ycle and train another model.
A diagram of the workflow is represented in Fig. 6. First, the

ontroller sets up the triggers with the corresponding model
nformation to train in this round. It then triggers the round
rigger in order to start the first training round (1). The round
rigger calls all the available clients to start training the model
2). The clients then proceed to locally train the model and, upon
nd, they save the trained model weights to cloud object storage
nd send an event to the aggregator trigger containing the object

result key (3).
The aggregator trigger operates with a custom condition. De-

pending on the round and the number of clients, it waits for all
clients or just a subset of them to send their termination event.
This is used when some of the clients take a longer time to
train the model, and the aggregator trigger decides not to wait
or them since it would slow the whole training process. We
an also intercept the trigger with a timeout event produced
y a cron job. This is useful when some or all clients leave the
223
client pool, so the aggregator trigger will not be waiting for them
ndefinitely. When the condition has aggregated all result keys
rom the selected clients, the action is fired, which invokes a
erverless function that retrieves the model weights from object
torage and performs a model update by aggregating the results
f that round (4).
After aggregating the trained deltas of all clients, the function

tores the result on the cloud and deletes all the intermediate
ata stored in it. At last, it generates a completion event that is
ent to the round trigger.
The round trigger is activated when the aggregator serverless

unction has aggregated all client models. It can then decide if the
odel is accurate enough or if another round has to take place to

mprove it. In that case, it would call the available clients with the
pdated model and the cycle would start again. If it decides that
he training has finished, it can notify the controller server by, for
xample, sending a request to a specific endpoint, containing the
inal model (5).

In contrast to a centralized architecture (like [29]), Triggerflow
nables time and space decoupling and high scalability by design,
s well as fault tolerance with event sourcing. Also, note that
uring the learning phase, the controller server can be deprovi-
ioned to save compute resources, as all the orchestration process
s offloaded to Triggerflow, which also auto-scales based on the
vents that are produced at the partial weights aggregation phase.

. Validation

Our experimental testbed consists of 5 client machines with
CPUs and 16 GB RAM. On the server side, we deploy Trigger-

low on a Kubernetes installation (v1.17.3) in a rack of 5 Dell
owerEdge R430 (2 CPUs Intel(R) Xeon(R) CPU E5-2620 v4 @
.10 GHz - 8 Cores/CPU - 32 Logical processors) machines with
6 GB RAM. All of these machines, including the clients, are
onnected via 10GbE network, and run Ubuntu Server 19.04. For
he experiments we use Kafka 2.4.0 (Scala 2.13), RabbitMQ 3.8.9,
edis 5.0.7, KEDA 1.3.0 and Knative 0.12.0.

.1. Load test

The load test objective is to demonstrate that our system can
upport high-volume event processing workloads in an efficient
ay. This is mandatory if we want to support the execution of
igh performance scientific workflows.
For the first experiment, we want to measure how many

vents per second can be processed by a worker that consumes
vents from a message broker like Kafka or Redis Streams and
he overhead produced in the trigger processing pipeline (stateful
ondition and action functions). Table 1 shows the time and
hroughput to process 200K events in a container using differ-
nt CPU resources (0.25, 0.5, 1 and 2). Noop means that the
orker is not doing any operation on the event. Join refers to
00 triggers with aggregation filters that join 2000 events each,
esembling a multiple parallel map fork-join processing scenario.
s we can see, the performance numbers tell that the system can
rocess thousands of events per second with low overhead. Also,
he system leverages multiple CPUs to increase the processing
apacity.
The second experiment consists of measuring the actual re-

ource usage (CPU and mem) of 1 Core worker using Redis by
njecting different numbers of events per second (form 1K e/s to
2K e/s). Fig. 7 shows that, with a constant memory footprint,
he CPU resource can cope with increasing number of events per
econd.



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

C

6

c
d
K
n

a
T
d
(
a
s
a
p
a

s

Table 1
Maximum number of processed events/second using Redis Streams, Kafka and RabbitMQ.
Time elapsed (s) Noop Triggerflow

CPU Redis Kafka RabbitMQ Redis Kafka RabbitMQ

2 11.94 2.64 10.18 12.15 2.77 10.38
1 11.97 3.26 10.08 12.22 4.10 11.36
0.5 12.06 5.02 15.45 12.88 9.69 24.66
0.25 12.85 12.22 39.46 14.67 20.79 52.94

Throughput (events/s) Noop Triggerflow

CPU Redis Kafka RabbitMQ Redis Kafka RabbitMQ

2 16743.87 75665.85 19639.03 16460.87 72188.87 19261.42
1 16707.47 61298.16 19825.33 16364.08 48718.57 17598.95
0.5 16584.17 39818.74 12942.01 15525.39 20632.44 8110.25
0.25 15567.81 16365.36 5067.72 13625.84 9618.46 3777.61
o

Fig. 7. Resource utilization depending on incoming number of events/second (1
ore w/ Redis).

Fig. 8. TF-Worker auto-scaling test using KEDA.

.2. Auto-scaling

In this case, the objective is to demonstrate that TF-Workers
an scale up and down based on the current active workflows. We
emonstrate here that our Triggerflow implementation on top of
ubernetes and KEDA can auto-scale on demand based on the
umber of events received in different workflows.
For this experiment, we use the entire testbed described

bove, and set the TF-Worker to use 0.5 CPUs and 256 MB of RAM.
he test consists of 100 synthetic workflows that send events
uring some arbitrary seconds, pause the workflow for a while
simulating a long-running action), then resume sending events,
nd finally stop the workflow. The test works as follows: It first
tarts 50 workflows at a constant rate of 2 workflows per second),
fter 100 s it starts another 50 workflows at a rate of 3 workflows
er second, and finally, after 70 s, it starts 15 more workflows at
rate of also 3 workflows per second.
The results are depicted in Fig. 8. It shows how the TF-Workers
cale up when the workflows start to send events, and scale

224
down, even to zero (second 210 and 250), when the active work-
flows do not produce any event due to a long-running action.
We can see how Triggerflow leverages the KEDA auto-scaler to
activate or halt workflows. Triggerflow is automatically providing
fault tolerance, event persistence, and context and state recovery
each time a workflow is resumed.

6.3. Completion time and overhead

The validation in this section demonstrates that Triggerflow
shows comparable overhead to public Cloud orchestration sys-
tems. We must be fair here: we are comparing an implementation
of Triggerflow over dedicated and idle resources in our rack
against public multi-tenant cloud services that may be used by
thousands of users. The objective is not to claim that our system
is better than them, but only to demonstrate that we can reach
comparable overhead and performance. Furthermore, most cloud
orchestration systems are not designed for highly concurrent
and parallel jobs, which can limit their performance in those
scenarios.

We evaluate the run-time overhead of Amazon’s, IBM’s, and
Microsoft’s orchestration services. We consider as overhead all the
time spent outside the functions being composed, which is easy
to measure in all platforms. For a sequential composition g of n
functions g = f1 ◦ f2 ◦ . . . ◦ fn, it is just:

verhead (g) = exec_time(g) −

n∑
i=1

exec_time(fi).

It is important to note that our overhead definition includes
the delays between function invocations, and the execution time
of the orchestration function (for IBM Composer and ADF) or
the delays between state transitions (for ASF). In the case of
Triggerflow, the overhead depends on all the services in the
architecture—i.e., latency to access Kafka or Redis, latency to
invoke functions in IBM CF, etc.

For all the tests, we use a single TF-Worker with 0.5 CPU Cores
and 64MB of RAM, and we list only the results when functions
are in warm state. This implies that we do not consider the cold
start of spawning the function containers and VMs. Our focus is
on measuring the overhead of running function compositions. All
the tests are repeated 10 times. The results displayed are the
median of those 10 samples and the standard deviation for the
error intervals. Measurements are done during March of 2020. For
IBM Cloud Functions (IBM CF) and AWS Lambda executions, we
use the Python 3.8 runtime. The exception is Azure, which does
not currently support Python for ADF, but C#. The orchestration
functions are implemented in the default language available in
each platform: Node.js for IBM Composer, and C# for ADF. ASF
orchestration is specified in Amazon States Language (JSON-based
format) using the console editor.



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

s
p
t
w
n
3
s
l

D
A
i
w
f
t

S
F
S
t
w
u
m
w
r
i
d
r
b
t
o
t
b
c
w

P
c
s
f
t
p
g

s

b
g
t
e
r
e

Fig. 9. DAG overhead comparison for sequences.

For the sequential workflows, we quantify the overhead for
equential compositions of length n in {5, 10, 20, 40, 80}. For sim-
licity, all the functions in the sequence are the same: a function
hat sleeps for 3 s, and then returns. For the parallel workflows,
e define a workflow with a single parallel stage composed of
parallel instances of the same task, with n ranging from 5 to
20, and doubling each time. This task has a fixed duration of 20
. Consequently, any execution of the experiment should ideally
ast 20 s, irrespective of n or the environment. To put it in another
way, in an ideal system with no overhead, the execution time
of the n concurrent tasks should match that of a single task.
Therefore, we compute the overhead of the orchestration system
by subtracting the fixed time of a single task, namely 20 s, from
the total execution time.

6.3.1. DAGs and state machines
For the DAG and State Machine use cases, we evaluated our

AG engine interface against IBM Composer, AWS Step Functions,
WS Step Functions Express, and Azure Durable Functions. It is
mportant to state that these results are exactly the same we
ould get for the State Machine implementation over Trigger-

low. Sequences and parallel jobs in state machines and DAGs use
he same triggers.

equential workflows. The resultant overhead is represented in
ig. 9. In general, Triggerflow’s overhead is comparable to Amazon
tep Functions’. In this case, almost all overhead comes from
he IBM Cloud Functions invocation latency using its public API,
hich is about 0.13 s. When multiplied by 80 functions, it adds
p to approximately 10 s of overhead. Amazon Step Functions
ay be using internal trigger protocols rather than the public API,
hich should lower invocation latency. However, it is probably
unning in shared resources, which could explain the similarity
n overhead. In addition, it seems that using Express Workflows
oes not provide a considerable speed improvement compared to
egular ASF when using sequential workloads, so they are proba-
ly not worth the extra cost for this kind of job. IBM Composer is
he fastest in sequences, but with the drawback of its limitation of
nly 50 transitions per composition. Finally, Azure Durable Func-
ions present competent overheads for long sequences, although
eing quite unstable for short sequences. This is probably be-
ause ADF is designed and optimized for long-running sequential
orkloads.

arallel workflows. For small-sized compositions (5 to 10), we
an see in Fig. 10 that Triggerflow and AWS Step Functions yield
imilar overhead, both being outperformed by Express Work-
lows nonetheless. Express Workflows has a wider range of error
hough, while regular Step Functions, Triggerflow and IBM Com-
oser are more stable. Express Workflows perform similarly re-
ardless of the number of parallel functions until it reaches about
225
Fig. 10. DAG overhead comparison for parallel workflows.

80, when its performance drops drastically and the overhead
skyrockets for no apparent reason. From 80 functions and up,
Express Workflows and IBM Composer have similar overheads.

From 80 parallel functions and up, we also see that Trigger-
flow has the lowest overhead, proving that event-driven function
composition is indeed well suited for large parallel map function
joining.

Azure Durable Functions yield the worst results when used
for small-sized function joining and is considerably unstable.
However, it turns to be equivalent to the other orchestration
systems when joining a higher number of concurrent functions.

6.3.2. Workflow as code and event sourcing
The objective here is to evaluate Workflow as Code and event

sourcing overheads in Triggerflow compared to Azure Durable
Functions. We compare both sequential and parallel constructs.

For the event sourcing use case, we evaluate both the external
cheduler (Lithops) and the native scheduler (Triggerflow action).
One the one hand, we measure and compare the performance of
our modified version of Lithops for Triggerflow with the original
version of Lithops (external scheduler). In this case we evaluate 4
different scenarios: (1) The original Lithops, which makes use of
IBM Cloud Object Storage (COS) to store the events and results.
(2) The modified version of Lithops for Triggerflow that stores
the results in COS (original Lithops behavior), but sends the
termination events through a Redis Stream. (3) The Triggerflow
Lithops that sends the events and results through a Kafka Topic.
And (4) the Triggerflow Lithops that sends the events and results
through a Redis Stream.

On the other hand, we evaluate the native Triggerflow event
sourcing scheduler, where the orchestration code is executed as
part of the trigger action. In this case we compare the results
against the Azure Durable Functions (ADF) service, which is the
only FaaS workflow orchestration service that employs an event
sourcing technique to execute the workflows.

Sequential workflows. Fig. 11 shows the overhead evolution
when increasing the length of the sequence. The overhead added
by both the native and external schedulers grows up linearly
based on the number of functions in the sequence. As we can
see, the results are very stable, meaning that the behavior is
implementation-related, and not a problem with resources.

For the external scheduler, we can see comparable performance
etween the original Lithops and our modified version for Trig-
erflow. Overhead evolves similarly in all scenarios. Lithops has
o serialize and upload the function and the data to COS before
xecuting it, creating overhead common for all scenarios. The
emaining overhead comes from the place and the way these
vents are retrieved to recover the state of the execution (event



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

L
s

s
K
t
g
d
t
h
w
I
s
o
T
e
b
T
f
a
T

t
L
o
c
r
C
p
i
m
o

P
s
I
t
s
I
i
i
b
a
c
t
o
r
f

Fig. 11. Event sourcing overhead comparison for sequences. Lithops vs TF-
ithops on the left side. Triggerflow vs Azure Durable Functions on the right
ide.

ourcing). This means that the event source service—either COS,
afka, or Redis—, has direct impact on these results. For example,
he main drawback of using COS in both the original (1) and Trig-
erflow (2) versions of Lithops is that they have to individually
ownload the results from COS. This fact substantially increases
he total time needed to execute a workflow, since for each step it
as to retrieve all the previous events. In this case, for a workflow
ith n steps, Lithops has to perform a total of n(n+1)/2 requests.

n contrast, in the scenarios where Lithops does not use COS, and
tores the events in a Kafka Topic (3) or a Redis Stream (4), it
nly needs one request to retrieve all the events in each step.
hen, it only needs n requests to these services to complete the
xecution of a workflow. If we compare scenarios 2 and 3, we see
etter performance if we use a Redis Stream instead of a Kafka
opic. This is mainly caused by the Kafka library, which adds a
ixed overhead of 0.25 s each time the orchestration function is
waken and creates a consumer. This means that using a Kafka
opic as event store has a fixed overhead of n ∗ 0.25 s.
For the Triggerflow native scheduler, it is important to note that

he functions are already deployed in the cloud (in contrast with
ithops that has to serialize and upload them each time). More-
ver, the orchestration code is execute within the TF-Worker that
ontains all the events loaded in memory, so it does not need to
etrieve them from the event source (Kafka, Redis) in each step.
ompared to ADF, we obtain similar overhead. As stated in the
revious section, the overhead comes mainly from the fact that
nvoking an action in IBM CF service takes around 0.13 s. This
eans that, for a workflow of n steps, Triggerflow has a fixed
verhead of n ∗ 0.13 when using IBM CF.

arallel workflows. For this experiment, we evaluate the same
cenarios described above. The results are depicted in Fig. 12.
n this case, for the external scheduler, the original Lithops and
he Triggerflow Lithops version have also similar overhead, being
cenario 4—which uses Redis as event store—the best approach.
n the Kafka scenario (3), the overhead of 0.25 s described above
s negligible, since in this experiment the orchestration function
s awaken only once. The main difference in the performance
etween scenarios 1 and 2 is that the original Lithops is running
ll the time and polling the results as they are produced. In
ontrast, in the Triggerflow version of Lithops that uses COS (2),
he TF-Worker first waits for all activations to finish to awake the
rchestration function, that then has to retrieve all the events and
esults from COS. Finally, with the native scheduler, Triggerflow is
aster for parallel workflows compared to ADF.
226
Fig. 12. Event sourcing overhead comparison for parallel workflows. Lithops vs
TF-Lithops on the left side. Triggerflow vs Azure Durable Functions on the right
side.

Fig. 13. Scientific workflow execution progression over time, with an intended
system failure at the 20th second.

6.4. Scientific workflows

In this section, we will validate fault tolerance and feasibility
for long running workflows of Triggerflow using real scientific
workflows.

6.4.1. Fault tolerance
We adapted a geospatial scientific workflow, that was origi-

nally implemented with Lithops, to work with our DAGs interface.
The objective of the workflow is to compute the evapotranspira-
tion and water consumption of the crops from a set of partitioned
geospatial data. Due to the nature of the workflow, and de-
spite the optimizations applied, the workflow’s execution time is
similar to that provided by Lithops. The main difference lies in
the workflow programming model: DAGs are more declarative
and geared towards dissecting the workflow into independent
tasks and their dependencies, while Lithops opts for a imperative
map-reduce model. An important point in favor of Triggerflow
is its automatic and transparent fault tolerance provided by the
event source and trigger persistent storage. Fig. 13 depicts the
progression of a workflow run of the scientific workflow, using
Kafka as the event source and Redis for the trigger storage. To
check the system’s fault tolerance, we intentionally stopped the
execution of the Triggerflow worker and the Lithops execution in
the 20th second of the workflow execution. Triggerflow rapidly
recovers the trigger context from the database and the uncom-
mitted events from the event source, and finishes its execution
correctly. In contrast, Lithops stops and loses the state of the
workflow, having to re-execute the entire workflow wasting time
and resources.

6.4.2. Long running workflows
We are now validating efficient resource utilization and auto-

scaling to zero when orchestrating long-running scientific nested
and parallel workflows represented as state machines. We want



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

L
m
t
T
T
e

c
z
L
w

Fig. 14. Montage workflow represented as a Amazon Step Functions state
machine.

to run a long-running nested scientific workflow on Trigger-
flow and compare it to Amazon Step Functions. As a scientific
workflow, we have implemented the classic Montage workflow,
described in [30]. The Montage workflow is used to process astro-
logical images and produce science-grade mosaics from multiple
image data sets as if they were single images with a common co-
ordinate system and projection. The Montage workflow consists
of multiple consecutive steps that vary significantly in execution
time, ranging from mere milliseconds up to minutes. Some of
the steps can be executed as a parallel map, for example, the
application of reprojection and background correction for every
source image. Other steps are not parallelizable and need to
collect and combine data produced from a previous parallel step,
like the calculation of parameters of the best-fit background
model. At a higher level, we can produce an image for every RGB
channel, in order to combine them at the end to produce a color
image. The computation of these three images can also be run
in parallel. In short, we have a nested workflow composed of
three main parallel branches (one for each RGB channel), and that
every branch executes the Montage workflow that has multiple
consecutive steps, some of which can be mapped and run in
parallel. A workflow diagram is presented in Fig. 14.

We have specified the Montage workflow using Amazon Step
anguage, since Montage workflow can be represented as a state
achine with nested workflows, and we use Amazon Lambda

o run the tasks. We have orchestrated the workflow on both
riggerflow and Amazon Step Functions. For this experiment,
riggerflow is deployed on Kubernetes with KEDA using Kafka as
vent stream.
Fig. 15 represents a workflow execution on Triggerflow. We

an see that KEDA automatically scales the worker pod down to
ero while the long running tasks are being executed in Amazon
ambda. When the worker is up, it has 1 vCPU assigned. The
orker is only executed when there is a state transition: KEDA
227
Fig. 15. (a) Events received per second, (b) functions invoked per second and (c)
resources used in a Montage workflow execution using Triggerflow and KEDA.

Fig. 16. (a) Total Lambda functions using Amazon Step Functions, (b) Total
Lambda functions using Triggerflow.

only provisions the worker when there are events to be consumed
from the broker. Every event is consumed, decoded into CloudE-
vents and processed through the trigger pipeline, executing the
corresponding condition and action functions. At last, all events
and trigger contexts are persisted in the storage database. The
three peaks in events and invocations per second correspond to
the most parallel task (mDiffFit) in the workflow. Finally, when
a grace period of 10 seconds passes without new events, KEDA
scales down to zero the worker pod. We prove in this validation
that Triggerflow makes an efficient use of system resources when
orchestrating long running workflows.

Fig. 16 shows the total number of parallel functions being run
in an execution. We can see that Triggerflow achieves a compa-
rable execution time compared to Amazon Step Functions (Trig-
gerflow is faster by approximately 30 s). However, we achieve
a greater level of function execution parallelism. This workflow
could not be executed in Amazon Step Functions Express since it
would exceed the permitted execution time of 5 min.

6.5. Federated learning orchestrator

In this section, we will validate the Federated Learning orches-
trator proposed in Section 5.4. The objective is to demonstrate
how using Triggerflow to orchestrate a Federated Learning pro-
cess, we can provide decoupling between the main server and the
federated clients and failure flexibility.



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

F
a
a
a
p
t
r

F
t
o
i
c
c
c
t
w
t
t
C
O
t
t
t
s
s
T
s
a
t
r

6

s

a
o
w
f
a

a

o

Fig. 17. A timeline of a Federated Learning process, using a pool of 50 clients
and three rounds.

We simulated a Federated Learning scenario using IBM Cloud
unctions as federated clients and a process in a virtual server
s the main server. To simulate the characteristic heterogeneity
nd proneness to failure of federated learning clients, we added
random factor that makes the function to take a random longer
eriod of time and to randomly fail and never send a result. For
he experiment, we used 50 clients to train a model in three
ounds and a result threshold of 65% .

Fig. 17 represents the results of the federated learning process.
or the first round, we can see that multiple clients participate in
he training process and that each one takes a different amount
f time to train the model. Some clients do respond to the
nvocation but will never send a result, thus simulating a network
onnection problem or other issues on the client side. Some other
lients take a longer time than expected. These straggler clients
ould slow down the whole process, this is why we set up a 65%
hreshold response. This means that the orchestrator will only
ait for 65% of the total client pool to send their response (in
his case, 32 clients since we have a client pool size of 50). When
he threshold is reached, the aggregator Trigger calls another IBM
loud Function that recollects all results stored in IBM Cloud
bject Storage and aggregates the partial model weights. Then,
he aggregation function fires the orchestrator trigger through a
ermination event. The orchestrator trigger then invokes again
he client pool to start another round. The second round passes
imilarly to the first round. However, in the third round, we can
ee that a lot of clients failed so they would never send the result.
his could hang up the system. Despite that, a timeout event is
et up to prevent this case. This timeout sends an event to the
ggregator trigger to unblock the system so that the Trigger can
ake action on the failed round. In this case, it still aggregates the
esults and finishes the round successfully.

.6. Validation conclusions

We have seen in this extensive validation section that our
olution has met the proposed design goals.
We have used synthetic workloads to demonstrate the scal-

bility, high performance and scale-to-zero serverless design of
ur architecture. We have also validated using real scientific
orkflows that event-based orchestration is suitable to provide

ault tolerance and no performance loss for both long-running
nd short-running intense workflows.
Thanks to the flexibility provided by our programmable re-

ctive actions, we have demonstrated that different workflow
228
abstractions such as DAGs, State Machines or Workflow as Code
can be orchestrated using events and triggers.

To finish off, we demonstrate that using generic triggers, we
can build specialized event-based workflow abstractions like Fed-
erated Learning orchestrators. Using introspection mechanisms,
we demonstrate that we can dynamically change the behavior
of a workflow, for example by setting up a timeout event or by
internally changing the state of a trigger.

7. Conclusions

In this article we have presented Triggerflow: a novel build-
ing block for controlling the life cycle of Cloud applications. As
more applications are compiled to the Cloud, our system per-
mits to encode their execution flow as reactive triggers in an
extensible way. The novelty of our approach relies on four key as-
pects: serverless design, extensibility, support for heterogeneous
workflows, and performance for high-volume workloads.

Triggerflow can become an extensible control plane for de-
ploying reactive applications in the Cloud. We implemented and
validated different orchestration systems based on State Ma-
chines (ASF), Directed Acyclic Graphs (Airflow), Workflow as Code
(Lithops), and a Federated Learning orchestrator.

As the number of event sources grows in many Cloud
providers, trigger-based orchestration mechanisms will acquire
more relevance in the future. In particular, the emergence of data-
driven computations triggered by events [31] is a good example
of dynamic trigger-based orchestration.

Nevertheless, trigger-based approaches like Triggerflow still
face serious challenges to become adopted. For instance, the
observability of event-based flows is a complex open problem.
Triggerflow has not addressed the problem of inferring the struc-
ture of a workflow from a set of events. We only provide reactive
actions to concrete events and generate triggers from pre-defined
workflows. In addition, debuggability and developer experience
are very important to enable the adoption of such event-based
models. As an open source project, Triggerflow would clearly
benefit from tools and user interfaces to simplify the overall
observability and life-cycle support of the system.

CRediT authorship contribution statement

Aitor Arjona: Methodology, Software, Investigation, Writing -
riginal draft. Pedro García López: Conceptualization, Resources,

Writing - original draft, Project administration. Josep Sampé:
Methodology, Software, Investigation, Writing - original draft.
Aleksander Slominski: Validation, Writing - review & editing, Su-
pervision. Lionel Villard: Validation, Writing - review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work has been partially supported by the EU Horizon
2020 programme under grant agreement No 825184 and by the
Spanish Ministry of Science and Innovation and State Research
Agency (Agencia Estatal de Investigación) under grant agreement
No PID2019-106774RB-C22.



A. Arjona, P.G. López, J. Sampé et al. Future Generation Computer Systems 124 (2021) 215–229

R

C
o

eferences

[1] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, B. Recht, Occupy the cloud:
Distributed computing for the 99%, in: Proceedings of the 2017 Symposium
on Cloud Computing, ACM, 2017, pp. 445–451.

[2] S. Fouladi, R.S. Wahby, B. Shacklett, K.V. Balasubramaniam, W. Zeng, R.
Bhalerao, A. Sivaraman, G. Porter, K. Winstein, Encoding, fast and slow:
Low-latency video processing using thousands of tiny threads, in: 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), 2017, pp. 363–376.

[3] T. Wagner, The Serverless Supercomputer, https://read.acloud.guru/https-
medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08.

[4] P.G. López, M. Sánchez-Artigas, G. París, D.B. Pons, Á.R. Ollobarren, D.A.
Pinto, Comparison of faas orchestration systems, in: 2018 IEEE/ACM In-
ternational Conference on Utility and Cloud Computing Companion (UCC
Companion), IEEE, 2018, pp. 148–153.

[5] D. Barcelona-Pons, P. García-López, A. Ruiz, A. Gómez-Gómez, G. París, M.
Sánchez-Artigas, FaaS orchestration of parallel workloads, in: Proceedings
of the 5th International Workshop on Serverless Computing, in: WOSC
’19, Association for Computing Machinery, New York, NY, USA, 2019, pp.
25–30, http://dx.doi.org/10.1145/3366623.3368137.

[6] J. Sampe, P. Garcia-Lopez, M. Sanchez-Artigas, G. Vernik, P. Roca-Llaberia, A.
Arjona, Towards multicloud access transparency in serverless computing,
IEEE Softw. (2020) http://dx.doi.org/10.1109/MS.2020.3029994.

[7] Triggerflow, https://github.com/triggerflow/triggerflow.
[8] N.W. Paton, O. Díaz, Active database systems, ACM Comput. Surv. 31 (1)

(1999) 63–103.
[9] C. Mitchell, R. Power, J. Li, Oolong: asynchronous distributed applications

made easy, in: Proceedings of the Asia-Pacific Workshop on Systems, ACM,
2012, p. 11.

[10] S. Han, S. Ratnasamy, Large-scale computation not at the cost of expres-
siveness, in: Presented as Part of the 14th Workshop on Hot Topics in
Operating Systems, 2013.

[11] A. Geppert, D. Tombros, Event-based distributed workflow execution with
EVE, in: Middleware’98, Springer, 1998, pp. 427–442.

[12] W. Chen, J. Wei, G. Wu, X. Qiao, Developing a concurrent service orches-
tration engine based on event-driven architecture, in: OTM Confederated
International Conferences’’ on the Move to Meaningful Internet Systems’’,
Springer, 2008, pp. 675–690.

[13] W. Binder, I. Constantinescu, B. Faltings, Decentralized orchestration of
composite web services, in: 2006 IEEE International Conference on Web
Services (ICWS’06), IEEE, 2006, pp. 869–876.

[14] G. Li, H.-A. Jacobsen, Composite subscriptions in content-based pub-
lish/subscribe systems, in: ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing, Springer,
2005, pp. 249–269.

[15] D. Dai, Y. Chen, D. Kimpe, R. Ross, Trigger-based incremental data pro-
cessing with unified sync and async model, IEEE Trans. Cloud Comput.
(2018).

[16] P. Soffer, A. Hinze, A. Koschmider, H. Ziekow, C. Di Ciccio, B. Koldehofe, O.
Kopp, A. Jacobsen, J. Sürmeli, W. Song, From event streams to process
models and back: Challenges and opportunities, Inf. Syst. 81 (2019)
181–200.

[17] I. Baldini, P. Cheng, S.J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah, P. Suter,
O. Tardieu, The serverless trilemma: Function composition for serverless
computing, in: Proceedings of the 2017 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2017, 2017, pp. 89–103.

[18] CNCF, Serverless Workflow, https://serverlessworkflow.io/.
[19] B. Carver, J. Zhang, A. Wang, Y. Cheng, In search of a fast and efficient

serverless DAG engine, 2019, arxiv preprint arXiv:1910.05896.
[20] S. Joyner, M. MacCoss, C. Delimitrou, H. Weatherspoon, Ripple: A practical

declarative programming framework for serverless compute, 2020, arxiv
preprint arXiv:2001.00222.

[21] M. Malawski, A. Gajek, A. Zima, B. Balis, K. Figiela, Serverless execution
of scientific workflows: experiments with hyperflow, aws lambda and
google cloud functions, Future Generation Comput. Syst. (ISSN: 0167-
739X) 110 (2020) 502–514, http://dx.doi.org/10.1016/j.future.2017.10.029,
https://www.sciencedirect.com/science/article/pii/S0167739X1730047X.

[22] A. Jangda, D. Pinckney, Y. Brun, A. Guha, Formal foundations of serverless
computing, Proc. ACM Program. Lang. 3 (OOPSLA) (2019) 1–26.

[23] E. Van Eyk, J. Grohmann, S. Eismann, A. Bauer, L. Versluis, L. Toader, N.
Schmitt, N. Herbst, C. Abad, A. Iosup, The SPEC-RG reference architecture
for FaaS: From microservices and containers to serverless platforms, IEEE
Internet Comput. (2019).

[24] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Zaharia, K.
Winstein, From laptop to lambda: Outsourcing everyday jobs to thousands
of transient functional containers, in: 2019 USENIX Annual Technical
Conference (USENIX ATC 19), USENIX Association, Renton, WA, 2019,
pp. 475–488, URL https://www.usenix.org/conference/atc19/presentation/
fouladi.
229
[25] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. McMahon, C.S. Meiklejohn,
Serverless workflows with durable functions and netherite, 2021, arXiv:
2103.00033.

[26] KEDA, Kubernetes-based event-driven autoscaling, https://keda.sh/.
[27] Knative, Experimental KEDA support for Knative Event Sources Autoscaling,

https://github.com/knative-sandbox/eventing-autoscaler-keda.
[28] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C.

Kiddon, J. Konečnỳ, S. Mazzocchi, H.B. McMahan, et al., Towards federated
learning at scale: System design, 2019, arxiv preprint arXiv:1902.01046.

[29] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein,
H. Eichner, C. Kiddon, D. Ramage, Federated learning for mobile keyboard
prediction, 2019, arXiv:1811.03604.

[30] B. Berriman, E. Deelman, J. Good, J. Jacob, D.S. Katz, C. Kesselman, A.
Laity, T. Prince, G. Singh, M.-H. Su, Montage: A grid enabled engine for
delivering custom science-grade mosaics on demand, 5493, 2004, http:
//dx.doi.org/10.1117/12.550551,

[31] R. Grandl, A. Singhvi, R. Viswanathan, A. Akella, Whiz: A fast and flexible
data analytics system, 2017, arXiv:1703.10272.

Aitor Arjona is a graduate student from the Universitat
Rovira i Virgili. He is currently enrolled in a Master’s
Degree in Computational Engineering and Mathematics
in this university while working as a grant holder
researcher and contributor to the H2020 Cloudbutton
project. His main interests are cloud computing and
distributed systems. Contact him at aitor.arjona@urv.
cat.

Pedro García-López is a full professor at Universitat
Rovira i Virgili. He leads the CloudLab research group
and has coordinated three large european research
projects in the last years: FP7 CloudSpaces, H2020
IOStack and H2020 CloudButton. His main research
topics are distributed systems, cloud storage, software
architectures and middleware. He has published more
than 100 papers on journals and prestigious confer-
ences such as Middleware, ICDCS, USENIX FAST, ICDE,
and IMC. He has participated in scientific committees
as Steering Committee member of IEEE P2P, General

hair of IEEE P2P, PC member of IEEE P2P, CCGRID, CLOSER, or WETICE, among
thers. Contact him at pedro.garcia@urv.cat.

Josep Sampé is currently working as a postdoctoral
fellow at the Universitat Rovira i Virgili, Spain. He got
the Ph.D. degree in Computer Engineering in 2018 from
this university. During his Ph.D. studies, he worked at
IBM Research in Haifa, Israel in the Cloud and Data
Technologies group. He has published several articles
in important conferences such as IMC, ACM Middle-
ware, USENIX FAST, ACM DEBS, among others, and
has participated in several European H2020 research
projects such as IOStack and CloudButton. Contact him
at josep.sampe@urv.cat.

Aleksander Slominski is Research Staff Member in
the at IBM T.J. Watson Research Center in Yorktown
Heights, NY, USA working on serverless, business pro-
cesses and eventing systems. Contact him at aslom@us.
ibm.com.

Lionel Villard is a Senior Software Engineer at IBM T.J.
Watson Research Center in Yorktown Heights, NY, USA,
a member of Knative Eventing and co-leads Knative
Sources Working Group. In the past he worked on
Apache OpenWhisk composer. Contact him at villard@
us.ibm.com.

http://refhub.elsevier.com/S0167-739X(21)00198-9/sb1
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb1
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb1
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb1
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb1
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb2
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb2
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb2
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb2
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb2
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb2
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb2
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb2
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb2
https://read.acloud.guru/https-medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08
https://read.acloud.guru/https-medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08
https://read.acloud.guru/https-medium-com-timawagner-the-serverless-supercomputer-555e93bbfa08
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb4
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb4
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb4
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb4
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb4
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb4
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb4
http://dx.doi.org/10.1145/3366623.3368137
http://dx.doi.org/10.1109/MS.2020.3029994
https://github.com/triggerflow/triggerflow
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb8
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb8
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb8
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb9
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb9
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb9
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb9
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb9
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb10
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb10
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb10
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb10
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb10
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb11
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb11
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb11
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb12
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb12
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb12
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb12
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb12
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb12
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb12
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb13
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb13
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb13
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb13
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb13
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb14
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb14
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb14
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb14
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb14
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb14
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb14
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb15
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb15
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb15
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb15
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb15
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb16
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb16
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb16
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb16
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb16
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb16
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb16
https://serverlessworkflow.io/
http://arxiv.org/abs/1910.05896
http://arxiv.org/abs/2001.00222
http://dx.doi.org/10.1016/j.future.2017.10.029
https://www.sciencedirect.com/science/article/pii/S0167739X1730047X
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb22
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb22
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb22
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb23
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb23
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb23
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb23
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb23
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb23
http://refhub.elsevier.com/S0167-739X(21)00198-9/sb23
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
http://arxiv.org/abs/2103.00033
http://arxiv.org/abs/2103.00033
http://arxiv.org/abs/2103.00033
https://keda.sh/
https://github.com/knative-sandbox/eventing-autoscaler-keda
http://arxiv.org/abs/1902.01046
http://arxiv.org/abs/1811.03604
http://dx.doi.org/10.1117/12.550551
http://dx.doi.org/10.1117/12.550551
http://dx.doi.org/10.1117/12.550551
http://arxiv.org/abs/1703.10272
mailto:aitor.arjona@urv.cat
mailto:aitor.arjona@urv.cat
mailto:aitor.arjona@urv.cat
mailto:pedro.garcia@urv.cat
mailto:josep.sampe@urv.cat
mailto:aslom@us.ibm.com
mailto:aslom@us.ibm.com
mailto:aslom@us.ibm.com
mailto:villard@us.ibm.com
mailto:villard@us.ibm.com
mailto:villard@us.ibm.com

	Triggerflow: Trigger-based orchestration of serverless workflows
	Introduction
	Related work
	Cloud event routing and Knative Eventing

	Triggerflow architecture
	Design goals
	Trigger service
	Benefits and tradeoffs of event-based orchestration
	Fault tolerance

	Prototype implementation
	Deployment on Knative
	Deployment on KEDA

	Use cases
	Directed acyclic graphs
	State machines and nested workflows
	Workflow as code and event sourcing
	Specialized workflows: Federated learning orchestrator

	Validation
	Load test
	Auto-scaling
	Completion time and overhead
	DAGs and state machines
	Workflow as code and event sourcing

	Scientific workflows
	Fault tolerance
	Long running workflows

	Federated learning orchestrator
	Validation conclusions

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


