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Abstract

Distributional semantics has become a key component of natural language processing

(NLP) tasks as it allows computational models to understand natural languages. The

sharing of vocabulary among different languages facilitates language learners to acquire

a second language with much more ease, and it enables the computational models to

perform cross-lingual learning for various NLP tasks. This thesis describes our work on

two problems: cognate detection and false friends’ detection. Our investigations in dis-

tributional semantics for both problems are based on the linguistic phenomena of shared

vocabulary in related languages. Cognate words are variants of the same lexical form

across different languages. For example, the words “fonema” in Spanish and “phoneme”

in English, both mean “a unit of sound”. The task of automatic detection of such word

pairs, i.e., automatic cognate detection, has implications on tasks such as cross-lingual

information retrieval, machine translation, and computational phylogenetics. Similarly,

false friends are word pairs from two different languages which pose a challenge to cross-

lingual NLP tasks since they share similar spelling but differ in meaning (e.g., the word

“gift” in German, means “Poison” in English). Existing approaches rely heavily on pho-

netic and orthographic information but neglect cross-lingual semantic information. Our

investigations use cross-lingual features to help detect cognates and false friends across

languages. In the preliminary investigations, we describe our understanding of distribu-

tional semantics and present three studies: (a) efforts to create a dataset from a linked

knowledge graph, viz., Wordnets, (b) a semi-automated method to link these Wordnets,

and (c) creation of monolingual and cross-lingual embedding models for NLP tasks.

Following this, we propose our approaches for the tasks of cognate and false friends’

detection. We describe our efforts to create challenging datasets for the cognate and

false friends’ detection task and evaluate the state-of-the-art approaches on them. To de-

tect cognates, we propose a weighted orthographic similarity-based measure in our initial
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investigations and use various deep learning-based classification approaches to perform

binary classification amongst cognate and non-cognate word-pairs. Our approaches use

machine learning and deep learning techniques such as statistical classifiers and cross-

lingual distributional word vectors to detect both cognates and false friends. Towards the

former, we also propose the use of human cognition and collect gaze-data via eye-tracking

experiments. With this collected gaze-data, we propose additional features for the task

of cognate detection. Finally, we also perform the task of cognate detection for Indian

and European languages to evaluate our approaches, on a different language family.

Additionally, we also explore the use of distributional semantics-based similarity for

the task of computational phylogenetics and language typology. The use of cross-lingual

features to create a typological tree for Indian languages demonstrates the efficacy of

cross-lingual features. Computational phylogenetics is used to infer the evolutionary rela-

tionships between genes, species or taxonomic units. In our work, these taxonomic units

are variant manuscripts of a written text, which has evolved over time. The goal of com-

putational phylogenetics is to infer a tree via a grouping of these variants into families

or “clades” with the use of computational methods. Phylogenetic analysis has shown to

help philologists build the critical edition for a text, i.e., an edition that attempts to

construct a text of the work using all the available evidence. We propose a distributional

semantics-based approach to generate better trees than the traditional phylogenetic ap-

proaches based on orthographic measures. We also propose the division of the text data

into meaningful functional units which help the task of phylogenetic tree generation. Fi-

nally, we study the induction of various factors like available timeline, commentaries,

sub-commentaries, quotations and printed editions of the text and present our insights

into how these factors can help build the critical edition the said text. This thesis details

our investigations related to the use of distributional semantics for cognate detection,

false friends’ detection and computational phylogenetics in terms of findings and insights

drawn from our research.

viii



Contents

Abstract vii

List of Tables xv

List of Figures xix

1 Introduction 1

1.1 Multilingual or Cross-lingual Learning . . . . . . . . . . . . . . . . . . . . 2

1.2 Understanding Shared Vocabulary in Languages . . . . . . . . . . . . . . . 5

1.2.1 Etymological Relatedness . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Relatedness due to Language Contact . . . . . . . . . . . . . . . . 6

1.3 From Cognate to Non-cognates: The Spectrum . . . . . . . . . . . . . . . 7

1.4 The Cognate Detection Task . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 The False Friends’ Detection Task . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Computational Phylogenetics . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1 Tree Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.2 Comparitive Approaches to Historical Linguistics . . . . . . . . . . 13

1.7 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Research Background 23

2.1 Types of Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Classification-based Measures . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Regression-based Evaluation Measures . . . . . . . . . . . . . . . . 25

2.1.3 Inter-Annotator Agreement Metrics . . . . . . . . . . . . . . . . . . 26

ix



2.1.4 Gaze Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Types of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Feed-forward Neural Network (FFNN) . . . . . . . . . . . . . . . . 29

2.2.2 Convolutional Neural Network (CNN) . . . . . . . . . . . . . . . . 30

2.2.3 Recurrent Neural Network (RNN) . . . . . . . . . . . . . . . . . . . 30

2.2.4 Transformer Networks . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Literature Survey: A Brief History . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Automatic Cognate Detection . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Orthographic or String Similarity . . . . . . . . . . . . . . . . . . . 36

2.4.2 Phonetic Alignment and Phoneme Matching . . . . . . . . . . . . . 37

2.4.3 Semantic Matching based Approaches . . . . . . . . . . . . . . . . 38

2.5 False Friends’ Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Computational Phylogenetics . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Cognitive Psycholinguistics for NLP tasks . . . . . . . . . . . . . . . . . . 43

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Distributional Semantics & Dataset Creation 45

3.1 Distributional Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Monolingual Embeddings . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Bilingual and Cross-lingual Embeddings . . . . . . . . . . . . . . . 48

3.2 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 IndoWordnet & Linkages with Princeton WordNet . . . . . . . . . 51

3.2.2 Semi-automatic WordNet Linking using Word Embeddings . . . . . 55

3.3 Pre-trained Embeddings for Indian Languages . . . . . . . . . . . . . . . . 60

3.3.1 Dataset Created and Experimental Evaluation . . . . . . . . . . . . 62

3.3.2 Models Released and Evaluation Results . . . . . . . . . . . . . . . 65

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Cognate Detection Task: Preliminary Investigations 71

4.1 Cognate Identification to Generate Phylogenetic Trees for Indian Languages 72

4.1.1 Dataset Creation and Experiments . . . . . . . . . . . . . . . . . . 73

4.1.2 Results and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 73

x



4.2 Utilizing Wordnets for Cognate Detection among Indian Languages . . . . 74

4.2.1 Script Standardization and Text Normalization . . . . . . . . . . . 77

4.2.2 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.3 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Cognate Detection using Siamese Networks . . . . . . . . . . . . . . . . . . 86

4.3.1 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Challenge Dataset of Cognates and False Friend Pairs . . . . . . . . . . . . 87

4.4.1 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.2 Experiment Setup for Evaluation . . . . . . . . . . . . . . . . . . . 92

4.4.3 Results of Our Evaluation . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Cognate Detection Task: Cross-lingual and Other Novel Features 97

5.1 Harnessing Cross-lingual Features for Cognate Detection . . . . . . . . . . 97

5.1.1 Dataset and Experimental Setup . . . . . . . . . . . . . . . . . . . 100

5.1.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Cognition-aware Cognate Detection . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.3 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.4 Dataset Acquisition & Analysis . . . . . . . . . . . . . . . . . . . . 115

5.2.5 Feature Sets for Cognate Detection . . . . . . . . . . . . . . . . . . 118

5.2.6 The Cognate Detection Task . . . . . . . . . . . . . . . . . . . . . 122

5.2.7 Results and Dicussion . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 Cognate Alignment for the Indo-European Language Family . . . . . . . . 125

5.3.1 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.2 Weighted Lexical Similarity-based Approach (WLS) . . . . . . . . . 127

5.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xi



6 False Friends’ Detection Task 131

6.1 Utilizing Cross-Lingual Word Embeddings to Detect False Friends . . . . . 131

6.1.1 Past Literature in Brief . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1.2 The Challenge of False Friends’ Detection for Indian Languages . . 134

6.1.3 Datasets and Experimental Setup . . . . . . . . . . . . . . . . . . . 135

6.1.4 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Computational Phylogenetics and Language Typology 151

7.1 A Brief History of Textual Criticism . . . . . . . . . . . . . . . . . . . . . 151

7.2 Computational Phylogenetics . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3 Harnessing Cross-lingual Word Embeddings to Infer Typological Trees . . 154

7.3.1 Dataset and Experimental Setup . . . . . . . . . . . . . . . . . . . 157

7.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.4 Utilizing Word Embeddings based Features for Phylogenetic Tree Generation162

7.4.1 Dataset and Experiment Setup . . . . . . . . . . . . . . . . . . . . 164

7.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4.4 Distance Matrix Computation . . . . . . . . . . . . . . . . . . . . . 168

7.4.5 Tree generation using Distance-based methods . . . . . . . . . . . . 169

7.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5 Inducing Timeline in Embeddings based Phylogenetic Tree Generation

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.5.1 Dataset Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.5.2 Primary Datasets - AST 2.2.6 and AST 1.1.3 . . . . . . . . . . . . 179

7.5.3 Sanskrit Corpus & Monolingual Embeddings . . . . . . . . . . . . . 180

7.5.4 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.5.5 Inter-Manuscript Distances . . . . . . . . . . . . . . . . . . . . . . 181

7.5.6 Lexical Distance-based measures: A Baseline Approach . . . . . . . 182

xii



7.5.7 Word embeddings based distance measures: A Stronger Baseline . . 183

7.5.8 Time-aware Distance Matrix: Our Novel Approach . . . . . . . . . 183

7.5.9 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6 Utilizing Multiple Factors in Texts to Generate Phylogenetic Trees . . . . 192

7.6.1 Dataset and Experiment Setup . . . . . . . . . . . . . . . . . . . . 194

7.6.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.6.3 Computing the Inter-Manuscript Distances . . . . . . . . . . . . . . 198

7.6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8 Conclusion & Future Work 211

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Bibliography 219

A Efforts Towards the Creation of Textual History Tool 251

A.1 An Introduction to the Textual History Tool . . . . . . . . . . . . . . . . . 251

A.1.1 Functional Divisions of the text of KV . . . . . . . . . . . . . . . . 253

A.1.2 Data Entry Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 256

A.1.3 View Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

A.1.4 Compare Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

A.1.5 Phylogenetic Tree Mode . . . . . . . . . . . . . . . . . . . . . . . . 258

A.1.6 Technical Development Details . . . . . . . . . . . . . . . . . . . . 259

A.1.7 Tool Features and Functionalities . . . . . . . . . . . . . . . . . . . 260

A.2 Effective Digitization of Commentaries for Textual History . . . . . . . . . 267

A.2.1 Classification of the Textual Evidence from Commentaries . . . . . 269

A.2.2 Reconstruction of the History of the Text . . . . . . . . . . . . . . 269

A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

B Additional Trees Generated 273

B.1 For Manuscript 2.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

B.2 For Manuscript 1.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

xiii



xiv



List of Tables

1.1 Percentage of words in the source language (row) which also appear in the

target language (column) and having at least one common synset obtained

from Indo-Wordnet [Bhattacharyya, 2017]. . . . . . . . . . . . . . . . . . 3

1.2 Percentage of concepts in the source language (row) with at least one iden-

tical word in the target language (column), in the same synset, i.e., have

the same meanings, obtained from Indo-Wordnet [Bhattacharyya, 2017]. . 4

1.3 The number of word-pairs in the source language and the target languages,

which share a similar word-form (80% match) but in non-identical synsets

(concepts), obtained from Indo-Wordnet [Bhattacharyya, 2017]. . . . . . . 5

2.1 Sample Table for the calculation of different evaluation metrics. . . . . . . 24

2.2 Class-wise precision (P), recall (R) and F-Score (F) values from Table 2.1. 25

2.3 Micro-average and macro-average precision (P), recall (R) and F-Score (F)

values from Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Number of synsets in different wordnets . . . . . . . . . . . . . . . . . . . 53

3.2 Linkage Statistics for English to Indian Language WordNets. D stands for

Direct links, and H stands for Hypernymy links . . . . . . . . . . . . . . . 54

3.3 Distribution of available links among various classes . . . . . . . . . . . . . 58

3.4 Results for the overall setting: Dimension of English embeddings=300,

Dimensions of Hindi embeddings=300 . . . . . . . . . . . . . . . . . . . . . 59

3.5 Results for the setting: Dimension of English embeddings=300, Dimen-

sions of Hindi embeddings=300 . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Results for the setting: Dimension of English embeddings=300, Dimen-

sions of Hindi embeddings=1200 . . . . . . . . . . . . . . . . . . . . . . . . 60

xv



3.7 Corpus statistics for each Indic language with their ISO 639-3 abbreviations

(total number of sentences and words) . . . . . . . . . . . . . . . . . . . . 64

3.8 ELMo prerplexity scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Detected cognates were validated manually with the help of lexicographers,

and it was found that simple orthographic similarity-based measures are

unable to detect cognates with high precision. . . . . . . . . . . . . . . . . 74

4.2 Stratified 5-fold Evaluation using Deep Neural Models on both PCData

(D1) and WNData (D2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Results after combining chunks of WNData with PCData . . . . . . . . . . 81

4.4 Total Word Pairs for both datasets and Matches among them . . . . . . . 84

4.5 Manual analysis of the similarity scores . . . . . . . . . . . . . . . . . . . . 84

4.6 Results in terms of Precision (P), Recall (R) and F-Score (F) for LSA vs.

SFN for various dimension sizes. . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 An example each of a cognate pair and a false friend pair from the closely

related Indian languages Hindi (Hi) and Marathi (Mr) . . . . . . . . . . . 88

4.8 Number of Potential Cognates, Number of cognates retained on both an-

notators’ agreement [Cognates (D2)], Percent agreement among the anno-

tators and Cohen’s kappa score for each language pair in our dataset . . . 89

4.9 Number of Potential False Friends, Number of False Friend pairs retained

on both annotators’ agreement [False Friends (D3)], Percent agreement

among the annotators and Cohen’s kappa score for each language pair in

our dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 The percentage share of parts-of-speech categories in cognate datasets D1

and D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.11 Results of the Cognate Detection Task (in terms of F-Scores) for D1+D2.

We use the same architecture, features and hyperparameters as discussed

in the papers for Rama [2016] and Kanojia et al. [2019d]; and observe that

these systems do not perform as well on our dataset, as shown in the papers. 94

4.12 Results of the False Friends’ Detection Task (in terms of F-Scores) for D3.

We use the same architecture, features and hyperparameters as discussed

in the paper by Castro et al. [2018] and observe that these systems do not

perform as well on our False Friends’ dataset. . . . . . . . . . . . . . . . . 94

xvi



5.1 Number of cognates and non-cognates for each language pair in the dataset.

Hi-Ne* and Hi-Ko* were generated via reproducing the previous approach [Kano-

jia et al., 2020a]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Corpus Statistics where corpus size is approximate number of lines, and

STTR is the moving average type-token ratio on a windows of 1000 sentences.100

5.3 Results of the cognate detection task, in terms of weighted F-scores (5-

fold) with baseline features and previous approaches, and our approaches

using Cross-lingual similarity based features, for all the language pairs (LP).108

5.4 Results of the Cognate-aware Neural Machine Translation Task, in terms

of BLEU scores, for the language pairs (LP) with available parallel data. . 110

5.5 Complete set of results for all merge operations performed for the NMT

Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Dataset Statistics for Cognate Detection Task . . . . . . . . . . . . . . . . 116

5.7 T-test statistics for average fixation duration time per word for Positive

labels (Cognates) and Negative labels (False Friends) for participants P1-P9.117

5.8 Gaze Features used for the task of Cognate Detection . . . . . . . . . . . . 120

5.9 Classification results in terms of weighted Precision (P), Recall (R), and

F-scores (F) using 5-fold cross-validation using different feature sets as

described above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.10 Classification results when gaze features are predicted using a neural net-

work (Section 4.5), in terms of weighted Precision (P), Recall (R), and

F-scores (F) using 5-fold cross-validation on FFNN. . . . . . . . . . . . . 124

5.11 Number of Cognates among Indian language pairs from Kanojia et al. [2020c].126

5.12 Statistics for the European and the English Wordnets language data from

OMW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.13 Linked Data Statistics for English-Hind Wordnets . . . . . . . . . . . . . . 127

5.14 Statistics for the aligned cognate sets among Indian and European languages.128

5.15 Distribution of the aligned cognates as per their parts-of-speech categories. 129

6.1 Approximate Number of False Friends Candidates (word pairs) in D1 and

D2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xvii



6.2 Statistics of Gold-standard Data, i.e., Number of False Friends retained

on both annotators’ agreement (Section 6.1.3.3) along with the percent

agreement and Cohen’s Kappa scores. . . . . . . . . . . . . . . . . . . . . . 135

6.3 Word Embedding Corpus Statistics where corpus size is approximate num-

ber of sentences, and STTR is the moving average type-token ratio on a

window of 1000 sentences. (Section 6.1.3.4) . . . . . . . . . . . . . . . . . 135

6.4 Baseline Results of the false friends’ detection task, in terms of weighted F-

scores for Weighted Lexical Similarity (WLS), Phonetic Vectors and Simi-

alirty (PVS), State-of-the-art (Castro et al., 2018) approach, and Monolin-

gual Similarity (MVS, i.e., SoTA w/ FastText) over all the language pairs,

and for both the datasets (D1 and D2). . . . . . . . . . . . . . . . . . . . . 142

6.5 Results of the false friends’ detection task using our approaches, in terms

of weighted F-scores for Cross-lingual Similarity (CLS, i.e., MUSE), the

combination of Cross-lingual and Weighted Lexical Similarity (CLS+WLS)

based features, Contextual Embeddings based features (XLM-R), and VecMap

based features, overall language pairs, and both the datasets (D1 and D2). 144

6.6 Evaluation of our output (list of false friends) in terms of percent agreement

and Cohen’s Kappa scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.7 An example of detected False Friends along with sense definitions, from

each language pair. The pronunciation and translation of each table entry

are provided in the table. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1 Example of Functional Unit based Division for sūtra AST 2.2.6 . . . . . . 174

7.2 Approximated timeline data of the 17 manuscript variants which we use

introduce as an added factor to compute our distance matrices. . . . . . . 178

7.3 Example of Functional Unit based Division for sūtra AST 2.2.6 . . . . . . 190

7.4 Example of Functional Unit based Division for sūtra AST 1.1.3 . . . . . . 190

A.1 Example of a sūtra from KV (sūtra 1.1.1.) . . . . . . . . . . . . . . . . . 270

A.2 Example of a sūtra from the KV (sūtra 2.1.22.) . . . . . . . . . . . . . . . 271

xviii



List of Figures

1.1 Classification of word-pairs across languages . . . . . . . . . . . . . . . . . 9

1.2 Examples from the shared vocabulary classes across two languages. . . . . 10

1.3 A Sample Rooted Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 A Sample Unrooted Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 A Sample Stemma of Malayalam Manuscripts as shown by [Kulkarni, 2006] 14

1.6 Rama et al. [2018] show how cognates can form phylogenetic trees; they

use the English word ‘hand’ as a sample. . . . . . . . . . . . . . . . . . . . 16

2.1 Sample Image from our eye tracking software showing a cognate word pair,

along with fixations (turquoise circles), and interest areas (red rectangles). 28

2.2 A Simple Feed-forward Neural Network . . . . . . . . . . . . . . . . . . . . 29

2.3 Architecture of a Vanilla RNN . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Different Approaches for Bilingual Embeddings . . . . . . . . . . . . . . . 48

3.2 Word embeddings of numbers and animals in English (left) and Spanish

(right) (taken from [Mikolov et al., 2013a]). . . . . . . . . . . . . . . . . . 56

3.3 Accuracy@n: The green colored cells indicate the predictions considered

for exact match for a given accuracy@n . . . . . . . . . . . . . . . . . . . . 59

3.4 Performance of skip-gram, CBOW, and fasttext models on POS tagging

task. Plotted graph is Accuracy vs Dimension. Legend is ”language”-

”model”. Note that FastText is the best performer in each case, and learn-

ing saturates around 200 dimensions . . . . . . . . . . . . . . . . . . . . . 65

3.5 Performance of skip-gram, CBOW, and fasttext models on NER tagged

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xix



4.1 An overview of the scope of this work as presented in our investigation

presented at GWC 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Block Diagram for our experimental setup . . . . . . . . . . . . . . . . . . 77

4.3 Architecture of our Recurrent Neural Network . . . . . . . . . . . . . . . . 82

4.4 Average Results using Neural Network models on both datasets . . . . . . 83

4.5 The difference between True Cognates (Word X andWord P), False Friends

(Word Y) and Partial Cognates (Word A and Word Z) explained for cre-

ating our Datasets (D2 and D3). . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Dataset Augmentation with Context and Two Language Pairs using In-

doWordnet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Cognate Detection task with different feature sets and classification ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Screen capture showing collection of gaze features (via eye tracking) while

displaying word pairs along with respective definitions and examples. . . . 117

5.4 Predicted feature values ( blue ) vs. Gold feature values ( orange ) for the

Saccade Amplitude feature for 100 samples. . . . . . . . . . . . . . . . . . 121

6.1 Difference among best systems for D1 & D2 . . . . . . . . . . . . . . . . . 147

7.1 Trees Generated via UPGMA using Baseline method . . . . . . . . . . . . 159

7.2 Resultant Tree Using Cross-lingual Embeddings . . . . . . . . . . . . . . . 160

7.4 Phylogenetic Tree for the dated manuscripts generated using our method . 176

7.5 Heatmap representations of the distance matrices computed using the

weighted lexical similarity baseline, for AST 2.2.6 and AST 1.1.3 datasets . 186

7.6 Heatmap representations of the distance matrices computed using the

stronger baseline approach, for AST 2.2.6 and AST 1.1.3 datasets . . . . . 186

7.7 Heatmap representations of the distance matrices computed using our novel

approach, for AST 2.2.6 and AST 1.1.3 datasets . . . . . . . . . . . . . . . 186

7.8 Trees generated using the weighted lexical similarity based baseline ap-

proach, for AST 2.2.6 and AST 1.1.3 datasets . . . . . . . . . . . . . . . . 187

7.9 Trees generated using the stronger baseline approach, for AST 2.2.6 and

AST 1.1.3 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.10 Trees generated using the our approach, for AST 2.2.6 and AST 1.1.3 datasets189

xx



7.11 Trees generated with two different factors, for only commentaries (a) and

only printed editions (b), respectively . . . . . . . . . . . . . . . . . . . . . 202

7.12 Tree generated by combining the datasets for commentaries and printed

editions with the manuscript variants . . . . . . . . . . . . . . . . . . . . . 203

7.13 Trees generated via further bifurcation of the commentary text into directly

quoted words (Ny and Pm), and indirectly quoted words (Ny and Pm),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.14 Trees generated via further bifurcation of the commentariusing es Ny (di-

rectly and indirectly quoted words) and Pm (directly and indirectly quoted

words), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.1 Screenshot from the Textual History Tool . . . . . . . . . . . . . . . 257

A.2 A sample tree produced in the Phylogenetic Tree Mode . . . . . . . . . . . 258

A.3 The architecture of Textual History Tool . . . . . . . . . . . . . . . . . . . 259

A.4 Screenshot of view mode displaying manuscript picture along with the text in

the view mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

A.5 Classification of evidence from the commentaries on the KV[Kulkarni and Kahrs,

2019b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

A.6 The hierarchy of evolution vis-a-vis the development of thought. . . . . . . . . 269

A.7 The classification of evidence found in commentaries as proposed by Kulkarni

and Kahrs (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

xxi



xxii



Chapter 1

Introduction

Natural Language Processing (NLP) lies under the purview of Artificial Intelligence (AI),

which is a branch of computer science. Artificially intelligent systems aim to ‘emulate’

human behaviour and intelligence. A key aspect of human behaviour is to be able to

communicate and understand natural languages. Humans have been trying to equip

machines to understand natural languages since the early 1950s [Jones, 1994]. In this day

and age, NLP is concerned with helping machines, not just understand natural languages,

but also generate them. When NLP research started, rudimentary translation systems

were deployed under the umbrella of Georgetown-IBM experiment [Hutchins, 2004] which

dealt with translating sixty sentences from Russian into English.

As interest grew in being able to translate one natural language to another auto-

matically, statistical models for machine translation were conceived. These advancements

were only possible due to the significantly improved computational power and required

resources, i.e., machine-readable natural language data. With the advent of translation

systems, a need for understanding human languages arose and the sub-area of “Seman-

tics” came into the picture. Semantics primarily deals with helping machines understand

human language and is a key component for natural language generation (NLG) tasks. In

the past 30 years, various NLP tasks piqued the interest of theoretical linguistics commu-

nity and the term “Computational Linguistics (CL)” was coined. Unlike early approaches

which used rules and logic for each task, the use of machine learning and deep learning-

based algorithms has helped computational linguistics advance towards fairly accurate

and dependable results. NLP takes a more pragmatic stand with respect to the tasks

involved, whereas computational linguistics deals with the tasks in a more granular sense.

1
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CL studies human language to computationally understand how we as humans have the

capacity to produce and understand language. With time, NLP tasks have become more

statistical in nature, the credit for which, rightly goes to the advancements in Machine

Learning (ML) algorithms. Machine learning algorithms like to focus on learning rules

from the data (or examples), and then these learned models are able to predict the re-

quired output. In the past ten years or so, the use of simple linear classifiers like Naive

Bayes and SVMs have now been replaced with complex models like Kernel SVMs and

deep neural networks. These deep learning models, however, require large amounts of

labelled data to estimate the parameters or the weights of the function reliably. The

labelled data should contain sentences or vocabulary exhibiting all possible patterns so

that the model can make appropriate predictions when those patterns are observed dur-

ing the time of testing. Natural languages typically deal with huge vocabularies. Word

distribution in natural languages follows Zipf’s law, i.e., a large portion of words appear

only a few times in the corpus. Translation task deals with at least two languages and

engages the learning of a machine via observing shared patterns in two languages. This

brings us to the domain or multilingual or cross-lingual learning.

1.1 Multilingual or Cross-lingual Learning

Languages are related to each other due to various factors. The source of language re-

latedness may arise due to a genealogical relationship or via language contact. Related

languages share phonological, orthographic and structural features among them. For

example, Indian languages from the Indo-Aryan language family have high vocabulary

overlap and similar word-order [V Subbãrão, 2012]. Some related languages share a sig-

nificant amount of vocabulary amongst themselves.

Table 1.1 shows vocabulary overlap between the following Indian languages from

Indo-Wordnet [Bhattacharyya, 2017]: Hindi (Hi), Bengali (Bn), Gujarati (Gu), Marathi

(Mr), Punjabi (Pa), Malayalam (Ml), Tamil (Ta) and Telugu (Te). The Indo-Wordnet

knowledge graph contains linked wordnets of several Indian languages. To estimate the

percentage vocabulary overlap across Indian languages, we take a word from a language

and look for an exact lexical match in the other language, for possible candidates. If

the word has at least one matching sense in both the languages, we consider it a match.



3 1.1. Multilingual or Cross-lingual Learning

Bn Gu Hi Mr Pa Ml Ta Te

Bn - 19.51 29.45 11.39 2.45 1.05 0.34 0.78

Gu 13.90 - 51.75 20.14 4.46 1.06 0.30 1.22

Hi 12.76 31.47 - 15.22 4.43 0.78 0.21 0.95

Mr 11.81 29.31 36.42 - 3.40 0.62 0.27 0.92

Pa 4.26 10.88 17.79 5.71 - 0.22 0.16 0.40

Ml 1.19 1.70 2.04 0.67 0.14 - 0.72 2.48

Ta 0.43 0.54 0.62 0.33 0.11 0.80 - 0.25

Te 0.95 2.10 2.67 1.08 0.28 2.68 0.24 -

Table 1.1: Percentage of words in the source language (row) which also appear in the

target language (column) and having at least one common synset obtained from Indo-

Wordnet [Bhattacharyya, 2017].

For languages with different scripts, we use Indic NLP library 1 [Kunchukuttan et al.,

2015] to transliterate it to a common script. We observe that Bengali, Gujarati, and

Marathi share significant vocabulary with Hindi as compared to other languages. The

values presented are an under-estimate of the actual vocabulary overlap across languages,

as we do not factor into account for words that undergo slight phonological changes in the

other language. For example, the Marathi word जीव (jiva) meaning living animal becomes

জীব (jiba) in Bengali.

This experiment gives us a hint of relatedness among Indian languages. Vocabulary

goes through orthographic changes when languages borrow words, and despite not tak-

ing such words into account; we report a significant number of identical words from the

IndoWordnet knowledge graph. However, IndoWordnet is based on concepts (synsets)

which contain synonymous words. Identical words from the same concepts are strong

candidates for true cognate among Indian languages. We perform an additional experi-

ment by increasing the number of languages and show the results in Table 1.2. The new

language introduced for the results in this table are Nepali (Ne), Kannada (Kn), Oriya

(Or), Assamese (As), Sanskrit (Sa), and Konkani (Ko). In this table, it can be seen that

any two related languages from the Indian subcontinent share a significant amount of

concepts which have at least one identical word. We have highlighted the language pair

values which contain more than 25% of such shared concepts.

1Indic NLP Library

https://github.com/anoopkunchukuttan/indic_nlp_library
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Ne Kn Or As Bn Te Ml Ta Sa Mr Hi Pa Ko Gu

Ne - 13.07 23.61 16.38 26.09 2.83 1.90 0.20 17.20 26.56 48.95 10.11 17.10 39.71

Kn 6.95 - 7.41 4.90 8.27 5.02 3.01 0.75 4.11 12.47 17.44 3.34 7.49 16.53

Or 7.84 4.63 - 8.65 32.43 1.30 1.69 0.31 7.57 15.87 30.92 3.69 11.74 25.82

As 12.83 7.22 20.40 - 27.87 1.32 1.19 0.13 8.97 12.01 22.34 4.67 6.32 17.99

Bn 8.41 5.01 31.49 11.47 - 1.34 1.95 0.47 9.13 15.94 34.77 3.68 10.88 26.39

Te 1.57 5.24 2.17 0.93 2.31 - 5.14 0.53 0.97 2.75 6.04 0.59 1.84 5.06

Ml 0.74 2.20 1.97 0.59 2.36 3.60 - 1.27 0.77 1.45 3.99 0.21 1.02 3.26

Ta 0.09 0.65 0.44 0.07 0.68 0.44 1.51 - 0.27 0.51 1.00 0.18 0.26 0.86

Sa 5.22 2.35 6.92 3.48 8.61 0.53 0.60 0.18 - 9.36 18.76 1.45 4.60 13.36

Mr 9.48 8.37 17.06 5.47 17.65 1.77 1.33 0.40 11.00 - 48.09 5.24 28.91 41.05

Hi 14.20 9.52 27.03 8.28 31.30 3.15 2.98 0.63 17.93 39.11 - 10.95 25.08 59.73

Pa 3.66 2.27 4.02 2.16 4.13 0.38 0.19 0.15 1.72 5.31 13.65 - 3.48 9.25

Ko 6.19 5.10 12.80 2.92 12.22 1.20 0.95 0.21 5.49 29.32 31.28 3.48 - 30.74

Gu 13.06 10.23 25.59 7.56 26.94 3.00 2.76 0.62 14.47 37.85 67.74 8.41 27.95 -

Table 1.2: Percentage of concepts in the source language (row) with at least one identical

word in the target language (column), in the same synset, i.e., have the same meanings,

obtained from Indo-Wordnet [Bhattacharyya, 2017].

Shared concepts with identical word-form help a learner with second language ac-

quisition. As per the acquisition/learning hypothesis of the monitor theory [Gregg, 1984],

second language (L2) learners perform subconscious learning based on their natural lan-

guage (L1). This subconscious learning can be based on any meaningful conversation in

the target language (L2). A shared set of words among L1-L2 which also mean the same

definitely help learners acquire the second or the target language. Table 1.3, however,

shows us the other side of vocabulary sharing among languages. When two languages

belong to the same linguistic area, they may also drift apart. In such cases, the same

word forms may also change their meaning with time; we perform another experiment to

show this phenomenon based on the cross-lingual word-pairs in IndoWordnet. In table

1.3, we show the number of word-pairs across language pairs, which belong to different

concepts but share an identical word-form (80% orthographic/lexical match).

Such word pairs can cause confusion among the second language learners and hence

require us to perform more nuanced research in terms of computational linguistics, which

not only helps computations models with the shared vocabulary but also avoids these

perilous pitfalls. This leads us to the domain of shared vocabulary and how language

change occurs, which is discussed in the next section.



5 1.2. Understanding Shared Vocabulary in Languages

Bn Hi Or Mr Sa Kn Te Ko Pa Gu Ml As Ne Ta

Bn - 43586 43722 43338 43202 42997 42699 42524 41744 43111 41935 44425 44402 34716

Hi 96016 - 94830 97838 94987 95890 95748 96191 94619 96930 92674 96535 99772 76533

Or 50223 49718 - 49564 49252 48874 48362 48142 47811 49408 47900 50780 50909 38621

Mr 40397 41811 40904 - 40832 41555 41358 42439 40851 42438 40215 41178 42595 33565

Sa 46215 45398 45640 46132 - 46027 45965 45002 41321 45441 45731 46293 47697 38630

Kn 36502 39364 36762 40080 38751 - 42045 37998 32720 39633 39866 37168 41217 28807

Te 30274 31970 30065 32347 31646 33591 - 30725 26466 32068 32390 31062 33098 24274

Ko 29398 31371 29827 32112 30198 30745 30670 - 30162 31735 29531 30328 31598 23741

Pa 20987 22703 21807 22966 21137 21042 20133 21845 - 22513 18829 21356 23357 12856

Gu 57199 59513 58065 60966 57854 59507 59636 59480 57679 - 57669 58415 60941 46588

Ml 35005 35689 35022 35879 36710 37664 37789 34417 29240 35373 - 36073 38224 33841

As 20465 19427 20100 19341 19061 18367 18233 18088 16923 19188 17639 - 20831 11541

Ne 17919 17900 17660 17915 17795 17534 17501 17371 16471 17754 17313 17777 - 13127

Ta 27958 30389 28736 29303 31527 32435 31912 26829 23241 28827 33568 31072 32489 -

Table 1.3: The number of word-pairs in the source language and the target languages,

which share a similar word-form (80% match) but in non-identical synsets (concepts),

obtained from Indo-Wordnet [Bhattacharyya, 2017].

1.2 Understanding Shared Vocabulary in Languages

As discussed above, languages can exhibit similar linguistic features either through ge-

nealogical influence or through contact. In this section, we discuss various factors due to

which languages are “close-to” or “far-apart” from each other. This relatedness among

languages forms a key basis for our work on cognates and shared vocabulary in this thesis.

1.2.1 Etymological Relatedness

Languages exhibit genetic relatedness when they have descended from a common an-

tecedent (language), i.e., they have shared etymology. Any languages which descend

from a common language form a language family. Apart from the Indo-Aryan language

family, the most commonly cited example is how Latin and “Vulgar Latin” are considered

to have been an antecedent for the set of “Romance Languages” [Rudder, 2012]. The term

family here is used to reflect the hierarchical nature of relations typically observed in a

biological family tree. A tree which depicts such a relation amongst various languages is

known as phylogeny or a phylogenetic tree. Such trees depict the evolutionary informa-
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tion about languages in the tree. Typological trees depict information about languages

which can be used to measure the phylogenetic relatedness among languages. A typolog-

ical classification groups languages into types according to their structural characteristics

[Dunn et al., 2007].

Etymological relatedness is seen among related languages when a sub-community

speaking a language migrates from the community to a different geographical location,

and over the course of the time, the language spoken by the sub-community diverges from

the original community2. Another reason for the linguistic change could be due to the

influence of other languages. The language spoken by the sub-community now becomes

a child language in the tree. Ethnologue estimates the number of living languages to be

around 7, 111 and are distributed into 141 different languages families3. Classification of

languages into language families is carried out by comparative linguists. Comparative lin-

guists compare different characteristics of languages like phonology, morphology, lexicon,

and, the syntax to determine the relationship between the languages. It is also possible

that some languages do not have known related languages. Such languages are known as

language isolates. These languages were part of a branch which, now, we have lost records

of, and as a result, an entire branch is missing leaving just the leaf.

However, comparative linguistics is limited by the availability of historical records.

Due to its over-dependence on historical records, we cannot fully trace the evolutionary

tree of all the languages. As and when new evidence is obtained, comparative linguistics

fills in the missing branches expanding our current knowledge of language relatedness.

Languages within the same family form several sub-families and can exhibit significant

differences between each sub-families. For example, English belongs to the Germanic

sub-family and Hindi belongs to the Indo-Aryan sub-family. English exhibits canonical

SVO (Subject-Verb-Object) word-order whereas Hindi exhibits canonical SOV (Subject-

Object-Verb) word order.

1.2.2 Relatedness due to Language Contact

Languages can also be related to each other via contact. Contact relatedness is observed

when two communities speaking different languages have significant social interaction,
2Migration and Language Contanct
3Ethnologue Statistics

https://www.ethnologue.com/ethnoblog/m-paul-lewis/migration-and-language-contact
https://www.ethnologue.com/statistics/family
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and borrowing some features of the other language over time. The most common form

of such contact is the borrowing of vocabulary from the other language. For example,

English is known to contain borrowed words from Latin, French and the family of Romance

languages. The influence of the other language could be substantial, leading to changes

in morphology and grammar of the language.

Commonly spoken Indian languages like Hindi, Marathi, Bengali, Gujarati, etc. con-

tain many words borrowed from the Sanskrit language. The Dravidian langauge family is

also known to borrow words from Sanskrit. If there is no change in Sanskrit word form

during adoption of these languages, the words are called tatsama words and if there is

some change in the word form they are called as tadbhava words. Tatsama means “same

as that” and Tadbhava means “arising from that”. For e.g., The Sanskrit word “putra” is

borrowed “as-is” in Hindi and retians it’s orthographic form in the word “putra”, meaning

“Son”. In case of the Sanskrit word “Satya”, the Hindi word takes an intermediary form

first namely “sacchh”, and later is borrowed in Hindi as “sach” meaning “Truth”, in it’s

Tadbhava form.As a consequence, related languages share a lot of linguistic features and

vocabulary among them.

Shared vocabulary among etymologically related and non-related languages is a

known phenomenon where languages borrow words from each other. In case of related

languages which belong to a single language family, for example, the Indo-Aryan language

family, most of the shared vocabulary originates from a single historical antecedent. Indo-

Aryan languages are known to borrow words from the Sanskrit language, and this bor-

rowed vocabulary acts as a semantic link between any given language pair in the family.

Such words share a formal or semantic affinity with each other. When such words are

similar in form and meaning across related languages, they are known to be cognates.

1.3 From Cognate to Non-cognates: The Spectrum

Cognates are words with similarities in their spelling and meaning across two related

languages L1 and L2. For example, the French and English word pair, Liberté - Liberty,

reveals itself to be a true cognate through orthographic similarity. In some cases, similar

words have a common meaning only in some contexts; such words are called partial

cognates. For example, the word “police” in French can translate to “police”, “policy”
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or “font”, depending on the context4. Manual detection of such cognate sets requires a

human expert with a good linguistic background in multiple languages. Moreover, manual

annotation of cognate sets is a costly task in terms of time and human effort. False

friends are word pairs from two different languages which pose a challenge to downstream

NLP applications such as Machine Translation, Cross-lingual Question Answering and

Information Retrieval since they share similar spelling but differ in meaning (e.g., the

word “gift” in German, means “Poison” in English). True cognates share a similar

orthographic form, but unlike False friends, mean the same across two different languages.

However, then, there are confusing word-pairs which do not mean the same despite sharing

a similar form. Such word-pairs are called False Friends, and these can severely affect the

output of NLP models. False friends are often confused with being false cognates, but

there is a certain distinction among both these types of word pairs.

In this thesis, we refer to the term false friends when we discuss word pairs, in

related languages, which share a similar form, but do not mean the same. False cognates,

on the other hand, are word pairs which can mean the same despite belonging to unrelated

language pairs and are known to have different etymologies. We explain all these word-pair

classes with the help of a diagram in Figure 1.1 below.

• True Cognates: class of word pairs which have similar origin, spelling, and meaning.

• False Friends: class of word pairs which have similar origin and spelling, but differ

in meaning.

• False Cognates: class of word pairs which do not have a similar origin, but have

similar spelling and meaning.

• Synonyms: having a similar meaning, but spelt very differently.

• Genetic Cognates: have similar origin and meaning, but differ a lot when it comes

to spelling.

• Co-Etym: We coined this term for the class of word-pairs which have a similar

origin, but do not belong to any class of cognates as they do not mean the same,

and are spelt differently.

4Cognates can also exist in the same language. Such word pairs/sets are commonly referred to as

doublets.
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Figure 1.1: Classification of word-pairs across languages

In figure 1.2, we present a classification of word-pair classes we deal with, during our

investigations. Here, we also present examples of cognates, false friends, false cognates to

present a descriptive view of the word-pair classes in question.

1.4 The Cognate Detection Task

Automatic detection of cognates is a well-known task, which has been explored for a range

of languages using different methods; and has shown to help Cross-lingual Information

Retrieval [Meng et al., 2001], Machine Translation (MT) [Al-Onaizan et al., 1999], and

Computational Phylogenetics [Rama et al., 2018]. If languages which belong to the same

language family are concerned, we hypothesize that word with a high spelling and semantic

similarity can be called ‘cognates’. Obtaining a spelling similarity-based score for any

candidate cognate pair can be performed via classical methods such as Normalized Edit

Distance. However, what does it mean for two words to mean ‘the same’? Semantic
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Figure 1.2: Examples from the shared vocabulary classes across two languages.

equivalence can be defined in functional terms: the meaning of a word w1 in one language

(L1) is aligned with a word w2 in another language (L2) if the two words are used in the

same contexts by L1 and L2 speakers. One reason why describing the semantic structure

of natural languages is difficult is that word meanings, similar to other psychological

constructs, are not directly observable. The most direct way to assess semantic equivalence

would be to query L1–L2 speakers of multiple languages about the meanings of different

words. For example, the English word ‘impressed’ has an unambiguously positive valence,

whereas the valence of its Italian translation equivalent, ‘impressionato’, is relatively

more negative. This difference in valence suggests that ‘impressed’ and ‘impressionato’

do not quite mean the same thing. However, this approach is challenging to implement

at scale. For this reason, our attempts to quantify semantic similarity focus on using

cross-lingual word embeddings, and then we use standard machine learning classifiers to

generate models.

The two main classification approaches applied to the detection of cognates belong to

the generative and discriminative paradigms. The first paradigm is based on the compu-
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tation of a similarity score between potential candidate pairs. This score can be a simple

Orthographic similarity [Jäger et al., 2017], phonetic similarity [Rama, 2016], or a dis-

tance measure with the scores learned from an existing parallel set [Mann and Yarowsky,

2001, Tiedemann, 1999]. The discriminative paradigm uses standard approaches to ma-

chine learning, which are based on (1) extracting features, e.g., character n-grams, and

(2) learning to predict the transformations of the source word needed to [Jiampojamarn

et al., 2010, Frunza and Inkpen, 2009]. Cognate identification approaches can confuse

a false friend pair with being a cognate if orthographic similarity-based techniques are

relied upon. For languages which do not share the same script, normalization techniques

help compare the orthography among their words. Romanization of words is a common

methodology used among such language pairs. False friends are especially problematic

for language learners. We discuss then in the next section.

1.5 The False Friends’ Detection Task

In our work, we also focus on the task of false friends’ detection and learn to identify

false friends’ from among candidate pairs, by utilizing distributional semantics across

languages. Applications of cognate detection in NLP include sentence alignment [Simard

et al., 1993, Melamed, 1999], inducing translation lexicons [Mann and Yarowsky, 2001,

Tufis, 2002], improving statistical machine translation (MT) [Al-Onaizan et al., 1999],

improving information retrieval [Makin et al., 2007] and identification of confusable drug

names [Kondrak and Dorr, 2004]. All these applications depend on an effective method

of identifying cognates by computing a score, which reflects the likelihood that the two

words are cognates among languages.5

Cognate identification approaches can confuse a false friend pair with being a cognate

if orthographic similarity-based techniques are relied upon. False friends are especially

problematic for language learners as learners tend to overgeneralize and assume that they

know the meaning of these misleading words. Hence, we also focus on the task of false

friends’ detection across languages.

5Cognates in the same language are referred to as doublets.



Chapter 1. Introduction 12

1.6 Computational Phylogenetics

Phylogenetics is defined as the task of creating a Phylogenetic Tree which represents a

hypothesis about the evolutionary relationship among a set of genes, species or any other

taxa. It is the study of evolutionary history and relationships among various taxa. A

‘Taxon’ represents a group of one or more manuscripts written in Sanskrit in our case,

where we analyze how the manuscripts are related to each other.

These relationships are discovered through phylogenetic methods that compute ob-

served heritable traits in a manuscript, such as spelling errors, variations in text, text

deletion, the morphology of the text, etc. under a model of the evolution of these traits.

The result of these analyses is known as a phylogenetic tree, i.e., a diagrammatic hypoth-

esis about the history of the evolutionary relationships of a group of manuscripts (usually

belonging to the same text).

The Computational purview of this part of our research problem deals with devel-

oping new methods for alignment estimation, phylogeny estimation, and species identi-

fication of metagenomic data. Computational historical linguistics, which involves the

development of methods for estimating evolutionary histories of languages and of models

of language evolution, is another research problem based on phylogenetics.

Phylogenetic methods are designed to recover the “true” evolutionary tree as of-

ten as possible. They do not guarantee to do so with high probability under reasonable

conditions. Some methods which offer this guarantee vary considerably in their require-

ments [Warnow et al., 2001]. To rigorously establish the validity of such a phylogenetic

approach, a fundamental question that must be addressed is whether the models in use

are identifiable. From the theoretical distribution predicted by the model, is it possible

to uniquely determine all parameters?

Using the currently available models, finding optimal phylogenetic trees using com-

patibility criteria is in its general case NP-Complete [Warnow, 1993]. Also, finding a

Maximum Compatible Tree is NP-Hard [Roch, 2006]. Thus, it means that efficient algo-

rithms to solve the problem, probably, cannot exist. By restricting the kinds of input to

the problem, however, we may be able to solve it efficiently.
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Figure 1.3: A Sample Rooted Tree Figure 1.4: A Sample Unrooted Tree

1.6.1 Tree Generation

The trees generated by phylogenetic methods can be either rooted or unrooted, depending

on the input data and the algorithm used to build the tree. A rooted tree is a

directed graph that identifies a most recent common ancestor (MRCA). Unrooted trees

plot the distances and relationships between input sequences without making assumptions

regarding their descent. It can always be produced from a rooted tree, but root cannot

usually be placed on an unrooted tree without additional data on divergence rates [Mount,

2004].

For identifying a root, it is usually required that that inclusion in the input data of

at least one “outgroup” is known to be distantly related to the sequences of interest. A

generic example of a phylogenetic tree is shown in figures 1.3 and 1.4 where the former

represents a rooted phylogenetic tree and the latter depicts an unrooted phylogenetic tree.

An example of a phylogenetic tree, based on textual manuscripts, is shown below in

figure 1.5 where a phylogenetic tree is drawn manually from Malayalam manuscripts for

Kāśikāvṛtti.

Kulkarni [2006] show that M is the archetype source, and Ma, Mb and Mc are its

hyperarche child nodes. M is decided as a source based on the analysis made on the variant

readings. In this process, manuscripts with similar variants are grouped and named as

M1, M2, M3 …, M11.

1.6.2 Comparitive Approaches to Historical Linguistics

During the last two decades there has been an increasing interest in automatic approaches

to historical linguistics, which is reflected in the large amount of literature on phyloge-

netic reconstruction (e.g. [Ringe et al., 2002]; [Gray and Atkinson, 2003]; [Brown et al.,
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Figure 1.5: A Sample Stemma of Malayalam Manuscripts as shown by [Kulkarni, 2006]

2008]), statistical aspects of genetic relationship (e.g. [Baxter and Ramer, 2000]; [Kessler,

2001]), and phonetic alignment (e.g. [Kondrak and Hirst, 2002]; [Prokić et al., 2009]).

While the supporters of these new automatic methods would certainly agree that their

greatest advantage lies in the increase of repeatability and objectivity, it is interesting to

note that the most crucial part of the analysis, namely the identification of cognates in

lexicostatistical datasets, is still almost exclusively carried out manually.

Under the purview of ‘diachronic linguistics’, establishing relationships among lan-

guages which have been in contact for a long time has also been a topic of interest

[Chevillet, 2000]. However, this topic has been much less explored in the computational

linguistics community. Most of the previous work is focused on the reconstruction of phy-

logenetic trees for a particular language family using manually curated word lists [Gray

and Atkinson, 2003, Atkinson et al., 2005, Atkinson and Gray, 2006, Nakhleh et al., 2005]

or using synthetic data [Barbançon et al., 2013]. Phylogenetic reconstruction and anal-

ysis is based on a data matrix where the rows represent the languages to be studied,

and the columns represent a linguistic feature or character [Nichols and Warnow, 2008].

Moreover, the methods inspired from glottochronology take a boolean matrix as input,

which denotes the change in the state of the ‘characters’ (the ‘characters’ can be lexical,

morphological or phonological) to infer the phylogenetic trees. A portion of our work

also deals with establishing relationships among various Indian languages which are an

important part of the Indo-European language family.
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Phylogenetic analysis can be carried out by sequence comparison. It is one of the key

tasks in historical linguistics. By comparing words or morphemes across languages, lin-

guists can identify which words have sprung from a common source in genetically related

languages, or which words have been borrowed from one language to another. By compar-

ing words within a language, linguists can identify grammatical and lexical morphemes,

cluster words into families, and shed light on the internal history of languages. So far, the

majority of this work has been carried out manually. Linguists sift through dictionaries

and fieldwork notes, trying to identify those words which reflect a shared history across

languages. All etymological dictionaries available today have been based on manual word

comparison, and their results fill thousands of pages. Even the largest databases which

offer cognate judgments, such as the Austronesian Basic Vocabulary Database ([Greenhill

et al., 2008]) or the Indo-European Lexical Cognacy Database ([Dunn, 2012]) are based

on manual assessments of cognacy.

Historical linguists are sceptical about automating the methods for cognate identi-

fication ([Holman et al., 2011] and commentaries, as well as [List et al., 2017b]). First,

the accuracy of automated methods is often low, failing to reproduce the analyses of lin-

guistic experts. Especially, the use of the edit distance ([Levenshtein, 1965]) has been

criticized for being linguistically too naive, conflating sound correspondences and lexical

replacement, for being useful for subgrouping or cognate detection ([Holman et al., 2011];

[Greenhill, 2011]). Second, it is hard to verify many algorithms as they are seen as black-

boxes which hide the crucial decisions leading to cognate judgments and subgroupings,

making it difficult for scholars to determine whether similarities are due to inheritance or

contact ([Jäger, 2015];[List et al., 2017a]). The non-transparency of automatic methods

is highly problematic for computational historical linguistics: if we do not know what

evidence decisions are based on, we cannot criticize and improve them.

Despite the scepticism of historical linguists, another important aspect of Historical

linguistics (also popularly known as “Diachronic Linguistics”) when it comes to phylo-

genetic inference is, indeed, Cognate Detection. The study of cognates plays a crucial

role in applying comparative approaches for historical linguistics, in particular, solving

language relatedness and tracking the interaction and evolvement of multiple languages

over time. A cognate instance in Indo-European languages is given as the word group:

night (English), nuit (French), noche (Spanish) and nacht (German).
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Information retrieval addresses the problem of scoring a document with a given

query, which is used in every search engine. One can view the above problem as the

construction of a suitable search engine, through which we want to find the cognate

counterpart of a word (query) in a lexicon of another language (documents). Rama et al.

[2018] establish that work on phylogenetic reconstruction can profit much from automatic

cognate detection. Especially where scholars are merely interested in exploring the bigger

picture of a language family’s phylogeny, algorithms for automatic cognate detection are

a useful complement for current research on language phylogenies. They test multiple

cognate detection methods and describe the usefulness of automated cognate detection

methods for phylogenetic inference. Although the cognate sets predicted by automated

cognate detection methods yield phylogenetic trees that come close to expert trees, there

is still room for improvement, and future research is needed to enhance automatic cognate

detection methods further.

However, manually annotated cognate sets are also not free from errors, and it seems

likewise useful to investigate how the consistency of cognate coding by experts could be

further improved.

Figure 1.6: Rama et al. [2018] show how cognates can form phylogenetic trees; they use

the English word ‘hand’ as a sample.

The existing studies on cognate detection involve experiments which distinguish be-

tween a pair of words whether they are cognates or non-cognates ([Ciobanu and Dinu,

2014]; [List, 2012]). These studies do not approach the problem of predicting the possible

cognate of the target language if the cognate of the source language is given. For example,

given the word ‘nuit’, could the algorithm predict the appropriate German cognate within

the huge German word list?

Achieving good performance on automatic cognate identification can also benefit

machine translation when dealing with two languages that share a certain quantity of



17 1.7. Thesis Contribution

cognates, as cognates are usually translations and serve as anchors when aligning. Hence,

we explore the task of Cognate detection, False Friends’ detection and Computational

Phylogenetics and show that Cognates help the downstream task of Machine Translation

to a certain extent.

1.7 Thesis Contribution

Our investigations in distributional similarity for cognate detection and phylogenetics span

three areas: (a) Understanding the phenomenon of shared vocabulary and cognates, (b)

The task of true cognate and false friends’ detection, and (c) Computational phylogenetics

for variant manuscripts and language typology using distributional similarity. Specific

contributions are as follows:

1. Approaches for cognate and false friends’ detection based on the notion of semantic

similarity. The notion of ‘similarity’ is explored using different measures which exist

between words and their contexts: orthographic similarity (when word spellings

are similar), phonetic similarity (where similarity among phonemes is computed),

and semantic similarity (when cross-lingual distributional similarity among words

is computed).

2. To the best of our knowledge, cross-lingual similarity-based approach to cognate

and false friends’ detection has not been explored in the past.

3. To the best of our knowledge, gaze tracking-based approach to cognate detection

has not been explored in the past.

4. Introduction of novel research problems apart from cognate and false friends’ detec-

tion, namely, computational phylogenetics for variant manuscripts. These result in

the following contributions:

(a) A first-of-its-kind approach to generate phylogenetic trees using word embed-

dings based scores.

(b) A first-of-its-kind, open-source online tool which can help capture and display

the historical evolution of a text.
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5. Creation of challenge datasets for cognates and false friends: (a) cognate dataset

across nine Indic languages, (b) false friend dataset, and (c) cross-lingual models

for all the language pairs.

6. A study in language typology for Indic languages which accurately depicts the dis-

tance among Indian languages based on Wordnet data.

To the best of our knowledge, all of the above contributions are first-of-their-kind. Our

work resulted in ‘Textual History Tool’ which is a deployment of our phylogenetic tree

generation and data accumulation approaches. The work on Textual History Tool was

accepted as a full paper, and a demonstration was provided at ISCLS-19.

1.8 Thesis Organization

This thesis is organized as follows:

1. Chapter 2 describes the mathematical and computational concepts present in this

thesis and presents a survey of the past work in the areas of cognate detection and

computational phylogenetics.

2. Chapter 3 describes our investigations in creating relevant data for this thesis, and

understanding distributed similarity, with respect to our work.

3. Following that, we discuss our preliminary investigations towards the task of Cog-

nate detection in chapter 4.

4. In chapter 5, we discuss novel feature sets proposed towards the task of cognate

detection.

5. Chapter 6 presents our approaches to false friends’ detection.

6. Chapter 7 presents our approaches to computational phylogenetics and our work on

Indian language typology.

7. We conclude the thesis in Chapter 8 and discuss future work along with it.
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Chapter 2

Research Background

In this chapter, we first describe the terminology and some foundational aspects related to

this thesis. We discuss the mathematical terms and concepts, as well as terms related to

machine learning, neural networks, and gaze behaviour that we use in the thesis. Later in

this chapter, we discuss the relevant past literature related to our research. This chapter

also provides a brief history of cognate detection and computational phylogenetics. It

summarizes the related work on current automatic cognate detection approaches. We

first cover approaches to cognate detection, followed by the past research on false friends’

detection, and computational phylogenetics for text. We also describe some of the research

done in natural language processing using eye-tracking.

Foundations and Terminology

2.1 Types of Evaluation Metrics

Cognate and False friends’ detection methodologies use machine learning and deep

learning-based classification approaches. We use the standard evaluation metrics used in

the machine learning paradigm. In addition to the above, whenever we create a dataset,

we also take into account measures of inter-annotator agreement.

2.1.1 Classification-based Measures

Classification-based models treat individual labels like ‘true’ or ‘false’ as individual

ordinal classes and treat the overall cognate detection problem as a classification problem.

23
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These types of cognate of false friends’ detection methodologies use the following eval-

uation metrics:

1. Accuracy

2. Weighted F-Score

2.1.1.1 Accuracy

Accuracy is defined as the percentage of labels in the test set that have been classified

correctly. Consider the following confusion matrix in Table 2.1. The accuracy in the

example is 75%.

Class a b

a 70 20

b 20 50

Table 2.1: Sample Table for the calculation of different evaluation metrics.

2.1.1.2 Weighted F-Score

Precision, recall and F-Score are defined per class. They are defined as follows:

• Precision is defined as the percentage of correct instances classified in a certain

class among those that have been classified in that class.

• Recall is defined as the percentage of correct instances classified in a certain class

among all the elements belonging to that class in the test set.

• F-Score is the harmonic mean between the precision and the recall.

Since precision, recall and F-Score are defined per class, in order to get the overall

measures for the data, we either micro-average or macro-average the values. The micro-

average method involves getting the weighted mean of the individual measures. This

weighted mean is weighted on the number of members in each class. The macro-average

method involves taking the arithmetic mean of the scores of all the classes.
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Class a b

Precision 0.78 0.71

Recall 0.78 0.71

F-Score 0.78 0.71

Table 2.2: Class-wise precision (P), recall (R) and F-Score (F) values from Table 2.1.

Average P R F

Micro-Average 0.750 0.750 0.750

Macro-Average 0.745 0.745 0.745

Table 2.3: Micro-average and macro-average precision (P), recall (R) and F-Score (F)

values from Table 2.1.

2.1.2 Regression-based Evaluation Measures

In addition to the above system evaluation metrics, researchers also use correlation

coefficients for regression-based systems. The most common of these is the Pearson

Correlation Coefficient (Pearson [1895]) and the Spearman Rank Correlation Coefficient

(Spearman [1907]).

2.1.2.1 Pearson Correlation Coefficient

The Pearson Correlation Coefficient is a measure of the linear correlation between

two variables X and Y . It has a value ranging between +1 and −1, with +1 denoting

perfect positive linear correlation 0 denoting no linear correlation, and −1 denoting

perfect negative linear correlation.

2.1.2.2 Spearman’s Rank Correlation Coefficient

Spearman’s Rank Correlation Coefficient is a measure of the correlation of the

ranking between the values of two variables, X and Y . While Pearson’s Correlation

measures linearity between the variables, Spearman’s Correlation measures monotonicity

between them.
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2.1.3 Inter-Annotator Agreement Metrics

Inter-Annotator Agreement is a measure of the degree of agreement among annotators

who label the data manually. This is especially important to see if the labels assigned by

annotators is due to chance or not. There are a number of rating approaches that are used

to measure Inter-Annotator Agreement, such as Cohen’s Kappa (Cohen [1968]), Fleiss’

Kappa (Fleiss and Cohen [1973]), and Gwet’s Agreement Coefficient (Gwet [2014]).

2.1.3.1 Cohen’s Kappa

Cohen’s Kappa (κ) is a measure of agreement between 2 annotators. We consider each

label as an individual class, that is decided on by our system. Cohen’s kappa coefficient

is defined and given by the following function:

k =
p0 − pe
1− pe

= 1− 1− po
1− pe

(2.1)

where,

p0 = relative observed agreement among raters.

pe = the hypothetical probability of chance agreement.

p0 and pe are computed using the observed data to calculate the probabilities of each

observer randomly saying each category. If the raters are in complete agreement then k

= 1. If there is no agreement among the raters other than what would be expected by

chance (as given by pe), k � 0.

2.1.3.2 Fleiss’ Kappa

Fleiss’ kappa assesses the reliability of agreement between a fixed number of annotators

when categorical ratings are to be assigned to a number of items for classifying items.

It can be used with binary or nominal-scale. This contrasts with Cohen’s kappa, which

only works when assessing the agreement between not more than two annotators. It is

interpreted as expressing the extent to which the observed amount of agreement among

annotators exceeds what would be expected if all annotators made their ratings entirely

randomly. Cohen’s kappa assumes the same two annotators have rated a set of items,
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Fleiss’ kappa specifically allows that although there are a fixed number of annotators

(e.g., three), different items may be rated by different individuals.

2.1.4 Gaze Behaviour

Tracking a reader’s eye movements is a way in which we see whenever a reader understands

a text. For one of our cognate detection studies, we use the eye-tracking to collect gaze

behaviour data from participants. This is based on the eye-mind hypothesis, which simply

states that “whatever the eye sees, that is what the mind processes” (Just and Carpenter

[1980]).

2.1.4.1 Interest Area

An interest area (IA) is the area of the screen that is of interest. Whenever a reader

looks at the screen, their eyes can fixate at any point on the screen - either on a word or on

the blank portion of the screen (where there are no words). Since we are interested only

on the words that a reader is fixating on, only the area of the screen, corresponding
to a word is of interest, and is called an interest area.

Interest areas are not just limited to only the word-level. We can also create sentence-

level and paragraph-level interest areas, by combining the interest areas of adjacent words

belonging to the same sentence/paragraph.

2.1.4.2 Fixation

A fixation is an event that takes place when the eye is focused at a point on the screen.

That point could either be an interest area, or the screen’s background.

In our work, we are only concerned with fixations that take place on interest areas.

This is because, according to the eye-mind hypothesis mentioned earlier, whatever the

eye sees, that is what the mind processes (Just and Carpenter [1980]).

2.1.4.3 Saccade

A saccade is the rapid movement of the eye from one fixation point to the next. There

are two types of saccades - regressions and progressions. Regressions take place
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when the eye moves from the current interest area to an earlier one. Progressions take

place when the eye moves from the current interest area to a later one.

Figure 2.1: Sample Image from our eye tracking software showing a cognate word pair,

along with fixations (turquoise circles), and interest areas (red rectangles).

Figure 2.1 shows the output from the eye-tracking software for a particular piece of

text. The turquoise circles denote fixations, with the fixation point being the centre of

the circle, and the size of the circle corresponding to the duration of the fixation. The

red rectangles correspond to interest areas. Note that we consider the words alone as the

interest areas in this example.

2.2 Types of Neural Networks

In this section, we describe the following types of neural networks:

1. Feed-Forward Neural Network

2. Convolutional Neural Network

3. Recurrent Neural Network

4. Long Short Term Memory Network

5. Transformer Networks

which we use in our thesis.
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Figure 2.2: A Simple Feed-forward Neural Network

2.2.1 Feed-forward Neural Network (FFNN)

Perceptrons [Rosenblatt, 1958] are simple supervised linear classifiers which classify the

input to one of the two classes. Perceptrons were invented to mimic the neurons in the

brain. The input signals are sent to the perceptron where they are weighted according

to the strength of the connection, and the resulting weighted inputs are summed up. If

the sum is greater than a threshold the perceptron fires else it is said to be inhibited.

However, perceptrons were criticized for being capable of learning only linear boundaries

and unable to learn a simple XOR function.

Feed-forward Neural Networks contain multiple layers of perceptrons, i.e., and per-

ceptrons are organized in an array fashion comprising of a layer. The architecture of a

simple feed-forward neural network is, as shown in Figure 2.2. These layers are connected

both above and below with similar perceptron arrays. Each layer receives input from the

previous layers through weighted connections. Unlike regular perceptrons, the weighted

sum is passed through an additional layer of non-linearity, usually a sigmoid activation

function. The output from the sigmoid activation function acts as inputs to the higher

layers. The output from the last layer is then sent through the output layer. The non-

linearity allows the network to not suffer from the same disadvantage as a perceptron.

The network is trained through Back-propagation algorithm.
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Figure 2.3: Architecture of a Vanilla RNN

2.2.2 Convolutional Neural Network (CNN)

Many NLP tasks involve working with variable length sequences. For example, a se-

quence of words forming a sentence, a sequence of characters forming a word, etc. Feed-

forward neural networks have the disadvantage of requiring fixed-length input, thus ren-

dering it infeasible for many NLP tasks. A convolutional neural network is a type of

neural network which learns space-invariant features. For example, the representation

for the phrase “Ram likes Shyam” is the same as that of “Shyam likes Ram”. They are

regularized versions of fully connected networks, that take advantage of patterns in data

to assemble more complex patterns using more simple patterns.

2.2.3 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNN), also known as Vanilla RNN, provides an elegant

solution to the problem of long-range dependencies usually present in the sequences. For

instance, consider the task of language modelling where the goal is to predict the next

word in a sentence given the context, i.e., previous words. For a given time step t, the

RNN looks at the current input xt and the output for previous time-step ht−1 and then

extracts a set of relevant features ht. The mathematical formulation is described below,

ht = ϕ(Uxt +Wht−1) (2.2)
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Here, ϕ is a sigmoid non-linearity function. The model remembers the history via

ht−1, which is again obtained from ht−2. The architecture of a vanilla RNN is as shown

in Figure 2.3. The training of the network happens via Backpropagation Through Time

(BPTT) algorithm. The network is unfolded for every time-step and gradients at each

time-step is accumulated till the first time-step, after which the gradient update proceeds.

Vanilla RNN using sigmoidal activation has been observed to suffer from the van-

ishing/exploding gradient issue [Bengio et al., 1994]. Vanishing gradient problem arises

when the gradient of the loss function approaches zero resulting in the network not learn-

ing anything. Exploding gradient problem arises when the derivatives become very large,

thus resulting in large updates to the network weights leading to instability in the net-

work. Long Short Term Memory [Hochreiter and Schmidhuber, 1997a] and other variants

of RNN are usually preferred over Vanilla RNNs. Recently, Le et al. [2015] demonstrated

that carefully initializing RNNs and replacing sigmoid units with Rectified Linear Units

(ReLU) can overcome the problem of vanishing/exploding gradients to a certain extent.

2.2.3.1 Long Short Term Memory (LSTM)

Long Short Term Memory [Hochreiter and Schmidhuber, 1997a] was proposed to overcome

the vanishing/exploding gradients usually observed in Vanilla RNNs. LSTMs introduce

the concept of a time-dependent memory cell state Ct. The information flow to and from

the memory cell is regulated through various gate vectors.

Given the current input xt and the output from LSTM at previous time-step ht−1,

the information flow through an LSTM proceeds as follows. The input flows through

a forget gate which decides which components of the memory cell state to be forgotten

before passing to the next stage.

ft = σ(Wf [ht−1, xt] + bf ) (2.3)

Here, Wf and bf are the forget gate weights and biases, ft is the forget gate vec-

tor. In parallel, the input information passes through an input gate which decides which

components needs to be passed to update the contents of the memory cell state.

it = σ(Wi[ht−1, xt] + bi) (2.4)
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Here, Wi and bi are the input gate weights and biases, it is the input gate vector.

The next step creates the new memory cell state vector C̃t based on which the memory

cell state would be updated.

C̃t = tanh(WC [ht−1, xt] + bC) (2.5)

Here, WC and bC are weights and biases used to calculate the new memory cell state.

The next step is to update the memory cell state which is done as follows,

Ct = ft ◦ Ct−1 + it ◦ C̃t (2.6)

We observe that the forget gate vector and input gate vector regulate how the current

memory cell is updated based on the information passed from the previous cell state and

the current input. The next step is to calculate the information to be passed to the

higher layers. The output gate decides what information from the cell state is passed to

the higher layers.

ot = σ(Wo[ht−1, xt] + bo) (2.7)

ht = ot ◦ tanh(Ct) (2.8)

Here, Wo and bo are the output gate weights and biases, ot is the output gate vector.

ht is the output vector from the LSTM component for the time-step t.

2.2.3.2 Gated Recurrent Units (GRU)

Gated recurrent Units (GRU) are a simplified version of the LSTM proposed by Cho et al.

[2014]. Unlike LSTM, GRU do not have any memory cell state. A GRU has two gates,

reset gate and update gate similar to the gates in LSTM. The reset gate vector rt and

update gate vector zt are calculated as follows,

rt = σ(Wr[ht−1, xt] + br) (2.9)

zt = σ(Wz[ht−1, xt] + bz) (2.10)
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Here, Wr and br are the reset gate weights and biases, Wz and bz are the update gate

weights and biases. The information to be passed through is calculated as follows,

C̃t = tanh(Whxt + Uh(rt ◦ ht−1) + bh) (2.11)

The output ht from the GRU unit for the time-step t is now calculated as follows:

ht = (1− zt) ◦ ht−1 + zt ◦ C̃t (2.12)

2.2.4 Transformer Networks

Transformer networks [Vaswani et al., 2017] were proposed as a non-recurrent alternative

to RNNs. Transformer networks take advantage of the attention mechanism and position

encoding to handle the sequential nature of the data. As there is no recurrence in the

model, the computation can happen for all time steps in parallel, leading to a significant

speed-up.

Consider any task involving the processing of sequences as input. For example,

let X = {x1, . . . , xn} be the sequence of words forming the sentence. The words are sent

through a lookup table to obtain the corresponding word embedding sequence {h0
1, . . . , h

0
n}.

This sequence is sent through an encoder layer. The encoder layer comprises of m identi-

cal layers and let us call the layers as disambiguation layers. The disambiguation layers

consists of two sub-layers multi-headed self-attention layer and position-wise feed-forward

layer.

2.2.4.1 Multi-headed Self-attention Layer

Given a sequence of inputs {hi−1
1 , . . . , hi−1

n } from the lower-layer i-1, the input is sent

through parallel Scaled Dot-Product Attention layers. Scaled Dot-Product Attention layer

employs queries and keys to find parts of the sentence more relevant to the word at the

current time-step. Every input is multiplied by three sets of matrices Query (Q), Key (K),

and values (V). The query matrix is responsible for probing features which it is expecting

from other words in the sequence. The Key matrix is responsible for broadcasting features

exhibited by the words in the sequence. Given the word represented by input vector hi−1
j
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we first multiply the input vector with the query matrix to get the query vector. We now

multiply the input vector of every word with the key matrix to get a set of key vectors.

Multiplying query vector with the key vector gives the information if the word with the

corresponding key vector holds any information useful to the word represented by the

query vector or not. The query vector of jth word is multiplied with the key vector of

every word which is later sent through a softmax function. The softmax layer gives a

distribution over the words in the sequence indicating which words are relevant to the

current jth word. We now take a weighted average of the value vectors with the weights

coming from the softmax output. The entire process can be concisely written as follows:

Attention(Q,K, V ) = softmax(QKT

√
dk

)V (2.13)

here, dk is the dimension of the input representation. The layer consists of l such

parallel Scaled Dot-Product Attention modules, the output of which are concatenated and

sent through a projection layer to project it back to dk dimensions to get the sequence

h
prei
1 , . . . , h

prei
n . The output is now sent through a residual connection followed by layer

normalization. The output can now be written as LayerNorm (hi−1
j + h

prei
j ).

2.2.4.2 Position-wise Feed-Forward Networks

The output from the multi-headed self-attention layer is sent through a feed-forward

neural network. The feed-forward neural network is applied to individual time-steps

separately. The network consists of a linear layer followed by ReLU activation and another

linear layer. The output of the feed-forward neural network is sent through a residual

connection and layer normalization step similar to the one described in multi-headed self-

attention layer. The self-attention mechanism and the position-wise feed-forward network

are responsible for obtaining relevant features for the word at that time-step.

2.3 Literature Survey: A Brief History

In this part of the chapter, we describe the relevant past literature starting with a

brief history of related research work. Kay [1964] discuss the importance of cognates in

historical linguistics. They theorize that construction of cognate words across two or more
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languages from the same hypothetical source language should help reduce the number of

phonemes required to construct new words.

A classic approach [Dolgopolsky, 1964] is based on the concept of sound classes. They

cluster sounds into various classes to reduce the phonetic space for comparison across

languages; classes which frequently occur in correspondence relation in genetically related

languages. This work provides us with a somewhat rough but grounded sound class system

and groups all consonants into ten classes which ignores the vowels. When converting all

words in the data to their respective sound classes, different criteria can be used to assign

words which resemble each other in their sound classes, to the same set of cognate words.

Haynes [1984] discuss the patterns among cognates and their role in acquiring a second

language. De Groot and Nas [1991] identify that connected lexical representations among

two languages have shared conceptual representations. They show that cognates, within

a language, and across languages share conceptual representations; which is not the case

for non-cognates. They compare within- and between-language repetition-priming and

associative (semantic)-priming effects for performing their experiments.

Classical approaches to identify cognates between language pairs [Simard and Foster,

1992, Kondrak, 2001, Inkpen et al., 2005, Schulz et al., 2004] consist of methods to com-

pute similarity among words based on orthographic and/or phonetic measures. Some of

the measures in the first group are EDIT distance, LCSR (longest common subsequence

ratio), Jaccard distance and measures based on the number of n-grams that are shared

by words. Another frequently employed measure is the binary identity function. The

phonetic approaches are Soundex and Editex, which try to take advantage of individual

features to determine the similarity between words [Mackay and Kondrak, 2005].

In the area of computational phylogenetics, Sokal [1961] describe how distance can be

used as a measure for computing similarity between various taxa. They describe the uti-

lization of their work in the domain of zoology, but the same is applicable in linguistics

when the taxa in consideration are various versions of the same text. Fitch and Mar-

goliash [1967] present their work on the construction of phylogenetic trees which uses

distance-based methods to generate phylogenies. Their work is generally applicable to all
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the phylogenetic analyses whether it is on the domain of biology, zoology, or language pro-

cessing. Tuldava [1980] discuss statistical fit and the possibilities of extrapolation beyond

the limits of observable data are illustrated on the material of several languages belong-

ing to different typological groups. Phylogenetic regression [Grafen, 1989] uses statistical

regression analysis to perform phylogenetics among species using multiple techniques.

2.4 Automatic Cognate Detection

This section presents an overview of the work done prior to this thesis in the area of

cognate detection. We organize it in different subsections based on methodologies used

to detect cognates among languages.

2.4.1 Orthographic or String Similarity

Cognate detection has been explored vastly in terms of methodologies and for various

languages. ‘Orthographic’ or ‘String’ similarity-based methods are often used as baseline

methods for cognate detection. The most commonly used method amongst them is the

similarity measure based on edit distance [Melamed, 1999].

Ciobanu and Dinu [2014] automatically detecting pairs of cognates employing an or-

thographic alignment method which aligned subsequences as features for support vec-

tor machine (SVM) algorithm, in order to infer rules for linguistic changes undergone

by words when entering new languages and to discriminate between cognates and non-

cognates. The authors further their research [Ciobanu and Dinu, 2015] and propose a

computational approach for discriminating between cognates and borrowings from other

languages. They show that orthographic features have discriminative power and analyze

the underlying linguistic factors that prove relevant in the classification task.

Bhargava and Kondrak [2009] test the applicability of the Hidden Markov Model

(HMM) algorithm for the tasks of multiple cognate alignments and cognate set matching.

They test HMMs for two tasks, viz., multiple cognate alignment and cognate set matching

and report the HMMs can be further profiled for word-based NLP tasks.
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While the LexStat algorithm by List [2014] uses a permutation method to compute

individual segmental similarities between individual language pairs which are then fed

to an alignment algorithm, the PMI similarity approach by Jäger [2014] infers general

segmental similarities between sounds from an exhaustive parameter training procedure.

2.4.2 Phonetic Alignment and Phoneme Matching

Turchin et al. [2010] further formalized the classical approach proposed by Dolgopolsky

[1964] and employed a modified sound class schema of nine vowel classes to test the Altaic

hypothesis1. The Consonant Class Matching (CCM) approach, as they call it, reported

relatively lesser false positives; but the number of false negatives was very high [List, 2014].

This was due to the lack of flexibility in the procedure, which hard-coded sounds to classes,

ignoring the fact that a change in sound is usually based on fine-grained transitions.

Previous approaches to cognate detection using various aspects also involves the com-

putation of similarity by decomposing phonetically transcribed words [Kondrak, 2000].

Another work which forms the basis of phonetic alignment for the task of cognate detec-

tion was proposed by Covington [1996]. However, Kondrak [2000] present a new algorithm

that combines a number of techniques developed for sequence comparison with a scoring

scheme for computing phonetic similarity on the basis of multivalued features.

LexStat [List, 2012] is a framework which combines various approaches to compare

sequences in historical linguistics and evolutionary biology in a novel framework. This

framework closely models the most important aspects of the comparative method. Their

method was tested on a large gold standard of IPA encoded wordlists which showed

highly consistent results across languages. Amengual [2012] investigate voice onset times

(VOTs) to determine whether cognates enhance the cross-language phonetic influences in

the speech production of Spanish–English bilingual speakers.

Rama and Borin [2011] explore the use of parallel corpus to estimate language relat-

edness with cognates. The use of gap-weighted subsequences for discriminating cognates

from non-cognates was proposed by Rama [2015]. They propose a scheme to integrate pho-
1The Altaic Hypothesis

https://linguistics.byu.edu/classes/Ling450ch/reports/altaic.htm
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netic features into the feature vectors for cognate identification. To further their research,

they also propose the use of, and evaluate two similarity-dependent Chinese Restaurant

Process (sd-CRP) algorithms [Rama et al., 2015] at the task of automated cognate detec-

tion. Later, they also proposed the use of convolutional neural networks (CNN) for the

purpose of cognate identification [Rama, 2016]. They come up with a siamese architecture

that jointly learns phoneme level feature representations and language relatedness from

raw words for cognate identification.

Rama et al. [2017] explore the use of unsupervised methods for detecting cognates in

multilingual word lists. They use online expectation maximization (EM) to train sound

segment similarity weights for computing similarity between two words. Rama and List

[2019] also present an automated framework for the task of cognate detection. They also

show that this framework performs the task of cognate detection comparatively faster

than the previously proposed approaches while it achieves, more or less, the same accuracy

when compared to other methods.

2.4.3 Semantic Matching based Approaches

Frunza and Inkpen [2006] discuss the detection of partial cognates by utilizing semi-

supervised bilingual bootstrapping. Hauer and Kondrak [2011] incorporates a number of

diverse word similarity measures and features that encode the degree of affinity between

pairs of languages. The output of this classification algorithm is then used to generate

cognate groups.

Dellert [2014] develop a method applied to an entire dictionary database, resulting

in a polysemy network that spans around 30,000 German lexemes. They hypothesize

that short paths in polysemy networks are expected to express possible semantic shifts.

They investigate a number of true cognate pairs whose translations are connected in the

polysemy network by shortest paths of different lengths and show that polysemy networks

across languages can be used to identify cognates.

St Arnaud et al. [2017] explore various methods which use semantic similarity from

corpus-based techniques to perform the task of cognate alignment and cognate matching.
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Comesaña et al. [2012] explore how bilingual speakers represent words in two languages

and which mechanisms are responsible for L2 (second language) acquisition. They answer

these important questions in the bilingual and vocabulary acquisition literature. They do

not, however, perform the task of automatic cognate detection.

Mulloni et al. [2007] purely orthographic approach to the cognate detection task by

introducing semantic evidence in the form of monolingual thesauri and corpora to support

the identification process. Their method on only four different language pairs suggested

that the introduction of semantic evidence in cognate detection helps to increase the

precision of cognate identification, which forms the basis of our work.

Kondrak [2001] introduce a procedure for estimating the semantic similarity of glosses

that employs keyword selection and WordNet[Fellbaum, 2010]. They perform experiments

on vocabularies of four Algonquian languages. However, their work indicates that their

method is capable of discovering, on average, nearly 75% per cent of cognates with only

50% precision.

Labat and Lefever [2019] present develop a context-independent gold standard dataset

by manually labelling word pairs of cognates and false friends in bilingual term lists. These

annotated cognate pairs are used to train and evaluate a supervised binary classification

model for the automatic detection of cognates. However, this approach is only tested for

the English-Dutch language pair.

2.5 False Friends’ Detection

False Friends are a particular and yet very frequent type of mainly inter-lingual error

which can decrease the accuracy of downstream NLP tasks. The kind of error we are

dealing with, usually, involves two different languages. Confusion arises because word A

(which belongs to the foreign language being learned or used) looks or sounds exactly

or nearly like word B, which belongs to the learner’s mother tongue. The user then

establishes an unwarranted inter-lingual equivalence on the basis of this total or partial

similarity [Hayward and Moulin, 1984].
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For our work, we consider Frunza and Inkpen [2009] the definition of cognates and

false friends where cognates are pairs of words that are understandably similar and are

translations candidates for each other. Pronunciation can be completely identical or not,

for example, amor-amor and jefe (in Spanish) - chefe (in Portuguese). Frunza and Inkpen

[2009] also consider as cognates, word pairs that are orthographically identical or have

slightly different spellings. False Friends are pairs of words in two languages that are

thought to be similar, but have different meanings (semantically different), depending on

the context. for example, aula (class, in Portuguese) - aula (classroom, in Spanish).

Frunza and Inkpen [2009] propose an approach to identify cognates and false friends

estimating various orthographic and phonetic similarity-based distance measures between

word pairs. The authors propose to employ ML techniques to differentiate between cog-

nates from false friends. Their work on the language pair French-Portuguese language pair

considers orthographic and phonetic similarity measures as the classification feature set.

The measures used by them are IDENT, PREFIX, DICE, TRIGRAM, XDICE, XXDICE,

LCSR, NED, SOUNDEX, in addition to some other measures considered as generaliza-

tions of the metrics LCSR and NED, defined in [Kondrak and Dorr, 2004]. Frunza and

Inkpen [2009] combine several techniques to disambiguate between cognates and false

friends. According to them, there are several investigations dedicated to building cognate

lists, but few studies centre on the identification of false friends.

Initially, Inkpen et al. [2005] focussed on French and English, but their methods are

known to be applicable to other language pairs. They use several measures of orthographic

similarity as features for classification among cognates and false friends. They study

the impact of selecting different features, averaging them, and combining them through

machine learning techniques for the task of false friends classification.

The work done by Mitkov et al. [2007] proposes novel methods for the automatic identi-

fication of both cognates and false friends from comparable para corpora. Their methods

do not require parallel corpus and make use of monolingual corpora and a bilingual dic-

tionary necessary for mapping the co-occurrence data across languages. Their methods

do not require that the newly discovered cognates or false friends to be present in the

dictionary and hence are capable of operating on out-of-vocabulary expressions.
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Nakov et al. [2009] present several unsupervised algorithms for acquiring such pairs

from a sentence-aligned bi-text. They try different ways of exploiting simple statistics

about monolingual word occurrences and cross-lingual word co-occurrences in the bi-

text. Using methods from statistical machine translation, they induce word alignments

in an unsupervised way, from which they estimate lexical translation probabilities, which

they, then, use to measure cross-lingual semantic similarity. They also experiment with

a semantic similarity measure that uses the Web as a corpus to extract local contexts

from text snippets returned by a search engine, and a bilingual glossary of known word

translation pairs, used as ”bridges”. Finally, they combine all the methods to detect false

friends across Russian-Bulgarian word pairs.

Torres and Aluísio [2011] evaluate the performance of (ML) algorithms in the identifica-

tion of cognates and false friends, based on orthographic similarity measures, confirming

that these measures are not sufficient for classification of false friends from cognates;

however, when combined with other measures, they can achieve more satisfactory results.

Ljubešić and Fišer [2013] a corpus-based approach to automatic identification of false

friends for Slovene and Croatian. They focus on measuring the difference in meaning

between identically spelt words by using frequency and distributional information from

the corpora.

For the detection of false friends and true cognates, Chen and Skiena [2016] present

an unsupervised transliteration based approach but do not report F-scores for Indian

languages. Their results for the detection of false friends are inconclusive not just for

eight Indian languages they discuss, but for 50% of languages they report their work on,

as stated in their work. For the task of False Friends’ detection, they show only a high

correlation of English-French and English-Spanish language pairs with manual validation.

The most recent work by Castro et al. [2018], which explores the problem of False

Friends’ detection, utilizes monolingual embeddings generated using word2vec [Mikolov

et al., 2013c] for Spanish and Portuguese. They foray into the semantic layer and apply

projection of two separate monolingual embeddings into a shared space, but using an

inefficient method which our work shows to improve upon significantly.
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2.6 Computational Phylogenetics

Automatic Cognate Detection (ACD) is an important task which can help phylogenetic

reconstruction and complement current research on language phylogenies [Rama et al.,

2018]. Kulkarni [2012] builds a phylogenetic tree for Malayalam manuscripts of the Kā

ś ikāvrtti, with manual analysis, to show that M is the archetype source and Ma, Mb

and Mc are its hyperarche child nodes. Kulkarni [2003] and Kulkarni [2008] build another

similar tree for the Sharada manuscript variants of the KV. In recent years, computational

phylogenetics has developed various methodologies [Felsenstein, 2004, Huelsenbeck et al.,

2001, Saitou and Nei, 1987, Swofford et al., 1996] for bioinformatics.

The growth of phylogenetics as an area with significance to statistical methods is cap-

tured by Felsenstein [2001] in an article where he explains the developments of numerical

methods for phylogenetic reconstruction. Computational linguistics has adopted many

of these methods for the construction of phylogenetic trees. Computational linguistics,

however, majorly depends on the lexical analysis of the textual variants and induces

the dissimilarities present in phylogenetic approaches. A major disadvantage of using

character-based or lexical distance-based methods is the need for manually curated word

lists. Csernel and Patte [2007] discuss the LCS algorithm for preparing a critical edition

of Sanskrit texts and provide a method for comparison of Sanskrit manuscripts. Among

the many available methods [Huelsenbeck, 1995] to construct phylogenetic trees, UPGMA

[Gronau and Moran, 2007] is widely used in historical linguistics. Their method assumes

a constant rate of evolution and is not a well-regarded method for inferring interrela-

tionships among the taxa unless this assumption has been justified for the dataset in

use.

The UPGMA method constructs phylogenetic trees based on a distance matrix which

can be computed in various ways. Saitou and Nei [1987] proposed a neighbor-joining

method to construct phylogenies based on sequence analysis, which uses genetic dis-

tance as a clustering metric. Moret et al. [2002] study the sequence lengths required

by neighbor-joining, greedy parsimony, and a phylogenetic reconstruction method based

on disk-covering and the maximum parsimony criterion and show improvements in large

scale phylogenetic reconstruction. However, Neighbor-joining is considered a more effi-
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cient method compared to the more accurate Fitch-Margoliash [Fitch and Margoliash,

1967] method.

Symmetric cross-entropy is one of the methods which is a letter n-gram based mea-

sure similar to the one used by Singh [2006b] for language and encoding identification.

Singh and Surana [2007] used corpus-based measures to show that corpus can be used

for a comparative study of languages. They used both character n-gram distances and

surface similarity [Singh, 2006a] to identify the potential cognates, which are used to es-

timate the inter-language distance. Rama and Singh [2009] also used measures based on

cognate identification and feature n-grams to infer this matrix. Ellison and Kirby [2006]

discussed establishing a probability distribution for every language through intra-lexical

comparison using confusion probabilities and estimate distances using KL divergence and

Rao’s distance [Atkinson and Mitchell, 1981].

2.7 Cognitive Psycholinguistics for NLP tasks

It is intuitive that tasks involving subjective judgements can benefit from cognitive in-

formation of the readers. Using gaze behaviour information is one such way of collecting

cognitive information. Eye-tracking is a means of tracking the eye movements of a reader

as he/she reads a piece of text. Using eye-tracking, we are able to extract the gaze be-

haviour of the reader as he/she reads the text. The link between gaze behaviour and

cognitive understanding was hypothesized by Just and Carpenter [1980].

Much work has been done to study the relationship between various linguistic fea-

tures and the corresponding aspects of gaze behaviour. Word length has been shown to

be positively correlated with fixation count ([Rayner, 1998]) and fixation duration ([Hen-

derson and Ferreira, 1993]). Word predictability, (i.e., how well the reader can predict

the next word in a sentence) was also studied by Rayner [1998], where he found that

unpredictable words are less likely to be skipped than predictable words. Devices like

smartphones come with cameras that could be used to track rudimentary gaze move-

ments. For example, Smart Scroll (Samsung smartphones and tablets) is an application

that looks at a person’s eye movements and automatically scrolls through a web page on

the browser application. SR Research has also launched a portable eye tracker2.

2SR Research Eyelink Portable Duo

https://www.sr-research.com/eyelink-portable-duo/
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Gaze behaviour has been used to aid in solving a number of NLP tasks ([Mishra and

Bhattacharyya, 2018]). Collecting gaze behaviour information though is a costly task - in

terms of time and money. Therefore, a lot of the research nowadays is being done to learn

gaze behaviour and use that learnt gaze behaviour to solve various NLP tasks. Klerke

et al. [2016], for instance, use a multi-task learning approach to shorten sentences. They

bin the first fixation duration and regression duration features to normalize for varying

reading speeds for different readers. González-Garduño and Søgaard [2017], Singh et al.

[2016a] described a way to incorporate learning gaze behaviour to predict readability.

Mishra et al. [2018] describes an approach to learn gaze behaviour in a multi-task learning

framework for sentiment analysis on movie reviews.

2.8 Summary

In the first part of this chapter, we have described the different mathematical, computa-

tional, and gaze behaviour related terms that we would use later on in this thesis. We

first looked at different types of system performance measures, correlation coefficients

like Pearson’s Correlation Coefficient (Pearson [1895]) and Spearman’s Rank Correlation

Coefficient (Spearman [1907]). After that, we defined basic gaze behaviour terms like

interest areas, fixations and saccades. We described different types of neural network

layers that we used in our thesis.

In the second part of this chapter, we have described the previous literature in the

areas of automatic cognate detection, false friends’ detection and computational phylo-

genetics. First, we described historical work done in these areas. We, then, explained a

number of different methodologies that are used for automatic cognate detection. Next,

we looked at a number of previously explored methodologies for the task of false friends’

detection that are used in NLP tasks. After that, we discussed a few papers that es-

tablish the use of cognates in computational phylogenetics and dealt with the problem

computational phylogenetics in general. We also described previous work which performs

manual phylogenetic analysis for creating phylogenies of a single text. Finally, we looked

at some of the research done in the area of utilizing cognitive psycholinguistics for natural

language processing tasks.



Chapter 3

Distributional Semantics & Dataset

Creation

In the thesis so far, we have presented past work related to cognates in linguistics

and computational linguistics. We discussed various approaches to the cognate detection

task, the false friends’ detection task, and computational phylogenetics along with a

brief use of cognitive psycholinguistics for NLP. This chapter presents our exploration

in understanding the distributional hypothesis and its application to cognate detection,

false friends’ detection and computational phylogenetics. We also provide details of our

foundational work done on the creation of linked datasets for the tasks investigated in

this thesis.

3.1 Distributional Semantics

The distributional hypothesis in linguistics states that “words that occur in the same

contexts tend to have similar meanings” [Harris]. This concept of “a word is known by

the company it keeps” was proposed by Firth [1957]. This theory has formed a base for

various tasks in statistical semantics which lead to improved performance in many NLP

tasks [Collobert et al., 2011, Turian et al., 2010]. Deep learning techniques have been

proposed as an alternative to traditional machine learning models for dealing with the

semantics of a word. The deep learning techniques employ deep neural networks for mod-

elling the NLP task. These deep neural networks are usually trained on the unlabeled data

in an unsupervised way in the first stage. This stage is called unsupervised pre-training

45
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phase and enables the model to learn better features from the available large unlabeled

data. The model is later fine-tuned for the task in hand and takes advantage of the

features learned during the unsupervised pre-training phase. Word embeddings [Mikolov

et al., 2013c,d, Pennington et al., 2014, Dhillon et al., 2015, Bojanowski et al., 2017a] are

an example of unsupervised pre-training phase in NLP which is based on distributional

similarity among the vocabulary used for the pre-training phase. The objective, here, is

to predict the middle word given the surrounding words (CBOW variant) using a simple

feed-forward neural network. Such an objective takes advantage of all available unlabeled

corpora in that language. A desirable side-effect of this objective is, the first layer of the

neural network embeds the words in a d-dimensional real-valued vector space. The word

embeddings are shown to form clusters containing other similar words in the vector space.

These real-valued vectors are commonly referred to as word embeddings and have been

shown to improve the end task performance when used in the fine-tuning phase as inputs

or the first layer of the deep neural network [Turian et al., 2010]

Recently, deep learning has been extremely successful in a wide array of NLP applica-

tions. This is primarily due to the development of word embeddings, which have become

a crucial component in modern NLP. Bengio et al. [2003] were the first to propose neural

word embeddings. Many word embedding models have been proposed since then [Col-

lobert and Weston, 2008, Huang et al., 2012, Mikolov et al., 2013b, Levy and Goldberg,

2014]. They have been efficiently utilized in many NLP applications: Part of Speech Tag-

ging [Collobert and Weston, 2008], Named Entity Recognition [Collobert and Weston,

2008], Sentence Classification [Kim, 2014], Sentiment Analysis [Liu et al., 2015], Sarcasm

Detection [Joshi et al., 2016]. Mikolov et al. [2013a] made a particularly interesting ob-

servation about the structure of the embedding space of different languages. They noted

that there is a linear mapping between such spaces.

3.1.1 Monolingual Embeddings

In this section, we will look at algorithms for obtaining word embeddings in a particular

language. These models are mostly trained on a large monolingual unlabelled corpus

available for the language of interest.
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3.1.1.1 word2vec

[Mikolov et al., 2013d] proposed a method to learn a continuous vectorial representation

of words. In their method, every word is represented by a d dimensional real-valued vector.

The objective is to maximize the likelihood of seeing the word given its context. This fits

nicely into the distributional hypothesis that words with similar contexts learn similar

representation, and hence they tend to be similar. Unlike other tasks, this method does

not require any annotated corpus. It requires unannotated monolingual corpus, which is

easy to obtain for many languages. It treats every word along with the context appearing

in the corpus as training instances. The training is done using the stochastic gradient

descent method.

The method has two variations: a) predict the middle word given its contextual (or

neighbouring) words known as Continuous Bag-Of-Words (CBOW) approach and b) pre-

dict the contextual words given the middle word known as Skip-gram approach. Since

the output is now of vocabulary size, which is large even for reasonably large corpus,

Hierarchical Softmax or Negative Sampling is used.

3.1.1.2 Fasttext Embeddings

A major setback with word2vec model is it neglects sub-word information. This might

not be crucial for languages like English, but it is crucial for morphologically rich languages

i.e, both agglutinative and inflectional languages. Every inflection of the same root form

is considered as a different type. For example in Kannada, every inflectional form of

the word ಾಮ (raama) as in ಾಮನು (raamanu), ಾಮ ಂದ (raamaninda) (from raama),

ಾಮ ೆ (raamanige) (to raama), etc. is considered as a different type. As a result, there

is no sharing of contextual information across these inflectional forms, which leads to some

forms learning better representation compared to other forms. This is a major setback for

downstream applications like Named Entity Recognition, Question Answering, Machine

Translation, etc. which rely on word embedding features.

Recently, [Bojanowski et al., 2017a] proposed an extension to word2vec, which considers

sub-word information while calculating word embedding. Given a dictionary, they find

the most frequent character n-grams present in the character sequence forming the word,
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(a) Offline Approach

(b) Online Approach

Figure 3.1: Different Approaches for Bilingual Embeddings

with n varying from say 3 to 6. The final embedding of the word is the sum of embeddings

of all the character n-grams and the embedding of the word as a whole.

Given a word, all the frequent character n-grams present in it are listed. The word

representation of the word is now the sum of its word embedding and the embedding of

all the frequent character n-grams present in it. The algorithm is the same as word2vec

except for this variation where the word representation contains information about its

sub-words also.

3.1.2 Bilingual and Cross-lingual Embeddings

Word embeddings represent words of a language as d dimensional points in a d dimen-

sional space. These word embeddings are usually trained from the monolingual corpus and

are used as input features for various NLP tasks. The quality of such word embeddings

depends on the availability of large monolingual corpus. For languages like English, we
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have large amounts of monolingual corpora available which is not the case for low-resource

languages.

However, to project features from one language to another, we need language-independent

features to be fed into the system. Word embedding features, though valuable, are pre-

dominantly language-dependent making them inapplicable as cross-lingual features. How-

ever, several approaches have been proposed to obtain Bilingual Embeddings or Multilin-

gual Embeddings where similar words across languages have similar embedding features.

Approaches to obtain bilingual or multilingual embeddings fall into broadly two cate-

gories (i) offline methods and (ii) online methods. Offline methods use existing pre-trained

monolingual word embeddings and project them onto a common space using bilingual

dictionaries and are demonstrated by Figure 3.1a. Online methods learn the bilingual

embeddings directly from the corpus (Figure 3.1b.)

3.1.2.1 BilBOWA

BilBOWA (Bilingual Bag-of-Words Without Alignments) is an online approach for

learning bilingual embeddings. The approach uses available monolingual corpora in both

the languages and a sentence-aligned parallel corpus. The approach has a monolingual

objective and a cross-lingual objective. The monolingual objective is the same as the Skip-

gram objective using negative sampling as defined by [Mikolov et al., 2013d]. The cross-

lingual objective minimizes the mean L2 loss between the mean bag-of-words sentence

vectors of the parallel corpus. Specifically, given a parallel sentence pair, each sentence

on either side is represented as the mean of the word vectors of the words present in that

sentence, also called as the sentence vector. As the two sentences are translations of each

other, the obtained sentence vectors should be closer to each other. This is accounted for

by the L2 loss in the objective. This forces similar words (or translations) across the two

languages to have similar word embeddings.

3.1.2.2 Bilingual Embedding Using Inverted Softmax

Smith et al. [2017] presented an offline approach to learn bilingual embeddings. The

intuition is that similar words across languages should have similar contextual distribu-
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tions. To better understand the approach, running word2vec ([Mikolov et al., 2013c,d])

on the same corpus twice will result in the same word having two different word embed-

dings. However, the relative similarity/dissimilarity between the words will be retained.

A simple rotation of one of the word embedding space is sufficient to align the two embed-

ding spaces. Similar reasoning holds valid for word embeddings trained on comparable

corpus in the same language. [Smith et al., 2017] extended the above approach to the

cross-lingual scenario, and the objective is to learn the rotation matrix. However, to learn

the rotation matrix, we need some anchor points (or words) which are obtained from a

bilingual dictionary. The approach maps words from both the languages to a common

embedding space.

3.1.2.3 Multilingual Unsupervised and Supervised Embeddings (MUSE)

Lample et al. [2018] proposed an approach to learn bilingual embeddings in both su-

pervised and unsupervised setting. Unlike the previous approach, they map the source

language words to the target space, and the goal is to learn an orthogonal projection

matrix. In the unsupervised setting, the model uses adversarial training to learn cross-

lingual embeddings without using any bilingual dictionary. The quality of the projec-

tion matrix learned would be very poor. In the next stage, they build a synthetic parallel

dictionary after the adversarial training step. The model then solves the supervised ob-

jective using the generated synthetic dictionary to obtain better projection matrix. They

build the synthetic dictionary again using the new projection matrix obtained, and the

same process is repeated again and again.

3.1.2.4 Cross-lingual Language Model (XLM) and XLM-RoBERTa (XLM-R)

Conneau and Lample [2019], Conneau et al. [2019] introduce a new unsupervised

method for learning cross-lingual representations using cross-lingual language modelling

and investigate two monolingual pre-training objectives. One unsupervised that only relies

on monolingual data, and one supervised that leverages parallel data with a new cross-

lingual language model objective. This work builds on top of Devlin et al. [2018], Howard

and Ruder [2018], Radford et al. [2018] and provides a pre-trained cross-lingual model

for many languages. Using the pre-trained models provided or by training XLM/XLM-R

models on a custom corpus, word embeddings can be obtained via the lookup table of



51 3.2. Dataset Creation

cross-lingual language model (XLM) which can help obtain similarity scores for two words

from different languages.

3.2 Dataset Creation

In this section, we shall describe the initial efforts towards creating a linked knowledge

graph dataset for the task of cognate and false friends’ detection tasks. We will describe

the linked IndoWordnet knowledge graph, and our efforts to produce linkages with English

Wordnet to expand our work of cognate detection among Indian languages to finding

cognates among English and Indian languages. The two subsections below describe two

research papers accepted at Global Wordnet Conference 2018 and Language Resources

and Evaluation Conference 2018.

3.2.1 IndoWordnet & Linkages with Princeton WordNet

Wordnets [Fellbaum, 1998] have been useful in different Natural Language Processing

applications such as Word Sense Disambiguation [TufiŞ et al., 2004, Sinha et al., 2006],

Machine Translation [Knight and Luk, 1994], etc. Linked Wordnets are extensions of

wordnets. In addition to language specific information captured in constituent wordnets,

linked wordnets have a notion of an interlingual index, which connects similar concepts

in different languages. Such linked wordnets have found their application in machine

translation [Hovy, 1998], cross-lingual information retrieval [Gonzalo et al., 1998], etc.

Given the extensive application of wordnets in different NLP applications, maintenance

of wordnets involves expert involvement. Such involvement is costly both in terms of time

and resources. This is further amplified in case of linked wordnets, where experts need to

have knowledge of multiple languages. Thus, techniques that can help reduce the effort

needed by experts are desirable. With this work, we make the following contributions:

• We release the latest version of 18 wordnets under the IndoWordNet project as a

single bundle.

• Using mappings between Princeton WordNet and Hindi wordnet, we create and

release mappings between Princeton WordNet and these 18 languages wordnet.
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Princeton WordNet or the English WordNet was the first wordnet and inspired the

development of many other wordnets. EuroWordNet [Vossen et al., 1997] is linked wordnet

comprising of wordnets for European languages, viz, Dutch, Italian, Spanish, German,

French, Czech and Estonian. Each of these wordnets is structured in the same way as the

Princeton WordNet for English [Miller et al., 1990] - synsets (sets of synonymous words)

and semantic relations between them. Each wordnet separately captures language-specific

information. In addition, the wordnets are linked to an Inter-Lingual-Index, which uses

Princeton WordNet as a base. This index enables one to go from concepts in one language

to similar concepts in any other language. Such features make this resource helpful in

cross-lingual NLP applications like cognate detection and false friends’ detection.

IndoWordNet [Bhattacharyya, 2010] is linked wordnet comprising of wordnets for ma-

jor Indian languages, viz, Assamese, Bengali, Bodo, Gujarati, Hindi, Kannada, Kashmiri,

Konkani, Malayalam, Manipuri, Marathi, Nepali, Oriya, Punjabi, Sanskrit, Tamil, Tel-

ugu, and Urdu. These wordnets have been created using the expansion approach with

Hindi WordNet as a pivot, which is partially linked to English WordNet. We exploit these

links to create mappings from English WordNet to wordnets of other languages.

3.2.1.1 Current Statistics: IndoWordnet

Table 3.1 shows the statistics of the released wordnets. These wordnets have, on an

average, approximately 28,000 synsets, with Nepali and Hindi having the minimum and

the maximum number of synsets respectively. The number of synsets in Hindi is maximum

due to the fact that work on IndoWordNet started with the Hindi language. It should

also be noted that the ratio of nouns, verbs, adjectives, and adverbs is also on an average

48:6:13:1; the trend being similar to Princeton WordNet.

3.2.1.2 Linkage between English and Indian Language WordNets

For linking Indian language wordnets with the Princeton WordNet, we link the Hindi

Wordnet data with Princeton WordNet data manually with the help of lexicographers.

This has been an ongoing work for many years, and a resource release was long-standing.

We delve deep into the language-related issues in linking both the languages and ensure

that only a valid relation is established between both the lexicons.
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Noun Verb Adjectives Adverbs Total

Assamese 9065 1676 3805 412 14958

Bengali 27281 2804 5815 445 36346

Bodo 8788 2296 4287 414 15785

Gujarati 26503 2805 5828 445 35599

Hindi 29807 3687 6336 541 40371

Kannada 12765 3119 5988 170 22042

Kashmiri 21041 2660 5365 400 29469

Konkani 23144 3000 5744 482 32370

Malayalam 20071 3311 6257 501 30140

Manipuri 10156 2021 3806 332 16351

Marathi 23271 3146 5269 539 32226

Nepali 6748 1477 3227 261 11713

Odiya 27216 2418 5273 377 35284

Punjabi 23255 2836 5830 443 32364

Sanskrit 32385 1246 4006 265 37907

Tamil 16312 2803 5827 477 25419

Telugu 12078 2795 5776 442 21091

Urdu 22990 2801 5786 443 34280

Table 3.1: Number of synsets in different wordnets

3.2.1.3 Current Statistics: Linkages for Language pairs

Table 3.2 shows the statistics of the released linkages. There are approximately 20,000

links for an English-Indian language pair on average, with Nepali and Hindi having the

minimum and the maximum number of links. Again, the number of links in Hindi is

maximum due to the fact that work on IndoWordnet started with the Hindi language,

and we link Hindi directly with English. At times, the concept present in Hindi is not

present in the other Indian languages, thus leading to the less number of linkages for

the other languages, in some cases. Table 3.2 show the part-of-speech category-wise

distribution of the linked synsets, and also indicated the number of directly linked synsets
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Nouns Verbs Adjectives Adverbs
Total

D H D H D H D H

Assamese 7019 679 1300 36 2744 0 294 0 12072

Bengali 11049 7680 1824 99 3356 3 312 0 24323

Bodo 6940 603 1594 64 2854 1 293 0 12349

Gujarati 10910 7533 1825 99 3356 3 312 0 24038

Hindi 11584 8221 1988 212 3542 4 344 0 25895

Kannada 7806 1973 1921 154 3453 3 133 0 15443

Kashmiri 9363 6261 1767 100 3240 2 294 0 21027

Konkani 10545 6952 1888 128 3391 2 328 0 23234

Malayalam 9146 4754 1970 206 3525 4 340 0 19945

Manipuri 7192 823 1324 43 2712 0 244 0 12338

Marathi 9874 6556 1839 144 3092 0 333 0 21838

Nepali 5217 496 1114 42 2202 1 200 0 9272

Odiya 11039 7680 1679 66 3187 2 271 0 23924

Punjabi 10215 6382 1822 99 3355 3 312 0 22188

Sanskrit 8396 6470 1048 28 2873 2 241 0 19058

Tamil 8130 3066 1821 98 3353 3 312 0 16783

Telugu 6944 1843 1819 98 3350 0 312 0 14366

Urdu 10424 6816 1822 98 3356 3 313 0 22832

Table 3.2: Linkage Statistics for English to Indian Language WordNets. D stands for

Direct links, and H stands for Hypernymy links

(D) along with the synset linkages which have been marked as hypernymy linkages (H).

The statistics show our progress in updating IndoWordnet as a resource. The relatively

large number of linkages also show that the Indian wordnets have matured considerably.

Many concepts in the Indian languages are specific to the Indian culture. Thus, their

corresponding variant is not available in the Princeton WordNet (and is not likely to be

included anytime). Thus, one needs to maintain the translation/transliteration of such

notions from Indian languages to the English language as a separate bilingual mapping
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1. A similar issue arises in case of proper nouns, which should be present in an Indian

lexicon but they are not present in Princeton WordNet. They are also handled using

bilingual mappings [Singh et al., 2016b]. Some of the synsets in Indian languages are too

fine-grained and have a common representation in the English language. This is why we

use the principle of Hypernymy linkages for linking such concepts. We reserve a set of

synset id numbers later for language-specific concepts and create them to include in these

wordnets, individually. These are not linked to the Princeton WordNet and hence are not

included in our resource.

With this work, we describe two resources released publicly. We discussed the Indian

language wordnets that are part of the IndoWordNet project. We enlisted the statistics

of the latest version, which we provide as a single bundle. Next, we described the linkage

process for creating English-Indian language links using English-Hindi language links. We

then enlisted the statistics of the latest version of this linked data, which is also provided

along with this work.

3.2.2 Semi-automatic WordNet Linking usingWord Embeddings

With this work, we address the following question:

“Can information about the structure of embedding spaces of different languages and the

relation among them be used to aid linking of corresponding wordnets?”

Mikolov et al. [2013a]’s observation about the structure of the embedding space of

different languages note that there is a linear mapping between embedding spaces. We

demonstrate that this is true, at least in the case of English and Hindi WordNets. We

propose an approach to link them using word embeddings. Given a synset of the source

language, the approach provides a ranked list of target synsets. This makes the overall

linking task easy for human experts, as they have to choose from a relatively small set

of potential candidates. Our evaluation shows that our technique is able to retrieve a

winner synset in the top 10 ranked list for 60% and 70% of all synsets and noun synsets

respectively.

1Since bilingual mappings are not standardized, we do not release them along with our resources
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Figure 3.2: Word embeddings of numbers and animals in English (left) and Spanish (right)

(taken from [Mikolov et al., 2013a]).

Previously, Joshi et al. [2012] come up with a heuristic-based measure where they use

bilingual dictionaries to link two wordnets. They combine scores using various heuristics

and generate a list of potential candidates for linked synsets. Singh et al. [2016b] discuss

a method to improve the current status of Hindi-English linkage and present a generic

methodology, i.e., manually creating bilingual mappings for concepts which are unavail-

able in either of the languages or not present as a synset in the target wordnet. Their

method is beneficial for culture-specific synsets, or for non-existing concepts; but, it is

cost and time inefficient, and requires a lot of manual effort on the part of a lexicographer.

Our approach is mainly geared towards reducing effort on the part of the lexicographers.

Given wordnets of two different languages E and F with sets of synsets {s1E, s2E, . . . , smE}

and {s1F , s2F , . . . , snF} respectively, find mappings of the form < siE, s
j
F > which are seman-

tically correct.

We adapted the technique of translating words in Mikolov et al. [2013a] to translate

synsets (see fig 3.2). In order to do so, however, we need ”synset embeddings”. We

computed the same by assigning to a synset-id, the average of the ”word embeddings” of
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its synset-members. To the best of our knowledge, this is a first attempt at solving this

problem using word embeddings. The following is a detailed description of the technique.

Let E and F be two languages. Let |E| and |F | be the number of synsets in wordnets

of E and F respectively. Let siE and sjF be the ith and jth synsets of E and F respectively,

with siE = {e1α, e2α, . . . , emi
α } and sjF = {f 1

β , f
2
β , . . . , f

nj

β }, where epα and f q
β are words in

vocabulary of E and F respectively for 1 ≤ p ≤ mi and 1 ≤ q ≤ nj, and 1 ≤ i ≤ |E| and

1 ≤ j ≤ |F |.

Let vepα be the word embedding corresponding to epα. Then we estimate vsiE , the

embedding for synset siE, as

vsiE =
1

mi

mi∑
p=0

vepα (3.1)

Similarly,

vsjF
=

1

nj

nj∑
q=0

vfq
β

(3.2)

Given links of the form
⟨
siE, s

j
F

⟩
, we learn W such that the error Err

Err = ∥W.vsiE − vsjF
∥2 (3.3)

is minimized.

Now, to find a mapping for a new synset skE, one needs to

1. Calculate v′ = W.vskE

2. Find vslF such that vslF .v
′ is maximized

3. Create link
⟨
skE, s

l
F

⟩
Our hypothesis is that for a given synset-id, the noise added to its representative em-

bedding by a highly polysemous synset-member will be cancelled out, while the actual

information content pertaining to that synset-id will be enhanced, due to contribution

from other, relatively less polysemous, synset members.
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We applied our technique to link Hindi and English Wordnets. We obtained a dataset

of mappings between English and Hindi wordnets from the developers of IndoWord-

Net. These mappings are of the form ⟨hindi_synset_id, english_synset_id, link_type⟩,

where link_type ∈ {DIRECT, HYPERNYMY, etc.}. For this experiment, we focused

solely on DIRECT links. There are a total of 6,883 such mappings, the distribution among

classes of which is mentioned in table 3.3

Class Count

Noun 4757

Adjective 1283

Verb 680

Adverb 143

Table 3.3: Distribution of available links among various classes

For the English language, we used the pre-trained word embeddings published by

Google that were trained on the part of Google News Dataset (about 100 billion to-

kens). These embeddings are of dimension 300 and are created using CBOW model with

negative sampling. For the Hindi language, we trained word embeddings on BOJAR

HindMonoCorp dataset [Bojar et al., 2014]. Mikolov et al. [2013c] suggests that the input

embeddings’ dimension should be at least 2.5 to 4 times that of the output dimension.

However, we also wanted to check what happens when they are equal. Therefore, we

trained two sets of embeddings, one of dimension 300, and the other of dimension 1200.

3.2.2.1 Evaluation and Results

We use the accuracy@n measure, i.e., the prediction is said to be correct if one out

of the top n results returned is correct. This is because accuracy@1 is an underestimate

of the system’s performance, as higher-ranking synonym translations will be counted as

mistakes.

Table 3.4 shows the overall accuracy@n of the system, for different values of n. We also

performed a per word-class evaluation, along with different settings for the embedding



59 3.2. Dataset Creation

Figure 3.3: Accuracy@n: The green colored cells indicate the predictions considered for

exact match for a given accuracy@n

dimensions. Table 3.5 and Table 3.6 shows the accuracy for different word classes 2.

Acc@1 Acc@3 Acc@5 Acc@8 Acc@10

0.29 0.45 0.52 0.58 0.60

Table 3.4: Results for the overall setting: Dimension of English embeddings=300, Dimen-

sions of Hindi embeddings=300

Word Class Acc@1 Acc@3 Acc@5 Acc@8 Acc@10

Noun 0.35 0.53 0.60 0.65 0.67

Adjective 0.26 0.44 0.50 0.57 0.60

Verb 0.15 0.25 0.29 0.33 0.37

Adverb 0.28 0.51 0.59 0.70 0.73

Table 3.5: Results for the setting: Dimension of English embeddings=300, Dimensions of

Hindi embeddings=300

We observe that except for verbs, the approach performs decently. Here we mention

some of the reasons for poor performance, as well as possible methods to address them.

• The approach to create synset embeddings is inadequate. The current averaging

approach only takes the synset members into account, while ignoring gloss and

examples, which could provide additional information. A potential candidate ap-

proach for creating synset embeddings should properly utilize the set of French

synonyms, gloss, example sentences, and synset relations.

• Synset members are often phrases instead of words. Creating the phrase embeddings

is a different problem altogether.
2All values reported are the average values obtained from 3-fold cross-validation.
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Word Class Acc@1 Acc@3 Acc@5 Acc@8 Acc@10

Noun 0.35 0.52 0.58 0.63 0.66

Adjective 0.12 0.20 0.24 0.30 0.32

Verb 0.17 0.27 0.32 0.35 0.39

Adverb 0.38 0.52 0.65 0.76 0.80

Table 3.6: Results for the setting: Dimension of English embeddings=300, Dimensions of

Hindi embeddings=1200

• Currently, we utilized a word embedding model which gives only one embedding

per word. That is one of the reasons for ambiguity. A model which provides one

embedding per sense of a word will be more appropriate.

• The linear transformation approach is incorrect. While [Mikolov et al., 2013a] shows

the linear relation between English and Spanish languages, this may not be true for

all pairs of languages.

• Perhaps, something is fundamentally missing in word embeddings. Probably the

presence of only co-occurrence information and lack of other information such as

word order, argument frames( for verbs), etc. leads to this poor performance.

With this work, we described an approach to link wordnets. It entails creating synset

embeddings using the word embeddings of the synset members, and learning a function to

map the embedding of a synset from the source language to an embedding in the space of

target language, and returning the nearest neighbours as potential candidates for linking.

Our evaluation shows that our technique is able to retrieve a winner synset in the top 10

ranked list for 60% and 70% of all synsets and noun synsets, respectively. However, it did

not achieve significantly good results for other classes, especially verbs. We discussed the

possible reasons for poor performance and suggested mechanisms to address the same.

3.3 Pre-trained Embeddings for Indian Languages

This work was accepted at the SLTU-CCURL Workshop co-located with LREC 2020

Conference. This collaborative effort releases essential resources for our work which re-

quires pre-trained embeddings to be trained on a transliterated corpus. Dense word

vectors or ‘word embeddings’ which encode semantic properties of words have now be-
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come integral to NLP tasks like Machine Translation (MT), Question Answering (QA),

Word Sense Disambiguation (WSD), and Information Retrieval (IR). In this investiga-

tion, we use various existing approaches to create multiple word embeddings for 14 Indian

languages. We place these embeddings for all these languages, viz., Assamese, Bengali,

Gujarati, Hindi, Kannada, Konkani, Malayalam, Marathi, Nepali, Odiya, Punjabi, San-

skrit, Tamil, and Telugu in a single repository. Relatively newer approaches that empha-

size catering to context (BERT, ELMo, etc.) have shown significant improvements, but

require a large amount of resources to generate usable models. We release pre-trained

embeddings generated using both contextual and non-contextual approaches. We also

use MUSE and XLM to train cross-lingual embeddings for all pairs of the aforementioned

languages. To show the efficacy of our embeddings, we evaluate our embedding models

on XPOS, UPOS and NER tasks for all these languages. We release a total of 436 models

using 8 different approaches. We hope they are useful for the resource-constrained Indian

language NLP.

NLP tasks that benefit from these pre-trained embeddings are very diverse. Tasks

ranging from word analogy and spelling correction to more complex ones like Question

Answering [Bordes et al., 2014], Machine Translation [Artetxe et al., 2019], and Informa-

tion Retrieval [Diaz et al., 2016] have reported improvements with the use of well-trained

embeddings models. The recent trend of transformer architecture based neural networks

has inspired various language models that help train contextualized embeddings [Devlin

et al., 2018, Peters et al., 2018, Melamud et al., 2016, Lample and Conneau, 2019]. They

report significant improvements over various NLP tasks and release pre-trained embed-

dings models for many languages. One of the shortcomings of the currently available

pre-trained models is the corpora size used for their training. Almost all of these mod-

els use Wikimedia corpus to train models which is insufficient for Indian languages as

Wikipedia itself lacks a significant number of articles or text in these languages. Al-

though there is no cap or a minimum number of documents/lines which define a usable

size of a corpus for training such models, it is generally considered that the more input

training data, the better the embedding models.

Acquiring raw corpora to be used as input training data has been a perennial problem for

NLP researchers who work with low resource languages. Given a raw corpus, monolingual
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word embeddings can be trained for a given language. Additionally, NLP tasks that rely

on utilizing common linguistic properties of more than one language need cross-lingual

word embeddings, i.e., embeddings for multiple languages projected into a common vector

space. These cross-lingual word embeddings have shown to help the task of cross-lingual

information extraction [Levy et al., 2017], False Friends and Cognate detection [Merlo and

Rodriguez, 2019], and Unsupervised Neural Machine Translation [Artetxe et al., 2018b].

With the recent advent of contextualized embeddings, a significant increase has been

observed in the types of word embedding models. It would be convenient if a single

repository existed for all such embedding models, especially for low-resource languages.

Our work creates such a repository for fourteen Indian languages, keeping this in mind,

by training and deploying 436 models with different training algorithms (like word2vec,

BERT, etc.) and hyperparameters as detailed below. Our key contributions are:

(1) We acquire raw monolingual corpora for fourteen languages, including Wikimedia

dumps. (2) We train various embedding models and evaluate them. (3) We release these

embedding models and evaluation data in a single repository3.

3.3.1 Dataset Created and Experimental Evaluation

We collect pre-training data for over 14 Indian languages (from a total of 22 scheduled

languages in India), including Assamese (as), Bengali (bn), Gujarati (gu), Hindi (hi),

Kannada (kn), Konkani (ko), Malayalam (ml), Marathi (mr), Nepali (ne), Odiya (or),

Punjabi (pa), Sanskrit (sa), Tamil (ta) and Telugu (te). These languages account for

more than 95% of the entire Indian population, with the most widely spoken language,

Hindi, alone contributing 43% to the figure4. Nonetheless, data that is readily available

for computational purposes has been excruciatingly limited, even for these 14 languages.

One of the significant contributions of this work is the accumulation of data in a single

repository. This dataset has been collected from various sources, including ILCI corpora

[Choudhary and Jha, 2011, Bansal et al., 2013], which contains parallel aligned corpora

(including English) with Hindi as the source language in tourism and health domains. As

a baseline dataset, we first extract text from Wikipedia dumps5, and then append the
3Repository Link
4Wikipedia Reference
5As on 15th August, 2019

http://www.cfilt.iitb.ac.in/~diptesh/embeddings
https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers_in_India
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data from other sources onto it. We added the aforementioned ILCI corpus, and then

for Hindi, we add the monolingual corpus from HinMonoCorp 0.5 [Bojar et al., 2014],

increasing the corpus size by 44 million sentences. For Hindi, Marathi, Nepali, Bengali,

Tamil, and Gujarati, we add crawled corpus of film reviews and news websites6. For

Sanskrit, we download a raw corpus of prose7 and add it to our corpus. Further, we

describe the preprocessing and tokenization of our data.

3.3.1.1 Preprocessing Collected Data

The corpora collected is intended to be set in a general domain instead of being domain-

specific, and hence we start by collecting general domain corpora via Wikimedia dumps.

We also add corpora from various crawl sources to respective individual language corpus.

All the corpora are then cleaned, with the first step being the removal of HTML tags

and links which can occur due to the presence of crawled data. Then, foreign language

sentences (including English) are removed from each corpus, so that the final pre-training

corpus contains words from only its language. Along with foreign languages, numerals

written in any language are also removed. Once these steps are completed, paragraphs

in the corpus are split into sentences using sentence end markers such as full stop and

question mark. Following this, we also remove any special characters which may have

included punctuation marks (example - hyphens, commas, etc.).

The statistics for the resulting corpus are listed in Table 3.7.

3.3.1.2 Experiment Setup

There is a prevailing scarcity of standardized benchmarks for testing the efficacy of

various word embedding models for resource-poor languages. We conducted experiments

across some rare standardized datasets that we could find and created new evaluation

tasks as well to test the quality of non-contextual word embeddings. The Named Entity

Recognition task, collected from [Murthy et al., 2018], and FIRE 2014 workshop for

NER, contains NER tagged data for 5 Indian languages, namely Hindi, Tamil, Bengali,

Malayalam, and Marathi. We also use a Universal POS (UPOS), as well as an XPOS

(language-specific PoS tags) tagged dataset, available from the Universal Dependency
6https://github.com/goru001
7http://sanskrit.jnu.ac.in/currentSanskritProse/

https://github.com/goru001
http://sanskrit.jnu.ac.in/currentSanskritProse/
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Language Abbr. Sentences Words

Hindi hin 48,115,256 3,419,909

Bengali ben 1,563,137 707,473

Telugu tel 1,019,430 1,255,086

Tamil tam 881,429 1,407,646

Nepali nep 705,503 314,408

Sanskrit san 553,103 448,784

Marathi mar 519,506 498,475

Punjabi pan 503,330 247,835

Malayalam mal 493,234 1,325,212

Gujarati guj 468,024 182,566

Konkani knn 246,722 76,899

Oriya ori 112,472 55,312

Kannada kan 51,949 30,031

Assamese asm 50,470 29,827

Table 3.7: Corpus statistics for each Indic language with their ISO 639-3 abbreviations

(total number of sentences and words)

(UD) treebank [Nivre et al., 2016], which contains POS tagged data for 4 Indian languages,

Hindi, Tamil, Telugu, and Marathi.

For the tasks of NER, UPOS tagging, XPOS tagging, we use the Flair library [Akbik

et al., 2018], which embeds our pre-trained embeddings as inputs for training the corre-

sponding tagging models. The tagging models provided by Flair are vanilla BiLSTM-CRF

sequence labellers. For the task of word analogy dataset, we simply use the vector addi-

tion and subtraction operators to check accuracy, (i.e., v(France) − v(Paris) + v(Berlin)

should be close to v(Germany)).

For contextual word embeddings, we collect the statistics provided at the end of the

pre-training phase to gauge the quality of the embeddings - perplexity scores for ELMo,

masked language model accuracy for BERT, and so on. We report these values in Table

3.8.
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(a) Performance on UPOS tagged dataset (b) Performance on XPOS tagged dataset

Figure 3.4: Performance of skip-gram, CBOW, and fasttext models on POS tagging

task. Plotted graph is Accuracy vs Dimension. Legend is ”language”-”model”. Note that

FastText is the best performer in each case, and learning saturates around 200 dimensions

Figure 3.5: Performance of skip-gram, CBOW, and fasttext models on NER tagged

dataset

Language as bn gu hi ml mr kn ko ne or pa sa ta te

Perplexity 455 354 183 518 1689 522 155368 325 253 975 145 399 781 82

Table 3.8: ELMo prerplexity scores

3.3.2 Models Released and Evaluation Results

Now, We briefly describe the models created using the approaches detailed above.
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3.3.2.1 Word2Vec (skip-gram and CBOW)

Word2Vec embeddings [Mikolov et al., 2013c] of dimensions {50, 100, 200, 300} for both

skip-gram and CBOW architectures are created using the gensim library [Řehůřek and

Sojka, 2010] implementation of Word2Vec. Words with a frequency of less than 2 in the

entire corpus are treated as unknown (out-of-vocabulary) words. For other parameters,

default settings of gensim are used. There are no pre-trained Word2Vec word embeddings

for any of the 14 languages available publicly.

3.3.2.2 FastText

FastText embeddings [Bojanowski et al., 2017b] of dimensions {50, 100, 200, 300}

(skip-gram architecture) were created using the gensim library [Řehůřek and Sojka, 2010]

implementation of FastText. Words with a frequency of less than 2 in the entire corpus

are treated as unknown (out-of-vocabulary) words. For other parameters, default settings

of gensim are used. Except for Konkani and Punjabi, the official repository for FastText

provides pre-trained word embeddings for the Indian languages. However, we have trained

our word embeddings on a much larger corpus than those used by FastText.

3.3.2.3 GloVe

We create GloVe embeddings [Pennington et al., 2014] of dimensions {50, 100, 200,

and 300}. Words with occurrence frequency less than 2 are not included in the library.

The co-occurrence matrix is created using a symmetric window of size 15. There are

no pre-trained word embeddings for any of the 14 languages available with the GloVE

embeddings repository8. We create these models and provide them with our repository.

3.3.2.4 MUSE

MUSE embeddings are cross-lingual embeddings that can be trained using the fastText

embeddings, which we had created previously. Due to resource constraints and the fact

that cross-lingual representations require a large amount of data, we choose to train 50-

dimensional embeddings for each language pair. We train for all the language pairs (14*14)

8https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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and thus produce 196 models using this approach and provide them in our repository. The

training for these models took 2 days over 1 x 2080Ti GPU (12 GB).

3.3.2.5 ELMo

We train ELMo embeddings [Peters et al., 2018] of 512 dimensions. These vectors are

learned functions of the internal states of a deep bidirectional language model (biLM).

The training time for each language corpus was approximately 1 day on a 12 GB Nvidia

GeForce GTX TitanX GPU. The batch size is reduced to 64, and the embedding model

was trained on a single GPU. The number of training tokens was set to tokens multiplied

by 5. We choose this parameter based on the assumption that each sentence contains

an average of 4 tokens. There are no pre-trained word embeddings for any of the 14

languages available on the official repository. We provide these models in our repository.

3.3.2.6 BERT

We train BERT (Bidirectional Encoder Representations from Transformers) embed-

dings [Devlin et al., 2018] of 300 dimensions. Since BERT can be used to train a single

multilingual model, we combine and shuffle corpora of all languages into a single cor-

pus and used this as the pre-training data. We use sentence piece embeddings [Google,

2018] that we trained on the corpus with a vocabulary size of 25000. Pre-training this

model was completed in less than 1 day using 3 * 12 GB Tesla K80 GPUs. The official

repository for BERT provides a multilingual model of 102 languages, which includes all

but 4 (Oriya, Assamese, Sanskrit, Konkani) of the 14 languages. We provide a single

multilingual BERT model for all the 14 languages, including these 4 languages.

3.3.2.7 XLM

We train cross-lingual contextual BERT representation language model using the XLM

git repository9. We train this model for 300-dimensional embeddings and over the stan-

dard hyperparameters as described with their work. The corpus vocabulary size of 25000

was chosen. We use a combined corpus of all 14 Indian languages and shuffle the sentences

for data preparation of this model. We use the monolingual model (MLM) method to

prepare data as described on their Git repository. This model also required the Byte-pair
9https://github.com/facebookresearch/XLM

https://github.com/facebookresearch/XLM
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encoding representations as input, and we train them using the standard fastBPE imple-

mentation as recommended over their Github. The training for this model took 6 days

and 23 hours over 3 x V100 GPUs (16 GB each).

3.3.2.8 Evaluation

We evaluate and compare the performance of FastText, Word2Vec, and GloVE em-

bedding models on UPOS and XPOS datasets. The results are shown in the Figure 3.4a

and in 3.4b, respectively. The performance of non-contextual word embedding models on

NER dataset is shown in Figure 3.5. The perplexity scores for ELMo training are listed

in table 3.8. We observe that FastText outperforms both GloVE and Word2Vec mod-

els. For Indian languages, the performance of FastText is also an indication of the fact

that morphologically rich languages require embedding models with sub-word enriched

information. This is clearly depicted in our evaluation.

The overall size of all the aforementioned models was very large to be hosted on a Git

repository. We host all of these embeddings in a downloadable ZIP format each on our

server, which can be accessed via this link10.

3.3.3 Discussion

We created a comprehensive set of standard word embeddings for multiple Indian lan-

guages. We release a total of 422 embedding models for 14 Indic languages. The models

contain 4 varying dimensions (50, 100, 200, and 300) each of GloVE, Skipgram, CBOW,

and FastText; 1 each of ELMo for every language; a single model each of BERT and

XLM of all languages. They also consist of 182 cross-lingual word embedding models

for each pair. However, due to the differences in language properties as well as corpora

sizes, the quality of the models vary. Table 3.7 shows the language wise corpus statistics.

Evaluation of the models has already been presented in Section 3.3.2.8. An interesting

point to note is that even though Tamil and Telugu have comparable corpora sizes, the

evaluations of their word embeddings show different results. Telugu models consistently

outperform Tamil models on all common tasks. Note that the NER tagged dataset was

not available for Telugu, so they could not be compared on this task.
10Repository Link

http://www.cfilt.iitb.ac.in/~diptesh/embeddings
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This also serves to highlight the difference between the properties of these two lan-

guages. Even though they belong to the same language family, Dravidian, and their

dataset size is the same, their evaluations show a marked difference. Each language has 3

non-contextual embeddings (word2vec-skipgram, word2vec-cbow and fasttext-skipgram),

and a contextual embedding (ElMo). Along with this, we have created multilingual em-

beddings via BERT. For BERT pre-training, the masked language model accuracy is

31.8%, and next sentence prediction accuracy is 67.9%. Cross-lingual embeddings, on the

other hand, have been created using XLM and MUSE.

The recent past has seen tremendous growth in NLP with ElMo, BERT and XLNet

being released in quick succession. All such advances have improved the state-of-the-

art in various tasks like NER, Question Answering, Machine Translation, etc. However,

most of these results have been presented predominantly for a single language- English.

With the potential that Indian languages computing has, it becomes pertinent to perform

research in word embeddings for local, low-resource languages as well. In this work, we

present the work done on creating a single repository of corpora for 14 Indian languages.

We also discuss the creation of different embedding models in detail. As for our primary

contribution, these word embedding models are publicly released.

In the future, we aim to refine these embeddings and do a more exhaustive evaluation

over various tasks such as POS tagging for all these languages, NER for all Indian lan-

guages, including a word analogy task. Presently evaluations have been carried out on

only a few of these tasks. Also, with newer embedding techniques being released in quick

successions, we hope to include them in our repository. The model’s parameters can be

trained further for specific tasks or improving their performance in general. We hope

that our work serves as a stepping stone to better embeddings for low-resource Indian

languages.
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3.4 Summary

In this chapter, we have described distributional semantics-based approaches used for

NLP tasks. We provided details of various word embeddings which we study, or use in

this thesis. Further, we described our efforts towards creating linked Indian language

wordnets and a semi-automatic method to generate linkages between Hindi and English

Wordnets. The linked Indian language wordnets help us create datasets for the task of

cognate detection among Indian languages. We also described the dataset creation for,

and generation of 436 word embedding models11. which we release publicly as a resource

which can be used for Indian language NLP tasks. Our semi-automatic approach helped

generate various linkages which we further utilize for the task of cognate detection amongst

Indian and European languages as described in the next chapter.

11Repository Link

http://www.cfilt.iitb.ac.in/~diptesh/embeddings


Chapter 4

Cognate Detection Task:

Preliminary Investigations

In the last chapter, we summarised the use of distributional semantics for NLP tasks

and described the linked dataset creation for our work. In this chapter, we describe

our preliminary investigations for the task of cognate detection. We, first, introduce

the cognate detection task briefly at the beginning of this chapter. Later, we discuss

experiments which detail the use of monolingual embeddings for the task and conclude

it with our work on the creation of challenging datasets for the task of cognate and false

friends’ detection.

NLP tasks which deal with cross-lingual vocabulary can be improved with the help of

Cognate detection. Studies have shown improvements in Machine Translation [Kondrak

et al., 2003], Cross-lingual Information Retrieval [Pranav, 2018, Makin et al., 2008, 2007],

Computational Phylogenetics [Rama et al., 2018], and many more tasks like Entity Link-

ing [Lawrie et al., 2014], and Drug Discovery [Kondrak and Dorr, 2004]. As described

previously, Cognate Detection is the task of identifying Cognate words from

two languages, i.e., L1 and L2, where L1 and L2 are, usually, two different

languages. Cognates within a single language, or doublets, may have meanings that

are slightly or even totally different. The study of cognates plays a crucial role in ap-

plying comparative approaches for historical linguistics, in particular, solving language

relatedness and tracking the interaction and evolvement of multiple languages over time.

A cognate instance among Indian languages is given as the word group: putra (Sanskrit),

putra (Hindi), putra (Marathi) and puttar (Punjabi), all of which mean the word “Son”.

71
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A cognate etymon does not need to be inherited directly from a proto-language. It can be

borrowed from some other language, in which evolution produces cognate forms. For ex-

ample, the English word dish and the German word Tisch (“table”) are cognates because

they both come from Latin discus, which relates to their flat surfaces. Cognates may have

evolved similar, different or even opposite meanings, but in most cases, there are some

similar letters in the word. Some words sound similar, but do not come from the same

root; these are called false cognates. These are the occurrences where words are com-

pletely unrelated words that happen to look similar. For e.g., Greek kappa and Japanese

kappa (transliterated kappa) ‘water sprite’. Another example is Portuguese galinha ‘hen’

and English galena.

In this chapter, we discuss the creation of a gold-standard dataset for the task of

cognate detection and false friends’ detection. We shall first discuss our experiments for

the detection of cognates among Indian languages and establish that Wordnets can be

used for the task of cognate detection. We also explain in detail our efforts to create

challenge datasets for the task of cognate and false friends’ detection.

4.1 Cognate Identification to Generate Phylogenetic

Trees for Indian Languages

This work was accepted at the Young Researcher’s Symposium at CoDS-COMAD 2019

Conference. In this preliminary investigation, we detect cognates among a few Indian lan-

guages, namely Hindi, Marathi, Punjabi, and Sanskrit for helping build cognate sets for

phylogenetic inference. Cognate detection helps phylogenetic inference by helping isolate

diachronic sound changes and thus detect the words of a common origin. A cognate set

manually annotated with the help of a lexicographer is generally used to infer phyloge-

netic trees automatically. Our work creates cognate sets of each language pair and infers

phylogenetic trees based on a Bayesian framework using the Maximum likelihood method.

We report negative results showing that simple orthographic similarity-based

measures are incapable of detection cognates with high precision after the

output is validated manually.
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4.1.1 Dataset Creation and Experiments

We create the dataset by extracting word list for Hindi, Marathi, Sanskrit, and Pun-

jabi WordNets. We transliterate the words in the Punjabi wordlist manually. We use

the unique words from wordlist extracted from all the individual wordnet databases but

maintain them within the ID space. We extract 15000 unique words from every Wordnet

and create an aligned wordlist for every language with Sanskrit, the pairs being Sanskrit -

Hindi, Sanskrit - Marathi, and Sanskrit - Punjabi. We design our dataset by first creating

wordlists for every language pair involved.

We extract unique words from wordnet data publicly available1. We align words from

every language pair in a comma-separated form for each concept ID, thus ensuring a high

probability of detecting cognates. We, also, use the baseline measure XDice and string

similarity-based measures to first prepare cognate sets from every individual language pair.

Later, we construct more cognate sets with the use of Orthographic cognate detection

methods such as alignment of substrings which uses support vector machines and Hidden

Markov Models. Among other methodologies, we use the phonetic aspects of the words

decomposing them phonetically and aligning them according to phonemes. For validating

our cognate sets, we use string similarity measures and use the threshold value of 0.75

arrived at by empirical measures. We use Jaccard, XDice and TF-IDF to validate our

cognate sets.

4.1.2 Results and Conclusion

During the validation of cognate sets created by orthographic measures, we decided the

threshold of matching at 0.75 for a pair to be cognate words. While arriving at this

value, we observed that we could easily form pairs of cognate words which are Tatsama

words. On the other hand, Tadbhava words were hardly detected among the cognate words

unless phonetic methodologies are not used. This poses a new challenge as Tadbhava word

form a large set of cognate words among the Indian languages. This can also be verified

intuitively as the former retain their orthographic form and are easy to detect via the

string similarity measure and the orthographic measure, but the latter need phonetic

measures.
1http://www.cfilt.iitb.ac.in/indowordnet/

http://www.cfilt.iitb.ac.in/indowordnet/
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Hindi-Punjabi Hindi-Marathi Hindi-Sanskrit

True Positives 497 621 378

False Positives 301 284 211

Total Detected 798 905 589

Table 4.1: Detected cognates were validated manually with the help of lexicographers,

and it was found that simple orthographic similarity-based measures are unable to detect

cognates with high precision.

We describe our work on cognate detection for Indian language pairs Hindi - Punjabi,

Hindi - Marathi, and Hindi - Sanskrit. We create a wordlist of 15000 unique words from

every individual wordnet data and also create cognate word sets for these three languages,

and create an online interface to help collect data for phylogenetic inference. In future,

we aim to experiment with phonetic and semantic measures to improve upon this work.

We also propose to expand our dataset to multiple Indian languages as wordlists in their

root form are available publicly via the Indowordnet website. We also aim to experiment

with corpus instead of wordlists in their root form as morphological inflection would be a

tougher challenge to tackle for detection of cognates in a corpus.

In our next investigation, we perform further experimentation and propose a weighted

orthographic similarity-based approach to detect cognates.

4.2 Utilizing Wordnets for Cognate Detection among

Indian Languages

In this investigation, we detect cognate word pairs among ten Indian languages with Hindi

and use deep learning-based approaches to predict whether a word pair is cognate or not.

We identify IndoWordnet as a potential resource to detect cognate word pairs based on

orthographic similarity-based methods and train neural network models using the data

obtained from it. We identify parallel corpora as another potential resource and perform

the same experiments for them.

We also validate the contribution of Wordnets through further experimentation and

report improved performance of up to 26%. We discuss the nuances of cognate detection
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among closely related Indian languages and release the lists of detected cognates as a

dataset. We also observe the behaviour of, to an extent, unrelated Indian language pairs

and release the lists of detected cognates among them as well.

In many NLP tasks, the orthographic similarity of cognates can compensate for

the insufficiency of other kinds of evidence about the translational equivalency of words

[Mulloni and Pekar, 2006]. Orthographic similarity-based methods, generally, calculate

the similarity score between two words and use the result to build training data for

further classification. Cognate detection can also be performed using phonetic features and

researchers have previously used consonant class matching (CCM) [Turchin et al., 2010],

sound class-based alignment (SCA) [List, 2010], etc. to detect cognates in multilingual

wordlists. The identification of cognates, here, is based on the comparison of words sound

correspondences. Semantic similarity methods have also been deployed to detect cognates

among word pairs [Kondrak, 2001]. The measure of semantic similarity uses the context

around both word pairs and helps in the identification of a cognate word pair by looking

of similarity among the collected contexts.

For our work, we can primarily divide cross-lingual word-pairs into four main cat-

egories, viz., True Cognates, False Cognates, False Friends and Non-Cognates.

In Figure 4.1a, we present this classification with examples from various languages along

with their meanings for better understanding. While some false friends are also false cog-

nates, most of them are genuine cognates. Our primary goal is to be able to identify True

Cognates. Sanskrit (Sa) is known to be the mother of most of the Indian languages. Hindi

(Hi), Bengali (Bn), Punjabi (Pa), Marathi (Mr), Gujarati (Gu), Malayalam (Ml), Tamil

(Ta) and Telugu (Te) are known to borrow many words from it. Thus, one may observe

that words which belong to the same concept in these languages, if orthographically simi-

lar, are True Cognates. Currently, we include loan words in the dataset used for our work

and include them as cognates. Since, eventually, we aim to apply our work to Machine

Translation and other NLP applications, we believe that this would help establish a better

correlation among source-target language pairs. Also, we do not detect false friends and

hence restrict the scope of True cognate detection using this hypothesis to Figure 4.1b.

We utilise the synset information from linked Wordnets to identify words

within the same concept and deploy orthographic similarity-based methods

to compute similarity scores between them. This helps us identify words with a
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(a) Classification of Cross-lingual Word pairs.

(b) Classification of word-pair based

on similar form and meaning.

Figure 4.1: An overview of the scope of this work as presented in our investigation pre-

sented at GWC 2019.

high similarity score. In case of most of the Indian languages, a sizeable contribution

of words/concepts is loaned from the Sanskrit language. In linked IndoWordnet, each

concept is aligned to the other based on an ‘id’ which can be reliably used as a measure to

say that the etymological origin is the same, for both the concepts. Hence, words with the

same orthographic similarity can be said to be ‘True Cognates’. Using this methodology,

we detect highly similar words and use them as training data to build models which can

predict whether a word pair is cognate or not. We make the following key contributions

via this investigation:

1. We perform cognate detection for eleven Indian Languages.

2. We exploit Indian languages behaviour to obtain a list of true cognates (WNdata from

WordNet and PCData from Parallel Corpora).

3. We train neural networks to establish a baseline for cognate detection.

4. We validate the importance of Wordnets as a resource to perform cognate detection.

5. We release our dataset (WNdata + PCdata) of cognate pairs publicly for the language

pairs Hi - Mr, Hi - Pa, Hi - Gu, Hi - Bn, Hi - Sa, Hi - Ml, Hi - Ta, Hi - Te, Hi - Ne, and

Hi - Ur.
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Figure 4.2: Block Diagram for our experimental setup

4.2.1 Script Standardization and Text Normalization

The languages mentioned above share a significant portion of the most spoken languages

in India. Although most of them borrow words from Sanskrit, they belong to different

language families. Mr, Gu, Bn, Pa, Ne and Ur belong to the Indo-Aryan family of

languages; and Ml, Ta, Te belong to the family of Dravidian languages. They also use

different scripts to represent themselves textually. For standardisation, we convert all the

other written scripts to Devanagari. We perform Unicode transliteration using Indic NLP

Library2 to convert scripts for Bn, Gu, Pa, Ta, Te, Ml, and Ur to Devanagari, for both

our datasets. Hi, Mr, Sa, and Ne are already based on the Devanagari script, and hence

we only perform text normalisation for both our datasets, for these languages. The whole

process is outlined in Figure 4.2.

4.2.2 Dataset Creation

We investigate language pairs for major Indian languages namely Marathi (Mr), Gujarati

(Gu), Bengali (Bn), Punjabi (Pa), Sanskrit (Sa), Malayalam (Ml), Tamil (Ta), Telugu

(Te), Nepali (Ne) and Urdu (Ur) with Hindi (Hi). We create two datasets as described

2https://anoopkunchukuttan.github.io/indic_nlp_library/

https://anoopkunchukuttan.github.io/indic_nlp_library/
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below for <source_lang> -<target_lang> where the source language is always Hindi.

We describe each step in the subsections below.

Dataset 1: WordNet based dataset

We create this dataset (WNData) by extracting synset data from the IndoWordnet

database. We maintain all words, in the concept space, in a comma-separated format.

We, then, create word lists by combining all possible permutations of word pairs within

each synset. For e.g., If synset ID X on the source side (Hindi) contains words S1W1 and

S1W2, and parallelly on the target side (other Indian languages), synset ID X contains

T1W1 and T1W2, we create a word list such as:

S1W1, T1W1

S1W2, T1W1

S1W1, T1W2

S1W2, T1W2

To avoid redundancy, we remove duplicate word pairs from this list.

Dataset 2: Parallel Corpora based dataset

We use the ILCI parallel corpora for Indian languages [Jha, 2010b] and create word pairs

list by comparing all words in the source side sentence with all words on the target side

sentence. Our hypothesis, here, is that words with high orthographic similarity which

occur in the same context window (a sentence) would be cognates with a high probability.

Due to the unavailability of ILCI parallel corpora for Sa and Ne, we download these

corpora from Wikipedia and align it with the Hindi articles from Hindi Wikipedia. We

calculate exact word matches to align articles to each other, thus creating comparable

corpora and discard unaligned lines from both sides. We, then, create similar word pairs

list between Hindi and all the other languages pairs. We removed duplicated word pairs

from this list as well and call this data PCData.

We calculate similarity scores for each word on the source side, i.e., Hi by matching

it with each word on the target side, i.e., Sa, Bn, Gu, Pa, Mr, Ml, Ne, Ta, Te, and Ur.

Since we match the words from the same concept space or the same context window,

we eliminate the possibility of this word pair carrying different meanings, and hence a
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high orthographic similarity score gives us a strong indication of these words

falling under the category of True Cognates. For training neural network models,

we then divide the positive and negative labels based on a threshold and follow empirical

methods in setting this threshold to 0.5 for both datasets3. Using 0.5 as the threshold,

we obtained the best training performance and hence chose to use this as the threshold

for similarity calculation. The various similarity measures used are described in the next

subsection.

4.2.3 Similarity Measures

Normalized Edit Distance Method (NED)

The Normalised Edit Distance approach computes the edit distance [Nerbonne and Heeringa,

1997] for all word pairs in a synset/concept and then provides the output of probable cog-

nate sets with distance and similarity scores. We assign labels for these sets based on the

similarity score obtained from the NED method, where the similarity score is (1 - NED

score). It is usually defined as a parameterisable metric which is calculated with a set

of allowed edit operations. Each of these operations is assigned a cost (possibly infinite).

The score is normalised such that 0 equates to no similarity and 1 is an exact match.

NED is equal to the minimum number of operations required to transform ‘word a’ to

‘word b’. A more general definition associates non-negative weight functions (insertions,

deletions, and substitutions) with the operations.

Cosine Similarity (Cos)

The cosine similarity measure [Salton and Buckley, 1988] is another similarity metric

that depends on envisioning preferences as points in space. This measure computes the

cosine of the angle between two vectors projected in a multi-dimensional space. In this

context, the two vectors are the arrays of character counts of two words. This measure

similarity is used in positive space, where the outcome is bounded in [0,1]. For example, in

NLP sub-areas of information retrieval and text mining, each term is assigned a different

dimension. A document is said to be represented by a vector, where the value in each

dimension corresponds to the number of times the said term appears in the document.
3We ran experiments with 0.25, 0.60, and 0.75 as well, and choose 0.5 based on training performance
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FFN RNN

D1 D2 D1 D2

Hi-Mr 69.76 85.76 74.76 89.78

Hi-Bn 65.18 81.04 69.18 86.44

Hi-Pa 73.04 78.50 76.04 83.64

Hi-Gu 61.74 79.16 69.84 89.44

Hi-Sa 61.72 85.87 68.92 91.66

Hi-Ml 56.96 74.77 66.96 79.59

Hi-Ta 55.62 61.70 65.62 68.92

Hi-Te 52.78 65.26 62.78 74.83

Hi-Ne 70.20 83.85 80.20 89.63

Hi-Ur 69.99 73.84 76.99 80.12

Table 4.2: Stratified 5-fold Evaluation using Deep Neural Models on both PCData (D1)

and WNData (D2)

This similarity score, then, gives a useful measure of how similar two documents are likely

to be, in terms of the text in them. This is similar to the cosine, which is 1 (maximum

value) when the segments subtend a zero angle and 0 (uncorrelated) when the segments

are perpendicular. In this context, the two vectors are the arrays of character counts of

two words.

Jaro-Winkler Similarity (JWS)

Jaro-Winkler distance [Winkler, 1990] is a string metric measuring similar to the nor-

malised edit distance deriving itself from Jaro Distance [Jaro, 1989]. It uses a prefix scale

P which gives more favourable ratings to strings that match from the beginning, for a set

prefix length L. We ensure a normalised score in this case as well. Here, the edit distance

between two sequences is calculated using a prefix scale P which gives more favourable

ratings to strings that match from the beginning, for a set prefix length L. The lower the

Jaro–Winkler distance for two strings is, the more similar the strings are. The score is

normalised such that 1 equates to no similarity and 0 is an exact match.
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Corp+WN20 Corp+WN40 Corp+WN60 Corp+WN80 Corp+WN100

FFN RNN FFN RNN FFN RNN FFN RNN FFN RNN

Hi-Mr 70.12 74.12 73.56 78.37 76.09 81.56 81.34 85.24 86.90 91.87

Hi-Bn 71.06 73.17 73.29 74.98 77.33 76.28 83.99 81.45 82.18 89.58

Hi-Pa 74.16 75.94 76.02 77.39 76.18 79.04 78.04 81.22 80.66 85.64

Hi-Gu 65.26 70.76 71.21 74.83 75.09 79.95 80.14 84.32 81.85 89.81

Hi-Sa 65.93 74.23 69.25 77.51 74.84 79.92 81.03 86.62 88.13 93.86

Hi-Ml 57.75 59.38 56.31 65.67 58.02 71.19 61.01 75.59 69.11 82.54

Hi-Ta 54.63 60.12 56.69 63.38 57.46 66.17 59.36 67.17 60.41 70.62

Hi-Te 53.21 58.18 56.19 63.90 64.15 67.70 65.19 70.65 66.10 74.92

Hi-Ne 70.78 71.23 74.30 78.11 72.19 83.20 79.70 85.01 84.69 90.95

Hi-Ur 69.94 71.25 70.01 72.35 72.03 76.59 71.07 78.27 73.99 80.99

Table 4.3: Results after combining chunks of WNData with PCData

4.2.4 Models

4.2.4.1 Feed Forward Neural Network (FFN)

In this network, we deal with a word as a whole. Words of the source and target languages

reside in separate embedding space. The source word passes through the source embedding

layer. The target word passes through the target embedding layer. The outputs of both

embedding lookups are concatenated. The resulting representation is passed to a fully

connected layer with ReLU activations, followed by a softmax layer.

4.2.4.2 Recurrent Neural Network (RNN)

In this network (see Figure 4.3), we treat a word as a sequence of characters. Characters of

the source and the target language reside in separate embedding spaces. The characters of

the source word are passed through source embedding layer. The characters of the target

word are passed through the target embedding layer. The outputs of both embedding

lookups are, then, concatenated. The resulting embedded representation is passed through

a recurrent layer. The final hidden state of the recurrent layer is then passed through a

fully connected layer with ReLU activation. The resulting output is finally passed through

a softmax layer.
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Figure 4.3: Architecture of our Recurrent Neural Network

4.2.5 Results and Discussion

We average the similarity scores obtained using the three methodologies (NED, Cos, and

JWS) described above, for each word pair, and then use these as training labels for cognate

detection models. We obtain results using the networks described above and report them

in Table 4.2. We calculate average scores for both models and both datasets and show the

chart in Figure 4.4. We observe that RNN outperforms FFN for both the datasets across

all language pairs (see Figure 4.4). We also find that Hi-Sa (see Figure 4.4) has the best

cognate detection accuracy among all language pairs (for both RNN and FFN), which

is in line with the fact that they are closely related languages when compared to other

Indian language pairs. We observe that average scores for WNData are always higher

than average scores for PCData for all language pairs (Figure 4.4). Also, in line with our

observations above, the overall average of RNN scores for both datasets are even higher

than average FFN scores (Figure 4.4).

We perform another set of experiments by combining non-redundant word pairs from

both datasets. We add WNData in chunks of 20 per cent to PCData for each language pair

and create separate word lists with average similarity scores. We use FFN to train and

perform a stratified 5-fold evaluation for each language pair after adding each chunk and

show the results in Table 4.3. After evaluating our results for FFN, we perform the same

training and evaluation with RNN. We observe that adding complete WNData to

PCdata improves our performance drastically and given us the best results
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for almost all cases. Only in case of Hi-Bn, when using the FFN for training, PCData

combined with 80% WNData performs better than 100% Data; possibly due to added

sparsity of the additional data. Our hypothesis that adding WNData to PCdata improves

the performance holds for all the other cases, including when trained using RNN.

Figure 4.4: Average Results using Neural Network models on both datasets

A parallel corpus is a costly resource to obtain in terms of both time and effort.

For resource-scarce languages, parallel corpora cannot easily be crawled. We wanted to

validate how crucial Wordnets are as a resource and can they act as a substantial dataset

in the absence of parallel corpora. In addition to validating the performance of chunks of

WNData combined with PCData, we also calculated the exact matches of word pairs from

both the datasets and show the results in Table 4.4. We observed that Hi-Mr had the

most matched pairs amongst all the languages. PCData is extracted from parallel corpora

and is not stemmed for root words, whereas WNData is extracted from IndoWordnet and

only contains root words. Despite many words with morphological inflections, we were

able to obtain exactly matching words, amongst the datasets. WNData constitutes a

fair chunk of root words used in PCData as well, and this validates the fact that models
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WNPairs CorpPairs Matches

Hi-Bn 324537 505721 17402

Hi-Pa 260123 465140 16325

Hi-Mr 322013 555719 17698

Hi-Gu 423030 542311 17005

Hi-Sa 669911 248421 10109

Hi-Ml 353104 315234 12392

Hi-Ta 225705 248207 7112

Hi-Te 369872 431869 7599

Hi-Ne 191701 420176 11264

Hi-Ur 99803 420176 6509

Table 4.4: Total Word Pairs for both datasets and Matches among them

Source Word Target Word Meaning Cos NED JWS

tadanukool tadanusaar accordingly 0.500 0.571 0.482

yogadaan karna yogadaan karane to contribute 0.631 0.636 0.593

duraatma dushtaatama evil soul 0.629 0.700 0.648

Table 4.5: Manual analysis of the similarity scores

trained on WNData can be used to detect cognate word pairs from any standard parallel

corpora as well.

It is a well-established fact that Indian languages are spoken just like they are writ-

ten, and, unlike their western counterparts, are not spoken and spelt differently. Hence,

we choose to perform cognate detection using orthographic similarity methods. This very

nature of Indian languages allows us to eliminate the need for using aspects of Phonetic

similarity to detect true cognates. Most of the Indian languages borrow words from San-

skrit in either of the two forms - tatsama or tadbhava. When a word is borrowed in tatsama

form, it retains its spelling, but in case of tadbhava form, the spelling undergoes a minor

change to complete change. Before averaging the similarity scores, we tried to observe

which of the three (NED, JWS, or Cos) scores would perform better for true cognates

known to us in tadbhava form with minor spelling changes. We analysed individual word
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pairs from the data and presented a small sample of our analysis in Table 4.5. We observe

that NED consistently outperforms Cos and JWS for cognate word pairs and confirmed

that NED based similarity is the most suited metric for cognate detection [Rama et al.,

2015]. We also observe that our methodology can handle word pairs without any changes

and with minor spelling changes among cognates, the total of which, constitutes a large

portion of the cognates among Indian Language pairs.

In this work, we investigate cognate detection for Indian Language pairs (Hi-Bn,

Hi-Gu, Hi-Pa, Hi-Mr, Hi-Sa, Hi-Ml, Hi-Ta, Hi-Te, Hi-Ne, and Hi-Ur). A pair of words is

said to be Cognates if they are etymologically related; and True Cognates, if they carry

the same meaning as well. We know that parallel concepts, bearing the same sense in

linked WordNets, are etymologically related. We, then, use the measures of orthographic

similarity to find probable Cognates among parallel concepts. We perform the same

task for a parallel corpus and then train neural network models on this data to perform

automatic cognate detection. We compute a list of True Cognates and release this data

along with the data processed previously. We observe that Recurrent Neural Networks

are best suited for this task. We observe that Hindi - Sanskrit language pair, being the

closest, has the highest percentage of cognates among them. We observe that RNN, which

treats the words as a sequence of characters, outperforms FFN for all the language pairs

and both the datasets. We validate that Wordnets can play a crucial role in detecting

cognates by combining the datasets for improved performance. We observe a minor, but

crucial, increase in the performance of our models when chunks of Wordnet data are

added to the data generated from the parallel corpora. It confirms that Wordnets are a

crucial resource for Cognate Detection task. We also calculate the matches between word

pairs from the Wordnet data and the word pairs from the parallel corpora to show that

Wordnet data can form a significant part of parallel corpora and thus can be used in the

absence of parallel corpora.

In the near future, we would like to use cross-lingual word embeddings, include more

Indian languages, and investigate how semantic similarity could also help in cognate de-

tection. We will also investigate the use of phonetic similarity-based methods for Cognate

detection. We shall also study how our cognate detection techniques can help infer phy-

logenetic trees for Indian languages. We would also like to combine the similarity score

by providing them weights based on an empirical evaluation of their outputs and extend
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our experiments to all the Indian languages.

4.3 Cognate Detection using Siamese Networks

This work was accepted at the Young Researcher’s Symposium at CoDS-COMAD 2020

Conference. In this short investigation, we propose the use of word embeddings for de-

tecting cognates. Further, we describe the use of linked Wordnets as a dataset for building

candidate cognate lists. We build our word lists using the linked IndoWordnets [Bhat-

tacharyya, 2017] for ten Indian languages namely Hindi (Hi), Bengali (Bn), Gujarati (Gu),

Marathi (Ma), Punjabi (Pa), Sanskrit (Sa), Malayalam (Ml), Tamil (Ta), Telugu (Te),

Nepali (Ne). We compare words among parallel synsets and store the words which exhibit

partial or full lexical similarity. Our word pair list sizes range from 656 (Hi-Ta) to 9472

(Hi-Gu). We obtain monolingual corpora from various sources which range from ~439K

lines (Ta) to ~48124K lines (Hi).

4.3.1 Approaches

In all our approaches, we report the results from performing 5-fold cross-validation on

WNData. We consider 70% of the data for training, 20% for testing, and the remaining

10% as validation split. The results are calculated over the test split. In the baseline

lexical similarity-based approach (LSA), we use a weighted lexical similarity4 to find

out the lexical distance between the context of both words (score1) and their respective

contexts, (i.e., bag of words based score2). From each set of “bag of words”, we compute

similarity scores for every word from the source side with every word on the target side

and average them. The intuition for harnessing a siamese feed forward network-

based approach is that these networks perform a combined mapping of input vectors into

a common target space. These networks find a function such that a simple distance in the

target space approximates the “semantic” distance or distance in the meaning, from the

input space. In the input layer, we provide the embeddings of a word pair. In the output

layer, we use cosine similarity and a sigmoid function to predict the class of the word-pair.

The network utilises cross-entropy loss as its loss function. An important contribution of
4A weighted combination of Normalized Edit Distance (NED) and Cosine Similarity (CoS) based on

characters, i.e., 0.75*NED + 0.25*CoS
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our work is that we perform this classification based on various embedding dimensions. We

build embedding models using the sub-word enriched fastText [Bojanowski et al., 2017b]

approach. We show reproducible results5 of our approach in Table 4.6.

LP

Baseline Approach Our Approach: Siamese Feed-forward Network (SFN)

LSA MEA (200 dim.) MEA (300 dim.) MEA (400 dim.)

P R F P R F P R F P R F

Hi - Bn 0.39 0.33 0.36 0.80 0.82 0.81 0.81 0.83 0.82 0.81 0.80 0.81

Hi - Mr 0.47 0.21 0.29 0.81 0.83 0.82 0.83 0.83 0.83 0.82 0.82 0.82

Hi - Gu 0.41 0.16 0.23 0.83 0.84 0.84 0.84 0.86 0.85 0.84 0.83 0.84

Hi - Pa 0.29 0.07 0.11 0.78 0.79 0.78 0.82 0.82 0.82 0.81 0.80 0.81

Hi - Ml 0.26 0.3 0.28 0.74 0.74 0.74 0.73 0.73 0.73 0.73 0.73 0.73

Hi - Te 0.2 0.14 0.16 0.73 0.70 0.71 0.70 0.70 0.70 0.70 0.69 0.69

Hi - Ta 0.24 0.17 0.20 0.71 0.71 0.71 0.70 0.70 0.70 0.69 0.70 0.70

Hi - Sa 0.41 0.17 0.24 0.82 0.83 0.82 0.81 0.85 0.83 0.81 0.81 0.81

Hi - Ne 0.42 0.18 0.25 0.78 0.80 0.79 0.78 0.77 0.77 0.78 0.77 0.77

Table 4.6: Results in terms of Precision (P), Recall (R) and F-Score (F) for LSA vs. SFN

for various dimension sizes.

In this investigation, we successfully utilise monolingual word embeddings and out-

perform approaches based on lexical similarity-based metrics. We experiment with various

embedding dimensions and show that larger embedding dimensions can be used only when

a large corpus size is available to help reduce the ambiguity among the distributional sim-

ilarity based sense clusters. We establish a use case for the utilisation of word embeddings

for the detection of cognates among Indian languages. In future, we would like to utilise

cross-lingual word embeddings to project the distribution of senses into a shared space to

perform the task of cognate detection.

4.4 Challenge Dataset of Cognates and False Friend

Pairs

This work was accepted at the LREC 2020 Conference, and we released manually validated

cognate datasets along with a manually validated false friends’ dataset which proved to
5http://www.cfilt.iitb.ac.in/cognateSiamese

http://www.cfilt.iitb.ac.in/cognateSiamese
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Hindi (Hi) Marathi (Mr) Hindi Meaning Marathi Meaning

Cognate ank ank Number Number

False Friend shikshA shikshA Education Punishment

Table 4.7: An example each of a cognate pair and a false friend pair from the closely

related Indian languages Hindi (Hi) and Marathi (Mr)

be a challenging dataset when evaluated against the state-of-the-art approaches. In this

work, we describe the creation of two cognate datasets for twelve Indian languages, namely

Sanskrit, Hindi, Assamese, Oriya, Kannada, Gujarati, Tamil, Telugu, Punjabi, Bengali,

Marathi, and Malayalam. We digitise the cognate data from an Indian language cognate

dictionary and utilise linked Indian language Wordnets to generate cognate sets. Addi-

tionally, we use the Wordnet data to create a False Friends’ dataset for eleven language

pairs. We also evaluate the efficacy of our dataset using previously available baseline

cognate detection approaches. We also perform a manual evaluation with the help of

lexicographers and release the curated gold-standard dataset with this work. Dictionar-

ies often include information about cognates and false friends, and there are dictionaries

[Hammer and Monod, 1976, Prado, 1993] exclusively devoted to them.

First, we describe the digitisation of one such Cognate dictionary named, “Tatsama

Shabda Kosha” and its annotation with linked Wordnet IDs. With the help of a lexicog-

rapher, we perform the digitisation of this dictionary. Further, we annotate the cognate

sets from the dictionary with Wordnet synset IDs based on manual validation, where the

lexicographer checks each Wordnet in the existing linked sense. Based on [Kanojia et al.,

2019d]s approach, we use linked Indian Wordnets to generate true cognate data and cre-

ate another cognate dataset. Additionally, we use the same Wordnet data to produce a

list of False Friends and release6 all the three datasets publicly. Our cognate sets can be

utilised for lookup in phrase tables produced during Machine Translation to assess the

quality of the translation system in question. They can be utilised as candidate transla-

tions for words, and our false friends’ list can be utilised by language learners to avoid

pitfalls during the acquisition of a second language. False Friend and Cognate detection

techniques can use these lists to train automatic cognate detection approaches for Indian

languages.

6Released Data: Github Link

https://github.com/dipteshkanojia/challengeCognateFF
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Figure 4.5: The difference between True Cognates (Word X and Word P), False Friends

(Word Y) and Partial Cognates (Word A and Word Z) explained for creating our Datasets

(D2 and D3).

Wu and Yarowsky [2018] release cognate sets for Romance language family and

provide a methodology to complete the cognate chain for related languages. Our work

releases similar data for Indian languages. Such a cognate set data has not been released

previously for Indian languages, to the best of our knowledge. Additionally, we release lists

of false friends’ for language pairs. These cognates can be used to challenge the previously

established cognate detection approaches further. Kanojia et al. [2019b] perform cognate

detection for some Indian languages, but a prominent part of their work includes manual

verification and segratation of their output into cognates and non-cognates.

Language Pair Hi-Bn Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-As Hi-Kn Hi-Or

Potential Candidates 50959 81834 47718 25044 33921 18084 5203 16230 14240 12480 54014

Cognates (D2) 15312 17021 15726 14097 21710 9235 3363 936 3478 4103 11894

Percent Agreement 0.9877 0.9849 0.9838 0.9754 0.9617 0.9223 0.9033 0.9553 0.9167 0.9122 0.8833

Cohen’s kappa 0.7851 0.7972 0.8628 0.7622 0.7351 0.7046 0.6436 0.7952 0.7591 0.7953 0.8333

Table 4.8: Number of Potential Cognates, Number of cognates retained on both annota-

tors’ agreement [Cognates (D2)], Percent agreement among the annotators and Cohen’s

kappa score for each language pair in our dataset

4.4.1 Dataset Creation

We create three different datasets to help the NLP tasks of cognate and false friends’

detection. In this section, we describe the creation of these three datasets for twelve

Indian languages, namely Sanskrit, Hindi, Assamese, Oriya, Kannada, Gujarati, Tamil,
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Language Pair Hi-Bn Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-As Hi-Kn Hi-Or

Potential Candidates 11128 10378 14430 9062 9285 5192 1018 7149 9374 3384 5011

False Friends (D3) 4380 6204 5826 4489 2193 1076 783 699 3872 926 2602

Percent Agreement 0.8912 0.9122 0.9233 0.9500 0.9018 0.8125 0.9288 0.8492 0.8825 0.9367 0.9133

Cohen’s kappa 0.8827 0.8245 0.7815 0.9255 0.9452 0.9064 0.7244 0.8901 0.8432 0.8167 0.9548

Table 4.9: Number of Potential False Friends, Number of False Friend pairs retained on

both annotators’ agreement [False Friends (D3)], Percent agreement among the annotators

and Cohen’s kappa score for each language pair in our dataset

Telugu, Punjabi, Bengali, Marathi, and Malayalam.

4.4.1.1 D1 - True Cognate Sets

The first dataset is created with the help of manual annotation. We digitise the book

“Tatsama Shabda Kosh” with the help of a lexicographer. The dictionary is a collection

of cognates from 15 Indian languages, but focus our work on 12 languages due to the

unavailability of Wordnets for the rest of the languages. The lexicographer then also

annotates each cognate set with a Wordnet sense ID after manual validation of each

cognate in the twelve linked Wordnets. This helps us capture an appropriate sense for

the cognate word provided via the dictionary. The annotation was performed manually

with the data collected in a CSV format in a text editor. By definition, cognates are

supposed to spell and mean the same. Our manual annotation using the Wordnet IDs

helps provide an appropriate sense to each cognate set in the dataset and thus can help

automatic cognate detection techniques utilise the synset information.

This dataset consists of 1021 cognate sets with a total of 12252 words. The book

consisted of a total of 1556 cognate sets, but during manual validation, 535 were found

to be partial cognates and have been ignored from this dataset. The percentage share of

parts-of-speech categories for Wordnet annotated cognates released is shown in Table 4.10.

Partial cognates, as previously explained, mean differently in different contexts. Keeping

the applications of our dataset in mind, we ignore the inclusion of partial cognates.

4.4.1.2 D2 - True Cognate Pairs via IndoWornet

In their work, Kanojia et al. [2019d] identify IndoWordnet [Bhattacharyya, 2017] as a

potential resource for the task of cognate detection. They utilise deep neural network-
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Nouns Verbs Adjectives Adverbs

D1 78.20 0.06 19.00 0.60

D2 76.35 2.41 20.11 1.10

Table 4.10: The percentage share of parts-of-speech categories in cognate datasets D1 and

D2

based approaches to validate their approach for cognate detection. We build this dataset

using a simple orthographic similarity-based approach from the IndoWordnet dataset.

Our approach combines Normalized Edit Distance (NED) [Nerbonne and Heeringa, 1997]

and Cosine Similarity (CoS) [Salton and Buckley, 1988] between words. We compare

synset words from every language pair using NED and populate a list of cognate sets where

NED score is 0.7 and above. Similarly, we populate another list of cognate sets from every

language pair using a shingle (n-gram) based Cosine Similarity with the same threshold.

Due to the different methods using which NED and CoS similarity techniques compute

scores, both NED and CoS output a different number of word pairs. We choose a common

intersection of cognate pairs from among both the lists and populate a final ‘potential

cognate set’ for eleven Indian language pairs. We take the help of two lexicographers

and manually validate this output. We are aided by two lexicographers for each of the

language pairs of Hindi (source) - (target) ‘other Indian languages’7 Each lexicographer

was requested to annotate whether the given word pair is cognate or not, given the context,

which contained the definition of the concept and an example sentence. We retain in the

final dataset, cognate pairs, which were marked to be true cognates by both annotators.

We provide the language pair wise data statistics, per cent agreement, and Cohen’s Kappa

(IAA) values for the lexicographers’ annotation in Table 4.8. The percentage share of POS

categories for annotated cognates is shown in Table 4.10.

4.4.1.3 D3 - False Friends’ Pairs

The creation of such a False Friends’ dataset is another one of our novel contributions

in this work. We search for false friend candidate pairs by searching for commonly spelt
7We intended to isolate the lexicographers of clues from other language cognate pairs. Hence, we

create cognate data in language pairs.



Chapter 4. Cognate Detection Task: Preliminary Investigations 92

words through the non-parallel synsets. These candidate pairs initially included partial

cognates as well, since words which are commonly spelt and belong to different senses,

could occur in both the contexts. We further prune this list by ensuring that these

commonly spelt words do not occur in parallel synsets and also do not occur in the

corresponding linked synset on either the source or the target side. Figure 4.5 explains

our heuristic where Word Y is a False Friend among Synsets 1 and 2, Word X and Word

P are True Cognates chosen for D2, and Word A / Word Z are ignored because they

are partial cognates. Once we find out such unique False Friend pairs, which are exact

matches in spelling but do not occur in parallel synsets, on either side, we populate our list

of false friend pairs. We populate this list for eleven language pairs where Hindi is always

the source language. It should be noted that false friends do not follow transitivity, i.e.,

if A and B are false friend pairs in languages X and Y, and A and C are false friends in X

and Z, it is not necessary that B and C would be false friends. Hence, we populate eleven

different false friend lists and take lexicographers to help for each language pair to validate

this output manually. Post- manual validation, we choose to retain the false friend pairs,

which were annotated as false friends’ by both the annotators. We report the statistics for

D3 in Table 4.9, which include the number of potential false friend candidates, False friend

pairs after manual validation of these potential candidates, Percent agreement among both

the annotators and Cohen’s Kappa (IAA) score for the annotation performed.

4.4.2 Experiment Setup for Evaluation

We evaluate the challenge posed by our datasets using the tasks of automatic cognate

detection and false friend detection, based on previously available approaches. In this

section, we describe the task setup and approaches which show the challenges posed by

these tasks. We also discuss how our dataset is a challenging dataset for these tasks, and

better approaches are needed to tackle the problems posed by a morphologically richer

dataset of cognates.

We combine D1 and D2 based on Wordnet Sense IDs and remove duplicates to form

a single dataset of true cognates, which we evaluate through the task of cognate detection.

We use various approaches to perform the cognate detection task, viz., baseline cognate de-

tection approaches like orthographic similarity-based, phonetic similarity-based, phonetic

vectors with Siamese-CNN based proposed by Rama [2016], and deep neural network-
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based approaches proposed by Kanojia et al. [2019d]. We use the same hyperparameters

and architectures, as discussed in these papers. For the Orthographic similarity-based

approach, we use the orthographic similarity between words as a feature. For the Pho-

netic similarity-based approach, we compute the phonetic similarity between two words

using phonetic vectors available via the IndicNLP Library8. To classify cognate pairs,

we use a simple feed-forward neural network with the respective feature scores passed to

a fully connected layer with ReLU activations, followed by a softmax layer (in the first

two approaches). We replicate the best reported systems from Rama [2016], i.e., Siamese

Convolutional Neural Network with phonetic vectors as features. To replicate Kanojia

et al. [2019d]’s approach, we use the Recurrent Neural Network architecture with a com-

bination of Normalized Edit Distance, Cosine Similarity, and Jaro-Winkler Distance as

reported in their paper. We have already discussed the manual validation of our datasets

in the previous section, which allows us to create a more curated dataset. We use the

computational approaches on this curated dataset post manual validation. For the train-

ing dataset, we use the data provided by Kanojia et al. [2019d] and create training and

validation sets with an 80-20 split. We then test the aforementioned approaches on our

dataset.

For the False Friends detection task, since no such dataset is available for Indian

languages, we annotate the data created by us with positive labels and divide it into train

and test sets. We then add true cognates to the training dataset with negative labels since

intuitively, they are the best candidates for misclassification due to common spellings just

like false friends do, but in case of true cognates, they also mean the same. We test our

false friends’ dataset using similar approaches with baseline features like orthographic

similarity, and phonetic similarity. We use a simple feed-forward neural network as the

classifier with the respective feature scores passed to a fully connected layer with ReLU

activations, followed by a softmax layer. To ensure the learning algorithm has ‘context’

available to decipher the meaning among false friends, we use the notion of distributional

semantics and employ a word vectors based approach proposed by Castro et al. [2018].

We use their approach to test the efficacy of our dataset and show better approaches

need to be devised for morphologically richer languages. Since the approach proposed

by Castro et al. [2018] requires monolingual word embeddings to be used, we train the

8https://anoopkunchukuttan.github.io/indic_nlp_library/

https://anoopkunchukuttan.github.io/indic_nlp_library/
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monolingual word embeddings using the standard Wikimedia dumps. We, then, train

twelve monolingual word embedding models for each Indian language under consideration.

In the next section, we discuss the results of our dataset evaluations.

Approaches Hi-Bn Hi-As Hi-Or Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-Kn

Orthographic Similarity 0.36 0.34 0.38 0.25 0.29 0.21 0.24 0.28 0.20 0.16 0.19

Phonetic Similarity 0.42 0.38 0.39 0.29 0.32 0.24 0.25 0.31 0.24 0.22 0.25

Rama et. al. (2016) 0.65 0.71 0.61 0.67 0.72 0.47 0.53 0.62 0.53 0.65 0.57

Kanojia et. al. (2019) 0.68 0.71 0.62 0.75 0.72 0.73 0.72 0.66 0.53 0.63 0.58

Table 4.11: Results of the Cognate Detection Task (in terms of F-Scores) for D1+D2. We

use the same architecture, features and hyperparameters as discussed in the papers for

Rama [2016] and Kanojia et al. [2019d]; and observe that these systems do not perform

as well on our dataset, as shown in the papers.

4.4.3 Results of Our Evaluation

In table 4.11, we show the results for the cognate detection task. We observe that on our

combined cognate dataset, the current approaches do not perform well. These approaches

have reported better performance for their own datasets. In most of the cases (Language

pairs), Kanojia et al. [2019d]’s approach performs better, but for the Hindi-Telugu lan-

guage pair, Rama [2016]’s approach performs better. Although both the approaches per-

form the same for Hi-As, Hi-Mr, and Hi-Ta language pairs, the scores are still lower than

what has been previously reported. We believe that these approaches perform well when

on a limited dataset, moreover, when the dataset consists of words which are stripped

on morphological inflections. NLP tasks such as Machine Translation and Cross-lingual

Information Retrieval do not use synthetic data, which is stripped of morphological infor-

Language Pairs Hi-Bn Hi-As Hi-Or Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-Kn

Orthographic Similarity 0.36 0.45 0.49 0.51 0.53 0.44 0.52 0.24 0.29 0.30 0.50

Phonetic Similarity 0.60 0.66 0.67 0.62 0.59 0.69 0.61 0.54 0.48 0.50 0.57

Castro et. al. (2018) 0.66 0.64 0.59 0.65 0.69 0.73 0.72 0.65 0.52 0.69 0.64

Table 4.12: Results of the False Friends’ Detection Task (in terms of F-Scores) for D3.

We use the same architecture, features and hyperparameters as discussed in the paper by

Castro et al. [2018] and observe that these systems do not perform as well on our False

Friends’ dataset.
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mation. If the cognate detection task has to be a part of a pipeline aiding the NLP tasks,

then approaches that perform the task should be robust enough to tackle a dataset such

as ours. Hence, we claim our dataset to be a more challenging dataset, which should help

develop better approaches.

In table 4.12, we report the results for the task of false friends’ detection. We

observe that the approach proposed by Castro et al. [2018] does not perform as well as it

does for Spanish and Portuguese, as reported previously. We believe that this approach

inherently lacks the linguistic intuition which is needed for the false friends’ detection

task. Please recall that False friends are word pairs that spell the same but do not mean

the same. However, for the approach to perform well, monolingual embeddings may

not be an appropriate feature. Cross-lingual word embeddings project monolingual word

embeddings into a shared space and thus should be able to decipher the ‘meaning’ or

the ‘sense’ of two different words better when they belong to different languages. Given

the recent advancements in word representation models, cross-lingual word embedding

based models should be employed for such a task. Let this also be noted that we do

not propose a new approach for the task of False friends’ detection and hence do not

perform any experimentation with cross-lingual word embeddings. However, Merlo and

Rodriguez [2019] show that cross-lingual word embeddings obtained using the VecMap

[Artetxe et al., 2016] approach have shown promise and can be used to obtain a semantic

comparison between two words from different languages.

In this investigation, we describe the creation of a challenging dataset of true cognates

which encompasses of cognates from two different sources. First, we digitise a cognate

dictionary and annotate it with Wordnet Sense IDs for twelve Indian languages to create

Dataset 1 (D1). We also use linked Indian Wordnets to create a true cognate dataset,

as described above. For both the datasets, we ensure a quality check with the help of

manual validation. We report the per cent agreement and Inter-annotator agreement for

D1 and D2. With D2, we retain the cognate pairs, which were marked to be cognates by

both the annotators. Two annotators aided us for each language pair. Additionally, we

release a curated list of False friends for eleven language pairs where the Hindi language

is always the source, and other Indian languages are the target languages. We evaluate

the efficacy of all these datasets using previously available approaches for the tasks of

Cognate and False Friends’ detection. We show that these approaches do not perform
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as well on our dataset, given the same hyperparameters and settings as described in

their papers. We discuss these results in the previous section. We also believe that this

work provides a challenging gold-standard dataset for the tasks for Cognate and False

Friends’ detection, which can also be used to aid the NLP tasks of Machine Translation,

Cross-lingual Information Retrieval, and Computational Phylogenetics. We hope better

approaches are developed for these tasks which can perform well on our challenge dataset.

In the near future, we shall include partial cognates in our dataset creation approach

and release another dataset on the same repository. Partial cognates mean different given

different contexts and can confuse an NLP task. Hence, we believe it is also important

to have a challenging dataset for partial cognates as well, which can be evaluated via

the bilingual bootstrapping approach described by Frunza [2006]. We would also like to

evaluate our dataset on other NLP tasks and report its efficacy in aiding the tasks of MT,

CLIR, Cross-lingual Question Answering, etc.

4.5 Summary

In this chapter, we have described in detail our contributions to perform the task of

cognate detection for Indian languages starting with a preliminary investigation which uses

manual validation but establishes a useful negative result. We explained our hypothesis

about how linked Wordnets can be used for the task of cognate detection and describe

our experiments with their outcomes. We, then, experimented with ‘Siamese’ networks

and showed how the dimensionality of, word embeddings used, plays a crucial role in

the classification of cognates. We then described our efforts to create challenge datasets

for the task of cognate detection and false friend’s using a cognate dictionary and linked

Indian language Wordnets. In the next chapter, we shall describe our proposed approaches

which use different novel feature sets for the task of cognate detection.



Chapter 5

Cognate Detection Task:

Cross-lingual and Other Novel

Features

In this thesis so far, we have established motivation for performing the task of cognate

detection. The previous chapter detailed our initial investigations towards the same. In

this chapter, we discuss a significant portion of our contributions to the detection of

cognates among Indian languages. Additionally, we perform an investigation to detect

cognates among Indian and European languages which is also described in this chapter.

We will, now, describe multiple investigations to detect cognates using various feature

sets and conclude this chapter.

5.1 Harnessing Cross-lingual Features for Cognate De-

tection

This investigation is originally titled as, “Harnessing Cross-lingual Features to Improve

Cognate Detection for Low-resource Languages”. In this crucial investigation, we demon-

strate the use of cross-lingual word embeddings for detecting cognates among fourteen

Indian Languages. Our approach introduces the use of context from a knowledge graph

to generate improved feature representations for cognate detection. We, then, evaluate

the impact of our cognate detection mechanism on neural machine translation (NMT),

97
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as a downstream task. We evaluate our methods to detect cognates on a challenging

dataset of twelve Indian languages, namely, Sanskrit, Hindi, Assamese, Oriya, Kannada,

Gujarati, Tamil, Telugu, Punjabi, Bengali, Marathi, and Malayalam. Additionally, we

create evaluation datasets for two more Indian languages, Konkani and Nepali. We ob-

serve an improvement of up to 18% points, in terms of F-score, for cognate detection.

Furthermore, we observe that cognates extracted using our method help improve NMT

quality by up to 2.76 BLEU.

India is a multilingual, multi-script country with 22 scheduled languages and 12

written script forms primarily belonging to 6 different language families. More than a

billion people use these languages as their first language. A significant amount of news

and information is found on the web in these languages, which is inaccessible to people

of other regions within the country. Most of the Indian language texts found online have

several words that have originated from Sanskrit, Persian, and English. While, in many

cases, one might argue that such occurrences do not belong to an Indian language, the

frequency of such usage indicates a wide acceptance of these foreign language words as

Indian language words. In numerous cases, these words also are morphologically altered

as per the Indian language morphological rules to generate new variant words. A key

question that we try to answer with this work is,

“Can semantic information from Cross-lingual models be leveraged to improve

cognate detection amongst low-resource languages?”

We hypothesize that utilizing cross-lingual features by employing existing resources such

as wordnets and cross-lingual embeddings should help improve cognate detection. In this

work, we utilize the semantic information from cross-lingual word embeddings. Cross-

lingual word embeddings can be obtained by training monolingual embeddings for indi-

vidual languages and then projecting them in a shared space using a bilingual dictionary.

In the absence of such a bilingual dictionary for low-resource languages, adversarial train-

ing can be used over identical words to generate the projections. We build cross-lingual

models for thirteen language pairs with Hindi as the source (L1) and thirteen target In-

dian languages (L2). We use the context information from a knowledge graph to build

the context dictionaries for each pair. The cross-lingual models help us obtain embed-

dings for the word-pair and the respective context dictionaries, from a shared space. We

hypothesize that using this approach shall provide a more accurate semantic measure
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for the detection of cognate pairs. The use of orthographic and phonetic similarity-based

methods to perform the same task provides us with baselines for a comparative evaluation.

A motivation to investigate this task for low-resource Indian languages stems from

the fact that most of the Indian languages borrow cognates or “loan words” from the

Sanskrit language. It is, for the most part, considered a historical antecedent of almost

all the Indian languages. Indo-Aryan languages like Hindi, Bengali, Gujarati, Punjabi

borrow from Sanskrit. They borrow many lexical forms and language properties from

Sanskrit. Dravidian languages are highly agglutinative like Sanskrit and morphologically

rich, which makes them tough to parse computationally. Marathi and Hindi suffer from

the same ailment even though Hindi is not considered as agglutinative as Marathi, but

it does exhibit compounding1 which makes it, yet again, difficult to parse for CLIR and

MT systems, and to detect cognates based solely on orthographic similarity. Given that

CLIR and MT are usually based on a full-form lexicon, one of the possible issues in the

generation of cognates concerns the similarity of words in their root form vs the similarity

in their lexical form. For example, the Sanskrit word “matri” and the English word

“Mother” are known cognates from the Proto-Indo-European language family where the

root and the meaning are identical, but the lexical form is considerably different. Our

approach handles such cases by inculcating the sub-word information while building the

embeddings and helps reduce the out-of-vocabulary (OOV) words, which have proven to

be a challenge for well-established CLIR systems [Udupa et al., 2009].

Dijkstra et al. [2010] show how cross-linguistic similarity of translation equivalents

affects bilingual word recognition, even in tasks manually performed by humans. They dis-

cuss how a need for recognizing semantic similarity arises for non-identical cognates, based

on the reaction time from human annotators. Similarly, Merlo and Andueza Rodriguez

[2019] show that cross-lingual models exhibit the semantic properties of for bilingual lex-

icons despite their structural simplicities, which leads us to perform our investigation for

low-resource Indian languages. All of the previous approaches discussed above, lack the

use of an appropriate cross-lingual similarity-based measure and do not work well for

Indian languages as shown through this work. This work discusses the quantitative and

qualitative results using our approach and then, applies our output to different neural

machine translation architectures.

1Compounding means when two or more words or signs are joined to make a longer word or sign.
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Language Pair Hi-Bn Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-As Hi-Kn Hi-Or Hi-Ne* Hi-Ko*

Cognates 15312 17021 15726 14097 21710 9235 3363 936 3478 4103 11894 2560 11295

Non-Cognates 16119 15057 15983 15166 23029 8976 4005 1084 4101 3810 13027 1918 9826

Table 5.1: Number of cognates and non-cognates for each language pair in the dataset.

Hi-Ne* and Hi-Ko* were generated via reproducing the previous approach [Kanojia et al.,

2020a].

Language Hi Bn Gu Mr Pa Sa Ml Ta Te Ne As Kn Ko Or

Corpus Size 48142K 1564K 439K 520K 505K 553K 495K 909K 1023K 706K 504K 159K 214K 744K

STTR (n=1000) 0.5821 0.5437 0.4587 0.6108 0.4314 0.5350 0.7339 0.6411 0.4950 0.4883 0.5968 0.5338 0.5614 0.4160

Table 5.2: Corpus Statistics where corpus size is approximate number of lines, and STTR

is the moving average type-token ratio on a windows of 1000 sentences.

5.1.1 Dataset and Experimental Setup

In this section, we describe our primary dataset for the cognate detection task. We also

describe the datasets used for building cross-lingual word embedding models, and the

parallel corpora used for the Neural Machine Translation (NMT).

Figure 5.1: Dataset Augmentation with Context and Two Language Pairs using In-

doWordnet.

For our experiments, we use the publicly released challenge dataset [Kanojia et al.,

2020a] of cognates. This dataset provides labelled cognate and non-cognate pairs for

twelve Indian languages namely, Sanskrit (Sa), Hindi (Hi), Assamese (As), Oriya (Or),

Kannada (Kn), Gujarati (Gu), Tamil (Ta), Telugu (Te), Punjabi (Pa), Bengali (Be),

Marathi (Mr), and Malayalam (Ml). We reproduce their approach to add two more

languages, Konkani (Ko) and Nepali (Ne), to this dataset. For building context dictio-
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naries, we use linked Indian language wordnets [Bhattacharyya, 2017] and concatenate the

concept definition and example sentences. We remove stop words from the context dic-

tionaries and append them with their respective word pairs. The lexical overlap between

the language pairs ranges from 13% (for Hi-Te) to only 23% (Hi-Mr). Figure 5.1 shows

an accurate description of the dataset creation process. The cognate dataset statistics are

described in Table 5.1.

5.1.1.1 Monolingual Corpora for Word Embeddings

The dataset for training cross-lingual models is obtained from various sources. Word

embeddings require a large number of monolingual corpora for efficient training of a usable

model with high accuracy. We extract corpora for these fourteen Indian Languages from

various sources and collect them in a single repository. We extract Wikimedia dumps2

for all languages and add ILCI corpora for these languages to each of them. For Hindi,

Marathi, Nepali, Bengali, Tamil, and Gujarati we add crawled corpus of film reviews and

news websites3 to their corpus. For Hindi, we also add HinMonoCorp 0.5 [Bojar et al.,

2014] to our corpus adding approximately 44 million sentences. For Sanskrit, we download

a raw corpus of proses4 and add it to our corpus. Training corpus statistics (approximate

number of total lines) are shown in Table 5.2.

5.1.1.2 Parallel Corpora for NMT

To validate the application of cognates for the Machine Translation task, we choose the

Neural Machine Translation setting and use the Indian Languages Corpora Initiative

(ILCI) Phase 1 corpus [Jha, 2010a]. This corpus contains approximately 50K parallel

sentences across 11 languages (English and 10 Indian Languages), from health and tourism

domains. For every language pair, the parallel corpus was split up into a training set

of 46,277 sentences, a test set of 2000 sentences and development set of 500 sentences.

The train, test and development splits were ensured to be parallel across all language

pairs involved. The language pair intersection for our cognate detection work and this

parallel corpus limited our MT experimentation to the following languages namely, Hindi

(Hi), Punjabi (Pa), Bengali (Bn), Gujarati (Gu), Marathi (Mr), Tamil (Ta), Telugu (Te)
2Wikimedia Dumps; as on April 22, 2020
3Additional Monolingual Corpus
4JNU Sanskrit Proses Corpus

https://dumps.wikimedia.org/
https://github.com/goru001?tab=repositories
http://sanskrit.jnu.ac.in/currentSanskritProse/
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and Malayalam (Ml). We keep Hi as the source and remaining languages as the target

languages for our experiments. We describe the experimental setup for our task below.

5.1.1.3 Cross-lingual Word Embedding Methodologies

Using the monolingual corpora described above, we build monolingual word embeddings

using the FastText library5 [Bojanowski et al., 2017b] since it takes sub-word information

into account, which is beneficial for a task such as ours where sub-words play an important

role, and spelling variations can lead to different meanings. We do not use BERT [Devlin

et al., 2018] or ELMo [Peters et al., 2018] for word embeddings as their pre-trained models

are not trained on transliterated corpora. We choose FastText to train Skipgram word

embedding models (100 dimensions) for each language using the following hyperparam-

eters - 15 epochs with 0.1 as the learning rate. We use two characters (bi-gram) as the

size of each sub-word for capturing the maximum number of sub-words.

We use three different methodologies for training the cross-lingual word embedding

models on all the language pairs with Hindi as a pivot language (Hi-Mr, Hi-Bn and so

on). The first methodology uses the supervised method of MUSE [Lample et al., 2018]6

which utilizes a manually curated bilingual lexicon7 for alignments. We use Hindi as a

pivot language due to the ease of computation and availability of resources (Corpora

and WordNet size). We use the monolingual models described above and train 13 cross-

lingual word embedding models (thirteen language pairs over 100 dimensions) using this

approach.

The second cross-lingual methodology uses VecMap [Artetxe et al., 2018a],

which utilizes the monolingual models created above. VecMap uses an optional nor-

malization feature while it builds the mappings between any two monolingual models.

It performs orthogonal transformation and maps semantically related words, similar to

MUSE, which was used in our first approach for building cross-lingual models. Addi-

tionally, it also reduces the dimensions of the embeddings models, which, is optional.

We train it using the same hyperparameters as described above, for consistency while

evaluating. We used the supervised approach for training these models as well, and the

training dictionary was similar to the one provided to the MUSE method. We obtain
5FastText - GitHub
6MUSE - GitHub
7Bilingual Lexicon

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/MUSE
http://www.cfilt.iitb.ac.in/Downloads.html
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thirteen models, one for each language pair, using VecMap. The third methodology

utilizes contextual embeddings which have shown to outperform the conventional word

embeddings based models for many tasks [Devlin et al., 2018]. We choose the most recent

methodology for building a single cross-lingual model for all the languages. XLM-R [Con-

neau et al., 2019] uses previously proposed approaches of XLM [Lample and Conneau,

2019] and RoBERTa [Liu et al., 2019] to attain a very high performing cross-lingual model,

especially for low-resource languages. We use our transliterated corpora described above

and concatenate it into a single large corpus required for training the model. We then

use the unsupervised training method of XLM-R and train a model over six days and a

couple more hours with a reduced batch size, which allowed us to be able to train the

model under a week’s time. The model was then used to output vectors akin to the other

cross-lingual models trained above for each word and their contexts. In this approach,

however, we did not need a dictionary for the cross-lingual mapping strategy, unlike the

two previous approaches. XLM-R generated a single model for all the languages trained

on two V100 GPUs over almost seven days time.

To put it more concisely, we trained cross-lingual models using three different method-

ologies (MUSE, VecMap and XLM-R) where the cross-lingual mapping obtained for

MUSE and VecMap were generated via the monolingual embeddings, as described above.

We obtained thirteen models using each of these two methods. A single cross-lingual

model was, however, trained using XLM-R and used for the third cross-lingual approach

whose training methodology has been described above.

5.1.2 Approaches

We use various approaches to perform the cognate detection task, viz., baseline cognate

detection approaches like orthographic similarity-based, phonetic similarity-based, pho-

netic vectors with Siamese-CNN based proposed by Rama [2016], and Recurrent neural

network-based approach proposed by Kanojia et al. [2019d]. We use the same hyperpa-

rameters and architectures, as discussed in these papers. We describe each of these feature

sets in this section.
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5.1.2.1 Weighted Lexical Similarity (WLS)

The Normalized Edit Distance (NED) approach computes the edit distance [Nerbonne

and Heeringa, 1997] for all word pairs in our dataset. Each of the operations has unit

cost (except that substitution of a character by itself has zero cost), so NED is equal to

the minimum number of operations to transform ‘word a’ to ‘word b’. We use a similarity

score provided by NED, which is calculated as (1 - NED Score). We combine NED with

q-gram distance [Shannon, 1948] for a better similarity score. The q-grams (‘n-grams’)

are simply substrings of length q. This distance measure has been applied previously for

various spelling correction approaches [Owolabi and McGregor, 1988, Kohonen, 1978]. We

provide different weights to both the measures and observe that providing 75% weight

to NED and 25% weight to QD provides us with the best F-scores over this dataset.

We compared F-scores over different weight balances, i.e., 50-50%, 25-75%, and chose

to report 75-25%, after empirical evaluation. Additional results with the weightages are

provided in the appendix. For any word pair with words p and q, it is as follows:

WLSpq = (NEDpq ∗ 0.75) + (QDpq ∗ 0.25) (5.1)

Now that this approach can be used to compute a score between each word pair, we use

it to find two scores, which are used as features - ‘word-pair similarity’ and ‘contextual

similarity’. Each candidate word-pair generates a score, i.e., score1, and the average of

scores among all words in the context dictionary generates another score, i.e., score2,

which are normalized as follows:

S1 = score1/ (score1 + score2)

S2 = score2/ (score1 + score2)
(5.2)

We use S1 and S2 as features for this orthographic similarity-based baseline approach.

5.1.2.2 Phonetic Vectors and Similarity (PVS)

The IndicNLP Library provides phonetic features based vector for each character in var-

ious Indian language scripts. We utilize this library to compute a feature vector for each

word by computing an average over character vectors. We compute vectors for both

words in the candidate cognate pairs (PVS and PVT ) and also compute contextual vec-

tors (PCVS and PCVT ) by averaging the vectors for all the context dictionaries on each
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side (source and target), generating a total of four vectors. We also calculate the cosine

similarity among PVS and PVT , and among PCVS and PCVT to generate two similarity

scores (PS1, and PS2) which are normalized using (2) and, additionally, used as features

during classification. It should be noted that using phonetic vectors and their similarity

scores has already been proposed in the previous literature [Rama, 2016] for a cognate

detection task, and we do not claim this approach to be our novel contribution.

5.1.2.3 Cross-lingual Vectors & Similarity

As described above, we train cross-lingual embedding models by aligning two disjoint

monolingual vector spaces through linear transformations, using a small bilingual dictio-

nary for supervision [Doval et al., 2018, Artetxe et al., 2017]. The first two approaches

for training cross-lingual methods use this dictionary for supervision. In our novel ap-

proach, we propose the use of vectors from the cross-lingual embedding models trained on

Indian language pairs. We obtain vectors for word-pairs (WVS and WVT ) and averaged

context vectors (CVS and CVT ) for the context dictionary, to create feature sets. We

obtain vectors for each candidate pair and their context using all the three cross-lingual

methodologies.

Additionally, we use angular cosine similarity [Cer et al., 2018] scores for word pairs

and their contexts. Angular similarity distinguishes nearly parallel vectors much better

as small changes in vector values yield considerable distances. For each word pair vector

and it’s context vectors, we compute the ‘word-pair similarity’ and ‘contextual similarity’.

We use arccos to obtain angular cosine similarity (asim) among vectors ‘u’ and ‘v’, as

shown below:

asim(u, v) =

(
1− arccos

(
u.v

∥u∥∥v∥

)
/π

)
(5.3)

Each candidate word-pair generates a score, i.e., score1, and the average of scores among

all words in the context dictionary generates another score, i.e., score2, which are also

normalized using (2).
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5.1.2.4 Classification Methodology

We pose the task of detecting cognates as a binary classification problem. We employ

both classical machine learning-based models and a simple feed-forward neural network.

To compare our work with the previously proposed approaches, we replicate the best-

reported systems from Rama [2016], i.e., Siamese Convolutional Neural Network with

phonetic vectors as features and also replicate Kanojia et al. [2019d]’s approach which

uses a Recurrent Neural Network architecture with a weighted lexical similarity (WLS)

as a feature set. The input to our classifiers is the feature sets described above for each

candidate pair. The candidates are the complete data described in Table 5.1. Cognates

from Table 5.1 are labelled positive, and non-cognates are labelled negative. We perform

5-fold stratified cross-validation, which divides the data into train and test folds, randomly.

An architecture diagram for our classification approach is shown in Figure 5.2.

Figure 5.2: Cognate Detection task with different feature sets and classification ap-

proaches.

Among the classical machine learning models, we use Support Vector Machines

(SVM) and Logistic Regression (LR). We experiment with the use of both linear SVMs

and kernel SVMs (Gaussian and Polynomial). We perform a grid-search to find the best

hyper-parameter value for C over the range of 0.01 to 1000. We deploy the Feed Forward

Neural Network (FFNN) with one hidden layer. We perform cross-validation with dif-

ferent settings for activation function (tanh, hardtanh, sigmoid and relu) and the hidden

layer dimension in the network (30, 50, 100, and 150). We use binary cross-entropy as

the optimization algorithm. Finally, we choose the hyper-parameter configuration with

the best validation accuracy. We train the model with the selected configuration with an
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initial learning rate of 0.4, and we halve the learning rate when the error on the valida-

tion split increases. We stop the training once the learning rate falls below 0.001. We

perform our experiments with the feature sets (Orthographic (WLS), Phonetic (PVS),

and three different cross-lingual embeddings based feature sets) described above for all

the thirteen language pairs. We also perform an ablation test with various feature sets

and report the results for the best feature combination in the next section. The results

of our classification task can be seen in Table 5.3 and are discussed in the next section,

in detail.

5.1.2.5 Cognate-aware Neural Machine Translation (NMT) Task

For the NMT task, we use the OpenNMT-Py toolkit [Klein et al., 2017] to perform our

experiments. We use a Bidirectional RNN Encoder-Decoder architecture with attention

[Bahdanau et al., 2014]. We choose three stacked LSTM [Hochreiter and Schmidhuber,

1997b] layers in the encoder and decoder. The hidden-size of the model was 500 units.

We optimize using stochastic gradient descent at an initial learning rate of 1, and a

batch-size of 1024 units. Training is done for 150,000 steps of which the initial 8,000

steps are for learning rate warm-up. We use Byte-pair encoding (BPE) [Sennrich et al.,

2015] merge operations, initially, in an endeavour to find the best baseline model with an

optimal number of merge operations. We observe that performing 2500 merge operations

provided us with best BLEU [Papineni et al., 2002] scores, for most of the language pairs.

We report the best results here, and a complete set of merge operation results in the

supplementary. We call this the NMT-BPE Baseline.

To validate our hypothesis that our approach can help the NMT task, we inject the

cognates detected using our approach to the parallel corpus for their respective language

pairs, as single word sentences. Lexical Dictionaries have previously been used to improve

the MT task [Arthur et al., 2016, Han et al., 2019]. However, a decent improvement in

their BLEU scores is observed when their lexicon sizes are approximately around 1M

tokens [Arthur et al., 2016]. Our detected cognate list size varies from 930 cognates (Hi-

Te) to 15834 (Hi-Mr). Due to the addition of more parallel instances to the corpus, the

vocabulary size for NMT increases. Hence, we experiment further by varying the BPE

merges, in a close range, to the optimal merge point obtained earlier. We report the

results of the best optimal merge setting, for both NMT-BPE Baseline model and the
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cognate injected NMT-BPE model, in the section below. A more detailed set of results

for all the merge operations is available in a separate table (Table 5.5).

5.1.3 Results and Discussion

Baseline Approaches Cross-lingual Embeddings based Approaches Ablation Test

LP
WLS w/ FFNN

PVS

w/

Siamese CNN

(Rama, 2016)

WLS w/ RNN

(Kanojia et al.,

2019)

XLM-R

w/ FFNN

MUSE

w/ FFNN

VecMap

w/ FFNN

MUSE + WLS

w/

FFNN

P R F P R F P R F P R F P R F P R F P R F

Hi-Bn 0.51 0.28 0.36 0.68 0.62 0.65 0.67 0.69 0.68 0.81 0.76 0.78 0.77 0.75 0.76 0.72 0.74 0.73 0.80 0.75 0.77

Hi-As 0.48 0.26 0.34 0.72 0.71 0.71 0.72 0.70 0.71 0.70 0.72 0.71 0.80 0.75 0.77 0.74 0.73 0.73 0.84 0.75 0.79

Hi-Or 0.51 0.30 0.38 0.65 0.58 0.61 0.66 0.58 0.62 0.65 0.61 0.63 0.72 0.68 0.70 0.67 0.70 0.68 0.81 0.69 0.75

Hi-Gu 0.43 0.16 0.23 0.70 0.65 0.67 0.81 0.71 0.76 0.80 0.73 0.76 0.80 0.84 0.82 0.77 0.74 0.75 0.83 0.85 0.84

Hi-Ne 0.50 0.16 0.24 0.72 0.84 0.78 0.78 0.73 0.75 0.75 0.75 0.75 0.86 0.83 0.84 0.78 0.73 0.75 0.86 0.83 0.84

Hi-Mr 0.51 0.20 0.29 0.70 0.68 0.69 0.74 0.70 0.72 0.76 0.71 0.73 0.70 0.73 0.71 0.71 0.71 0.71 0.72 0.73 0.72

Hi-Ko 0.47 0.24 0.32 0.63 0.63 0.63 0.63 0.59 0.61 0.66 0.58 0.62 0.69 0.73 0.71 0.61 0.60 0.60 0.70 0.75 0.72

Hi-Pa 0.28 0.17 0.21 0.51 0.44 0.47 0.76 0.72 0.74 0.75 0.71 0.73 0.83 0.78 0.80 0.71 0.74 0.72 0.83 0.78 0.80

Hi-Sa 0.34 0.19 0.24 0.55 0.51 0.53 0.73 0.71 0.72 0.75 0.70 0.72 0.77 0.76 0.76 0.73 0.71 0.72 0.80 0.77 0.78

Hi-Ml 0.49 0.20 0.28 0.59 0.66 0.62 0.66 0.66 0.66 0.72 0.63 0.67 0.76 0.71 0.73 0.69 0.71 0.70 0.77 0.71 0.74

Hi-Ta 0.22 0.19 0.20 0.49 0.58 0.53 0.49 0.58 0.53 0.63 0.51 0.56 0.72 0.68 0.70 0.66 0.72 0.69 0.72 0.70 0.71

Hi-Te 0.18 0.15 0.16 0.60 0.71 0.65 0.62 0.71 0.66 0.65 0.70 0.67 0.70 0.72 0.71 0.67 0.67 0.67 0.73 0.72 0.72

Hi-Kn 0.19 0.18 0.18 0.54 0.60 0.57 0.58 0.60 0.59 0.60 0.58 0.59 0.69 0.73 0.71 0.65 0.64 0.64 0.70 0.73 0.71

Table 5.3: Results of the cognate detection task, in terms of weighted F-scores (5-fold)

with baseline features and previous approaches, and our approaches using Cross-lingual

similarity based features, for all the language pairs (LP).

From table 5.3, among the baseline approaches, we observe high precision but shal-

low recall scores when Weighted Lexical Similarity (WLS) based features are used. In

fact, for language pairs which contain the Dravidian languages (Hi-Ml, Hi-Ta, Hi-Te, and

Hi-Kn), even the precision scores are observed to be very low. The classifiers are not able

to predict a significant amount of positively labelled cognate pairs, correctly. Even simple

lexical variants such as “Aag (Fire)” (Hindi) and “Agni (Fire)” (Telugu) were classified

incorrectly, as non-cognates. Phonetic vectors paired with a Siamese CNN [Rama, 2016],

however, mitigate such misclassifications and are seen to perform well with much higher

recall, for all the language pairs. Kanojia et al. [2019d]’s approach, however, outperforms

the phonetic vectors based approach. We observe marginal improvements in F-scores for
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almost all the language pairs (except Hi-Ko and Hi-Ne) when their RNN based approach

is used. As for our approaches, SVM and Logistic Regression based classification method-

ologies were consistently outperformed by the FFNN method. Hence, we report precision

(P), recall (R), and F-scores (F) for only FFNN based approaches in Table 5.3.

Our cross-lingual similarity-based approaches, however, significantly outperform all

the baseline approaches. We observe a stark improvement in both precision and recall

scores for all the language pairs. The cross-lingual approach, which uses the vectors from

VecMap based models, fails to outperform both MUSE and XLM-R based models. XLM-

R model exclusively achieves the best f-score for two language pairs (Hi-Bn and Hi-Mr).

We believe its performance can be attributed to the closeness of the language pairs as they

belong to the same language family (Indo-Aryan). Moreover, XLM-R is a transformer

architecture-based model which requires a relatively larger corpora size, and a decent

amount of corpus was available to build word embedding models for these target languages

(Table 5.2). For other language pairs, we attribute the improvement in performance

over the baseline approach to the cross-lingual models, in use. The cross-lingual models

built above are used to provide vectors for calculating the similarity between words and

contexts, bringing in the notion of semantic similarity for the task of cognate detection. It

should be noted that by the definition of cognates, they are semantically similar despite the

lexical variance. We observe that MUSE based feature representations paired with FFNN,

obtain the best F-scores. This observation stands true even when the target language

belongs to the Dravidian language family, where our baseline approaches lack severely in

performance. For example, “mkarand-maKarantam (pollen)” (Hi-Ta), a cognate pair was

classified correctly only using the MUSE based approach.

Additionally, we perform an ablation test with our feature sets for further experi-

mentation. We observe that the combination of WLS and vectors from the MUSE model

performs further better. Improvement is observed for eight language pairs out of thirteen

ranging from 1% point (Hi-Ko, Hi-Ml, Hi-Ta, Hi-Te) to 5% points (Hi-Or). It should be

noted that this is the only combination where no degradation in performance was observed

for any language pair and hence, is reported in Table 5.3. Any other combination (MUSE

+ VecMap, MUSE + XLM-R, MUSE + PVS, and so on) degrades the performance of

the cognate detection task, on at least one language pair.

The average improvement observed by using our best model (MUSE + WLS) over
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Approaches / LP Hi-Pa Hi-Bn Hi-Gu Hi-Mr Hi-Ta Hi-Te Hi-Ml

NMT-BPE Baseline 62.79 28.75 52.17 31.66 13.78 19.18 10.4

Cognate-aware NMT-BPE 65.55 29.43 52.39 32.41 13.85 19.58 11.18

Table 5.4: Results of the Cognate-aware Neural Machine Translation Task, in terms of

BLEU scores, for the language pairs (LP) with available parallel data.

the strongest baseline approach [Kanojia et al., 2019d] is 9% points with the highest being

18% points (Hi-Ta). Over the weakest baseline approach (WLS), our best model obtains

an average improvement of 50%, peaking at 61% points (Hi-Or).

We present the results of the Cognate-aware NMT task in Table 5.4. In the NMT task

for Hi-Pa language pair, an improvement of 2.76 BLEU is observed, where 15001 cognates

were detected including the misclassified pairs. Amongst a consistent improvement for

all the language pairs, even when 930 cognate pairs (Hi-Te) are added, an improvement

of 0.4 BLEU can be seen. The maximum number of cognate pair size injected into

the NMT pipeline is 15834 pairs for the Hi-Mr language pair. Interestingly, we do not

observe the most significant improvement for Hi-Mr despite the largest number of cognates

injected. We believe this is because Marathi is a morphologically rich language and

exhibits agglutination8.

In this investigation, we harness cross-lingual embeddings to improve the task of

cognate detection for thirteen Indian language pairs. We propose the use of a linked

knowledge graph to augment a publicly released cognate dataset with a context dictio-

nary. We reproduce the proposed approach and add two additional language pairs to the

same dataset and perform experiments using various approaches for a comparative eval-

uation. We reproduce the previously proposed approaches [Rama, 2016, Kanojia et al.,

2019d] for this task to perform a further evaluation. We obtain monolingual Indian lan-

guage corpora for all the fourteen languages (Section 5.1.1), from various sources to build

monolingual models and use a bilingual dictionary to supervise the task of cross-lingual

models generation (MUSE and VecMap), for thirteen language pairs (Hi-Mr, Hi-Ta and

so on). We also train a single cross-lingual model using the contextual embedding based

8Agglutination is a linguistic process in which complex words are formed by stringing together mor-

phemes without changing them in spelling or phonetics.
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NMT-BPE Baseline

Hi-Gu Hi-Pa Hi-Bn Hi-Te Hi-Ta Hi-Ml Hi-Mr

0k 49.47 62.79 28.51 19.18 12.86 10.4 31.21

2.5k 52.17 60.77 28.75 19.03 13.78 10.25 31.66

5k 50.9 59.95 28.16 18.83 13.01 9.9 31.33

7.5k 50.25 59.64 27.59 18.49 12.33 9.35 29.74

10k 49.61 59.17 26.48 17.87 11.64 9.37 29.77

15k 46.94 57.68 24.63 17.29 10.95 8.3 28.14

20k 44.68 57.24 23.6 16.58 9.68 7.56 25.4

Word-level 39.44 51.34 23.1 13.62 8.8 6.11 23.41

Cognate-aware NMT-BPE

Hi-Gu Hi-Pa Hi-Bn Hi-Te Hi-Ta Hi-Ml Hi-Mr

0k - 62.72 - 19.26 - 10.87 -

2.5k 52.39 65.55 29.43 19.58 13.85 11.18 32.41

5k 51.46 65.08 29.33 - 13.04 - 31.9

7.5k - 65.12 - - - - -

Table 5.5: Complete set of results for all merge operations performed for the NMT Task

approach (XLM-R).

Our experiments use three different approaches to generate better feature represen-

tations for the cognate detection task, and all of them show improvements over previously

proposed approaches. We observe consistent improvements in terms of precision, recall

and F-scores. We also perform an ablation study and show that augmenting WLS baseline

feature with MUSE based features provide us with the best results. Over the strongest

baseline, this model shows improvements up to 18% points, in terms of F-score. Our best

F-score is observed for the Hi-Gu and Hi-Ne language pairs (0.84) which can still be im-

proved and warrant further investigation into the task. Additionally, we use the detected

cognate pairs and use a simple approach to inject them into the neural machine transla-

tion pipeline. Our Cognate-aware NMT-BPE results also show a consistent improvement

for all the Indian language pairs. Furthermore, we release this augmented dataset, along

with our code and cross-lingual models for further research.

In future, we aim further to investigate the performance of contextual embeddings

for this task. Recent trends show that contextual embeddings based models outperform
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conventional word embeddings for most tasks. We, however, do not observe this and

attribute this primarily due to the dataset size used to train the contextual embeddings.

We shall add more data to our monolingual corpora and perform more experiments using

XLM-R. We also aim to investigate the task of cognate detection for other Indian language

pairs, along with Indo-European language pairs, in the near future.

5.2 Cognition-aware Cognate Detection

In this investigation, we propose a novel method for enriching the feature sets, with

cognitive features extracted from the gaze behaviour of human readers. We collect gaze

behaviour data for a small sample of cognate dataset and show that cognitive features

extracted, do help the task of cognate detection. We also use this gaze behaviour data to

predict cognitive features for a larger sample and show that predicted cognitive features

also significantly improve the performance of the cognate detection task. We report

improvements of up to 15% using collected gaze features, and 16% using the predicted

gaze features. Furthermore, we release the collected gaze behaviour data along with our

code, and cross-lingual models, publicly. Merlo and Andueza Rodriguez [2019] perform

an investigation to evaluate the use of recently proposed cross-lingual word embeddings

and show that these models show a lexical structure matching the bilingual lexicon. This

study establishes that the use of cross-lingual word embedding models provides an effective

similarity score when compared to their monolingual counterparts, for both cognates

and false friends. However, they do not evaluate machine learning algorithms to train

models which can distinguish between cognates and false friends. The absence of such

an evaluation also perpetrates a doubt whether these cross-lingual similarity scores can

provide a significant distinction between cognates and false friends, to machine learning

algorithms.

Inspired from their work, we investigate the use of cross-lingual word embeddings

and cognitive features to distinguish between cognates and false friends, for the Indian

language pair of Hindi and Marathi. Cognitively inspired features have shown to improve

various NLP tasks [Mishra et al., 2018]. However, most of their work involves collecting

the gaze behaviour data first on a large sample, and then splitting the data into training

and testing data, before performing their experiments. While their work does show signif-
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icant improvements over baseline approaches, across multiple NLP tasks, collecting gaze

behaviour over a large cognate dataset can be costly, both in terms of time and money.

Our approach tries to reduce this annotation cost by predicting gaze behaviour data for

a larger sample based on the smaller sample of collected gaze behaviour data. Our inves-

tigations use three recently proposed cross-lingual word embeddings based approaches to

generate features for the task of cognate detection. We also generate cognitive features

from the gaze behaviour data of participants and show that gaze behaviour helps the task

of cognate detection. Additionally, we use the collected gaze behaviour data and predict

gaze-based features for a much larger sample. We believe that our approach of using gaze

features will be more applicable only if gaze features can be predicted for unseen samples.

We believe that collection of gaze data cannot be performed in all the scenarios and hence

hypothesize that predicting such data if it helps improve the task of cognate detection,

should be a viable solution.

5.2.1 Motivation

Consider a scenario where an NLP task comes across the false friend pair shown in Ta-

ble 4.7 above. Orthographic similarity or even phonetic similarity-based techniques will

fail to detect the difference between the Hindi meaning of the word “shikshA” and its

Marathi counterpart. Here, semantic approaches should be able to detect the distinction

in meaning, but monolingual embeddings are trained using a large corpus from the same

language. In such cases, it becomes imperative that a cross-lingual word embeddings

model be utilized. However, Indian languages are known to be low-resource languages

compared to English or even many European languages like French, Italian, German, etc.

Acquiring additional clean data for training cross-lingual models is, yet again, a painful

task. In such a scenario then, we ask ourselves,

“Can cognitive features be used to, additionally, help the task of Cognate Detection?”

and furthermore,

“Can the prediction of such features using a small sample help us in further alleviating

the need for collecting gaze data?”



Chapter 5. Cognate Detection Task: Cross-lingual and Other Novel Features 114

5.2.2 Terminology

An interest area (IA) is an area of the annotation screen to be processed by the human

reader. In our experiments, it is an area where a word is shown to the reader. A fixation

is an event where the reader focuses within an interest area. A saccade is the movement

of the eye from one fixation point to another. If the saccades move from an earlier IA to

a later IA, such a saccade is called a progression. A regression is the saccade path when

the reader moves back to a previous IA. We also use the terms reader and participant

interchangeably.

5.2.3 Related Literature

Current literature which uses gaze behaviour to solve downstream NLP tasks has been ap-

plied to the NLP tasks of sentiment analysis [Mishra et al., 2018, Barrett et al., 2018, Long

et al., 2019], sarcasm detection [Mishra et al., 2016], grammatical error detection [Barrett

et al., 2018], hate speech detection [Barrett et al., 2018], named entity recognition [Hol-

lenstein and Zhang, 2019], part-of-speech tagging [Barrett et al., 2016], sentence simplifi-

cation [Klerke et al., 2016], and readability [González-Garduño and Søgaard, 2018, Singh

et al., 2016a]. A comprehensive overview is provided by [Mishra and Bhattacharyya,

2018]. The primary motivation of using cognitive features for NLP tasks is derived from

the eye-mind hypothesis [Just and Carpenter, 1980], which establishes a direct correlation

between a reader’s comprehension of the text with the time taken to read the text. This

hypothesis has initiated a large body of work in psycholinguistic research that shows a

relationship between text processing and gaze behaviour.

Mathias et al. [2020] describe an approach to score essays in a multi-task learning

framework automatically. Their approach relies on collecting gaze behaviour for essay

reading for a small set of essays and then predicting the gaze behaviour for the rest of

the dataset, in a multi-task learning setup. Similarly, Barrett et al. [2016] use token level

averages of cognitive features at run time, to mitigate the need for these features at run

time. Singh et al. [2016a] and Long et al. [2019] predict gaze behaviour at the token-level

as well. Mishra et al. [2018], González-Garduño and Søgaard [2018], Barrett et al. [2018],

and Klerke et al. [2016], use multi-task learning to solve the primary NLP task, where

learning the gaze behaviour is an auxiliary task.
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For the task of cognate detection, however, the use of cognitive features has not

been established previously. The task of cognate detection is cross-lingual, and a reader’s

cognitive load should vary while trying to comprehend the meaning of concepts, from

different languages. Our work tries to exploit the difference noted in terms of time taken

and eye-movement patterns in cognates vs false friends, to generate additional features

for the automatic cognate detection task. Moreover, for Indian languages such as Hindi

and Marathi, where agglutination9 in Marathi varies the word length, the task becomes

tougher, computationally.

5.2.4 Dataset Acquisition & Analysis

We pose the problem of cognate detection as a binary classification task in a supervised

setting. For this task, we use a recently released challenging dataset [Kanojia et al., 2020a]

of cognates and false friends. We extract the Hindi-Marathi cognate and false friend

pairs. The number of cognate and false friend pairs released by this work are 15726, and

5826. For reducing this skew, we select an equal number of cognates, at random, thus

producing a balanced dataset for the classification task. We also augment the complete

dataset with context information from the IndoWordnet [Bhattacharyya, 2017]. The

context information contains a gloss and an example sentence from the Wordnet data.

The dataset released by Kanojia et al. [2020a] contains the Synset IDs for each word pair

which helps us locate exact concept information from the dataset. We provide positive

labels to cognates and negative labels to false friend pairs obtained from this data, and

thus construct what we call “D1”.

We extract 100 pairs, at random, from each of the positive and negative labels for

collecting gaze behaviour data, to construct what we call “D2”. This data, extracted from

D1, is used for the purpose of collecting gaze behaviour and annotation. Although we

have gold labels for the data extracted, we ask the participants to annotate the data by

asking them if the concepts shown on the screen mean the same. The annotation screen

provides them with contextual clues obtained from Wordnet data on the screen, as shown

in Figure 5.3. The complete dataset statistics are shown in Table 5.6.

9Agglutination is a linguistic process due to which complex words are formed by joining together

morphemes without changing them in spelling or phonetics.
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Cognates (1) False Friends (0)

Kanojia et. al. (2020) 15726 5826

D1 5826 5826

D2 100 100

Table 5.6: Dataset Statistics for Cognate Detection Task

5.2.4.1 Gaze Data Collection and Annotation

The annotation task required the annotators to read word pairs and clues on the screen.

It instructed them to read one pair at a time and then label them with binary labels

indicating the similarity in meaning, (i.e., positive/negative). It should be noted that the

participants were not instructed to annotate whether a pair is a cognate or a false friend,

to rule out the Priming Effect, (i.e., if the same task expected beforehand, processing

cognate pairs becomes relatively easier [Sáchez-Casas et al., 1992]). This ensures the

ecological validity of our experiment in two ways: (1) The participant does not have

any clue so that they can treat cognates with special attention (done by asking them to

annotate meaning similarity) (2) Cognate pairs are mixed with false friend pairs and the

participant does not have any prior knowledge about whether the next word pair would

be a cognate or not. This also ensures that the participants pay attention and do not just

skim through the word pair.

The collection of gaze data is conducted by following the standard norms in eye-

movement research [Holmqvist et al., 2011]. We use an SR-Research Eyelink-1000 eye-

tracker (monocular remote mode, sampling rate 500Hz) records several eye-movement

parameters like fixations (an extended stay of gaze) and saccade (quick jumping of gaze

between two positions of rest) and pupil size. We request a total of 15 participants to

perform the annotation task, out of which only 11 participants could perform it. We could

not perform experiments with the remaining 4 participants due to the pandemic. Out of

the 11 completed annotations, we discarded the data from 2 participants as their gaze

behaviour was erratic (the fixations were too far away from the IAs). The participants

are graduates with science and engineering background. They are bilingual speakers who

know both Hindi and Marathi. Our participants were given a set of instructions before-

hand and were requested to seek clarifications before they proceede with the annotation.
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The instructions described the nature of the task as discussed above, annotation input

method, and the necessity of head movement minimization during the course of the ex-

periment.

Figure 5.3: Screen capture showing collection of gaze features (via eye tracking) while

displaying word pairs along with respective definitions and examples.

µ_Pos σ_Pos µ_Neg σ_Neg p

P1 9.720 17.867 8.677 4.281 0.028

P2 8.596 10.526 7.619 13.794 0.049

P3 7.770 6.664 7.044 3.900 0.027

P4 9.686 17.729 8.664 4.306 0.031

P5 8.861 8.611 8.099 5.246 0.042

P6 7.854 6.286 7.184 3.442 0.033

P7 8.564 5.499 7.918 3.540 0.033

P8 8.018 5.955 7.340 3.742 0.031

P9 9.720 17.867 8.703 4.305 0.028

Table 5.7: T-test statistics for average fixation duration time per word for Positive labels

(Cognates) and Negative labels (False Friends) for participants P1-P9.

5.2.4.2 Gaze Behaviour Data Analysis

The accuracy of similarity annotation by participants lies between 98% to 99.5% for

individual annotators. Out of the 1800 annotations (9 annotators over 200 word-pairs),

only 40 were mispredicted. The errors in annotation may be attributed to: (a) lack of
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patience/attention while reading, (b) issues related to word-pair comprehension, and (c)

confusion/indecisiveness caused due to lack of contextual clues. In our analysis, we do

not discard the data obtained from these incorrect annotations.

We observe distinct eye-movement patterns for cognate pairs in terms of fixation

duration of the human readers. Our analysis shows that fixation duration normalized

over word count is relatively larger for cognate pairs. For cognate pairs, we observe that

average fixation duration amongst all participants is 1.3 times more than that of false

friend pairs. To test the statistical significance, we conduct a two-tailed t-test (assuming

unequal variance) to compare the average fixation duration per word for cognate and false

friend pairs. The hypothesized mean difference is set to 0, and the error tolerance limit (α)

is set to 0.05. The t-test analysis, presented in Table 5.7, shows that for all participants,

a statistically significant difference exists between the average fixation duration per word

for cognate pairs vs false friend pairs.

5.2.4.3 Cross-lingual Word Embeddings

For this task, we use the cross-lingual word embedding models released by Kumar et al.

[2020]. The Hindi-Marathi cross-lingual models released with this work are based on both

MUSE [Lample et al., 2018] and XLM[Lample and Conneau, 2019]. Additionally, we

build the cross-lingual word embeddings model for Hindi-Marathi using VecMap [Artetxe

et al., 2017]. The model uses monolingual corpora released by Kunchukuttan et al. [2020]

and a bilingual dictionary10 required for the supervised method by Artetxe et al. [2017].

These three cross-lingual models provide us with different feature sets the task of cognate

detection.

5.2.5 Feature Sets for Cognate Detection

In this section, we discuss the various features used for the task of cognate detection.

It is to be noted that false friends are spelt similarly across languages but mean differ-

ently. Using false friends as data points with negative labels restricts us to the use of

semantic similarity based features, as orthographic or phonetic similarity-based measures

would fail to detect sufficient distinction between them. Hence, we use the features pro-

10Bilingual Lexicon

http://www.cfilt.iitb.ac.in/Downloads.html
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posed by Rama [2016] and Kanojia et al. [2019b] as baseline features for a comparative

evaluation.

5.2.5.1 Phonetic Features

The IndicNLP Library provides phonetic features based vector for each character in var-

ious Indian language scripts. We utilize this library to compute a feature vector for each

word by computing an average over character vectors. We compute vectors for both

words in the candidate cognate pairs (PVS and PVT ) and also compute contextual vec-

tors (PCVS and PCVT ) by averaging the vectors for all the contextual clues, generating

a total of four vectors. We use these vectors as features for computing the baseline scores

using the Siamese Convolutional Neural Network architecture proposed by Rama [2016].

5.2.5.2 Weighted Lexical Similarity

The Normalized Edit Distance (NED) approach computes the edit distance [Nerbonne

and Heeringa, 1997] for all word pairs in our dataset. Each of the operations has a unit

cost (except that substitution of a character by itself has zero cost), so NED is equal to

the minimum number of operations to transform ‘word a’ to ‘word b’. We use a similarity

score provided by NED, which is calculated as (1 - NED Score). We combine NED with

q-gram distance [Shannon, 1948] for a better similarity score. The q-grams (‘n-grams’)

are simply substrings of length q. This distance measure has been applied previously

for various spelling correction approaches [Owolabi and McGregor, 1988, Kohonen, 1978].

This feature set has been proposed by Kanojia et al. [2019b] and we use it with the

character-based Recurrent Neural Network architecture proposed by them to compute

another set of baseline scores.

5.2.5.3 Cross-lingual Vectors & Similarity

As discussed above, we use the pre-trained cross-lingual embedding models for generating

feature vectors for MUSE and XLM based approaches. These models are generated by

aligning two disjoint monolingual vector spaces through linear transformations, using

a small bilingual dictionary for supervision [Doval et al., 2018, Artetxe et al., 2017].

Additionally, the cross-lingual word embeddings model trained by using Artetxe et al.

[2017]’s approach provides us with the third set of feature vectors.
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We use these models to obtain vectors for word-pairs (WVS and WVT ) and averaged

context vectors (CVS and CVT ) from the contextual clues, to create three different fea-

ture sets. We obtain vectors for each candidate pair and their context using all the three

cross-lingual methodologies. The use of cross-lingual models has been proposed for dif-

ferentiating between cognates and false friends by Merlo and Andueza Rodriguez [2019],

but an evaluation of the cognate detection task has not been performed. We perform this

evaluation using our dataset and various classification methods and discuss the results

below.

Gaze Feature Description

Average Fixation Duration The average of all fixation duration across all interest areas present on the screen .

Average Saccade Amplitude Saccade amplitude is the amplitude of going back and forth measured in terms of duration.

Fixation Count Counting the number of times user’s eyes are fixated on the screen.

Fixation Duration Max Maximum time for a single fixation on any Interest Area.

Fixation Duration Min Minimum time for a single fixation on any Interest Area.

IA Count Interest Area Count (no. of IAs on the screen)

Run Count Consecutive counts for same Interest Area are ignored in Run Count

Saccade Count Total counts of Saccades

Table 5.8: Gaze Features used for the task of Cognate Detection

5.2.5.4 Cognitive Features from Gaze Data

Gaze behaviour of participants, characterized by fixations, forward saccades, skips and

regressions, can be used as features for NLP tasks [Mishra and Bhattacharyya, 2018].

Since these gaze features relate to the cognitive process in reading [Altmann, 1994], we

consider these as features in our model.

From the gaze behaviour data collected, we extract a total of 18 features for each

of the 1800 data points. Using supervised feature selection approach, we are able to

select eight best features via grid search using Logistic Regression. We use the Selec-

tKBest implementation along with hyperparameter tuning via GridSearchCV, present in

the sklearn [Pedregosa et al., 2011] library. Here onwards, we refer to these eight features

when we discuss cognitive or gaze-based features in this investigation. These eight best

features, along with their description, are listed in Table 5.8.
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Figure 5.4: Predicted feature values ( blue ) vs. Gold feature values ( orange ) for the

Saccade Amplitude feature for 100 samples.

5.2.5.5 Gaze Feature Prediction

Collection of gaze data for a large number of samples can be a costly task. We propose a

neural model for cognitive features prediction. Our neural model is a feed-forward neural

network to perform a regression task and predict gaze features. We collect gaze data for

only 200 word-pairs with the help of 9 annotators which provides us with a total of 1800

data points for training and validation. As reported in Table 5.9, the initial results on

D1 using different cross-lingual embeddings show that XLM based contextual features

perform the best amongst all the cross-lingual models.

As an input to the network, we provide the feature vectors from the XLM model.

The output of this network is the predicted gaze features for the D1 dataset, using the

gaze features as gold predictions from the D2 dataset. This network contains three linear

hidden layers with 128, 64 and 32 dimensions. We use the sigmoid activation function

after each layer and also ‘dropout’ after each sigmoid with a dropout value of 0.2, and

use 0.1 as the learning rate. We use the Mean Squared Error (MSE) loss function. A

graph comparing the values for the predictions vs the actual values for the average saccade

amplitude for 100 samples, can be seen in Figure 5.4.
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5.2.6 The Cognate Detection Task

We employ both classical machine learning-based models and a simple feed-forward neural

network. To compare our work with the previously proposed approaches, we replicate the

best-reported systems from Rama [2016], i.e., Siamese Convolutional Neural Network

with phonetic vectors as features and also replicate Kanojia et al. [2019d]’s approach

which uses a Recurrent Neural Network architecture with a weighted lexical similarity

(WLS) as the feature set. The input to our classifiers is the feature sets described above

for each candidate pair.

Among the classical machine learning models, we use Support Vector Machines

(SVM) and Logistic Regression (LR). We experiment with the use of both linear SVMs

and kernel SVMs (Gaussian and Polynomial). We perform a grid-search to find the best

hyper-parameter value for C over the range of 0.01 to 1000. We deploy the Feed Forward

Neural Network (FFNN) with one hidden layer. We perform cross-validation with dif-

ferent settings for activation function (tanh, hardtanh, sigmoid and relu) and the hidden

layer dimension in the network (30, 50, 100, and 150). We use binary cross-entropy as

the optimization algorithm. Finally, we choose the hyper-parameter configuration with

the best validation accuracy. We train the model with the selected configuration with an

initial learning rate of 0.4, and we halve the learning rate when the error on the validation

split increases. We stop the training once the learning rate falls below 0.001. We perform

5-fold stratified cross-validation, which divides the data into train and test folds, randomly.

Initially, we perform our experiments with the feature sets from three different cross-

lingual embeddings (MUSE, XLM, and VecMap) for the dataset D1. We, then, perform

the same task for the smaller dataset D2 by combining cognitive features with individual

cross-lingual feature sets. We also observe the performance of standalone gaze features

for the D2 dataset. Finally, we evaluate the predicted gaze features on D1 dataset by

combining them with cross-lingual features, and as a standalone feature set, using the

feed-forward neural network. We report the results of the cognate detection task in the

next section and discuss them in detail.
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Phonetic WLS

P R F P R F P R F P R F

Rama et. al., 2016 (D1) 0.70 0.68 0.69 - - -

Kanojia et. al., 2019 (D1) - - - 0.74 0.70 0.72

XLM MUSE VecMap

Linear SVM (D1) 0.81 0.71 0.76 0.70 0.68 0.69 0.70 0.65 0.67

LogisticRegression (D1) 0.80 0.75 0.77 0.72 0.74 0.73 0.70 0.73 0.71

FFNN (D1) 0.80 0.84 0.82 0.81 0.76 0.78 0.77 0.76 0.76

XLM+Gaze MUSE+Gaze VecMap+Gaze Gaze

Linear SVM (D2) 0.81 0.69 0.75 0.72 0.73 0.72 0.70 0.75 0.72 0.77 0.76 0.76

LogisticRegression (D2) 0.84 0.75 0.79 0.76 0.72 0.74 0.81 0.71 0.76 0.80 0.75 0.77

FFNN (D2) 0.83 0.85 0.84 0.83 0.78 0.80 0.86 0.83 0.84 0.81 0.71 0.76

Table 5.9: Classification results in terms of weighted Precision (P), Recall (R), and F-

scores (F) using 5-fold cross-validation using different feature sets as described above.

5.2.7 Results and Dicussion

We report the results of the cognate detection task in Table 5.9. In our initial evaluation

on the D1 dataset, cross-lingual model-based features (XLM, MUSE, and VecMap) can be

seen to outperform the baseline systems which use phonetic and orthographic features used

with their original systems. We observe a stark improvement in both precision and recall

scores for cross-lingual models when compared to the baseline systems. The cross-lingual

approach, which uses the vectors from VecMap based models, fails to outperform both

MUSE and XLM based models. XLM model achieves the best in almost all the settings.

We believe its performance can be attributed to the closeness of the language pair, and

the use of context from the contextual clues provided. For all standard classifiers, the

gaze features are averaged across participants and augmented with cross-lingual features.

These results are reported for all the classifiers with D2 dataset. Our feature combinations

outperform the baselines with the best F-score improvement of 15% points over Phonetic

features. We also report the precision, recall and F-score values when only gaze features

are used to predict the labels for our candidate pairs. We observe that standalone gaze

features are not as useful as when they are combined with cross-lingual feature vectors.
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When gaze features are predicted using the methodology described in Section 4.5,

the model performance for FFNN increases slightly. Across, all the feature combinations

our model performance either stands the same, or increases by 1% point (Table 5.10). It

should be noted that the regression task uses XLM based features to train and predict

gaze features for over 10000 samples.

Predicted Gaze Features (D1 + D2)

XLM+Gaze 0.85 0.85 0.85

MUSE+Gaze 0.83 0.85 0.84

VecMap+Gaze 0.85 0.78 0.81

Gaze 0.77 0.76 0.76

Table 5.10: Classification results when gaze features are predicted using a neural network

(Section 4.5), in terms of weighted Precision (P), Recall (R), and F-scores (F) using 5-fold

cross-validation on FFNN.

Our findings show that cross-lingual features outperform baseline features by a sig-

nificant margin (Table 5.9) and addition of gaze features also helps the task of cognate

detection. Furthermore, the predicted gaze features either help improve the classification

task, or at least perform at the same level (Table 5.10); but do not degrade the model

performance in any of the cases.

In this investigation, we harness cross-lingual embeddings and gaze-based features

to improve the task of cognate detection for the Indian language pair of Hindi-Marathi.

We create a novel framework that derives insights from human cognition, that manifests

over eye movement patterns. We hypothesize that by augmenting cross-lingual features

with features obtained from the gaze data, the task of cognate detection can be improved.

We use a linked knowledge graph (IndoWordnet) to augment a publicly released cognate

dataset with contextual clues. We collect the gaze behaviour data from nine participants

over 200 samples and perform the task of cognate detection for both our datasets (with

gaze data and without gaze data). We, then, use a neural network to predict gaze features

for unseen samples and perform the task of cognate detection to show a slight improvement

despite a small sample of training data.
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We reproduce the previously proposed baseline approaches and perform experiments

using additional features obtained cross-lingual models for a comparative evaluation. The

previously proposed approaches [Rama, 2016, Kanojia et al., 2019d] for this task are shown

to be outperformed using cross-lingual features and the combination of these features with

the gaze data obtained. Our experiments use three different approaches to generate better

feature representations for the cognate detection task, and all of them show improvements

over previously proposed approaches. We observe consistent improvements in terms of

precision, recall and F-scores. Over the stronger baseline, this model shows improvements

up to 12% points, and 15% points over the weaker baseline, in terms of F-score. Our best

F-score (0.85) is observed for the predicted gaze features with the use of the contextual

features from the XLM model. Furthermore, we release this augmented dataset, along

with our code and cross-lingual models for further research.

In future, we aim to add more language pairs and leverage contextual information

from knowledge graphs using sequence-based neural models, for this task. We also aim to

collect gaze behaviour data for them and then model the gaze predictions in a multi-task

setting. We also investigate the performance of other multilingual contextual embeddings

for this task (e.g., BERT). We also aim to investigate the task of cognate detection for

other Indian language pairs, along with Indo-European language pairs, in the near future.

5.3 Cognate Alignment for the Indo-European Lan-

guage Family

In this short investigation, we create cognate sets among the Indo-European language

family. We utilize the Hindi-English concept linkages among the Wordnet data where

English is used as a pivot to link concepts among Indian and European languages. The

manually validated dataset discussed in section 3.2.1 of this thesis is used as a pivot to

generate these cognate sets. We perform this task for 14 Indian languages (discussed in

5.1) and 5 European languages namely Spanish, Portuguese, Italian, French and Polish.

Based on the concept linkages obtained via pivot alignment, we align synsets from Indian

language wordnet and European Wordnets.
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Princeton WordNet or the English WordNet was the first wordnet and inspired the

development of many other wordnets. EuroWordNet [Vossen et al., 1997] is linked wordnet

comprising of wordnets for European languages, viz, Dutch, Italian, Spanish, German,

French, Czech and Estonian. Each of these wordnets is structured in the same way

as the Princeton WordNet for English [Miller et al., 1990] - synsets (sets of synonymous

words) and semantic relations between them. Each wordnet separately captures language-

specific information. In addition, the wordnets are linked to an Inter-Lingual-Index,

which uses Princeton WordNet as a base. This index enables one to go from concepts

in one language to similar concepts in any other language. Such features make this

resource helpful in cross-lingual NLP applications like cognate detection and false friends’

detection. IndoWordNet [Bhattacharyya, 2010] is linked wordnet comprising of wordnets

for major Indian languages, viz, Assamese, Bengali, Bodo, Gujarati, Hindi, Kannada,

Kashmiri, Konkani, Malayalam, Manipuri, Marathi, Nepali, Oriya, Punjabi, Sanskrit,

Tamil, Telugu, and Urdu. These wordnets have been created using the expansion approach

with Hindi WordNet as a pivot, which is partially linked to English WordNet.

5.3.1 Dataset Creation

In this section, we describe our primary datasets for the cognate detection task. We use

the dataset created by Kanojia et al. [2020a] and utilize the English to Indian language

Wordnet linkages to create a pivot-based alignment method. To create cognates sets from

the European language Wordnets, we use the data from the Open Multilingual Wordnet

(OMW) [Bond and Foster, 2013]. The statistics for Indian language cognate sets as

available from Kanojia et al. [2020a] are shown in Table 5.11.

Hi-Bn Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-As Hi-Kn Hi-Or

Cognates 15312 17021 15726 14097 21710 9235 3363 936 3478 4103 11894

Table 5.11: Number of Cognates among Indian language pairs from Kanojia et al. [2020c].

We extract concept-aligned words from the OMW, and the total number of synsets

and words for each of the five languages are shown in Table 5.12. It should be noted that

the OMW does not contain unique synset IDs, the unique key for these datasets is the

combination of Sysnset ID and the Part-of-speech category (ID-POS). We provide this
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Esp Ita Por Pol Fra Eng

Synsets 38443 34978 43857 33816 59023 116738

Words 57764 63317 74054 52390 102836 207004

Unique Words 36681 41855 54071 45394 55435 161923

Table 5.12: Statistics for the European and the English Wordnets language data from

OMW.

unique count along with the total number of unique word count in Table 5.12 along with

the total number of words, and the total number of unique words.

The synset linkage discussed in 3.2.1 have been created with the help of lexicogra-

phers via manual validation which involves concept matching on a semantic level. Since

semantic matching is established for such synsets, we exploit these linkages and generate

cognate alignments via further orthographic matching among the aligned synonymous

words. The statistics for the linkages between IndoWordnet and English Wordnet are

provided in Table 5.13.

Linked Synsets
Total Words

(Hi)

Unique Words

(Hi)

Total Words

(Eng)

Unique Words

(Eng)

Hi-Eng 30554 118981 84946 34300 28656

Table 5.13: Linked Data Statistics for English-Hind Wordnets

We use the source side data (Hindi Cognates) from the challenge dataset [Kanojia

et al., 2020a] and try to find existing matches in the linked data discussed in Table

5.13. We determine that a total of 8259 words which have existing cognates in the

challenge dataset among Indian languages and also exist in the synset linkages with the

English language. For here onwards, we use the weighted lexical similarity-based measure

and determine the orthographic similarity among these words based on concept linkages

with English and European language synsets. We describe the weighted lexical similarity

measure and the total alignments obtained in the section below.

5.3.2 Weighted Lexical Similarity-based Approach (WLS)

The Normalized Edit Distance (NED) approach computes the edit distance [Nerbonne

and Heeringa, 1997] for all word pairs in our dataset. Each of the operations has a unit
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cost (except that substitution of a character by itself has zero cost), so NED is equal to

the minimum number of operations to transform ‘word a’ to ‘word b’. We use a similarity

score provided by NED, which is calculated as (1 - NED Score). We combine NED with

q-gram distance [Shannon, 1948] for a better similarity score. The q-grams (‘n-grams’)

are simply substrings of length q. This distance measure has been applied previously

for various spelling correction approaches [Owolabi and McGregor, 1988, Kohonen, 1978].

This feature has been proposed by Kanojia et al. [2019b].

We use WLS to compute a similarity score among the potential cognate matches

among Hindi and English words. Similarly, we further use WLS to compute a similarity

score among the potential cognate matches in English and European language words.

We apply a relatively stricter threshold of 0.75 on these potential candidates and obtain

cognate sets among Hi-Eng-European language triples.

5.3.3 Results and Discussion

Based on the WLS approach, we are able to generate aligned cognate sets for Hi-Eng-

European language triples. We present the statistics of each such triple in Table 5.14.

Hi-Eng-Fra Hi-Eng-Esp Hi-Eng-Ita Hi-Eng-Pol Hi-Eng-Por

Cognate Sets 8750 1694 3186 3343 6311

Table 5.14: Statistics for the aligned cognate sets among Indian and European languages.

Based on the aligned sets above, we observe that due to the lesser number of manually

validated synsets, we are unable to obtain a large number of potential cognate matches for

the Indo-European language family. Although, with the numbers we obtain, we perform

an analysis of the parts-of-speech category to which these cognate sets may belong.

We observe that there are no cognates aligned for verbs or adverbs among the Indian

and European languages. Despite the large vocabulary available in wordnets, a large

number of synset linkage only belong to nouns and adjective. The aligned synsets do

contain a significant number of verb and adverb synsets, but the orthographic matching

of the words contained in such synsets does not provide us with even a single candidate

match. We believe that such a low number of cognate sets may not be able to affect the

outcome of a neural machine translation system at all and shall further look for more
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Noun Verb Adjective Adverb

Hi-Eng-Fra 8190 0 560 0

Hi-Eng-Esp 1557 0 137 0

Hi-Eng-Ita 2877 0 309 0

Hi-Eng-Pol 3322 0 21 0

Hi-Eng-Por 6100 0 211 0

Table 5.15: Distribution of the aligned cognates as per their parts-of-speech categories.

aligned data.

In this short investigation, we used the manually validated English-Hindi Wordnet

linkages to generate aligned cognate sets for Hi-Eng-European language triples. We obtain

a low number of such aligned pairs, and further analysis of this output also shows that the

majority of such pairs belong only to the noun part-of-speech category. The absence of

verbs and adverbs from this output is concerning and thus warrants further investigation

into different linked datasets such as the Wiktionary or monolingual corpus to look for

aligned cognate sets. We aim to extend this study further and also evaluate the use of

cross-lingual embeddings as a viable feature to detect similarity among Indo-European

cognates.

5.4 Summary

In this chapter, we have described the use of cross-lingual word embeddings for the task of

cognate detection. We further discuss another investigation which showed that cognitive

psycholinguistics could be used to generate helpful features for the same. We also showed

that detected cognates help the downstream NLP task of machine translation. Finally, we

conclude the chapter with a description of our efforts to detect cognate among Indian and

European languages. We release all the models, datasets and code, which are described

in this thesis with links provided while describing the investigations. The next chapter

details our investigation to detect false friends among Indian languages.
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Chapter 6

False Friends’ Detection Task

So far, we have created challenge datasets for the task of cognate and false friends’ detec-

tion and have detailed our efforts to detect cognates for low-resource Indian languages. In

this chapter, we discuss the approaches proposed and our experiments for the detection

of false friends. As discussed previously, False friends are words that are similar

in their forms despite having different meanings between two languages L1

and L2. An example of such an occurrence would be the word Embarrassed, i.e., ‘feeling

publicly shamed’ in English, and embarazado ‘pregnant’ in Spanish.

6.1 Utilizing Cross-Lingual Word Embeddings to De-

tect False Friends

This work is originally titled, “Utilizing Cross-Lingual Word Embeddings to Detect False

Friends among Indian languages”. In this investigation, we focus on the task of false

friends’ detection. We use multilingual gold-standard datasets of false friend pairs [Kano-

jia et al., 2020a]. Our datasets come from Hindi and one of nine Indian languages, viz.,

Bengali, Gujarati, Malayalam, Marathi, Nepali, Punjabi, Sanskrit, Tamil, and Telugu.

Our classification approach utilizes cross-lingual word embeddings and is evaluated on

these datasets extracted from linked Indian language WordNets and raw corpus. We

compare our approach with previous baselines that use orthographic, phonetic, or mono-

lingual embeddings based similarity. We report a significant improvement in F-scores,

over the orthographic similarity-based baseline, up to 50% points, for all language pairs

131
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and up to 65% points over the SoTA approach.1

Cognates can facilitate the foreign language learning process; they have similar mean-

ings and, therefore, they can support the acquisition and learning of a non-native language.

However, these words can also have a deceptive meaning as a result of semantic change

and dissimilar development in two languages. These deceptive cognate words are com-

monly known as “false friends” [Domı́nguez and Nerlich, 2002]. Knowing and utilizing

these cognates/false friends can help to improve the performance of computational phy-

logenetics [Rama et al., 2018] as well as cross-lingual information retrieval [Meng et al.,

2001]; which encourages us to investigate this problem for the Indian linguistic area.2 All

the applications of cognate detection depend on an effective method of identifying cog-

nates by computing a score, which reflects the likelihood that the two words are cognates

among languages.3

Cognate identification approaches can confuse a false friend pair with being a cognate

if orthographic similarity-based techniques are relied upon. False friends are especially

problematic for language learners as learners tend to overgeneralize and assume that they

know the meaning of these misleading words. Hence, we focus on the task of false friends’

detection and propose a novel approach, which can identify false friends’ from among

possible cognate pairs, by utilizing distributional semantics across languages. Current

work on false friends’ detection has been applied to datasets with very limited language

pairs. These datasets are either not available publicly or work with a few language pairs.

We create new challenge datasets for this task using rich knowledge graphs, i.e., linked

Indian language WordNets and raw monolingual corpora. First, we use orthographic sim-

ilarity to build candidate false friends’ list. Then, with the help of manual annotation, we

build a comprehensive gold-standard dataset for Indian language pairs. We also present

a salient approach utilizing deep cross-lingual word embeddings that outperform base-

line systems, including the most recently proposed methodology, by a significant margin.
1We will release the curated [Inter Annotator Agreement (IAA) of up to 0.87] false friends’ list along

with our evaluation dataset, and models upon publication.
2The term linguistic area or Sprachbund [Emeneau, 1956] refers to a group of languages that have

become similar in some way as a result of proximity and language contact, even if they belong to different

families. The best-known example is the Indian (or South Asian) linguistic area.
3Cognates in the same language are referred to as doublets.
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Our approach concerning the identification of false friends is based on using the notion

of semantic similarity from cross-lingual word embeddings. It performs significantly bet-

ter than baseline systems that employ orthographic similarity, phonetic similarity, and

monolingual embeddings based metrics for the task of false friends’ detection. We also

perform additional ablation experiments and show that a combination of orthographic

and cross-lingual similarity-based metrics outperform all available systems and release

the gold-standard challenge dataset along with the manually curated output in terms of

false friends’ lists for nine Indian language pairs.

The key contributions of this work are:

• A robust approach for the detection of false friends evaluated on these datasets,

which outperforms previously available approaches.

• Curated list of false friends’ for nine Indian language pairs, which can be used to

improve downstream NLP tasks.

6.1.1 Past Literature in Brief

For the detection of false friends and true cognates, Chen and Skiena [2016] present

an unsupervised transliteration based approach but do not report F-scores for Indian

languages. Their results for the detection of false friends are inconclusive not just for

eight Indian languages they discuss, but for 50% of languages they report their work on,

as stated in their work. For the task of False Friends’ detection, they show only a high

correlation of English-French and English-Spanish language pairs with manual validation.

Many previous approaches to detect false friends use orthographic similarity [Inkpen

et al., 2005, Ljubešić and Fišer, 2013, Torres and Aluísio, 2011, Mitkov et al., 2007, Nakov

et al., 2009], which our experiments clearly show to be a weak baseline. The most recent

work by Castro et al. [2018], which explores the problem of False Friends’ detection,

utilizes monolingual embeddings generated using word2vec [Mikolov et al., 2013c] for

Spanish and Portuguese. We compare it with our approach and show that their approach

performs relatively poorly in the case of morphologically rich Indian language datasets.

This also establishes the need for a more robust method, such as ours, which works with

language pairs from different language families.
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Language Pair Hi-Bn Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-Ne

Wordnet - D1 10740 15520 9030 4370 6520 5130 1890 4260 5680

Corpus - D2 5160 6110 3660 2670 2910 1180 720 2110 1150

Table 6.1: Approximate Number of False Friends Candidates (word pairs) in D1 and D2

Datasets

6.1.2 The Challenge of False Friends’ Detection for Indian Lan-

guages

Indian languages share a large number of cognates and false friends due to shared

ancestry. Sanskrit is, for the most part, considered a historical antecedent of many Indian

languages. This evolutionary relationship among Indo-Aryan languages (Hindi, Marathi,

Bengali, Gujarati, Punjabi) and Dravidian languages (Malayalam, Tamil, and Telugu)

make them interesting candidates for false friends’ and cognate detection studies.

False friends can degrade the performance of any NLP system which learns cross-lingual

properties for Indian languages based on characters, orthographic similarity, and phonetic

aspects.4. A simple use case is when false friend word pairs are translated into each other,

which should not happen. Hence, a word-pair lookup list such ours can help remove false

friends from phrase tables in both Statistical MT and Unsupervised SMT [Artetxe et al.,

2019] systems.

We note that the classical notion of orthographic similarity can be utilized to classify

candidate false friends from WordNet [Fellbaum, 2010] data. We identify IndoWord-

net [Bhattacharyya, 2017] as a potential resource that can be used to obtain candidate

false friends, and leverage the synset information, i.e., words, definition, and example for

the semantic concept, to obtain the contextual information. Our approach leverages this

contextual information and utilizes the distributional semantics captured via cross-lingual

word embeddings to separate false friends in a shared geometric space.
4Letters in Indian languages have a close correspondence with the sounds [Singh, 2006a]; failure of

orthographic methods to detect false friends indicates that even methods based on phonemes would

perform poorly
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Language Pair Hi-Bn Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-Ne

D1

Number of False Friends 5312 7021 5726 4097 2710 923 663 936 4218

Percent Agreement 0.9877 0.9849 0.9838 0.9754 0.9617 0.9223 0.9033 0.9553 0.9779

Cohen’s Kappa 0.7851 0.7972 0.8628 0.7622 0.7351 0.7046 0.6436 0.7952 0.8798

D2

Number of False Friends 239 784 832 751 211 129 257 184 644

Percent Agreement 0.9672 0.9807 0.9785 0.9700 0.8495 0.9500 0.9568 0.9701 0.9490

Cohen’s Kappa 0.8975 0.7677 0.8732 0.8556 0.6828 0.5080 0.8020 0.7698 0.6762

Table 6.2: Statistics of Gold-standard Data, i.e., Number of False Friends retained on both

annotators’ agreement (Section 6.1.3.3) along with the percent agreement and Cohen’s

Kappa scores.

Language Hi Bn Gu Mr Pa Sa Ml Ta Te Ne

Corpus Size 48142K 1564K 439K 520K 505K 553K 495K 909K 1023K 706K

STTR (n=1000) 0.5821 0.5437 0.4587 0.6108 0.4314 0.5350 0.7339 0.6411 0.4950 0.4883

Table 6.3: Word Embedding Corpus Statistics where corpus size is approximate number

of sentences, and STTR is the moving average type-token ratio on a window of 1000

sentences. (Section 6.1.3.4)

6.1.3 Datasets and Experimental Setup

We now explain our datasets for ten Indian languages namely Bengali (Bn), Gujarati

(Gu), Marathi (Mr), Malayalam (Ml), Nepali (Ne), Punjabi (Pa), Sanskrit (Sa), Tamil

(Ta), Telugu (Te) and Hindi (Hi).

6.1.3.1 Wordnet Dataset (D1)

The IndoWordnet project has linked wordnets that can be used to obtain words express-

ing the same concepts or words which express completely different concepts. Measures

such as Normalized Edit Distance (NED), Cosine Similarity (CoS), etc. reveal ortho-

graphic similarity between words. We hypothesize that a pair of words extracted from a

linked IndoWordNet concept with high orthographic similarity is a True Cognate candi-

date. Similarly, word pairs, which belong to different concepts, can be candidate

false friends. We use the dataset released by Kanojia et al. [2020a]. We report the total

number of candidates obtained for this dataset in Table 6.1.
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6.1.3.2 Corpus Dataset (D2)

Although, Wordnets are available for many languages5, they are not yet available for

all languages. Also, accurately linking concepts in WordNets is a tedious manual exercise.

To ensure that our approaches are language or resource agnostic (in terms of WordNet

data), we also apply our approach to raw corpora for the aforementioned languages. We

use the ILCI Corpus [Jha, 2010b] available for these languages and extract candidates for

the same language pairs. We compare each word from the source side corpus (Hi) to each

word from the target side corpus (other Indian languages) and retain words-pairs using

a similar approach (intersection between NED and CoS candidate outputs), as used for

D1. We report the statistics of the number of candidates formed in Table 6.1.

6.1.3.3 Gold-standard Datasets Construction

After the construction of candidate false friends’ lists (D2) as described above, we get

them manually validated by two human annotators (for each language pair) and only

retain the word-pairs which were marked as false friends by both our annotators. It

should be noted that the annotators were provided with context information6 along with

the candidate false friends to remove any ambiguity. The percentage agreement between

both our annotators for this manual evaluation is provided in Table 6.2 along with the

Cohen’s Kappa [McHugh, 2012] coefficient score. It should be noted that the number of

false friends reported for D2, in Table 6.2, is low because many candidate false friends

with high orthographic similarity were found to be duplicated by our lexicographers, and

we only retain unique false friend pairs. Further, we provide the dataset and training

details of word embedding based models.

6.1.3.4 Word Embeddings Dataset and Training Methodology

Word embeddings require a large amount of raw corpus for the training of a usable

model with high accuracy. We extract corpora for these ten Indian Languages from

various sources and collect them in a single repository. We extract Wikipedia article

texts from WikiMedia dumps7 for all languages and append the ILCI corpora to each of
5Open Multilingual Wordnet
6D2 - Complete Sentences
7WikiMedia Dumps

http://compling.hss.ntu.edu.sg/omw/
https://dumps.wikimedia.org/
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them. For Hindi, Marathi, Nepali, Bengali, Tamil, and Gujarati, we add crawled corpus

of film reviews and news websites8. For Hindi, we also add HinMonoCorp 0.5 [Bojar et al.,

2014] to our corpus, adding 44 million sentences. For Sanskrit, we download a raw corpus

of prose9 and add it to our corpus. We report corpus statistics in Table 6.3.

We build monolingual word embeddings using the FastText library10 [Bojanowski et al.,

2017b] since it takes sub-word information into account, which is beneficial for a task

such as ours where sub-words play an important role, and spelling variations can lead to

different meanings. We do not use BERT [Devlin et al., 2018] or ELMo [Peters et al.,

2018] for word embeddings as their pre-trained models are not trained on transliterated

corpora. We choose FastText to train Skipgram word embedding models (50 and 100

dimensions) for each language using the following hyperparameters - 15 epochs with 0.1

as the learning rate. We use two characters as the size of each sub-word for capturing the

maximum number of sub-words. Further, we train cross-lingual word embedding models

using three different strategies for all the language pairs with Hindi as a pivot language (Hi-

Mr, Hi-Bn and so on). The first strategy uses the supervised method of MUSE [Lample

et al., 2018]11 which utilizes a manually curated bilingual lexicon12 for alignments. We

use Hindi as a pivot language due to the ease of computation and availability of resources

(Corpora and WordNet size). We use the monolingual models described above and train

18 cross-lingual word embedding models (nine language pairs over 50 dimensions, and

nine language pairs over 100 dimensions) using this approach. In the next section, we

describe the various baselines, state-of-the-art, and our novel approach, along with the

classification methods used for the task of false friends’ detection. We build the models

using MUSE and use them to extract vectors and similarity scores among false friend

candidates.

The second cross-lingual strategy uses VecMap [Artetxe et al., 2018a], which utilizes

the monolingual models created above. VecMap uses an optional normalization feature

while it builds the mappings between any two monolingual models. It performs orthog-
8Corpus Source
9Sanskrit Prose

10FastText - GitHub
11MUSE - GitHub
12Bilingual Lexicon

https://github.com/goru001
http://sanskrit.jnu.ac.in/currentSanskritProse/
https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/MUSE
http://www.cfilt.iitb.ac.in/Downloads.html
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onal transformation and maps semantically related words, similar to MUSE, which was

used in our first approach for building cross-lingual models. Additionally, it also reduces

the dimensions of the embeddings models, which, is optional. We train it using the same

hyperparameters as described above, for consistency while evaluating. We used the super-

vised approach for training these models as well, and the training dictionary was similar

to the one provided to the MUSE method.

The third strategy utilizes contextual embeddings which have shown to outperform

the conventional word embeddings based models for many tasks [Devlin et al., 2018].

We choose the most recent methodology for building a single cross-lingual model for all

the languages. XLM-R [Conneau et al., 2019] uses previously proposed approaches of

XLM [Lample and Conneau, 2019] and RoBERTa [Liu et al., 2019] to attain a very high

performing cross-lingual model, especially for low-resource languages. We use our translit-

erated corpora described above and concatenate it into a single large corpus required for

training the model. We then use the unsupervised training method of XLM-R and train a

model over six days and a couple more hours with a reduced batch size, which allowed us

to be able to train the model under a week. The model was then used to output vectors

akin to the other cross-lingual models trained above for each word and their contexts.

In this approach, however, we did not need a dictionary for the cross-lingual mapping

strategy, unlike the two previous approaches. XLM-R generated a single model for all the

languages trained on two V100 GPUs over almost seven days.

To put it more concisely, we trained cross-lingual models using three different strate-

gies (MUSE, VecMap and XLM-R) where the cross-lingual mapping obtained for MUSE

and VecMap were generated via the monolingual embeddings, as described above. We

obtained nine models using each of these two methods. A single cross-lingual model

was, however, trained using XLM-R and used for the third cross-lingual approach whose

training methodology has been described above.

6.1.4 Approaches

False friends exhibit partial or full lexical similarity but are distant in terms of the

meaning or sense. To perform the task of false friends’ detection, the feature set can
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vary between orthographic, phonetic, and semantic features. In this section, we describe

various feature sets that we use with standard classification approaches over our gold-

standard dataset described previously.

6.1.4.1 Weighted Lexical Similarity (WLS)

The Normalized Edit Distance (also known as Levenshtein Distance) approach com-

putes the edit distance [Nerbonne and Heeringa, 1997] for all word pairs in both our

datasets to form word pairs set. Each of the operations has a unit cost (except that

substitution of a character by itself has zero cost), so NED is equal to the minimum num-

ber of operations to transform ‘word a’ to ‘word b’. We use a similarity score provided

by NED, which is calculated as (1 - NED Score). We combine NED with q-gram dis-

tance [Shannon, 1948] for a better similarity score. The q-grams (‘n-grams’) are simply

substrings of length q. This distance measure has been applied previously for various

spelling correction approaches [Owolabi and McGregor, 1988, Kohonen, 1978].

We observe that NED and QD output a different number of candidates as they compute

the orthographic similarity in different ways. We provide different weights to both the

measures and observe that providing 75% weight to NED and 25% weight to QD provides

us with the best F-scores over our gold-standard dataset. We compared F-scores over

different weight balances, i.e., 50-50%, 25-75%, and chose to report 75-25%, after empirical

evaluation. For any word pair with words p and q, it can be put as follows:

WLSpq = (NEDpq ∗ 0.75) + (QDpq ∗ 0.25)

Now that this approach can be used to compute a score between each word pair, we use

it to find two scores, which are used as features - ‘word-pair similarity’ and ‘contextual

similarity’.

We use the information provided with the wordnet synset, i.e., Gloss or Definition of

the concept, and Example sentence of the concept (sense) to form a ‘bag of words’. From

each bag of words (stop words removed), we compute the WLS score. We average the

similarity score of all comparisons and obtain ‘contextual similarity’. The intuition behind

this baseline method is that given both words belong to different concepts, WLS similarity
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between the words used to describe them should be relatively lower for false friends. The

first score (score1) being the ‘word-pair similarity’, and the second score (score2) being

the ‘contextual similarity’.

S1 = score1/ (score1 + score2) (6.1)

S2 = score2/ (score1 + score2) (6.2)

We then normalize these scores using (1) and (2) and compute the difference between S1

and S2. We use S1 and S2 as features for classification, as described ahead.

6.1.4.2 Phonetic Vectors and Similarity (PVS)

The IndicNLP Library provides phonetic features based vector for each character in

various Indian language scripts. We utilize this library to compute a feature vector for

each word by computing an average over character vectors. We compute vectors for both

words in the candidate false friend pairs (PVS and PVT ) and also compute contextual

vectors (PCVS and PCVT ) by averaging the vectors for all the contextual ’bag-of-words’

on each side (source and target), generating a total of four vectors. We also calculate

the cosine similarity among PVS and PVT , and among PCVS and PCVT to generate

two similarity scores (PS1, and PS2) which can be additionally used as features during

classification.

It should be noted that using phonetic vectors and their similarity scores has already

been proposed in the previous literature [Rama, 2016] for a cognate detection task, and

we do not claim this approach to be our novel contribution. We perform experimenta-

tion using this approach to draw a comparison between the use of phonetic features and

semantic features, which are reported ahead.

6.1.4.3 Monolingual Vectors & Similarity (MVS)

The most recent approach for the task of false friends’ detection was proposed by Cas-

tro et al. [2018]. We modify their approach by using FastText based models and the

addition of contextual vectors, for comparison. We obtain word-pair vectors (MVS and

MVT ) along with averaged contextual vectors (MCVS and MCVT ) to be used as features.

They use monolingual embeddings and extract only word vectors as features to be used
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during the classification task. We have already described the training of FastText based

monolingual embedding models. We report the results of this modified state-of-the-art

(SoTA) approach (with 100-dimensional models) using the same classification methods,

as used by our novel approach. Additionally, we use our corpora to train models using

word2vec, with hyperparameters as specified by them. We use their implementation from

their code repository13 to compare their output, over our datasets.

6.1.4.4 Cross-lingual Vectors & Similarity

Cross-lingual word embeddings are becoming increasingly crucial in multilingual NLP.

It has been recently reported that these embeddings can be effectively learned by aligning

two disjoint monolingual vector spaces through linear transformations, using no more than

a small bilingual dictionary for supervision [Doval et al., 2018, Artetxe et al., 2017]. The

first two approaches for training cross-lingual methods use this dictionary for supervision.

In our novel approach, we propose the use of vectors from the cross-lingual embedding

models trained for Indian language pairs. We obtain vectors for word-pairs (WVS and

WVT ) and averaged context vectors (CVS and CVT ) to create feature sets. We obtain

vectors for each word and its context using all the three cross-lingual approaches for

our experiment and discuss the results later in this work. We also use angular cosine

similarity [Cer et al., 2018] scores for word pairs and their contexts. Angular similarity

distinguishes nearly parallel vectors much better as small changes in vector values yield

considerable distances. For each word pair vector and its context vectors, we compute the

‘word-pair similarity’ and ‘contextual similarity’. We use arccos to obtain angular cosine

similarity (asim) among vectors ‘u’ and ‘v’, as shown below:

asim(u, v) =

(
1− arccos

(
u.v

∥u∥∥v∥

)
/π

)

Each false friend candidate pair generates a score, i.e., score1 and the average of scores

among all words in the context generate another score, i.e., score2, which are normalized

using (1) and (2), same as above. For D1, Word pair contexts are built using wordnet

information and removing stop words, thus resulting in a ‘bag of words’. For D2, we

consider the sentence window to be context after removing the stop words. We now have
13SoTA - Code Repository

https://github.com/pln-fing-udelar/false-friends


Chapter 6. False Friends’ Detection Task 142

two scores (S1 and S2) and four vectors (WVS, WVT , CVS, and CVT ) for each word pair,

which are used as features for classification. We describe our classification approaches in

the next section.

Baselines A Stronger Baseline

WLS PVS SoTA MVS

P R F P R F P R F P R F

Hi-Bn 0.61 0.71 0.66 0.62 0.57 0.59 0.61 0.55 0.58 0.61 0.59 0.60

Hi-Gu 0.52 0.72 0.60 0.52 0.72 0.60 0.64 0.58 0.61 0.68 0.59 0.63

Hi-Ml 0.65 0.81 0.72 0.66 0.64 0.65 0.32 0.42 0.36 0.66 0.76 0.71

Hi-Mr 0.56 0.75 0.64 0.56 0.75 0.64 0.58 0.49 0.53 0.56 0.75 0.64

Hi-Ne 0.35 0.59 0.44 0.59 0.55 0.57 0.59 0.33 0.42 0.68 0.60 0.64

Hi-Pa 0.49 0.70 0.58 0.50 0.69 0.58 0.41 0.34 0.37 0.66 0.67 0.66

Hi-Sa 0.44 0.66 0.53 0.63 0.64 0.63 0.17 0.28 0.21 0.68 0.56 0.61

Hi-Ta 0.68 0.74 0.71 0.65 0.81 0.72 0.39 0.52 0.45 0.69 0.70 0.69

D1

Hi-Te 0.47 0.69 0.56 0.66 0.64 0.65 0.55 0.49 0.52 0.47 0.69 0.56

Hi-Bn 0.66 0.29 0.40 0.30 0.54 0.38 0.55 0.35 0.43 0.84 0.53 0.65

Hi-Gu 0.32 0.48 0.38 0.52 0.72 0.60 0.49 0.65 0.56 0.71 0.62 0.66

Hi-Ml 0.29 0.22 0.25 0.31 0.50 0.38 0.29 0.38 0.33 0.69 0.61 0.65

Hi-Mr 0.22 0.57 0.32 0.56 0.75 0.64 0.61 0.55 0.58 0.69 0.66 0.67

Hi-Ne 0.09 0.28 0.14 0.35 0.59 0.44 0.52 0.41 0.46 0.55 0.56 0.55

Hi-Pa 0.10 0.54 0.17 0.49 0.70 0.58 0.31 0.39 0.35 0.65 0.52 0.58

Hi-Sa 0.07 0.69 0.13 0.44 0.66 0.53 0.27 0.18 0.22 0.28 0.21 0.24

Hi-Ta 0.09 0.58 0.16 0.61 0.61 0.61 0.49 0.32 0.39 0.61 0.54 0.57

D2

Hi-Te 0.31 0.38 0.34 0.47 0.69 0.56 0.52 0.59 0.55 0.57 0.57 0.57

es-pt - - - - - - 0.81 0.73 0.77 - - -

Table 6.4: Baseline Results of the false friends’ detection task, in terms of weighted F-

scores for Weighted Lexical Similarity (WLS), Phonetic Vectors and Simialirty (PVS),

State-of-the-art (Castro et al., 2018) approach, and Monolingual Similarity (MVS, i.e.,

SoTA w/ FastText) over all the language pairs, and for both the datasets (D1 and D2).
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6.1.4.5 Classification Approaches

We pose the problem of detecting a false friend as a binary classification problem. We

employ both classical machine learning-based models and a deep learning-based model to

detect false friends. We also perform experiments using the SoTA approach. The input to

these models is the feature sets described above for each candidate pair. The candidates

are the complete data described in Table 6.1. The gold-standard data from Table 6.2 is

labelled positive, and rest of the candidate pairs from Table 6.1 are labelled negative. The

lexical overlap between the language pairs ranges from 13% (for hi-te) to 23% (hi-mr).

We perform 5-fold stratified cross-validation, which divides the data among train and test

folds, randomly. Among the classical machine learning models, we use Support Vector

Machines (SVM) and Logistic Regression (LR). We experiment with the use of both linear

SVMs and kernel SVMs (Gaussian and Polynomial). We perform a grid-search to find

the best hyper-parameter value for C over the range of 0.01 to 1000.

We also deploy a simple Feed Forward Neural Network (FFNN) with one hidden layer.

We perform cross-validation with different settings for activation function (tanh, hard-

tanh, sigmoid and relu) and the hidden layer dimension in the network (30, 50, 100, and

150). We use binary cross-entropy as the optimization algorithm. Finally, we choose the

hyper-parameter configuration with the best validation accuracy. We train the model

with the selected configuration with an initial learning rate of 0.4, and we halve the learn-

ing rate when the error on the validation split increases. We stop the training once the

learning rate falls below 0.001.

We perform our experiments with the feature sets (Orthographic, Phonetic, Monolin-

gual Embeddings based, and three different cross-lingual embeddings based) described

above for all the nine language pairs and on both datasets. We also perform an ablation

test with various feature sets and report the results for the best combination in the next

section.

6.1.5 Results and Discussion

Cross-lingual similarity and vectors based features, as shown in Table 6.5, achieve the

best results in the false friends’ detection task (for both SVM and FFNN). The results
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Our Approaches Utilizing Cross-lingual Vectors and Similarity Best Ablation

MUSE

w/

SVM

MUSE

w/

FFNN

XLM-R

w/

FFNN

VecMap

w/

FFNN

MUSE + WLS

w/

FFNN

P R F P R F P R F P R F P R F

Hi-Bn 0.83 0.64 0.72 0.84 0.71 0.77 0.90 0.79 0.84 0.82 0.71 0.76 0.84 0.71 0.77

Hi-Gu 0.73 0.64 0.68 0.91 0.88 0.89 0.89 0.83 0.86 0.72 0.76 0.74 0.92 0.87 0.89

Hi-Ml 0.82 0.73 0.77 0.86 0.83 0.84 0.88 0.79 0.83 0.82 0.79 0.81 0.89 0.85 0.87

Hi-Mr 0.73 0.71 0.72 0.93 0.90 0.91 0.91 0.90 0.90 0.72 0.78 0.75 0.93 0.92 0.92

Hi-Ne 0.65 0.66 0.65 0.81 0.74 0.77 0.81 0.90 0.85 0.63 0.60 0.62 0.86 0.70 0.77

Hi-Pa 0.88 0.81 0.84 0.89 0.80 0.84 0.89 0.88 0.89 0.84 0.85 0.84 0.91 0.87 0.89

Hi-Sa 0.56 0.75 0.64 0.89 0.84 0.86 0.90 0.81 0.85 0.53 0.72 0.61 0.89 0.84 0.86

Hi-Ta 0.65 0.81 0.72 0.65 0.81 0.72 0.69 0.71 0.70 0.61 0.79 0.69 0.76 0.69 0.72

D1

Hi-Te 0.67 0.68 0.67 0.85 0.72 0.78 0.67 0.70 0.69 0.63 0.68 0.65 0.80 0.77 0.78

Hi-Bn 0.85 0.60 0.70 0.77 0.72 0.74 0.81 0.82 0.81 0.68 0.71 0.69 0.76 0.72 0.74

Hi-Gu 0.73 0.65 0.69 0.72 0.69 0.70 0.70 0.66 0.68 0.74 0.69 0.71 0.73 0.73 0.73

Hi-Ml 0.76 0.62 0.68 0.74 0.63 0.68 0.71 0.64 0.67 0.72 0.62 0.67 0.70 0.68 0.69

Hi-Mr 0.74 0.69 0.71 0.71 0.71 0.71 0.74 0.69 0.71 0.74 0.61 0.67 0.70 0.70 0.70

Hi-Ne 0.55 0.60 0.57 0.71 0.62 0.66 0.76 0.68 0.72 0.53 0.65 0.58 0.64 0.66 0.65

Hi-Pa 0.65 0.59 0.62 0.66 0.65 0.65 0.68 0.66 0.67 0.62 0.67 0.64 0.65 0.66 0.65

Hi-Sa 0.26 0.39 0.31 0.65 0.63 0.64 0.68 0.55 0.61 0.29 0.38 0.33 0.65 0.64 0.64

Hi-Ta 0.63 0.58 0.60 0.79 0.66 0.72 0.60 0.55 0.57 0.60 0.62 0.61 0.77 0.67 0.72

D2

Hi-Te 0.75 0.56 0.64 0.79 0.59 0.68 0.72 0.54 0.62 0.72 0.59 0.65 0.61 0.56 0.58

Es-Pt 0.85 0.77 0.81 0.89 0.80 0.84 0.78 0.87 0.82 0.80 0.82 0.81 0.89 0.84 0.86

Table 6.5: Results of the false friends’ detection task using our approaches, in terms

of weighted F-scores for Cross-lingual Similarity (CLS, i.e., MUSE), the combination of

Cross-lingual and Weighted Lexical Similarity (CLS+WLS) based features, Contextual

Embeddings based features (XLM-R), and VecMap based features, overall language pairs,

and both the datasets (D1 and D2).

obtained using baseline features (Orthographic, Phonetic, and so on) are reported in Table

6.4. Our models can be seen to outperform them with a significant margin. The cross-

lingual model training strategy which uses the vectors from VecMap based models fails to

outperform both MUSE and XLM-R based models. XLM-R model exclusively achieves

the best f-score for six language pairs out of eighteen (D1 + D2). The models generated
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using our work above are used to provide vectors for calculating the similarity between

words and contexts, bringing in the notion of semantic similarity for the task of false

friends’ detection. It should be noted that by the definition of false friend candidates,

they should be spelt similarly or identically, but such words should differ semantically.

We observed that vectors obtained using MUSE models were providing us with the best

results in most of the cases, outperforming the other cross-lingual strategies. Hence, we

perform further experiments by combining the MUSE features with other feature sets

(MUSE + WLS, MUSE + PVS, MUSE + and so on).

After performing an ablation test with a different feature set combinations, we observe

that a combination of the orthographic similarity-based measures (WLS) and cross-lingual

similarity (MUSE) performs even better, which indicates that orthographic and semantic

similarity should be combined to detect linguistic entities such as false friends. Our

results resonate with the linguistic identity of false friends, which defines them to be

word pairs with high orthographic similarity but low semantic similarity. For baseline

approaches in Table 6.4, we report the values for Linear SVM with the value of C as

10, which outperforms all other classification approaches. For the best method (MUSE),

we report the values of both SVM and FFNN. We report the results for cross-lingual

models with 100-dimensions as they were considerably better than results obtained using

features from the 50-dimensional models. We compare our results with the state-of-the-

art approach [Castro et al., 2018] over the same hyperparameters as described in their

work and show that monolingual vectors do not perform as well, for both word2vec and

FastText based (MVS) models.

We also replicate an experiment for Spanish (Es) - Portuguese (Pt) language pair on

their dataset, but with our approach, and report an improvement of 13% points. On both

our datasets created by us, we observe a significant improvement over their approach.

Notably, our best improvements over the SoTA approach, are 65% points (hi-sa) on D1

and 42% points (hi-sa) over D2, for Hi-Mr and Hi-Sa language pairs, respectively. A

further explanation for our results can be attributed to the fact that D1 is based on

Wordnets, which are a rich knowledge repository and contain a clear sense distinction. It

seems amiss in the results for our approach on D2, as can be seen in Table 6.5. Although,

using our approach, a significant margin of improvement can be seen even if Wordnets
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are not used as a dataset, or for providing contexts.

We perform manual error analysis by presenting a random 50%age of examples to two

other human annotators and asking them to classify the errors into various categories.

The annotators were provided context, in the form of Wordnet gloss and example (for D1

output) and the complete sentence from the corpus (for D2 output), and then requested to

mark positive and negative labels for our output; where positive implied that the word-pair

is a false friend pair, indeed. We report the true per cent (when both annotators agreed

upon the word pair being a false friend), per cent agreement, and Cohen’s Kappa values

from this evaluation in Table 6.6. Our methods yield a substantial agreement, with an

IAA (Cohen’s Kappa) of up to 0.87, demonstrating the general soundness of our approach.

We report high ‘true per cent’ scores among many language pairs, but there were some

erroneous classifications. Our annotators report that our candidate construction approach

results in a large list, some of which are verb-cognate object pairs. A cognate object (or

cognate accusative) is a verb’s object that is etymologically related to the verb (e.g.,

sleep-slept). Our approach classified some of them as false friends, which we find as a

source of erroneous classification. We plan to look into POS wise classification of false

friends’ to mitigate this issue possibly. Figure 6.1 shows the difference between best F-

scores for each language pair, among D1 and D2 datasets. We report these differences to

substantiate our claim that our approach works for both datasets and, is indeed, Wordnet

data independent. Despite minimal contextual information obtained from the sentence of

the raw corpus where the target word lies, our approach performs well, and the difference

between D1 and D2 values range from, as low as 0.03, to 0.22, the average being 0.14.

Indian languages are considered low-resource languages, which is reflected in the size

of monolingual corpora (except Hi), in Table 6.3. If the size of monolingual corpora is

sufficient (approx. 1 million sentences) to train cross-lingual embeddings, i.e., for Hi-Bn,

Hi-Ne, Hi-Ta, & Hi-Te, our approach works with minimal contextual information as can

be seen in Figure 6.1.

We also show anecdotal examples (one each) of a false friend pair detected using our

approach from each language pair in Table 6.7, along with the sense definitions in both

the languages. We observe that our approach can detect the semantic shift between fine-

grained senses to detect false friends. For example, in the Hi-Ne language pair, the word
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Language Pair Hi-Bn Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-Ne

D1

True Percent (%) 87.28 95.62 92.54 96.59 90.73 81.21 67.36 86.09 86.81

Percent Agreement(%) 93.78 98.62 97.84 98.57 96.33 93.01 87.81 96.48 98.01

Cohen’s Kappa 0.6423 0.8054 0.8188 0.7277 0.7336 0.7309 0.6876 0.8350 0.9070

D2

True Percent (%) 70.70 86.15 87.41 83.37 69.36 82.88 86.58 89.22 83.24

Percent Agreement(%) 91.83 94.71 96.77 94.96 88.99 95.21 96.64 95.59 96.25

Cohen’s Kappa 0.7836 0.7347 0.8732 0.8556 0.7084 0.8093 0.8381 0.7188 0.8518

Table 6.6: Evaluation of our output (list of false friends) in terms of percent agreement

and Cohen’s Kappa scores.

Figure 6.1: Difference among best systems for D1 & D2

‘anantataa’ which means ‘uncountable’ in Hindi but takes the sense of ‘large’ Nepali. This

word is borrowed from the Sanskrit language into Hindi, where the only sense of this word

in Sanskrit and Hindi is ‘uncountable’, but interestingly, it develops a new sense of ‘large’

in Nepali. We also observe that for the language pair Hi-Mr, the word ‘shiksha’, which

means ‘education’ in Hindi takes on the sense of ‘punishment’ in Marathi.

In this investigation, we introduce a novel approach to detect false friends by using deep

cross-lingual word embeddings with the highest attained F-score of 0.92 for the Hi-Mr lan-

guage pair. We create gold-standard challenge dataset (D2) for the task of false friends’

detection over nine Indian language pairs and release them publicly. We use various previ-

ously proposed approaches like lexical similarity-based, phonetic similarity-based, mono-

lingual embeddings based SoTA approach, and modified monolingual embeddings based

(MVS) for comparison. We perform our experiments on these nine language pairs and

report significant improvements over the baseline orthographic similarity-based approach,
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LP Source Word Target Word Source Sense Definition Target Sense Definition

Hi - Bn

अनाचार अनाचार दसूर के साथ बलपूवर्क िकया जानेवाला वह
अनु चत व्यवहार जससे उन्ह बहुत कष्ट हो

धमर िब द्ध काज

anaachaara anaachaara
doosro ke saatha balpoorvaka kiyaa jaanewaalaa weha

anuchita vyavahaara jis-se unhe bahut kashta ho
dharmer biruddha kaaja

misconduct blasphemous behavious which affects others in a negative manner against religion

Hi - Mr

शक्षा शक्षा िवद्या, संगीत आिद पढ़ाने या सखाने क िक्रया अपराधाबद्दल भोगावे लागणारे शारी रक कष्ट वा आ थक नुकसान

shikshaa shikshaa vidyaa, sangeeta aadi padhaane yaa sikhaane ki kriyaa
ya aparaadhaa-baddala bhogave laganaare shariirika

kashta vaa aarthika nuksaana

education punishment the activities of educating or instructing the act of punishing

Hi - Pa

खा लक खा लक धमर्ग्रंथ द्वारा मान्य वह सव च्च सत्ता जसे सृिष्ट का
स्वामी माना जाता है

िनरमाण करन जां बणाउण वाला

khaalika khaalika
dharmagrantho dwaaraa maanya waha sarvoccha

sattaa jise srushti kaa swaamii maanaa jaataa hai
nirmaana karana jan banaaun vaalaa

God Movie Producer the entity of worship in monotheistic religions someone who produces movies

Hi - Ml

शष्ट शष्टं उच्च आचार-िवचार रखने और भले आदिमय का-सा
व्यवहार करने वाला

ऒ ऴच्चुळ्ळ (ऎङ्ङनॆयो एतुिवधमो मुऴुवनुं तन्नॆ
नष्टमा यप्पोय तन्ऱॆ बािक्कयळु्ळत्)

shishta shistam
uccha achaara-vichaara rakhne aur bhale

aadmiyon kaa-saa vyavahaara karne walaa

oḻiccuḷḷa (eṅṅaneyēā ētuvidhamēā muḻuvanuṁ

tanne naṣṭamāyippēāyatinṟe bākkiyuḷḷat).

well-behaved remainder socially or conventionally correct something left after other parts have been taken away

Hi - Te

योजन योजन धमर्ग्रंथ द्वारा मान्य वह सव च्च सत्ता जसे सृिष्ट का
स्वामी माना जाता है

रामु ड भायर्

yojana yojana
dharmagrantho dwaaraa maanya waha sarvoccha

sattaa jise srushti kaa swaamii maanaa jaataa hai
raamudi bhaarya

God (Named Entity) the entity of worship in monotheistic religions The wife of Rama, i.e., A proper noun referring to Sita

Hi - Gu

सरस सरस पानी का बड़ा कंुड जोवामां सा ं अने सुंदर लागना ं
sarasa sarasa paanii kaa badaa kunda jovaamaan saarun ane sundara laagnaaru

reservoir beautiful water reservoir having great beauty and splendor

Hi - Ta

तिम तिम एक रोग जसम रात के समय िदखाई नह पड़ता कट लल् व चक्ककू्किटय मीिऩऩ् विटवत्तैयटैुय पॆ रय
नीवार्ऴ् उ य रऩम्

timi timi eka roga jismein raata ke samaya dikhaayii nahii padtaa
Kaṭalil vacikkakkūṭiya mīṉiṉ vaṭivattaiyuṭaiya

periya nīrvāḻ uyiriṉam

Night-blindness whale
Disease which causes inability to see

clearly in dim light or night

any of the larger cetacean mammals having a

streamlined body

Hi - Ne

अनन्तता अनन्तता अनिगनत होने क अवस्था या भाव अ धक हुने अवस्था या भाव
anantataa anantataa anaginata hone ki avasthaa yaa bhaava adhika hune avasthaa yaa bhaava

uncountable large too many to be counted the state of being more than full

Hi - Sa

शस्य शस्य कुछ पौध से उत्पन्न होने वाले दाने यः सततकतर्व्यकमार्नुष्ठाता प्रकृताचारशीलः तथा
च न्यायपथावलम्बी अ स्त

shasya shasya kucha paudhon se utpanna hone waale daane
yah satata-kartavaya-karmaanushthaataa prakrut-

-aachaarasheelah tathaa cha nyaaya-patha-avalambii asti

grain good
dry seedlike fruit produced by the cereal grasses:

e.g. wheat, barley,
having desirable or positive qualities

Table 6.7: An example of detected False Friends along with sense definitions, from each

language pair. The pronunciation and translation of each table entry are provided in the

table.
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which uses lexical similarity to detect the distance between words and their context. We

also show significant improvements over the state-of-the-art approach and report gains of

up to 27% points (Hi-Mr) and 40% points (Hi-Sa). We perform a manual error analysis

of our output and report a high IAA of up to 0.87. We show that our approach is lan-

guage and resource agnostic (in terms of Wordnet data) as consistent improvements are

shown over all the language pairs, and over both datasets. We release all the cross-lingual

models, our code and the curated list of false friends’ for further applications to NLP.

In the future, we would like to perform experiments for the task of cognate detection

using our proposed approach, and the same cross-lingual models. We would also like to

add more corpora to cross-lingual word embedding models and use contextual sentence

embeddings. We would also like to apply our method to other languages, including, but

not limited to, English and all the “Romance Languages” (French, Italian, Romanian,

and so on).

6.2 Summary

In this chapter, we described our efforts to improve the task of false friends’ by utilizing

features from cross-lingual word embeddings. We described in detail the creation of a

gold standard dataset and then proposed classification approaches. Our evaluations show

that cross-lingual word embeddings helped improve the task with a significant margin.

We conclude this chapter with anecdotal examples of false friends detected from each

language pair in our dataset.
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Chapter 7

Computational Phylogenetics and

Language Typology

In this thesis, so far we have discussed relatedness among languages and how vocabulary

is shared among two or more languages. We established a motivation to perform the task

of cognate detection and false friends’ detection. We described the creation of datasets

required for the task of cognate detection, viz., creation of linked wordnet dataset, creation

of pre-trained embeddings and the challenge datasets for the task of cognate and false

friends’ detection. We provided a detailed description of our investigations with regards

to automatic cognate detection and false friends’ detection. In this chapter, however,

we start the second part of this thesis which details our investigations in the application

of distributional semantics for computational phylogenetics for variant manuscripts and

language typology for Indian languages. We begin by providing a history of textual

criticism and stemmatology in the section below.

7.1 A Brief History of Textual Criticism

Textual criticism provides us with the principles for the scholarly editing of the texts of

cultural heritage. In the western world, the tradition and practice of collecting, tending,

and the act of preserving records was first instituted in the Hellenistic period1ri. The great

library at Alexandria was the foremost collection of manuscripts of the ancient times. A

school of textual scholarship was established at Alexandria, but its systematic principles,
1Helleistic Period: Reference
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https://www.britannica.com/event/Hellenistic-Age
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for the most part, have not survived. The next few ages were oblivious of this textual

discipline. Instead, the scriptoria2 of the centres of medieval age learning were affected

by the pragmatics of the copyist. Scribes interpreted texts as they copied them, and as

they did so they often compared variant source document exemplars3 and, in the process,

altered texts in transmission. Such interpretive criticism of variant readings remained a

standard for the philologists of the medieval age. They laid the early foundations of mod-

ern textual scholarship and textual criticism. Their first attempts were the classical and

medieval texts in the Latin language and the Greek language, but by the eighteenth cen-

tury, scholarly editing was practised equally on vernacular texts [Groden and Kreiswirth,

1994].

Stemmatology started viewing textual criticism as “an articulation of a series of prin-

ciples and rules for editing” based on genealogy and aimed at reconstructing a “text” 4.

At first, it was manuscript oriented, but later it was also adopted in biblical studies once

rationalism had started questioning the belief that “a written text” or “scripture” was

literally given by God, and thus, opened up an understanding of the historicity of the

Bible through textual scholarship. The word ‘stemmata’ in classical Latin means “family

trees” which shows that this meaning shows the relationships of the surviving witnesses.

The family tree is also known as a cladogram, and hence the term cladistics, which means

the tracing or classification of a family tree.

Such a classification when based on stemmatology or stemmatics is based on the logic

that “community of error means community of origin”. This logic implies that if two

or more scribes observe a common set of errors in variants of a text, they are possibly

dealing with variants which have originated from a common intermediate source, called a

“hyparchetype”. When all the intermediate variants are placed in the family tree based

on this logic, it leads the stemmatologist to what is known as the “stemma”. The process

is known as “recension”. After creating the stemma, the next step, called “selection” ex-

amines variants from the closest hyparchetypes to the archetype. The process of selection

retains only the closest of the hyperachetypes and others hyperarchetypes are pruned from

2A room where scripts or texts are written or copied.
3Something that serves as a model; in this case, a particular version of the text being copied
4A Text here refers to a historical piece of written text, viz., Panini’s Grammer, The Bible, etc.
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the stemma. After this step, if the stemmatologist still believes that there are errors due

to lack of sources to back some of the hyperarchetypes, then the process of “examination”

is applied to find corruptions and corrections can be made based on conjecture expertise

and experience of the stemmatologist. This whole process helps obtain a single root also

known as the “archetype”. It helps create a revised version of the text which claims to be

the “root of the text” also known as the critical edition of the text. An essential assump-

tion that stemmatology makes is that each variant or “witness” is derived from one, and

only one, predecessor. If a scribe refers to more than one source when creating their copy,

then, the new copy will not fall into a single branch of the family tree. In the stemmatic

method, a variant that is derived from more than one source is said to be ‘contaminated’.

Stemmatology helped preserve much history and thereby immense cultural knowledge.

Although in order to disseminate this cultural knowledge effectively, its digitization is

a necessary step. By employing new computational methods unavailable to previous

generations, Burrows [1987] showed that literary scholars had been ignoring most of the

available evidence, as expressed in the opening sentence of the book, ’It is a truth not

generally acknowledged that, in most discussions of works of English fiction, we proceed

as if a third, two-fifths, a half of our material were not really there’. They showed that the

function words — the 100 or so words that comprise articles, conjunctions, prepositions,

and other linguistic ‘glue’ holding our sentences together — are just as amenable to

literary criticism as the more visible, rarer lexical words. Since the publication of his work,

many more texts have been digitized, and many more algorithms have been invented to

process them in various ways. The digitization of manuscript data from old texts led to

computational methods which could automate the stemmatics of text to a certain extent.

7.2 Computational Phylogenetics

Computational phylogenetics helps perform phylogenetic analysis where the eventual

goal is to create a phylogenetic tree or phylogeny using computational methods and al-

gorithms. It performs phylogenetic analysis by representing a hypothesis about the evo-

lutionary relationships among a set of genes, species, or taxa. When the phylogenetic

analysis is applied to variants of the same text, it helps perform cladistics using similar-
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ity measures discussed in the chapters above. The similarity measures (orthographic or

phonetic) can be used to obtain distances among manuscript variants and then generate

a distance matrix. This distance matrix can then be used to generate a phylogenetic

tree for the text, which can help build the critical edition of the text with further manual

analysis by expert philologists. We have introduced computational phylogenetics in detail

in Chapter 1.

Let us, now, dive straight into the short investigation which helps generate a typological

tree for Indian languages with the help of cross-lingual word embeddings.

7.3 Harnessing Cross-lingual Word Embeddings to

Infer Typological Trees

Establishing language relatedness by inferring phylogenetic trees has been a topic of

interest in the area of diachronic linguistics. However, existing methods face meaning

conflation deficiency due to the usage of lexical similarity-based measures. In this investi-

gation, we utilize Wordnets to create inter-language distances using our novel method of

computing ‘Synset Distance’. We also conduct a pilot study on using deep cross-lingual

word embeddings to compute inter-language distances and provide an effective distance

matrix to infer phylogenetic trees. We conduct experiments on ten Indian languages and

infer phylogenetic trees using this approach. For comparison, we also compare baseline

approaches which use lexical similarity-based measures to infer phylogenetic trees, with

our methodology. We show that our methodology produces better trees which club closely

related languages together compared to the baseline methods.

Quantitative methods of studying language evolution require data collection and com-

parison, similar to the biological study of human evolution. While the study of human

evolution requires a comparison of physical or genetic characteristics of biological species,

language evolution requires the study of linguistic data. Under the purview of ‘historical

linguistics’ also known as ‘diachronic linguistics’, establishing relationships among lan-

guages which have been in contact has been a topic of interest [Chevillet, 2000]. However,

this sub-area has been much less explored in the computational linguistics community.

Most of the previous work is focused on the reconstruction of phylogenetic trees for a
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particular language family using manually curated word lists [Gray and Atkinson, 2003,

Atkinson et al., 2005, Atkinson and Gray, 2006, Nakhleh et al., 2005] or using synthetic

data [Barbançon et al., 2013]. Phylogenetic reconstruction and analysis are based on a

data matrix where the rows represent the languages to be studied, and the columns rep-

resent linguistic features or characteristics [Nichols and Warnow, 2008]. Moreover, the

methods inspired from glottochronology5 take a boolean matrix as input, which denotes

the change in the state of the ‘characters’6 to infer the phylogenetic trees.

Rama and Singh [2009] use corpus-based measures to compute the distance matrix con-

taining inter-language distances and construct phylogenetic trees for a linguistic area7.

Corpus-based measures can calculate the inter-language distance, but they use feature

n-grams and cognate identification methods which loosely take into account the seman-

tics of a word. It is well known that word meaning can be represented with a range of

senses/concepts. The methods above do not take into account the ‘concepts’ or ‘synsets’

in a language and measure the inter-language distance only based on associated words

pairs. Recently, an increasing boom on large-scale pre-trained word embedding models

e.g., FastText [Bojanowski et al., 2017b], ELMo [Peters et al., 2018], BERT [Devlin et al.,

2018] have attracted considerable attention in the field of NLP. Inspired by the above

works, this work proposes to use deep cross-lingual word embeddings [Lample et al., 2018]

to find the inter-language distance based on ‘concepts’. We introduce the term ‘Synset

Distance’, i.e., the distance between two concepts or senses calculated using the Wordnet

[Fellbaum, 2012] data and use it to find the inter-language distance. We, then, use the

inter-language distances among Indian language wordnets [Bhattacharyya, 2017] to infer

phylogenetic trees and compare them with our baseline methods which are based on cal-

culating the ‘Synset Distance’ using lexical similarity-based measures. The contributions

of this investigation are as follows:

1. We hypothesize ‘synset distance’ based on wordnet data and utilize it to calculate

inter-language distance.
5Study of the rate of change occurring in the vocabularies of languages.
6The ‘characters’ can be lexical, morphological or phonological
7The term linguistic area or Sprachbund [Emeneau, 1956] refers to a group of languages that have

become similar in some way as a result of proximity and language contact, even if they belong to different

families. The best-known example is the Indian (or South Asian) linguistic area.
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2. We use deep cross-lingual word embeddings to calculate ‘synset distance’ and com-

pute a distance matrix containing inter-language distances. Finally, we utilize this

distance matrix to infer phylogenetic trees.

3. We release our dataset of synset distances along with the already public IndoWord-

net data which can be used to help the cause of computational phylogenetics in

future.

Among the many available methods [Huelsenbeck, 1995] to construct phylogenetic trees,

UPGMA [Gronau and Moran, 2007] is widely used in historical linguistics. It assumes

a constant rate of evolution and is not considered to be a perfect method for inferring

relationships among the variants unless this assumption has been tested and justified for

the data set being taken into account. The UPGMA method constructs phylogenetic

trees based on a distance matrix which can be computed in various ways. Symmetric

cross-entropy is one of the methods which is purely a letter n-gram based measure sim-

ilar to the one used by Singh [2006b] for language and encoding identification. Singh

and Surana [2007] used corpus-based measures to show that corpus can be used for a

comparative study of languages. They used both character n-gram distances and surface

similarity [Singh, 2006a] to identify the potential cognates8, which in turn are being used

to estimate the hypothesized inter-language distance. Rama and Singh [2009] also used

measures based on cognate identification, and feature n-grams to infer this matrix. Elli-

son and Kirby [2006] discussed establishing a probability distribution for every language

through intralexical comparison using confusion probabilities and estimate distances us-

ing KLdivergence and Rao’s distance [Atkinson and Mitchell, 1981]. To the best of our

knowledge, no one has utilized cross-lingual word embeddings to construct the distance

matrix of inter-language distances. Also, wordnets, which are manually curated knowl-

edge graphs of concepts and are publicly available for many languages [Bond et al., 2016]9

have been very underutilized in this regard. Synsets in a Wordnet are exhaustive in terms

of words that can be used to represent a concept and thus provide sufficient representation
8Potential cognates are words of different languages which are similar in form and therefore are likely

to be cognates. They might include some ’false friends’, i.e., words which are not etymologically inherited.

It is worthwhile to experiment (using statistical techniques) on potential cognates, even without removing

the ’false friends’ because a large percentage of them are cognates in the linguistic sense.
9Collaborative Wordnets aligned to English
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for it. Moreover, example sentences and glosses available along with the words can also

be utilized to create better synset embeddings for our purpose.

7.3.1 Dataset and Experimental Setup

7.3.1.1 Wordnet Data

We build our dataset using IndoWordnet10 data and investigate language pairs for In-

dian languages namely Hindi (Hi), Marathi (Mr), Konkani (Ko), Gujarati (Gu), Bengali

(Bn), Oriya (Or), Assamese (As), Punjabi (Pa), Sanskrit (Sa), Tamil (Ta), Telugu(Te),

Malayam (Ml), Kannada (Kn), and Nepali (Ne). Since Indian language wordnets are

aligned based on synset IDs, we locate parallel concepts using the unique ID of synsets

from two or more languages. We create word pairs for <source_lang>-<target_lang>

for every language pair. We perform Unicode transliteration using Indic NLP Library11

to convert scripts for As, Or, Kn, Bn, Gu, Pa, Ta, Te, and Ml to Devanagari, for stan-

dardization. Hi, Mr, Sa, and Ne are already based on Devanagari.

7.3.1.2 Training Data

We obtain the ILCI parallel corpora [Jha, 2010b] and add text parsed from Wikime-

dia12 dumps. We normalize the scripts of the combined corpora and convert them to

Devanagari. To ensure the presence of Wordnet words in these corpora, we add the

Wordnet glosses and examples of these languages to their corpora. Thus, reducing the

chances of out-of-vocabulary words when looking in the embedding space. The size of our

monolingual corpora varies from �5 million lines for Marathi to �17 million lines for Hindi.

7.3.2 Methodology

We use two different methodologies to construct the language distance matrix required by

the UPGMA method. For establishing a baseline, we use the first methodology based on

lexical similarity-based measures. Later, we use our approach to compute the language

distance matrix and compare the results. We describe both these methodologies below.
10IWN Data Download
11Indic NLP Library
12Wikimedia Dumps; as on March 22, 2019

http://www.cfilt.iitb.ac.in/wordnet/webhwn/downloadIWN.php
https://anoopkunchukuttan.github.io/indic_nlp_library/
https://dumps.wikimedia.org/
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7.3.2.1 Baseline Methods

We use the lexical similarity13 based measures and employ different metrics to calculate

the distance between each word pair in our dataset (from 7.3.1.1). We average over these

distances and hypothesize it as the ‘Synset Distance’. Similarly, we calculate the synset

distance for all the parallel synsets in every language pair. Later, we average over all the

synset distances and calculate the inter-language distance between two languages. We

use the following similarity metrics:

Normalized Edit Distance Method (NED)

The Normalized Edit Distance approach computes the edit distance [Nerbonne and Heeringa,

1997] for all word pairs in a synset/concept and then provides as output the average dis-

tance between all word pairs or ‘Synset Distance’.

Cosine Distance (CoD)

The cosine similarity measure [Salton and Buckley, 1988] is another similarity metric that

measures the cosine of the angle between two vectors projected in a multi-dimensional

space. Here, the two vectors are the arrays of character counts of two words. We calculate

the cosine distance as (1 - Cosine Similarity).

Jaro-Winkler Distance (JWD)

Jaro-Winkler distance is a metric which measures the edit distance between two sequences.

It uses a prefix scale P which gives more favourable ratings to strings that match from

the beginning, for a set prefix length L.

7.3.2.2 Distance Matrix Computation

The above similarity metrics use different ways to compute similarity between each

word pair and hence produces varying distance matrices. For computational purposes,

we provide all the metrics equal weightages initially, and compute the distance matrix

13String Similarity Library

https://github.com/luozhouyang/python-string-similarity
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using the average score of all three methods. For languages p and q, the average inter-

language distance is defined as:

LDpq =
(NEDpq + CoDpq + JWDpq)

3
(7.1)

We experiment over weightages and later provide different weightages to each method.

Empirically, we find best results by setting the weight of NED to 50%, CoD to 25%, and

JWD to 25%. For languages p and q, the weighted average inter-language distance

is defined as:

LDpq = (NEDpq ∗ 0.5) + (CoDpq ∗ 0.25) + (JWDpq ∗ 0.25) (7.2)

(a) Baseline: Average

(b) Baseline: Weighted Avg.

Figure 7.1: Trees Generated via UPGMA using Baseline method
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Figure 7.2: Resultant Tree Using Cross-lingual Embeddings

7.3.2.3 Our Approach using Cross-lingual Embeddings

We construct an efficient cross-lingual sense representation method using the data de-

scribed in Subsection 7.3.1.2. First, we train monolingual word embeddings from this

combined corpora using the FastText library. We train the monolingual word embed-

dings with 300 dimensions with 0.1 as the learning rate. The size of the context window

is limited to 5 since FastText also uses sub-word information, and we train our model

over 5 epochs. We use the default loss function (softmax) for training.

We calculate the cosine distance between all word pairs belonging to the same synset in

the common embedding space shared by two languages. Thus, the average over the word

pair distances gives us ‘Synset Distance’. Similar to the baseline method, we average over

all synset distances to find out the inter-language distance for each language pair and

compute the distance matrix. Since angular cosine distance distinguishes nearly parallel

vectors better [Cer et al., 2018], we also use angular cosine distance and calculate the

inter-language distance for each language pair, in a similar fashion.
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7.3.2.4 Typological Tree Construction

We use the UPGMA method to construct phylogenetic trees for all the language pairs.

The input to the UPGMA method is the distance matrix created via the methodologies

described above. We use the implementation of UPGMA provided by PHYLIP [Felsen-

stein, 1993] and generate baseline trees for NED, CoD, JWD, Average, and Weighted

Average distance matrices. We also generate trees for distance matrices obtained using

our approach of cosine distances and angular cosine distances from cross-lingual word

embeddings.

7.3.3 Results and Discussion

As a baseline approach, we use a weighted lexical similarity measure to calculate the

distance matrix. The average of word-pair distances provides us ‘synset distance’ and

further averaging of parallel synset distances provides us with a baseline inter-language

distance. Our novel approach computes the angular cosine distance [Cer et al.,

2018] between all word pairs belonging to the same synset in the common

embedding space shared by two languages. Thus, the average over the word-pair

distances, and further ‘synset distances’ provides us with a more effective ‘inter-language

distance’. We use the UPGMA method to construct a phylogenetic tree (Figure 7.2) of all

the language pairs. There are three subgroups of the languages which are visible in all the

trees generated using our approach namely, Indo-Aryan (Hindi and Marathi; which share

a lot of common words and even cognates [Kanojia et al., 2019b]), Indo-Aryan (Bengali,

Gujarati, Punjabi, and Sanskrit), and Dravidian languages (Tamil, Malayalam and Tel-

ugu). Sanskrit, being the historical antecedent of most of the Indo-Aryan languages, is

shown to have been accurately placed a level above the trees generated by our approach.

Nepali is placed incorrectly probably due to the small size of Nepali Wordnet, and proba-

bly also due to the lack of a sizeable Nepali corpus for training data. There are apparent

similarities in the trees which are generated by all the methods. All the methods group

Hindi and Marathi with each other. Using the baseline approach, Telugu is not grouped

with Dravidian languages which is incorrect becuase it is closer to Dravidian languages

in terms of shared vocabulary. However, it belongs to the subgroup of Dravidian lan-

guages in the baseline weighted average, which shows the merit of the empirical work
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done. Overall, it can be seen that Dravidian languages which borrow much lesser from

the Indo-Aryan language family are in a different sub-group when our approach is used.

We introduce a new method of calculating the distance matrix used to create phyloge-

netic trees through UPGMA. We introduce ‘Synset Distance’ and successfully use Word-

nets to calculate inter-language distances for Indian languages namely Hindi, Marathi,

Gujarati, Bengali, Punjabi, Sanskrit, Tamil, Telugu, Malayam, and another Indo-Aryan

language Nepali. We train deep cross-lingual word embeddings for every language pair

and employ measures like cosine distance and angular cosine distance to compute distance

matrices. We produce the same distance matrices using baseline lexical similarity-based

measures like Normalized Levenshtein Distance, Cosine Distance, and Jaro-Winkler Dis-

tance as well. We use the UPGMA method to generate phylogenetic trees to find close-

ness in the languages and show that our approach produces better trees than the baseline

methods. These experiments also demonstrate that our technique can be applied even

to linguistic areas, not just language families. In future, we would like to include more

languages and increase the size of the raw corpus used to create embeddings. We would

also like to use other pre-trained cross-lingual embeddings and provide further substance

to our claim.

Continuing upon our hypothesis for Inter-language distance, we apply the same logic

to compute inter-manuscript distances and, describe below, our work in computational

phylogenetics for variant manuscripts in Sanskrit. The experiments which now use mono-

lingual embeddings for the Sanskrit language are detailed in the sections below in this

chapter.

7.4 Utilizing Word Embeddings based Features for

Phylogenetic Tree Generation

This work was accepted at the 6th International Sanskrit Computational Linguistics Sym-

posium.
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Tracing the root of a text, i.e., the original version of the text, by inferring phylogenetic

trees has been a topic of interest in philological studies. However, existing methods face

meaning conflation deficiency due to the usage of lexical similarity-based measures which

feed the distance matrix to clustering algorithms. In this investigation, we utilize word

embeddings as features to compute the distances among manuscripts. We conduct this

pilot study on using word embeddings to compute inter-manuscript distances and provide

an effective distance matrix to infer phylogenetic trees. We conduct experiments on the

historical Sanskrit text known as Kāśikāvṛtti (KV) and infer phylogenetic trees using this

approach. For comparison, we also develop baseline methods using lexical distance-based

measures to infer phylogenetic trees for KV. We show that our methodology produces

better trees which club closely related manuscripts together compared to the baseline

methods.

Phylogenetics is defined as the task of creating a “Phylogenetic Tree” that represents a

hypothesis about the evolutionary relations of a set of genes, species, or any other taxa.

It is the study of evolutionary history and relationships among various taxa. A Taxon

represents a group of one or more manuscripts written in Sanskrit in our case, where we

analyze how the manuscripts are related to each other. These relationships are discovered

through phylogenetic methods that compute observed heritable traits in a manuscript,

such as spelling errors, variations in text, text deletion, the morphology of the

text, etc. under a model of the evolution of these traits. The result of these analyses

is a phylogeny (also known as a phylogenetic tree) – a diagrammatic hypothesis about

the history of the evolutionary relationships of a group of manuscripts (usually belonging

to the same text). Computational historical linguistics, which involves the development

of methods for estimating evolutionary histories of languages and, of models of language

evolution, is another research problem based on phylogenetics. Phylogenetic methods

are designed to recover the “true” evolutionary tree as often as possible. They do not

guarantee to do so with high probability under reasonable conditions. Some which offer

this guarantee vary considerably in their requirements [Warnow et al., 2001]. To rigorously

establish the validity of such a phylogenetic approach, a fundamental question that must

be addressed is whether the models in use are identifiable.
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Our work is based on an earlier published sample edition of the KV on Aṣṭādhyāyī

text (AST) 2.2.6 [Kulkarni, 2009]. This edition was prepared using seventy manuscripts

written in several scripts and collected from various parts of the world. This earlier work

did not utilize the computational method to establish inter-relations between manuscripts.

[Kulkarni and Kahrs, 2018] also published a manually drawn tree based on the edition

mentioned above. In this work, we apply the computational methods on the same data

mentioned above and automatically infer phylogenetic trees that show the inter-relations

between manuscripts. The question that we try to answer with this work is:

“Can word embeddings with sub-word information help build more accu-

rate phylogenetic trees from multiple versions of a text?”

To the best of our knowledge, no one has utilized word embeddings to construct the dis-

tance matrix for inter-manuscript distances. We deploy lexical similarity-based methods

as a baseline for inter-manuscript distance and compare the tree with the trees generated

via our approach, i.e., using word-embeddings to construct the distance matrix for the

clustering methods (UPGMA and Neighbour Joining).

We contribute the following through this work:

• We hypothesize inter-manuscript distance and create efficient distance matrices for

phylogenetic tree construction.

• We build baseline methodology using lexical similarity-based measures for compar-

ison with our approach and generate phylogenetic trees.

• We construct a distance matrix through a word embeddings based approach as a

novel contribution and show that the trees generated are better than the baseline

method.

7.4.1 Dataset and Experiment Setup

We collect the following data for performing our experiments and tree construction.

7.4.1.1 KV Dataset

For distance matrix generation, we focus on specific portions of the KV. We collect

seventy different versions of the KV on AST 2.2.6. We perform cleaning and manual
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analysis with the help of philologists. These versions were available in different parts of

the country from where we accumulated them in a single repository. We observe different

kinds of changes in these versions and describe them in Section 7.4.7.

7.4.1.2 Raw Corpus for obtaining Word embeddings

We obtain raw monolingual Sanskrit corpus from various sources. We download the

Sanskrit Wikimedia dump and collate all the articles as a single corpus. We, also, add

Glosses and Example sentences from the Sanskrit Wordnet to this corpus. We obtain

raw corpus from other sources available online14. We perform cleaning for this corpus by

removing any other ASCII characters apart from the Devanagari script. The final cleaned

corpus used for creating embeddings contains 5,38,323 lines. Eventually, We use binarized

vectors to compute the distance between two words.

7.4.2 Experimental Setup

The Neighbor-Joining method and the UPGMA method are both distance-based meth-

ods, as described in Section 7.4.3. They require a distance matrix, which specifies the

distance between the Taxa being used to populate the phylogeny. We also describe the

methodologies used to obtain these matrices in Section 7.4.3. For our experiments, we

divide the KV data into different functional units. The functional unit division in KV

depends on the type of sūtra. The sūtra that we use for our experiments, namely AST

2.2.6, is of the type vidhi.

The functional unit division of this type is as follows:

• vidhi: This type of sūtra prescribes either a verbal element or an operation. The

KV on this sūtra contains the following functional parts (sūtra AST 2.2.6):

1. The sentence explaining the meaning of the words in the sūtra.

2. Examples

These functional units help us understand the text in a better manner, and for com-

putational purposes, they create separate divisions in the text so that the versions are

compared to each other in an efficient manner. We compare each functional unit only
14Available on the School of Sanskrit and Indic Studies, J.N.U. and NLP for Sanskrit from GitHub

http://sanskrit.jnu.ac.in/currentSanskritProse/
https://github.com/goru001/nlp-for-sanskrit
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with its counterpart from the versions. For example, in AST 2.2.6 dataset, we compare

the examples from one version only with the examples of the other version.

For training the word embeddings based model, we use Gensim15. We choose FastText

[Bojanowski et al., 2017b] for training the word embeddings and obtaining vectors as it

utilizes subword-level information within the text. Sanskrit is an agglutinative language

which is also highly morphological. To capture the morphology and semantics within

each word, we also need to take into account the sub-word level information. We train

the models with the following hyperparameters. We create these models based on 100

and 50 dimensions due to a limited amount of the corpus collected16. The rest of the

parameters were the same for both the models. We restrict the context window to 5 and

use 0.1 as the learning rate. The maximum length of word n-gram we use is one word.

We retain the sampling threshold at a default 0.0001. We use softmax as the loss function

and train the models for five epochs17.

7.4.3 Methodology

In this section, we describe the various methodologies used for calculating the inter-

manuscript distances and tree construction.

We use two approaches for constructing the inter-manuscript distances. The baseline

approach utilizes various lexical similarity-based measures, and later, we also provide

weights to them, using empirical approaches, to increase their efficiency. In our approach,

we use word-embedding based models and compute distances using vectors obtained from

them. Since angular cosine distance distinguishes nearly parallel vectors better [Cer et al.,

2018], we also include this in our approach, apart from cosine distance to generate more

trees and discuss the outcome in Section 7.4.6.

15Gensim Source
16The standard number of dimensions for word embeddings, given a large corpus, is 300
17More epochs usually lead to a better learned/trained model; we retain the best epoch output with a

minimum loss to be utilized for our work

https://github.com/RaRe-Technologies/gensim
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7.4.3.1 Lexical Distance-based measures: A Baseline Approach

We use the following lexical similarity-based measures to compute the distances among

manuscripts:

Normalized Edit Distance Method (NED)

The Normalized Edit Distance (also known as Levenshtein Distance) approach com-

putes the edit distance [Nerbonne and Heeringa, 1997] for all word pairs in a functional

unit of the text and then provides as output the average distance between all word pairs

(we term it as ‘Unit Distance’). In each of the operations has a unit cost (except that

substitution of a character by itself has zero cost), so NED is equal to the minimum

number of operations required to transform ‘word a’ to ‘word b’. A general definition

associates non-negative weight functions (insertions, deletions, and substitutions) with

the operations.

Cosine Distance (CoD)

The cosine similarity measure [Salton and Buckley, 1988] is another similarity metric

that depends on envisioning preferences as points in space. It measures the cosine of the

angle between two vectors projected in a multi-dimensional space. The cosine similarity

is particularly used in positive space, where the outcome is neatly bounded in [0,1]. The

name derives from the term “direction cosine”: in this case, unit vectors are maximally

“similar” if they are parallel and maximally “dissimilar” if they are orthogonal (perpen-

dicular). This is analogous to the cosine, which is 1 (maximum value) when the segments

subtend a zero angle and 0 (uncorrelated) when the segments are perpendicular. In this

context, the two vectors are the arrays of character counts of two words. We calculate

the cosine distance as (1 - Cosine Similarity).

Jaro-Winkler Distance (JWD)

Jaro-Winkler distance [Winkler, 1990] is a string metric measuring similar to the nor-

malized edit distance deriving itself from Jaro Distance [Jaro, 1989]. Here, the edit

distance between two sequences is calculated using a prefix scale P which gives more

favourable ratings to strings that match from the beginning, for a set prefix length L. The
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lower the Jaro–Winkler distance for two strings is, the more similar the strings are. The

score is normalized such that 1 equates to no similarity, and 0 is an exact match.

7.4.4 Distance Matrix Computation

The above similarity metrics use different ways to compute the distance between each

word pair and hence, produce varying distance matrices. We compute the distance be-

tween a sūtra by averaging over each ‘Unit Distance’ present in a sūtra. We computer these

distances between all the manuscript pairs. Thus, we generate three inter-manuscript dis-

tance matrices based on the methods described above.

Since all the matrices above use different ways to compute distances, we performed

another set of experiments for coming up with a more homogenous approach. For com-

putational purposes, we provide all the metrics equal weightages initially, and compute a

single distance matrix using the average score of all three methods. So, for manuscripts

p and q, the average inter-manuscript distance is defined as:

LDpq =
(NEDpq + CoDpq + JWDpq)

3
(7.3)

We, also, experiment over weightages and later provide different weightages to each

method. Empirically, we find best results by setting the weight of NED to 50%, CoD

to 25%, and JWD to 25%. For masnucripts p and q, the weighted average inter-

manuscript distance is defined as:

LDpq = (NEDpq ∗ 0.5) + (CoDpq ∗ 0.25) + (JWDpq ∗ 0.25) (7.4)

Using the baseline methodology, we create a total of 5 matrices for the text in the AST

2.2.6 dataset.

7.4.4.1 Word embeddings based distance measures: Our Approach

We calculate the cosine distance between all word pairs belonging to the same func-

tional unit from the embedding space. Thus, the average over the word pair distances
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gives us ‘Unit Distance’. Similar to the baseline method, we average over all unit distances

to find out the inter-manuscript distance for each manuscript pair and compute the dis-

tance matrix. Since angular cosine distance distinguishes nearly parallel vectors better

[Cer et al., 2018], we also use angular cosine distance and calculate the inter-manuscript

distance for each manuscript pair, in a similar fashion. We perform this experiment using

two different models described in the experimental setup.

Thus, for each dataset, our approach generates four matrices, i.e., a matrix which

utilizes Cosine Distance from the model with 100 dimensions, another which utilizes

Cosine Distance from the model with 50 dimensions and another pair of matrices with

Angular Cosine Distance from the models with 100 and 50 dimensions each. Using this

approach, we create a total of four matrices. Using all of the methodologies described

above (both baseline and our approach), we create a total of 9 matrices for the text in

AST 2.2.6 dataset.

7.4.5 Tree generation using Distance-based methods

We choose two distance-based methods for our work, namely, the Neighbor-joining method

and the UPGMA method. We further describe these methods below, along with the

reasons for choosing these methods.

Distance analysis compares two aligned manuscripts at a time and builds a matrix

of all possible sequence pairs. During each comparison, the number of changes (base

substitutions and insertion/deletion events) is counted and presented as a proportion of

the overall sequence length. These final estimates of the difference between all possible

pairs of manuscripts are known as pairwise distances. A variety of distance algorithms are

available to calculate the pairwise distance (between versions), for example, Proportional

(p) distances. We use the baseline approach and our approach to compute these pairwise

distances. Once the pairwise distances are calculated, they must be arranged into a

tree. There are many ways to “arrange” the Taxa according to their distances. One way

to cluster or optimize the distances is to join Taxa together according to their increasing

differences, as embodied by their distances. Other ways use various coefficients to measure

how well the branch lengths of the tree reflects the original pairwise distances.
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Distance-matrix methods of phylogenetic analysis explicitly rely on a measure of “ge-

netic distance” between the manuscripts being classified, and therefore they require an

MSA (multiple sequence alignment) as an input. Distance is often defined as the fraction

of mismatches at aligned positions, with gaps either ignored or counted as mismatches

[David, 2001]. The main disadvantage of distance-matrix methods is their inability to

efficiently use information about local high-variation regions that appear across multiple

subtrees [Felsenstein, 2004]. Distance methods attempt to construct an all-to-all matrix

from the sequence query set describing the distance between each sequence pair. From this

is constructed a phylogenetic tree that places closely related manuscripts under the same

interior node and whose branch lengths closely reproduce the observed distances between

manuscripts. Distance-matrix methods may produce either rooted or unrooted trees, de-

pending on the algorithm used to calculate them. They are frequently used as the basis

for progressive and iterative types of multiple sequence alignment. The distance-based

methods which we use are describe below.

UPGMA Method

The Unweighted Pair Group Method with Arithmetic mean (UPGMA) method [Sokal

and Rohlf, 1962] produces rooted trees and requires a constant-rate assumption, i.e., they

assume an ultrametric tree in which the distances from the root to every branch tip are

equal. At each step, the two of the nearest clusters are combined into an upper-level

cluster. The distance between any two clusters A and B, each of size, i.e., cardinality,

|A| and |B|, is taken to be the average of all distances D(x, y) between pairs of objects

x in A and y in B, that is, the mean distance between elements of each cluster. At each

step, the updated distance between the joined clusters and a new cluster X is given by

the proportional averaging of the distance between A given X and the distance between

B given X.

We use the UPGMAmethod to construct phylogenetic trees for all the manuscript pairs.

The input to the UPGMA method is the distance matrix created via the methodologies

described above. We use the implementation of UPGMA provided by PHYLIP [Felsen-

stein, 1993] and generate baseline trees for NED, CoD, JWD, Average, and Weighted

Average distance matrices. We also generate trees for distance matrices obtained using
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our approach of cosine distances and angular cosine distances from word embeddings

space.

Neighbor Joining Method

Neighbour-Joining [Saitou and Nei, 1987] is a bottom-up (agglomerative) clustering

method for the creation of phylogenetic trees. It applies general data clustering tech-

niques to sequence analysis and uses genetic distance as a clustering metric. The simple

version of the neighbor-joining method produces unrooted trees, but it does not assume

a constant rate of evolution, (i.e., a constant timeline) across lineages. Neighbor-joining

may be viewed as a greedy algorithm for optimizing according to the ‘balanced minimum

evolution’ (BME) criterion. For each topology, the tree length (sum of branch lengths)

is a weighted sum of the distances in the distance matrix, with the computed weights

depending on the topology. The optimal topology (as per BME) is the one which mini-

mizes this length. At each step, it greedily joins the pair of taxa, which provides the most

significant decrease in the estimated length of the tree. This process is not guaranteed to

find the topology, which is optimal by the BME criterion.

Similarly, we use the neighbor-joining method to construct phylogenetic trees for all the

manuscript pairs. The input to this method is also the distance matrix created via the

methodologies described above. We use the implementation of neighbor-joining provided

by PHYLIP [Felsenstein, 1993] and generate all the trees from the matrices described

above.

7.4.6 Results

We generate trees using both the neighbor-joining and the UPGMA methods for all

the matrices described above and compare them with the trees manually created by our

philologists. With the help of two philologists, we annotate the group of sub-trees cor-

rectly clubbed, as output by both methodologies. The basis of this evaluation was the

expert knowledge of our philologists who have studied the KV and are aware of the ori-

gin, groupings, and a vague timeline of all these manuscript versions. Their findings

indicate that the trees generated via our approach of using word embeddings were closest

to the manually created trees and required fewer corrections among the subgroupings to
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be accurate. Although, among the baseline approaches, the weighted average methodol-

ogy also reached closer to the manually created phylogenetic tree, yet it was still a few

corrections behind. We cannot present the complete set of trees (9 x UPGMA and 9 x

Neighbour Joining) here hence show the best tree generated by the baseline method in

Figure 7.3a for the text in 2.2.6 dataset. Please refer to Appendix B for all the eighteen

trees generated on various datasets. We obtain this tree using our novel approach of us-

ing a word-embeddings based model and using Neighbour-joining as the tree generation

methodology. In Figure 7.3b for the text in 2.2.6 dataset, we also show the tree obtained

by the weighted average lexical similarity measure, which was also generated using the

Neighbour-joining method.

Among the word embeddings based approach, the trees generated via cosine distance are

reported to be more accurate than the trees generated via angular cosine distance, as per

our philologists. We compared the matrices generated by both cosine distance and angular

cosine distance and found out that the distance values did not have much difference. This

is probably due to the lack of a large raw monolingual corpus for the creation of word

embeddings for Sanskrit. Despite being one of the most ancient languages, the availability

of the resource for Sanskrit is scarce, which motivates us further to keep exploring this

area. We discuss the results of our work and the merits of our methodology in the next

section. We also provide justifications of our philologists’ views in the forthcoming section.
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(a) Distance matrix computed using the word-

embeddings based method

(b) Distance matrix computed using the lexical

similarity-based method.
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7.4.7 Discussion

We discussed the functional units of the AST 2.2.6 dataset in the section above in brief

and generated results based on the comparison of each unit. The division of KV data for

the AST 2.2.6 text is shown in Table 7.1.

2.2.6. नञ्
2.2.6.1 नञ् समथन सुबन्तेन सह समस्यते तत्पु षश्च समासो भव त।
2.2.6.2 न ब्राह्मणो अब्राह्मणः। अवृषलः।।

Table 7.1: Example of Functional Unit based Division for sūtra AST 2.2.6

As can be seen in Figure 7.3a above, the sub-groupings for manuscripts have been done

more accurately. Manuscripts io1, g3, gjri, asb, v1, bh8, bu1 and jm6 have been grouped

since they do not contain a common functional unit. The same can be said about the tree

in Figure 7.3a, but it does not group bh1 and ld0 in the same sub-group, which should

not have been the case.

Differences among the manuscript variants in this edition Kulkarni [2009] are mainly

divided into four categories. The apparatus of this edition contains the mention of the

following types of variants:

Omission (Om.): absence of a word.

Addition (Add.): presence of an additional word

Change of word (CW): lexical changes in the word due to morphological inflection,

or due to the opinion of the scribe who created the manuscript variant.

Change in the place of a word (CPW): change in the positioning of a word among

the functional unit in a text.

We develop both the baseline approach and word embeddings based approach keeping

these variants in mind. Our approaches handle these variants in the following manner:
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Ommission (Om.)

Ommission reflects the omitted portion of the text derived after comparing the critical

edition with the manuscripts of the text. Our approaches calculate the distances between

all word pairs of each functional unit, on both sides. When we perform the comparison

between an omitted word on one side and do not find its counterpart on the other side,

it results in a higher penalty and a greater distance like it should for an omitted word.

Addition (Add.)

Addition refers to the added portion of the text as available in the manuscripts. It can

be one or more words depending on the variant. When we average of all the distances

between all word pairs, and in the comparisons made, do not find the added words; it

results in a high penalty a more significant overall distance like it should for an added

portion.

Change of a word (CW)

CW refers to a change of word, in the manuscript, in comparison with the critical

edition, i.e., a word may undergo some morphological inflection or takes some other

form but retains a semantic notion. In such a case, the baseline approach measures the

lexical changes in a word but penalize this change relatively lower in magnitude. In our

approach, since the semantic notion is maintained, the embeddings would provide with

nearby vectors and thus also penalize relatively lower in magnitude, which is what should

be done for such a variance.

Change in the place of a word (CPW)

CPW refers to the change in the place of the word in the manuscript in comparison

with the critical edition. CPW implies that the words in question exist in the manuscript

but changes its place. This is not the case with the previous three types of changes. Our

methodology counters this variance when we average over all the word pairs. Since the

word is indeed present in the functional unit of the text, we should be able to find its

occurrence on the other side, and thus this would result in a penalty of lower magnitude

in terms of distance. We discuss these approaches with our philologists, and their views
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are in accordance with what our methodology does in penalizing computing distances.

Figure 7.4: Phylogenetic Tree for the dated manuscripts generated using our method

Availibility of the timeline

Ancient Sanskrit text and its manuscripts are scarcely found dated. The unavailability

of a timeline (or a temporal reference of versions) of how these texts evolved is a primary

reason phylogenetic methods are needed to derive the root version (or the critical edition).

We also note that some manuscripts among all the versions are dated, which do help

identify the accuracy of a generated tree. Among the seventy versions of KV, we currently

have the temporal references for eleven versions. We also generate phylogenetic trees for

these versions using the neighbor-joining method based on the distance matrix computed

using the word embeddings based approach they provided us with the best trees for AST

2.2.6. We depict this tree in Figure 7.4. In this tree, we have not yet implemented a

method to refer to the timeline which is available. We plan to refine and generate such

sub-trees based on the temporal references available to implement more accurate sub-trees

of this type.

In this work, we presented a novel word embeddings based approach to create inter-

manuscript distances and hypothesize functional units as a part of the text. We devised a

baseline approach for drawing a comparison from our approach, which is based on lexical

distance-based measures. We collect manuscript versions from different sources and accu-

mulate them in a single repository and compute the inter-manuscript distance between all

manuscript pairs, thus formulating a distance matrix for each approach. We collect raw
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Sanskrit corpus from various sources and create a word embeddings model using the state-

of-the-art library. We release this word embeddings model publicly for the use of other

researchers looking to explore this area. Also, we compute inter-manuscript distances us-

ing this model and generate trees for both using both the baseline and this approach. We

compare the trees manually, evaluate them with the help of expert philologists where we

go on to show that the trees generated via word embeddings based models were better in

subgrouping and required the least number of corrections to reach the state of manually

drawn trees. We discuss the merits of our approach with examples and provide justifi-

cations of our results. Our approach clearly outperforms the baseline method and thus

should help the researchers in this area to create better, more accurate phylogenetic trees

soon.

In future, we would like to extend our dataset of the KV text to complete all the

containing sūtras and perform the same experiments for all such portions of the KV text.

We plan to divide each of such portions of text into functional units and perform the same

experiment for the text. We aim to include the other material like text commentaries and

earlier texts as a part of the experiment in the future, as they provide essential references

to the text.

7.5 Inducing Timeline in Embeddings based Phylo-

genetic Tree Generation Method

It is observed that more and more scholars in the field of Indology are inclined to

prepare critical editions of texts in Sanskrit and other Indian languages. These texts

were transmitted in the oral as well as the written form for several centuries. Earlier,

the community of Indological scholars used paper-based methodologies to develop criti-

cal editions. Now, with the availability of digital technology, scholars are using various

tools for this purpose. Phylogeny tools are getting more popular in this regard as they

provide tools based historical-scientific criteria for generating trees which show the in-

terrelation among the sources used and thereby the transmission that happened. Maas

[2009a] use the phylogenetic tools to compare variants and generate a tree for a portion

of Carakasaṃhitā Vimānasthāna. Similarly, Phillips-Rodriguez et al. [2009] use compu-
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tational phylogenetics to infer a tree for thirty-one collated variants of the Mahābhārata

text. Kanojia et al. [2019a] introduce the use of word embeddings and perform phylo-

genetics using clustering-based approaches to show that the use of semantic similarity

can help phylogenetic approaches to generate better trees. This approach used seventy

manuscripts of the text known as “Kāśikāvṛtti” (KV) and successfully generated phyloge-

netic trees demonstrating the interrelation of manuscripts and thereby the transmission

of this text. It also complemented the manually drawn tree [Kanojia et al., 2020b] of

the same data and explained the evolution this text underwent in the 19th century, as

demonstrated manually earlier by Kulkarni [2002d]. We note that only a handful of the

manuscripts used [Kulkarni, 2002d, Kanojia et al., 2019a, 2020b] give information regard-

ing the period, when they were copied. The timeline information for KV manuscripts is

shown in Table 7.2.
Manuscript g1 bh6 wai2 a10 ss15 bh7 ld0 R1 hp1 jm6 R2 ss3 jm2 io1 io6 g2 g3

Year 1408 1486 1533 1547 1596 1660 1693 1732 1756 1769 1832 1838 1852 1864 1869 1870 1887

Table 7.2: Approximated timeline data of the 17 manuscript variants which we use intro-

duce as an added factor to compute our distance matrices.

Most of the manuscripts do not provide this information. Partial availability of timeline

becomes a challenge, therefore, for a philologist to construct even a manual tree showing

the interrelation of manuscripts. Availability of the timeline data for manuscript variants

has been an issue for computational phylogeny-based approaches. Despite partial avail-

ability of such data, this has not been introduced with the heuristics which are currently

being used by philologists. Ideally, a completely accurate timeline data should produce

accurate phylogenetic trees, but such data is not available in its entirety, almost all of the

times. What is available, is partial timeline data, which is based on an approximation

of when the taxa evolved. Due to the availability of only partial and approximate data,

this factor has been so far unimplemented throughout, when inferring phylogenetic trees.

However, phylogenetic methods comprise of a few heuristics which assume a molecular

clock of evolution at different rates [Zuckerkandl et al., 1960, Thorpe, 1982, Clarkson

et al., 2017, Brown and Smith, 2018], but as far as our knowledge is concerned, no heuris-

tic currently available utilizes the partial and approximated data. We hypothesize that

if an approximated timeline information is induced in the distance matrix, it should be
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able to help generate more accurate trees in terms of parent-child relationships. The key

question that we try to answer with this work is,

“Can approximated timeline data be utilized to generate accurate phylo-

genetic trees?”

In this work, we show how partial and approximate timeline information can help a

distributed similarity-based approach to compute a distance matrix. This distance matrix

can, thus, be utilized to generate more accurate phylogenetic trees. We perform our

experiments of two datasets KV AST 2.2.6 and KV AST 1.1.3 to show that our approach

is dataset agnostic. Previous approaches [Kanojia et al., 2019a] generate a phylogenetic

tree without using the timeline data. We compare our results on the same dataset with

the added information of the timeline and show that introducing this ‘factor’, indeed,

helps generate more accurate phylogenetic trees. Also, we further perform experiments

on another dataset (KV AST 1.1.3) and show similar results.

7.5.1 Dataset Used

We utilize the following datasets to perform experiments using the baseline approaches

and also using our novel approach.

7.5.2 Primary Datasets - AST 2.2.6 and AST 1.1.3

For our experiments, we use two primary datasets from KV. Kanojia et al. [2019a]

perform their experiments on AST 2.2.6 and show that word embeddings can be utilized to

generate an efficient distance matrix for clustering methods. We perform our experiment

on their dataset for comparison. We also use Textual History Tool [Kanojia et al., 2019c]

and digitize AST 1.1.3, with the help of philologists. We were able to obtain fifty-nine

variants of AST 1.1.3 from various sources and digitized them. In the process of this

manual digitization, we ensure the additional notes from the early scribes are ignored and

stored in a separate column in our database. We avoid storing them with the main text

of the variant since most of them contain the opinion of scribes who copied them. These

do not belong to the text of the KV and only add noise while performing a comparison

among the variants. We are, thus, able to ensure the clean digitization of AST 1.1.3 and

use this as another dataset to compare the results of our approach with Kanojia et al.
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[2019a]. We perform our experiments and infer trees using both these datasets and show

them in Section 7.5.9. We also observe different kinds of variances in all the versions

which we also discuss in Section 7.5.9.

7.5.3 Sanskrit Corpus & Monolingual Embeddings

We obtain monolingual Sanskrit corpora from various sources to build an efficient word

embeddings based model. We download and collate articles from the Sanskrit Wikimedia

dump18. We add more monolingual corpus to this dataset; a Prose corpus19 and another

monolingual corpus20. We, further, add KV text from the vulgate of AST 2.2.6 and AST

1.1.3 to this corpus. We choose only to add ’vulgate’ variant to avoid duplication of the

KV data in our corpus. We remove any other ASCII characters apart from the ones

which belong to the Devanagari script. The final cleaned corpus contains approximately

6 million lines. We use this corpus to create the word embeddings models as described

below, in this section. We use FastText to train a monolingual word embeddings model

with the following hyperparameters. We train a 50 dimension due to a limited amount

of the corpus collected21. We use the default learning rate of 0.1 and restrict the context

window for each word to 5. We also restrict the maximum length of word n-gram to 1.

We retain the sampling threshold at a default 0.0001. We use softmax as the loss function

and train the models for five epochs22. The similarity obtained from these models in

terms of the angular cosine function is normalized between [0, 1]. We simply subtract the

similarity values from 1 to obtain the “distance value” for each word-pair comparison.

The functional unit divisions are as follows:

• vidhi: This type of sūtra prescribes either a verbal element or an operation. The

KV on this sūtra contains the following functional parts (sūtra AST 2.2.6):

1. The sentence explaining the meaning of the words in the sūtra.
18Wikimedia Downloads
19Available on the School of Sanskrit and Indic Studies, J.N.U.
20NLP for Sanskrit from GitHub
21The usual number of dimensions for word embeddings model, given a significantly large enough

corpus, is 300
22The higher the number of epochs, better the learned model; we retain the best epoch output with a

minimum loss to be utilized for our work

https://dumps.wikimedia.org/sawiki/latest/
http://sanskrit.jnu.ac.in/currentSanskritProse/
https://github.com/goru001/nlp-for-sanskrit
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2. Examples

• meta-rules: This type of sūtra introduces the meta-rules within the system of AST.

The KV on this sūtra contains the following functional parts (sūtra AST 1.1.3):

1. The sentence explaining the type of meta-rule.

2. The explanation of the words in the sūtra.

3. Examples

4. Discussion on an important word in the sūtra.

5. Counterexamples.

These functional units help us understand the text in a better manner, and for com-

putational purposes, they create separate divisions in the text so that the versions are

efficiently compared to each other’s corresponding functional units. We compare each

functional unit only with its counterpart from the versions. For e.g., In AST 2.2.6 dataset,

we compare the examples from one version only with the examples of the other version.

Similarly, in the dataset from AST 1.1.3, we compare the explanation of words of the

sūtra only with an explanation of words from the other version. We explain this approach

of dividing the sūtra into different functional units for obtaining an effective manuscript

distance in the next section.

7.5.4 Approaches

We describe the approaches used for calculating the inter-manuscript distances and tree

construction.

7.5.5 Inter-Manuscript Distances

We use three approaches for constructing the inter-manuscript distances. The baseline

approach utilizes a weighted combination of lexical similarity-based measures and the

approach proposed by [Kanojia et al., 2019a] to construct distance matrices. We use

an approach similar to [Kanojia et al., 2019a] but add the timeline data to our primary

datasets. With each of the 21 variants, we add the year (approx.) associated with it to

the dataset. The variants, for which, we do not have any year data; we add a 0 instead of
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the year value. With this novel approach, we are able to compare the year of one variant

to another with the use of word embeddings based model and the distances among these

years help us provide a time-aware distance matrix, by using angular cosine distance,

which helps distinguish nearly parallel vectors better [Cer et al., 2018].

7.5.6 Lexical Distance-based measures: A Baseline Approach

We use the following lexical distance-based measures to compute the distances among

manuscripts:

Normalized Edit Distance Method (NED)

As described in Section 7.4.3.

Jaro-Winkler Distance (JWD)

As described in Section 7.4.3.

Q-gram Cosine Distance (CoD)

The cosine similarity measure [Salton and Buckley, 1988] is another similarity metric

that depends on envisioning preferences as points in space. We construct these vectors

by matching the q-grams of one word against the other and use padding where necessary.

The cosine similarity is used in positive space, and the score is bound between [0,1]. The

cosine similarity is 1 (maximum value) when the segments subtend a zero angle and 0

(uncorrelated) when the segments are perpendicular. In this context, the two vectors are

the arrays of character counts of two words. We calculate the cosine distance as (1 -

Cosine Similarity).

Distance Matrix Computation

The above similarity metrics use different ways to compute the distance between each

word pair and hence, produce varying distance matrices. We compute the distance be-

tween a sūtra by averaging over each ‘Unit Distance’ present in a sūtra. We computer these

distances between all the manuscript pairs. Thus, we generate three inter-manuscript dis-

tance matrices based on the methods described above.
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Since all the matrices above use different ways to compute distances, we performed

another set of experiments for coming up with a more homogenous approach. We rely

on the empirical measures [Kanojia et al., 2019b,a] for providing weightage(s) to these

measures. For manuscripts p and q, the weighted inter-manuscript distance is the

same as defined in our work above.

7.5.7 Word embeddings based distance measures: A Stronger

Baseline

We calculate the angular cosine distance between all word pairs belonging to the same

functional unit from the embedding space, as described by Kanojia et al. [2019a]. Thus,

the average over the word pair distances gives us ‘Unit Distance’. Similar to the baseline

method, we average over all unit distances to find out the inter-manuscript distance for

each manuscript pair and compute the distance matrix. Thus, for each dataset, this

approach generates one matrix.

7.5.8 Time-aware Distance Matrix: Our Novel Approach

We describe above how we add the approximate year value of a variant to the dataset.

A sample key-value pair (where the key is the manuscript label) of our dataset for the

variant “bh1”, from AST 2.2.6, looks like

[bh1;1890;नञ्;नञ् समथन सुबन्तेन सह समस्यते तत्पु षश्च समासो भव त।; न ब्राह्मणो अब्राह्मणः।
अवृषलः।।]

[“Manuscript Label”;“Year”;“Functional Unit 1”;“Functional Unit 2”;...;“Functional

Unit N”].

We compare each value with its counterpart in a variant and compute a distance score.

These distance scores are then averaged to compute a sūtra distance, which in our case is

manuscript distance as we compare only one sūtra. This approach can be generalized, and

when multiple sūtras are being compared, we can average over sūtra distances to compute

’Inter-manuscript distance’. These distances are represented in a distance matrix which

contains the distance between each pair of variants.
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Using all of the methodologies described above (both baselines, and our novel approach),

we create distance matrices and then use the following algorithms to infer phylogenetic

trees.

Fitch-Margoliash Method

Lespinats et al. [2011] describe how molecular sequences can be viewed as elements in

a multi-dimensional space. We represent words in a multi-dimensional space with the use

of word embeddings. They use the Fitch-Margoliash method and show how phylogenetics

can deal with the features of high-dimensional spaces like the concentration of measured

phenomenon. The Fitch–Margoliash method [Fitch and Margoliash, 1967] uses a weighted

least squares method for clustering, which is based on the distance matrix. The closely

related are nearby sequences are awarded a higher weight in the tree inference process,

to correct for a possible high inaccuracy in measuring distances between distantly related

sequences. The input distances used to infer trees using this method must be normalized

to prevent inaccuracies. The linearity criterion for distances in this method requires

that the expected values of the branch lengths must equal the expected value of the

sum of the two branch distances. The least-squares criterion applied to these distances

is accurate but less efficient than the neighbor-joining method. An improvement that

corrects for correlations between distances that arise from many closely related sequences

in the dataset can also be applied at an increased computational cost, in terms of time. To

be able to find the optimal least-squares tree with any correction factor is NP-complete

[Day, 1987]. We use the implementation of the Fitch-Margoliash method provided by

PHYLIP [Felsenstein, 1993] and generate all the trees from the matrices described above.

7.5.9 Results and Discussion

In this section, we present and discuss the results of the distance matrix computation,

and the trees generated using the approaches described above. We also discuss the results

in brief and explain how our approach helps include the available timeline data into trees

generated. Figure 7.5 shows the distance matrix heatmaps for our primary datasets, AST

2.2.6 and AST 1.1.3, in (a) and (b), respectively. Similarly, Figure 7.6 shows the heatmaps

generated using the approach proposed by Kanojia et al. [2019a]. Their approach does
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not take timeline data into account and uses the neighbor-joining method. The neighbor-

joining method is fast but less efficient when it comes to accurately depicting the distances

among the leaf nodes and clades (group/family of nodes). The distance matrix heatmap

generates using our approach is shown in Figure 7.7 for both the datasets. The darker blue

shades in the heatmaps represent a higher distance among the nodes. Among the three

figures for each dataset, it can be clearly seen that our approach reduces the distances

among the variants without changing the inherent representation/relationship among the

taxa. The darkest heatmaps for the baseline approach show how distance these vari-

ants are to each other when only lexical similarity-based approaches are used. The use

of semantic similarity-based approach proposed by Kanojia et al. [2019a] improves the

distance matrix as claimed in their work. Our approach, however, further improves the

distance matrix as seen in the heatmap. We use these matrices to generate trees using

each approach described above.

Trees generated using the lexical similarity-based baseline are shown in Figure 7.8(a)

and Figure 7.8(b), for AST 2.2.6 and AST 1.1.3, respectively. Both these trees show the

nodes to be very distant from each other as lexical similarity-based approaches cannot

capture the semantic similarity among the sūtras despite the variances. The distance

matrix heatmaps for this approach also show the nodes to be far apart from each other,

which is also evident in the generated trees. Although some of the groupings inferred in

these trees are correct, as per our philologists, but it is still very inaccurate in terms

of grouping most of the clades. Figure 7.9(a) and 7.9(b) show the trees generated

by the stronger baseline which groups most of the clades correctly but does not take the

timeline data into account. As a result, in the tree generated for AST 2.2.6, manuscript

variant g1 is shown to be a child node of wai2, which is shown to be one of the child

nodes of hp1. Similarly, in the tree generated for AST 1.1.3, manuscript variant bh1 is

shown to be the parent of variants st3, hss, ss13, and ss16 which should not be the case.
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(a) 226 baseline (b) 113 baseline

Figure 7.5: Heatmap representations of the distance matrices computed using the

weighted lexical similarity baseline, for AST 2.2.6 and AST 1.1.3 datasets

(a) 226 without time (b) 113 without time

Figure 7.6: Heatmap representations of the distance matrices computed using the stronger

baseline approach, for AST 2.2.6 and AST 1.1.3 datasets

(a) 226 with time (b) 113 With time

Figure 7.7: Heatmap representations of the distance matrices computed using our novel

approach, for AST 2.2.6 and AST 1.1.3 datasets
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(a) AST 2.2.6: Baseline Approach (b) AST 1.1.3: Baseline Approach

Figure 7.8: Trees generated using the weighted lexical similarity based baseline approach,

for AST 2.2.6 and AST 1.1.3 datasets
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(a) AST 2.2.6: Stronger Baseline

Approach

(b) AST 1.1.3: Stronger Base-

line Approach

Figure 7.9: Trees generated using the stronger baseline approach, for AST 2.2.6 and AST

1.1.3 datasets
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(a) AST 2.2.6: Our Approach (b) AST 1.1.3: Our Approach

Figure 7.10: Trees generated using the our approach, for AST 2.2.6 and AST 1.1.3 datasets
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Using our approach, however, the trees generated do not adhere to these inaccuracies.

Figure 7.10(a) and Figure 7.10(b) show the trees generated for AST 2.2.6, and AST

1.1.3, respectively. These trees have been generated using our approach which adds the

timeline data to our primary datasets and uses the Fitch-Margoliash methods to infer

more accurate phylogenetic trees. Our tree (AST 2.2.6), shows the variant g1 to be a

parent node for bh6, and wai2. It also show variants io1, gjri, asb, v1 in the same

clade; among other correct clades, it also shows bhu1, io7, and jm1, grouped together.

Similar accurate parent-child relationships can also be found in the other tree generated

using our approach [Figure 7.10(b)].

We discuss the functional units of the AST 2.2.6 dataset in the section above in brief

and generate results based on the comparison of each unit. The division of KV data for

the AST 2.2.6 text is shown in Table 7.3. Differences among the manuscript variants in

this edition [Kulkarni, 2009] are mainly divided into four categories.

year <approximate year, if available>

2.2.6. नञ्
2.2.6.1 नञ् समथन सुबन्तेन सह समस्यते तत्पु षश्च समासो भव त।
2.2.6.2 न ब्राह्मणो अब्राह्मणः। अवृषलः।।

Table 7.3: Example of Functional Unit based Division for sūtra AST 2.2.6

year <approximate year, if available>

1.1.3. इको गुणवृद्धी
1.1.3.1 प रभाषा इयं स्थािनिनयमाथार् । अिनयमप्रसङे्ग िनयमो िवधीयते ।
1.1.3.2 वृ द्धगुणौ स्वसंज्ञया शष्यमाणौ इकः एव स्थाने वेिदतव्यौ । व य त सावर्धातुकाद्धर्धातुकयोः अङ्गस्य गुण इ त। स इकः एव स्थाने वेिदतव्यः।
1.1.3.3 तर त नय त भव त । वृ द्धः खल्विप अकाष त् अहाष त् अचैषीत् अनषैीत् अलावीत् अस्तावीत्।

1.1.3.4
गुणवृद्धी यत्र स्वसंज्ञया िवधीयेते तत्र इकः इ त एतदपु स्थतं द्रष्टव्यम् । क कृतं भव त ? िद्वतीया षष्ठी प्रादभुार्व्यते ।
िमिदमृ जपुगन्तलघू्पध च्छ श क्षप्रक्षुद्रेष्वङे्गनेग् िवशेष्यते । जु स सावर्धातुकािदगुणेषु इकाङं्ग िवशेष्यते । मेद्य त अिबभयःु ।

1.1.3.5
इकः इ त िकम् ? आत्सन्ध्यक्षरव्यञ्जनानां मा भूत् यानम् ग्लाय त उ म्भता ।
पुनगुर्णवृ द्धग्रहणं स्वसंज्ञया िवधाने िनयमाथर्म् इह मा भूत् द्यौः पन्थाः सः इमम् इ त ॥

Table 7.4: Example of Functional Unit based Division for sūtra AST 1.1.3

The apparatus of this edition contains the mention of the following types of variants:

Omission (Om.): absence of a word.
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Addition (Add.): presence of an additional word

Change of word (CW): lexical changes in the word due to morphological inflexion, or

due to the opinion of the scribe who created the manuscript variant.

Change in the place of a word (CPW): change in the positioning of a word among

the functional unit in a text.

Our approach uses a distance matrix, as explained in the chapter above, keeping these

variances in mind. Our method relies on the approach proposed by Kanojia et al. [2019a]

and they have described in detail how this approach handles these variances.

In this work, we presented a novel approach to generate more accurate phylogenetic

trees. This approach uses word embeddings to create inter-manuscript distances and

utilize functional units as a part of the text. We use the approaches proposed by Kano-

jia et al. [2019a], as baselines to compare our results. These baselines are based on a

weighted lexical similarity and word embeddings. The latter, however, does not use the

timeline data which we inculcate in our primary datasets, for this work. We also use the

Fitch-Margoliash method instead of the Neighbor-Joining method, unlike the baseline ap-

proaches. We collect manuscript versions from different sources and accumulate them in a

single repository and compute the inter-manuscript distance between all manuscript pairs

for the baseline approaches. We, then, add the available timeline data (for 17 variants) as

additional functional units for re-computing the inter-manuscript distances to hopefully

improve the distance matrices produced. We collect raw Sanskrit corpus from various

sources and create a word embeddings model as described above. We release this word

embeddings model publicly for the use of other researchers looking to explore this area.

This should also help other researchers reproduce our results. We, then, compute the

inter-manuscript distances using this model, utilizing the angular cosine distance metric

and generate trees for both primary datasets using our approach.

Upon manual evaluation with the help of expert philologists, we present our finding that

the trees generated via word embeddings based models were better in subgrouping and

required less number of corrections to reach the state of manually drawn trees. We also

observe that the trees generated using our approach required the least number
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of corrections, and indeed depicted the parent-child relations accurately. We

discuss the merits of our approach with examples and provide justifications of our results

above. Our approach outperforms the baseline approaches and thus should help the

researchers in this area to create better, more accurate phylogenetic trees, in the near

future. Thus, we conclude by saying that, we successfully generated better trees using

partial and approximated timeline information using word embeddings based approach.

Using this approach, we could also figure out the approximate time information of those

manuscript sources which do not have such information.

In future, we would like to extend our dataset of the KV text to complete all the sūtras

and perform the similar experiments for all such divisions of the KV text. We also plan to

include our work in the Textual History Tool [Kanojia et al., 2019c] which should be able

to present a graphical interface to the philologists thus helping them digitize the data with

the help of the phylogenetic tree output. We plan to divide each of such portions of text

into functional units and perform the same experiment for the text. We aim to include

the other material like text commentaries and earlier texts as a part of the experiment in

the future, as they provide important references to the text.

7.6 Utilizing Multiple Factors in Texts to Generate

Phylogenetic Trees

Texts in Indian history can be said to have travelled across a large time span. In the

process they get commentaries written on them whose aim is to quote and explain them;

they get quoted in many other texts either for the purpose of their refutation or to hail

them as an authority in a dispute. These texts also get copied by the scribes in various

scripts available in various regions. Sometimes, these copies can be said to be in touch with

these commentaries and/or quotations. Sometimes, they can also be said to be influenced

by the commentaries and/or quotations. All these factors make the transmission of the

text a very complex phenomenon. In addition to this complexity, some modern editors

bring out the printed editions of such texts with minimal basis, without consulting all

these factors. Such editions add confusion to the chaotic situation that already exists.
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A philologist who aims to bring out an authentic critical edition of the text should

aim to consult all the material, as mentioned above, related to that text. This way, the

philologist should be able to explain the historical transmission of the text and shall be

able to point to the historically earlier version of the text. The text of the KV is believed

to have been written in the 7th century CE. It got a direct commentary written on it in

8th century CE called Nyāsa (Ny) and another direct commentary was written on it in

11th century CE called Padamañjarī (Pm). These two commentaries quote and explain

the text of the KV as they received. They also become a vital source for the transmission

of the KV during this period. Kulkarni [2012] studies this aspect with respect to the

ganapathas and showed that words in the ganas could be shown to have entered the

gana in pre-Ny, post-Ny/pre-Pm, and post-Pm stages. The text of the KV got quoted

in various texts of the Paninian grammatical tradition. Kulkarni [2002c] collected more

than a thousand such quotations. The copied manuscripts of the KV are available from

15th century onwards. The text of the KV got printed for the first time in 1876 AD, and

since, more than 10 printed editions have been published. None of them, however, can be

said to have utilized the exhaustive resources mentioned above.

In the modern age, the use of digital technology to facilitate the editor to consult all

textual material to prepare a critical edition is possible. The digital technology can also

provide inputs in showing the interrelation amongst these sources by mapping the avail-

able evidence which can be represented in a tree format. The use of the phylogenetic

method in this regard is proving to be very efficacious. In this regard, Kanojia et al.

[2019c] created a comprehensive tool called the Textual History Tool (THT), which pro-

vides all the historical material related to a text at one place. It also generates trees

showing interrelation amongst sources and displays them on an online interface. Their

approach [Kanojia et al., 2019a] in generating these trees is based on the ‘distributional

hypothesis’. The distributional hypothesis is the basis for word embeddings, i.e., words

that are used in the same context and occur in the same contexts, tend to belong to similar

meanings. The underlying idea being that “a word is characterized by the company it

keeps” [Firth, 1957]. This hypothesis suggests that the more semantically similar two

words, the more distributionally similar they should be, and thus the more they should

occur in similar linguistic contexts. This aforementioned approach, however, takes into
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account only the manuscript evidence. We hypothesize that the trees generated using

other factors, as mentioned above, would make the evidence exhaustive and make the

tool more robust. We, in this work, attempt to remove this desideratum by generating

trees while taking into account, factors like commentaries, testimonia, as well as printed

editions. We observe that these factors play a crucial role in deciding the hierarchical re-

lationship among variants as we discuss our findings later in this work. The key question

that we try to answer with this work is,

“Can these ‘factors’ be augmented within a framework to generate more

insightful phylogenetic trees?”

7.6.1 Dataset and Experiment Setup

We collect the following data for performing our experiments and tree construction.

7.6.1.1 KV Dataset

With the help of philologists, we digitize fifty-nine different versions of the KV on AST

1.1.3. We avoid the digitization of additional notes and comments from the scribes present

on the variants for the effective functional unit division. By ignoring additional comments

and noise, we are able to compare variants with each other based only on the text in the

manuscript. Manual digitization of our variant texts also helps ensure clean dataset for

AST 1.1.3.

We obtain these versions from different parts of the country and accumulate them in a

single repository. We perform our experiments and infer trees using both these datasets

and show them in Section 7.6.4. We also observe various kinds of variances in all the

versions, which are also described in Section 7.6.4.

7.6.1.2 Commentaries Dataset

We also digitize two direct commentaries on the text of the KV. These commentaries

are known as Nyāsa (Ny) and Padamañjarī (Pm). We also request our philolo-

gists to provide two additional datasets from the aforementioned commentaries. Those

words which are directly indicated in the manuscript text constitute of our additional

dataset NyDirect and PmDirect and the words which are indirectly referred to in the
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manuscripts constitute the other additional dataset from these commentaries. We refer

to them as NyIndirect and PmIndirect. This additional information or more ‘factors’

help us generate separate phylogenetic trees and gather more insight into how they relate

to the variants.

7.6.1.3 Testimonia

Unfortunately, we do not find any references to KV AST 1.1.3 in other texts. Testimonia

is what we call the portions of a KV sūtra being quoted in other texts. KV 1.1.3, to be

specific, has no such quotations in other texts, as far as our knowledge is concerned. We

include this as a factor in our study because our work is generalizable, and if such a factor

is available for other sūtras, we would be able to include it in further studies.

7.6.1.4 Printed Editions

We use seven different printed editions of the text of the KV. These printed editions

are the work of modern scholars, as stated above, and claim to be an edition with addi-

tional insights depending upon the number of sources; these scholars take into account

when collating the variants for their work. We digitize AST 1.1.3 from seven such vari-

ants known as Balashastri Edition (balaPE - 1876), Narela Edition (narelaPE - 1979),

Suddhi Edition (suddhiPE - 1965), Raghuveer Edition (raghuPE - 1997), Ishwarchandra

Edition (ishwarPE - 2004), Bahalgadh Edition (bahalPE - 1997), Chaukhamba Edition

(chaukhPE - 1996). The acronyms provided to these editions are used as their labels while

computationally augmenting them with the manuscript variant data. They are treated as

separate variants available for the text of AST 1.1.3, which helps them be a part of this

phylogenetic tree generation study.

7.6.1.5 Sanskrit Monolingual Corpus

One needs a large amount of raw monolingual corpus to build an efficient word em-

beddings model. This model can, then, be used to obtain distances between manuscript

variants using both cosine distance and angular cosine distance. One can obtain the vec-

tor representation for a word from the said the model, and then choose to use either of the

distance metrics to compute a distance score among two words. Manuscript variants are

generated copies of the same text over a long period of time and contain different types



Chapter 7. Computational Phylogenetics and Language Typology 196

of variances. Despite these variances, manuscript variants essentially contain the essence

from the same text and try to convey a similar thought. Hence, to be able to distinguish

between nearly the same text, we need a metric which distinguishes nearly parallel vectors

more accurately. We choose angular cosine distance as it has shown to do precisely that

in previous studies [Cer et al., 2018]. This corpus contains data collected from various

sources. We obtain Sanskrit Wikimedia dump23 and collate the articles present in it to

form a base corpus. To this base corpus, we add gloss and example sentences extracted

from the Sanskrit Wordnet. We further add to it another Prose corpus24 and another

dataset25 to ensure sufficient quantity.

Our word embeddings model is the crux of our approach and to ensure that this model

is familiar with the AST text, we also add KV text from AST 1.1.3 to our corpus. Al-

though, we only choose to add ‘vulgate’ variant text to it and not all the variants, to

avoid adding too many similar sentences. We obtain this dataset from various sources

as described above and to ensure its cleanliness; we remove any other ASCII characters

apart from the ones which belong to the Devanagari script. The final cleaned corpus

contains approximately 6 million lines. Eventually, we use this corpus to create the word

embeddings models as described below in the experimental setup.

7.6.1.6 Experimental Setup

A word embeddings model provides the vector for a word. In distributed semantics, the

basic approach is to collect distributional information in high-dimensional vectors and to

define distributional or semantic similarity in terms of vector similarity. Different kinds of

similarities can be extracted depending on which type of distributional information is used

to collect the vectors: topical similarities can be extracted by populating the vectors with

information on which text regions the linguistic items occur in; paradigmatic similarities

can be extracted by populating the vectors with information on which other linguistic

items the items co-occur with. We are concerned with paradigmatic similarity since the

semantic similarity of two words can be computed by determining the agreement of their

lexical neighbourhoods [Ruge, 1992].
23Wikimedia Dumps
24Available on the School of Sanskrit and Indic Studies, J.N.U.
25NLP for Sanskrit from GitHub

https://dumps.wikimedia.org/sawiki/latest/
http://sanskrit.jnu.ac.in/currentSanskritProse/
https://github.com/goru001/nlp-for-sanskrit


197 7.6. Utilizing Multiple Factors in Texts to Generate Phylogenetic Trees

We use Gensim26 to train our embeddings model by using the FastText [Bojanowski

et al., 2017b] approach. We choose FastText for training the word embeddings and ob-

taining vectors since it is known to utilize subword-level information from amongst the

words. To capture the morphology and semantics from within Sanskrit text, we need to

take sub-word information into account. We train the models with the hyperparameters

as described below. Previous empirical studies [Kanojia et al., 2020c] have shown that the

amount of data collected by us for building a word embeddings model may still not be

enough. In such cases, reducing the number of dimensions for a vector can be a possible

solution, which we do. We create these 50-dimension models as we could only acquire a

limited amount of the corpora. The learning rate hyperparameter was left at the default

value of 0.1, and we restrict the context window for each word to 5. We also restrict the

maximum length of word n-gram to 1, which helps us train the model faster. We set the

sampling threshold at a default value of 0.0001. We use softmax as the loss function and

train the models for five epochs27. The similarity obtained from these models in terms

of the angular cosine function is normalized between [0, 1]. We simply subtract the

similarity values from 1 to obtain distance for each word-pair comparison.

Amongst the tree generating approaches, we use the Neighbor-Joining method and the

Fitch-Margoliash method. The neigbor-joining method was previously used by Kanojia

et al. [2019a] and had proved to be effective when compared to the UPGMA method, in

their study. We display the results of only the Fitch-Margoliash method in this version

of the work as there are many different factors, and we generate five different trees using

a single method. We choose to display the results for Fitch-Margoliash as they appear

to be more coherent in terms of variant clades. We can display the other results as

supplementary material in the camera-ready version of this work if accepted. All three

of these methods are distance-based methods, as described in Section 7.6.2. As an input,

they need a distance matrix, which specifies the distance between the taxa being used to

populate the phylogeny. Our approach, much similar to [Kanojia et al., 2019a], generates

this distance matrix by using word embeddings. We also describe this methodology used

to obtain these matrices in Section 7.6.2. For our experiments, we divide each KV data
26Gensim Source
27More epochs usually lead to a better learned/trained model; we retain the best epoch output with a

minimum loss to be utilized for our work

https://github.com/RaRe-Technologies/gensim
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into different functional units. The functional unit division in KV depends on the type

of sūtra. The sūtra that we use for our experiments, namely AST 1.1.3, is of the type

meta-rules. The functional unit division is as follows:

• meta-rules: This type of sūtra introduces the meta-rules within the system of AST.

The KV on this sūtra contains the following functional parts (sūtra AST 1.1.3):

1. The sentence explaining the type of meta-rule.

2. The explanation of the words in the sūtra.

3. Examples

4. Discussion on important words in the sūtra.

5. Counterexamples.

These functional units help us understand the text in a better manner, and for com-

putational purposes, they create separate divisions in the text so that the versions are

compared to each other efficiently. We compare each functional unit only with its coun-

terpart from the variants. For e.g., In the dataset from AST 1.1.3, we compare the

explanation of words of the sūtra only with an explanation of words, from the other vari-

ant. We explain this approach of dividing the sūtra into different functional units for

obtaining an effective manuscript distance below.

7.6.2 Approaches

In this section, we describe the various approaches used for computing our distance matrix

and tree construction.

7.6.3 Computing the Inter-Manuscript Distances

We use the approach described by Kanojia et al. [2019a] for computing inter-manuscript

distances. We utilize the word embeddings based model created as described above, and

simply obtain the angular cosine distances for each word pair comparison, in a functional

unit. The approach averages each word-pair distance to compute a functional unit dis-

tance, and further averages all functional unit distances to obtain the manuscript variant

distance. In case, we would have used multiple sūtras in the KV dataset, averaging the
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functional unit distances should have provided us with a sūtra distance, and further av-

eraging would lead us to manuscript distance. However, since we use only one sūtra

as a dataset, we can obtain manuscript variant distance, in our case, by averaging the

functional unit distances.

7.6.3.1 Tree Generating Methodologies

We now describe the methodologies used to generate phylogenetic trees using the dis-

tance matrix-based approach. This analysis compares two aligned manuscripts at a time

and builds a matrix of all possible sequence pairs. For each comparison, the number of

changes (substitutions/insertion/deletion events) is counted and presented as a proportion

of the overall sequence length. These final estimates of the difference between all possible

pairs of manuscripts are known as pairwise distances. Such analyses explicitly rely on

a measure of “genetic distance” between the manuscripts which are being classified, and

therefore they require a multiple sequence alignment (MSA ) as an input. Their distance

is often defined as the fraction of mismatches at aligned positions, with gaps either ig-

nored or counted as mismatches [David, 2001]. A disadvantage of using distance-matrix

methods is their inability to efficiently use information about local high-variation regions

that appear across multiple subtrees [Felsenstein, 2004]. Distance matrix-based methods

attempt to construct an all-to-all matrix from the sequence query set, which describe

the distance between each sequence pair. They construct a phylogenetic tree from these

distances that places closely related manuscripts under the same interior node, and their

branch lengths closely reproduce the observed distances between manuscripts. Further,

we describe the methods we choose to use for generation of trees for our work.

Neighbor Joining Method

Neighbor-joining [Saitou and Nei, 1987] is a method that belongs to the clustering

based methodologies, but it does not require the data to be ‘ultrametric’, i.e., it does

not require that all lineages have diverged by equal amounts. This methodology is suited

for manuscripts comprising lineages with vastly varying rates of evolution, such as ours.

This method can be combined with methods that allow correction for superimposed sub-

stitutions. As the neighbor-joining algorithm aims to represent the data in the form of an

“additive” tree, it may assign a negative length to the branch. We, however, do not allow
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the algorithm to compute negative branch lengths for our manuscript variant compar-

isons. Here, the interpretation of branch lengths as an estimated number of substitutions

gets into difficulties. When this occurs, it is advised to set the branch length to zero and

transfer the difference to the adjacent branch length so that the total distance between

an adjacent pair of terminal nodes remains unaffected.

For each topology, the tree length (sum of branch lengths) is a weighted sum of the

distances in the distance matrix computed, with the weights depending on the topology.

The optimal topology (as per BME) is the one which minimizes this length. At each

step, it greedily joins the pair of taxa, which provides the most significant decrease in the

estimated length of the tree. We do not show the trees generated using neighbor-joining

method in this work and aim to show them as additional supplementary material only.

This is because on manual evaluation, we find that the Fitch-Margoliash method

generates relatively more accurate trees, and we do not want to unnecessarily

include large tree images, primarily when the trees generated from the Fitch-

Margoliash method can be used to extract necessary insights about our factors

as discussed.

Fitch-Margoliash Method

Fitch-Margoliash method is based on the least-squares principle for phylogenetic tree

reconstruction. The evolutionary distances between the manuscripts are determined by

the Jukes-Cantor model when sequences (instead of distances) of the same length are

entered. However, we use the distances pre-computed via the word embeddings model. This

method is based on an optimality criterion that selects the tree with a minimum amount

of residual. The algorithm estimates the total branch length (distance) and clusters per

taxa pair to determine the unrooted tree with minimum distance. This method does

not assume a constant rate of evolution, which is a more accurate way of

dealing with manuscript data that can evolve at any rate. An optimized tree

can be selected out of several possible trees in this method. One of the demerits of using

this method is the underestimation of very long evolutionary distances because it ignores

homoplasies, i.e., absence of a character in the common ancestor. However, it is being

shared by a group of related species originating from the common ancestor. This is a more
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accurate method for generating trees for manuscripts as compared to the Neighbor-joining

method as the latter is a more efficient way or a fast way of generating trees, whereas, for

a large amount of data, Fitch-Margoliash can consume much time but generates

more accurate relationship among the taxa, which in our case, are manuscript

variants and the factors we aim to utilize for a better insight.

7.6.4 Results and Discussion

In this section, we display our resultant tree generated using the approaches and meth-

ods described above. We introduce the aforementioned factors with our manuscript vari-

ants dataset one-by-one and in combination, but our manuscript variants remain consis-

tent. In figure 7.11(a), we show the tree generated for AST 1.1.3 when only commentaries

(Ny and Pm) are introduced as the additional factor with the manuscript variants. In

figure 7.11(b), we present the tree generated when only printed editions are introduced

as an additional factor.
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(a) AST 1.1.3 with Commentaries

(Ny and Pm)

(b) AST 1.1.3 with Printed Editions

Figure 7.11: Trees generated with two different factors, for only commentaries (a) and

only printed editions (b), respectively
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Figure 7.12: Tree generated by combining the datasets for commentaries and printed

editions with the manuscript variants
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(a) AST 1.1.3 with directly quoted

words from Commentaries (Ny and

Pm)

(b) AST 1.1.3 with indirectly quoted

words from Commentaries (Ny and

Pm)

Figure 7.13: Trees generated via further bifurcation of the commentary text into directly

quoted words (Ny and Pm), and indirectly quoted words (Ny and Pm), respectively.
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(a) AST 1.1.3 with directly and in-

directly quoted words from the Ny

Commentary

(b) AST 1.1.3 with directly and in-

directly quoted words from the Pm

Commentary

Figure 7.14: Trees generated via further bifurcation of the commentariusing es Ny (di-

rectly and indirectly quoted words) and Pm (directly and indirectly quoted words), re-

spectively.
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Since our trees are large and contain more than 59 leaf nodes for any generated tree

diagram, we have boldfaced the labels for any additional factors for slightly better visibility

in the Figures. From figure 7.11(a), we can observe that the commentaries Pm and Nyāsa

leaf nodes are closest to the edition we consider ‘vulgate’. We also observe that most of the

clades formed in this tree belong to the same family of variants, as per our philologist’s

opinion. For e.g., manuscript variants asb, my2, my10, A10 and ba5 belong to the

same family and are clubbed together. The clubbing of the commentary texts Nyāsa and

Pm with our ‘vulgate’ is a clear indication of interrelation between the ‘vulgate’ and the

editions of the Ny and Pm. Given they are the earliest commentaries on the text of the

KV, this should be treated as a piece of strong evidence towards the reconstruction of

this text.

From figure 7.11(b), we observe that the printed editions concerned are not very close

to our ‘vulgate’ edition. Although, Balashashtri printed edition is the closest to ‘vulgate’

when compared to any other editions from this study. This also goes to show that these

printed editions are closer to some manuscript variants as compared to the ‘vulgate’

namely bhu2, vsm, bh8, io1, tri1, as shown. With the help of our philologists, we

also confirm that the printed editions refer heavily from these variants. This is also an

indication of the fact that these editions considered some texts important which may be

missing from this analysis. We observe that this analysis considers only printed editions

and the manuscript variants. Printed editions, as we know, are the works of modern

scholars who, in all probability, take the oldest commentaries into consideration when

coming up with an edition. Hence, we combine the datasets of printed editions and

commentaries with the variants and generate another tree, as shown in Figure 7.12.

From figure 7.12, we observe that when both the factors are combined, we are able to

obtain a clearer picture of phylogenetic reconstruction that went on to arrive at the printed

editions. We see that Balashashtri printed edition (balaPE) is closest to the ‘vulgate’ now

that the missing link of the commentaries is present during the tree generation. We see

that the commentaries which earlier ranked closest to our ‘vulgate’ text, now, rank after

balaPE. This probably happens because the text of balaPE and our vulgate are very

similar. A phylogenetic tree should ideally place the variants hierarchically; but please

keep in mind, that these additional factors are not our conventional variants, but some
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of them are carefully constructed editions which have been arrived at, via the study and

reconstruction/collation from various sources including the commentaries. Hence, it is

not a surprise that a printed edition ranks closer to our ‘vulgate’ even compared to the

oldest and direct commentaries. Figure 7.12 also shows that same family of manuscript

variants are shown to be closest to the rest of the printed editions, i.e., raghuPE, bahalPE,

ishwarPE and so on, which implies these editions borrow heavily from the nearest family

of variants, as far as AST 1.1.3 is concerned. This concludes our primary observations

regarding commentaries and printed editions.

Additionally, when we bifurcate the Ny and Pm commentary data into directly quoted

words, and indirectly quoted words, we generate 4 more trees, i.e., AST 1.1.3 with directly

quoted words for Ny (Figure 7.13(a)) and PM (Figure 7.13(b)) and AST 1.1.3 with directly

and indirectly quoted words of the Ny commentary (Figure 7.13(a)) and with directly

and indirectly quoted words of the Pm commentary (Figure 7.13(b)). From the first two

figures which depict the directly quotes words for Ny/Pm and indirectly quoted words

for Ny/PM, we observe that the Ny commentary ranks closer to manuscript variants r1,

io2, my11, and so on; similarly, the Pm commentary text ranks closer to Th4, and r4.

Interestingly, we also see that the length of the tree edges for both directly quoted nodes

is shorter than the length of the tree edge for indirectly quoted nodes. This provides us

with a piece of evidence that directly quoted word should be given more weightage while

phylogenetic reconstruction and such bifurcation are beneficial for philologists.

It is noted that functional unit 1.1.3.4 has close resemblance with the text on the same

sūtra in the Vyākaraṇa Mahābhāṣya of Patañjali. We note that both Ny and Pm do not

have any direct evidence nor indirect evidence to support the existence of this functional

unit as received by them. We also know that a group of 32 manuscripts also do not provide

any evidence to the existence of this functional unit in the text of the KV. It means that

only 27 manuscript sources posses evidence for the existence of this functional unit. Our

trees show (in Figure 7.14(a) and (b)) that the group of 32 manuscripts in both the trees

is aligned with the evidence presented by the Ny and the Pm. Primary amongst these

32 manuscripts are g1, bh6, ld0, bh7, etc. Thus, with the help of the combination of

factors in the phylogenetic trees, we are able to show two streams of transmission clearly.

One following the Mahabhashya tradition, and the other following the other tradition.
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We present our insights into the utilization of additional factors for the generation

of phylogenetic trees. Using a previously proposed approach which uses the semantic

properties of a text to compute a distance matrix, we augment these additional factors

into the aforementioned distance matrix. We, then, improve upon the said approach

and use a different, more accurate method for phylogenetic tree generation and discuss

our insights. We observe that from amongst recently published printed editions, the

Balashashtri printed edition ranks closest to our ‘vulgate’. This edition is also very close

to the direct commentaries on the text of the KV, namely, Ny and Pm. Our approach

and trees generated using that can also reveal the sources of the printed editions. We

further bifurcate the commentaries dataset into directly quoted and indirectly quoted

words and discuss our findings in the section above. Our approach successfully presents

textual evidence comprehensively to the reader or the editor and is clearly able to support

the hypothesis of multi-source transmission of the text of the KV. In this way, textual

evidence related to the texts with complex history can be comprehensively presented via

phylogenetic reconstruction; thereby explaining the complex transmission of that text in

a better scientific manner.

In future, we would like to perform similar experiments with more sūtras of the text of

the KV. We would like to present a comprehensive picture by also adding sūtras which

have quotations present in other texts, thus including additional factors, i.e., Testimo-

nia/Earlier Texts, for such phylogenetic studies. We aim to inculcate this factor based

tree generation methodology with the Textual History Tool so that philologists can benefit

from this kind of reconstruction while digitizing other texts.
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7.7 Summary

In this chapter, we have discussed various investigations which describe our work on

computational phylogenetics and a short investigation on generating typological tree for

Indian languages. We conclude with observations that cross-lingual embeddings can be

successfully used to generate typological trees in the first study and show that closely-

related languages are clubbed together. Later, we described the use of monolingual word

embeddings to generate accurate distance matrices for multiple investigations. We, first,

showed the results of our pilot study, which established the use of these embeddings for

phylogenetics tree generation. We further show how embeddings can also be used to

generate more accurate trees if timeline information is inculcated in the distance matrix.

Finally, we showed how embeddings of various commentaries and printed editions can be

used to analyze phylogenies generated using our method. Our qualitative analysis showed

that commentaries, printed editions and quotations are placed at appropriate levels in

the phylogenetic tree. This can help philologists arrive at an informed decision when

finalizing a critical edition for a text. Our efforts to create an online tool which uses our

phylogenetic approaches are described in the appendix of this thesis. With this chapter,

we conclude the details of our investigations. We conclude the thesis in the next chapter

with the hope that the reader can use our research, released datasets, code and other

evidences from this thesis, for further research.
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Chapter 8

Conclusion & Future Work

This chapter concludes this thesis on investigations into distributional semantics for the

task of cognate detection and computational phylogenetics. In this chapter, we summarize

the previous chapters, draw conclusions and discuss possible future directions.

8.1 Summary

With advancements in NLP research, there was a need to understand the machine-

readable human language data. Humans understand natural languages due to years of

acquired background knowledge and context, which computational models are trying to

acquire as is evident by the significantly growing NLP research in the sub-area of seman-

tics. The ability of a machine to understand human languages is primarily due to the

development of distributional semantics and its applications to various NLP tasks. The

computational linguistics community draws insights from natural languages and aims to

improve the said machine-ability with statistical and rule-based methods alike. We first

discussed one of the key aspects of multilingual or cross-lingual learning, i.e., the re-

latedness of languages and the vocabulary shared among them. While we established

a motivation to perform the investigations described in this thesis, we also described

the tasks associated, viz., automatic cognate detection, false friends’ detection, and com-

putational phylogenetics. We then described the previous research in these areas with

a literature survey which detailed the datasets, approaches, and issues related to these

tasks. We observed that the orthographic and phonetic feature-based approaches lacked

an understanding of word-pairs in question. We also observed that there was a lack of

211
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concentrated efforts to perform cognate detection for Indian languages which led us to

investigate the use of various semantic feature-based approaches, for the Indian linguistic

area. Our literature survey in phylogenetics led us to investigate the use of embeddings

for phylogenetic tree generation. Our investigations are divided into four parts: under-

standing the phenomenon of distributional semantics, performing cognate detection with

the help of various feature sets and deep learning-based approaches, performing false

friends’ detection with the help of cross-lingual features, and utilizing word embedding

based features for computational phylogenetics. Each of these is summarized below:

Understanding Distributional Semantics We study and describe the various ap-

proaches in distributional semantics used to create embedding models which can

be used for our research. This includes monolingual embeddings which are used

for computational phylogenetics and cognate detection. It also entails a significant

study of methods which help generate cross-lingual and bilingual embedding mod-

els. To understand the components of the aforementioned tasks, we perform the

following studies:

• We describe the creation of a manually validated linked Indian language Word-

net data created with the efforts of lexicographers and release the data publicly.

We also describe our efforts to link Indian Wordnet with the English wordnet.

Our observations include the applications of this linked knowledge graph for

various NLP tasks.

• In the second study, we discuss a semi-automated method to link wordnets

using word embeddings. We observe that our method helps reduce the manual

effort on the part of lexicographers by creating synset-embeddings for each

synset and thus helps the linkage of concepts in two different languages.

• In the third study, we create various types of embedding models for Indian

languages which are based on approaches proposed to generate monolingual,

cross-lingual and multilingual embeddings. We create a total of 436 models

and release them publicly1. We also evaluate these models based on the Named

Entity Recognition task, model perplexity, and the Part-of-speech tagging task

to further discuss the quality of the models released.
1Repository Link

http://www.cfilt.iitb.ac.in/~diptesh/embeddings
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Cognate Detection Task We presented seven investigations towards the task of cog-

nate detection, which compare previously proposed approaches to cognate detection

with our research:

• In the first study, we perform the task of cognate detection for a small dataset

in Indian languages and observe that orthographic similarity-based approaches

fail to detect cognates among Indian languages. With the help of manual vali-

dation, the low precision scores obtained using orthographic similarity implored

us to further the research in another direction.

• In the second study, however, we proposed a combination of orthographic

similarity measures using empirical measures and observed that using a deep

learning-based approach helps improve task performance even with ortho-

graphic features. We hypothesized that the linked Indian Wordnets could

be used for the task of cognate detection and showed it via our experiments.

• In the third study, we discussed how the dimensionality of word embedding

models plays a crucial role in the cognate detection task. We explored the

use of a shared-layer based Siamese Feed Forward Neural Network and showed

how the dimensions of embedding models should be kept in a check if one has

a dearth of lexical resources needed to create them.

• In the fourth study, we discuss the creation of challenge datasets for the task of

cognate and false friends’ detection. We digitize a cognate dictionary with the

help of lexicographers and use the linked Wordnet data to generate potential

cognates and false friend word-pairs. With the help of bilingual annotators,

we manually validate the data and release a curated list of cognates and false

friends’. We also evaluate these datasets on previously proposed approaches

and show that these datasets prove to be a challenge for the said approaches

showing a significant reduction in their performance.

• In the fifth study, we use cross-lingual features from the embedding models

released previously and show that they help the task of cognate detection

for Indian languages. We also induce the detected cognates in a Machine

Translation pipeline and show that detected cognates help improve the MT

task with an improvement in BLEU scores.
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• In the sixth study, we perform the task of gaze-data collection for a small

set of cognate and false friend pairs in Indian languages. With the help of

collected gaze-data, we generate additional features which help improve the

task performance. We also train a neural network to predict the gaze-data

for a large number of cognate and false friend pairs show that predicted gaze-

features also marginally improve the task performance.

• In this final study, we perform the task of cognate alignment for Indian and

European languages and show that Wordnet linkages obtained earlier in our re-

search are able to help us generate cognate sets for the Indo-European language

family. The resulting low number of cognate sets warrant further investigation

for this study.

False Friends’ Detection Task Cognates can confuse false friends while the task of

automatic cognate detection is being performed.

• In this study, we perform the task of False Friends’ detection using cross-lingual

features and show that a combination of cross-lingual features can help the task

of detecting false friends’. We perform a manual analysis of the detected false

friends’ and show that our approach is able to make semantic distinctions

between fine-grained senses across languages for the false friend word-pairs.

• We release this curated false friends list along with the models and code for

further research.

Computational Phylogenetics and Language Typology In this part of the thesis,

we perform different studies which are show relatedness among Indian languages and

also show how variant manuscripts can be clubbed together to generate accurate

phylogenies based on distributional semantics.

• In the first study, we hypothesize inter-language distance based on Wordnet

synsets. We show how closely related languages can be clubbed together using

a distance matrix for the task of a typological tree generation. Our observations

include the grouping of Indo-Aryan languages and Dravidian languages in an

accurate manner when cross-lingual features are used.
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• In the second study, we create a word embedding model for the Sanskrit lan-

guage and utilize it to generate a distance matrix for phylogenetic tree gener-

ation. We show that orthographic similarity-based distance matrix generation

is shown to infer trees which do not club closely related manuscript variants.

With the help of expert philologists, our observations show that phylogenetic

trees generated with the help of word embeddings are more accurate and club

related variants together.

• In this third study, we describe our efforts to inculcate the timeline data for

manuscript variants, wherever available, to improve the phylogenetic tree gen-

eration further. We show that by including the timeline data as an additional

functional unit, the trees generated are able to show an improved descendance

of the text into manuscript variants.

• In this fourth study, we observe how various factors like printed editions, quo-

tations and commentaries, when included in our proposed approach, can help

the manual phylogenetic analysis to be performed by the philologists. Our ob-

servations include the recently found commentary and sub-commentary data

which can help generate a critical edition of the text with a more fine-grained

analysis by the philologists.

• In an additional study in the appendix, we describe the creation and pub-

lic release of an online tool called the Textual History Tool. This tool helps

philologists enter manuscript data with an online interface and then depicts

the information in various modes created. It uses our proposed approaches

to generate phylogenetic trees on the backend and shows them on the online

interface for further manual phylogenetic analysis to be done by the philolo-

gists. We describe all the possible features of the tool impending some future

work which can help with a more fine-grained data addition. We also describe

the additional work done towards improving the tool features which allow it

to capture the data of commentaries and sub-commentaries for a text. Our

observations include a proposed classification of text which can be generally

applied to various manuscripts.
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8.2 Conclusion

We start this work by formally defining our research problem in terms of cognates, false

friends, partial cognate, and non-cognates. We define the tasks of automatic cognate

detection and false friends’ detection and establish a motivation for performing these

tasks in the context of downstream NLP tasks. The existence of linked Indian language

Wordnets was crucial for this research. We capitalize on the ongoing effort and utilize it

for establishing our hypothesis. For solving our problem, we present our hypotheses that

Indian language Wordnets can be utilized to prepare datasets for cognate and false friend

detection. With the help of manual validation, we prepare the datasets for both the tasks

and describe them in this thesis. Additionally, we report our work on creating Wordnet

linkages and the training of embedding models.

Our work present novel insights into the task of cognate detection and false friends’

detection. Our work reported in this thesis is built around the notion of cross-lingual

similarity and language relatedness. We present our work which utilizes cross-lingual word

embeddings and aids in the detection of cognates and false friends among the candidate

pairs selected from two different datasets, respectively for both the tasks. We report our

work with fourteen Indian languages namely Marathi (Mr), Konkani (Ko), Punjabi (Pa),

Gujarati (Gu), Bengali (Bn), Oriya (Or), Assamese (As), Sanskrit (Sa), Nepali (Ne),

Malayalam (Ml), Tamil (Ta), Kannada (Ka), Telugu (Te) and Hindi (Hi). Our proposed

approach for the cognate detection task also shows improvement over the previous state-

of-the-art approaches. We show how it can be applied to improve the task of Machine

Translation using a straightforward method. We also generate additional features for the

task of cognate detection using gaze-data captured on a small set of cognate and false

friend pairs. We use our approach and also perform cognate detection for the task of the

Indo-European language family.

For the task of False friends detection, we report our work on Indian language pairs

using the same notion. Moreover, we devise a simple approach to implement, which re-

quires only a monolingual corpus from each language to build the embeddings models.

The cross-lingual projections can be built via either a bilingual dictionary or via adversar-

ial training. We report results for our approaches with significant improvements over both

all baseline approaches. We attribute these results to particular merit of our approach,
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i.e., it captures the ‘contextual similarity’ of words better, using the word embeddings

based model enriched by sub-word level information, in contrast to the baseline approach,

which only considers the character substitutions as a metric to compute similarity or the

neural classification which probably suffers from a lack of data. For the False friends’ de-

tection task, cross-lingual similarity and vectors based features to achieve the best results.

After performing an ablation test with different feature set combinations, we observe that

a combination of the orthographic similarity-based measures and cross-lingual similarity

performs even better, which indicates that orthographic and semantic similarity should be

combined to detect linguistic entities such as false friends. Our results resonate with the

linguistic identity of false friends, which defines them to be word pairs with high ortho-

graphic similarity but low semantic similarity. We also discuss the reduced dimensionality

of embedding models when low-resource languages are concerned.

We described how language relatedness could be used to improve NLP tasks and

showed relations among languages in terms of a shared vocabulary. In the later part of

this thesis, we discuss language typology and conceptualize inter-language distance based

on linked knowledge graphs. We use the same notion to hypothesize inter-manuscript

distance and generate distance matrices which help infer phylogenetic trees. Dividing the

manuscript data into various functional units helps us compare manuscript variants in a

better manner, thus improving our phylogenetic tree generation. Manual analysis with

the help of philologists shows us that embeddings based tree generation seems to help the

task of phylogeny creation. Further, we experiment with the induction of timeline data

into the distance matrix based on the functional unit division proposed by us earlier. The

availability of timeline data for manuscript variants is rare and can hinder the phylogenetic

analysis being performed. With our approach, we are able to use whatever data is available

and help the philologists with further analysis and the building of a critical edition for

the text in question. All of the above state work in computational phylogenetics can

be applied in a general fashion to any manuscript text in question. For the manuscript

data we have, we go a step ahead and perform a fine-grained analysis on how various

factors can also help the phylogenetic analysis is they are included in our tree generation

approach. The current performance of our approaches is significantly better than previous

approaches.

In conclusion, this thesis looks at handling multiple problems in the domain of lan-
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guage relatedness and exploits distributional semantics to propose various approaches.

The relatedness among shared vocabulary can be captured using cross-lingual features,

and relatedness among manuscripts can be captured with monolingual embedding based

features. The proposed approaches can be used to help the downstream NLP tasks and

improve their performance. Hopefully, the outcome of our research can be used to further

the investigations in cross-lingual domain of NLP.

8.3 Future Work

Our investigations in these areas point to several directions of future work:

Short-term Future Work : The following work items could make incremental addi-

tions to the findings of this thesis:

• We aim to perform an immediate evaluation of cross-lingual embeddings for

the potential cognates among the Indo-European language family.

• Our cross-lingual approaches to cognate and false friends’ detection can be

improved by training the embeddings using the byte-pair encoding method.

• Integration of word etymology based dictionary can also provide us with ety-

mological evidence for the task of cognate and false friends’ detection.

• Based on our experiments in cognition-aware cognate detection, we can train

a better approach to generate gaze-data in a multi-task setting for cognate

detection and gaze-data prediction.

• We can perform the phylogenetic tree generation for other manuscript data

based on the same approaches proposed by us.

• We should also look at how cognates are affected by language change over time

in various areas of the world.

Mid-term Future Work : The following future work items could be additionally help-

ful:

• We can collect additional gaze-data for the task of cognate detection among

other Indian language pairs and perform the task with a more fine-grained



219 8.3. Future Work

analysis of how different languages speaker generate gaze-data for the task of

cognate detection.

• We can also perform phylogenetic tree evaluation based on an automated

method which we can devise based on further research. We should be able

to compare the trees with a manually drawn gold-standard tree using an au-

tomated method.

• We should be able to perform the task of false friends’ detection by creating a

dataset of false friends’ for other language families.

• We can also perform experiments on how cognates and false friends’ are affected

by various cultural changes.

• Improvement of the depiction of trees on the online tool created by us, with

the use of Javascript-based libraries. Instead of using ASCII text generated by

scripts, we could show the trees using nodes and edges.

Long-term Future Work : The following new directions are possible in the area of

distributional semantics:

• In the long term, we envision improvements in how cross-lingual features are

generated. Instead of using a simple projection layer to generate cross-lingual

embeddings, we should be able to come up with a linguistically inspired ap-

proach to solve the problems of low-quality cross-lingual embeddings.

• This can help solve the downstream NLP tasks in a more general fashion

instead of performing individual tasks and fine-tuning models for a given task.

• A special focussed research on how computational phylogenetics can help mit-

igate the manual phylogenetic analysis completely should also be undertaken.

This thesis presented our linguistically-motivated investigations using distributional

semantics in the area of natural language processing. We discussed the relatedness of

languages and how cognate words and shared vocabulary can help NLP tasks. We also

investigated computational phylogenetics using the notion of semantic relatedness. The

philosophy of building approaches which can help NLP using semantic relatedness is a

useful direction provided in this thesis for future work in the area of NLP and AI.
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Appendix A

Efforts Towards the Creation of

Textual History Tool

This additional chapter details our work on the creation of the Textual History Tool and

an additional effort to improve it. This tool helps philologists add manuscript data to

a digital database and utilizes our phylogenetic approaches to display trees on an online

interface along with various other functionalities described below.

A.1 An Introduction to the Textual History Tool

This work was accepted at the 6th International Sanskrit Computational Linguistics Sym-

posium, and a demonstration of the tool was provided at the symposium.

The Textual History Tool (THT) captures the historical evolution of a text through vari-

ous temporal stages, and inter-related data culled from various types of related texts. This

tool also provides a historical view of the transmission of a text through the manuscript

tradition. This tool provides an online interface which allows philologists to enter manuscript

data for a text. It also provides an interface which helps philologists compare the vari-

ants in a separate mode. It allows the user to generate phylogenetic trees, for the text,

based on distance methods using the data entered in the tool. It also contains the facility

to generate critical edition using a semi-supervised approach. This tool also divides the

text into meaningful functional units and helps achieve a better comparison among the

manuscripts. The text of the Kāśikāvṛtti (KV) and its textual history is mentioned as a

251
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specific example to demonstrate the features of this tool.

Many of the texts which exist in the form of a manuscript have been studied carefully

and brought in the print form in various editions. Editions are of various kinds; “Critical

Edition” being considered authentic as it aims to account for the existing manuscripts’

traditions. Validating multiple versions using Document Similarity measures under the

purview of computational linguists [Huang et al., 2014] is also possible, and a desirable

step to building text version families or clades. Tools are required to query, retrieve and

visualize information from such knowledge bases. In our work, we discuss such a data

entry/visualization tool for computational phylogenetics.

In the twentieth century, before computers came to be used in the effort of preparing the

critical edition of a text, philologists used paper-based methods for various purposes, viz.,

collation, description of manuscripts, inter-relation of manuscripts, apparatus creation,

etc. With the advent of computers and development in technology, we can now have tools

with us, that can facilitate the data entry, storage, and display of the aforementioned

functions, all on the same interface. The tool described in this chapter is of the same

kind.

“A text is, generally, structured verbal expression of intellectual pro-

cesses.”

Oral transmission led to the development of various vikṛtis, i.e., methodologies used

to memorize Vedic lore, based on cognitive features. Written transmission is carried out

through copies of the text, also known as manuscripts. Historically, manuscripts were

written or copied by one or more scribes. Transmission of the text from one source to

another generates variants which are significantly different when compared to each other.

In terms of expression, the text undergoes various changes in terms of spellings, word

replacements, etc. Texts are used as the primary sources by scholars in reconstructing

the History. The texts assume more significance as a source when it comes to recon-

structing the history of an intellectual tradition. These texts represent important stages

in the development of thought that contributes to the continuation of the intellectual

tradition. What makes the process of reconstruction of intellectual history more com-

plex and therefore, perhaps, more interesting as well as challenging, is the fact that these
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texts, themselves, are part of a historical process, also known as transmission, and have

evolved in certain typical manners and ways in the course of time. It becomes necessary,

therefore, in order to study the history of intellectual tradition, the history of the text

used as a primary resource.

In the Indian context, we know that the transmission of texts happened in two major

ways: oral and written. Texts like Vedas were transmitted from one generation to another,

primarily, orally, and were written down eventually. So is the case of Epic poems like

Ramayana and Mahabharata1. In the case of Vedas, though, there is no scope of evolution

of the text as such, as it was orally transmitted in a regulated manner with components

of the texts noted down in great detail up to the level of single letters and accent marks.

In the case of Epics, however, the evolution of the text was observed by scholars and

traditionally as well, it is believed that Mahabharata, for example, originally consisted of

merely 10000 verses which grew in the course of time and has now become a text of one

hundred thousand verses (śatasāhasrī saṁhitā).

A.1.1 Functional Divisions of the text of KV

The text of KV, as mentioned above, can be, generally, divided into its functional parts.

There are two basic divisions in the text of KV, one that of the sūtra and other of the

KV. Within the KV, the text can further be divided according to its functional properties

based on the type of sūtra it is commenting upon. We present below the functional

divisions in the KV on the saṁjñā sūtra. Functional parts of the KV on vidhi sūtra is

described in [Kulkarni, 2012].

• saṁjñā: this type of sūtra introduces a technical term, and hence the KV on this

sūtra contains the following functional parts:

1. Introduction of the words in the sūtra and meaning of the sūtra.

2. Examples.
1When Malhar Kulkarni delivered his lecture on ‘Text and Transmission with special reference to

Classical Sanskrit Texts’ in Almaty, Kazakhstan on 25th August 2015, some members of the audience

remarked that there exist texts even in Kazakhstan, which were committed to memory and were handed

down from one generation to the next orally. For oral traditions of India, see [Falk, 1993] and for more

recent discussions, see [Kulkarni, 2015].
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3. Mention of other sūtras in which this technical term appears.

The Textual History Tool is required because, at one go, it can present to a reader, the

entire history of a text. A text in the Indian context can have a predecessor text as well

as a successor text. It is an outcome of the intellectual activity based on one or more

predecessor texts as well as textual traditions. It becomes a part of intellectual discourse

and is commented upon by critical scholars within the same tradition. It gets quoted

in the successor texts of the same tradition as well as other traditions and disciplines.

It gets copied down in written form for various generations across different geographical

regions and in different scripts. In this process, the text itself undergoes various stages of

evolution, which can be marked as historical landmarks in the development of thought.

Capturing the history of this intellectual world, at a glance, is the aim of this tool.

Currently, available tools do not present the historical information in a form which is

coherent, and they do not provide an efficient data-entry interface which can help compu-

tational phylogenetics. There are multiple toolkits available which perform computational

phylogenetics given the data is formatted in their required input format; none of them

takes raw manuscript data to automate the complete pipeline, which is the eventual aim

of this tool. We allow users to enter raw manuscript data and create functional divisions

to ease the task of phylogenetics which is a novel contribution of our work. The critical

contribution of this work is: ‘Building a comprehensive tool for visualizing the transmis-

sion and history of a text - a tool which can,

(i) Visualize the multiple versions of the same text which also allows data entry for

manuscript versions and thus, helping one compare these versions with each other and

aids one in adapting them to a graphical model, viz., a phylogenetic tree.

(ii) Visualize the data from earlier texts.

(iii) Visualize the data from testimonia.

(iv) Visualize the data from commentaries.’

Currently, a lot of texts written in Sanskrit are available in the electronic format avail-
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able at SARIT2, GRETIL3, DCS4, etc. Many of them are in a searchable format. DCS

presents texts with various other applied tools like Morphological Analyzer, POS tag-

ger, etc. However, no tool presents historical information the way it is needed, i.e.,

with manuscript versions, which can be compared/edited at the same time. KWIC is an

acronym for Key Word In Context (KWIC) and is the most common format for concor-

dance lines. DCS employs KWIC to be used in the concordance functionality it provides

on its interface. Some tools for visualization of data are available online. [Csernel and

Patte, 2007] discuss the LCS algorithm for preparing a critical edition of Sanskrit texts

and provide a method for comparison of Sanskrit manuscripts using XML and HTML

formats. BabelNet [Navigli and Ponzetto, 2010] is an important lexical resource as far as

computational aspects are concerned. [Navigli and Ponzetto, 2012] design an explorer to

visualize its database. It uses the tree layout for visualization, which, in the convention, is

similar to the phylogenetic visualization of texts. Visuwords5 is an online graphical dictio-

nary designed for accessing Princeton WordNet and uses a force-directed graph layout for

visualizing the synset structure. Nodebox visualizer6, on the other hand, provides a very

static layout. WordTies [Pedersen et al., 2013] is a WordNet visualizer designed for Nordic

and Baltic wordnets. [Chaplot et al., 2014] present such a visualizer for IndoWordNet-

which is a lexical resource for Indian language WordNets.

Overlapping textual structures can be accurately modelled either as a minimally re-

dundant directed graph, or, more practically, as an ordered list of pairs, each containing

a set of versions and a fragment of text or data [Schmidt and Colomb, 2009]. On a

similar note, [Hanneder, 2010] writes about text genealogy and textual criticism. [Maas,

2009b] discusses the textual versions of Carakasaṃhitā Vimānasthāna and uses computer

stemmatics to aid them in the construction of a Phylogenetic tree later [Maas, 2010].

[Sathaye, 2017] present an analysis of Vetāla-pañcaviṃśati, in the context of ‘fluid’ tex-

tual dynamics and discuss the differences in oral folklore when compared to written text.

[Phillips-Rodriguez et al., 2009] discuss the transmission of the Mahābhārata and the bi-

furcations within the diagrams about its written transmission. [Kulkarni, 2002d] discuss
2http://sarit.indology.info/
3http://gretil.sub.uni-goettingen.de/
4http://www.sanskrit-linguistics.org/dcs/
5https://visuwords.com/
6https://www.nodebox.net/code/index.php/WordNetwo

http://sarit.indology.info/
http://gretil.sub.uni-goettingen.de/
http://www.sanskrit-linguistics.org/dcs/
https://visuwords.com/
https://www.nodebox.net/code/index.php/WordNetwo
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the transmission of KV and conclude that there seems to be no Vt (version) on AST 2.2.6

in the KV. [Kulkarni, 2015] discuss the perspectives on how memory acts as a vital device

in the tradition of oral transmission of texts.

The TEI Critical Edition7 Toolbox is a tool for preparing a digital TEI critical edition

which allows one to check for the encoding of the text. It also facilitates the parallel

look-up of the manuscript version by visualizing them on a web-based GUI. However, the

software is not available for download and offline use, yet. In the current state, it accepts

only TEI format XML files but does not allow one to generate versions. A technique for

textual criticism is also provided by [West, 1973]. Classical Text Editor8 allows one to

build a critical edition and critical apparatus manually. It also allows one to prepare the

phylogenetic trees but does not provide a visualization interface. It allows one to collate

the textual versions and edit them on an offline interface. Our work is significantly

different from CTE as our online interface allows multiple users to collaborate and enter

data for the same text. It allows the users to create functional divisions in the sūtra text

being entered and thus helps our novel phylogenetic methodology. In philosophy, our tool

is focussed on the entire textual history of which manuscripts are an important part. Our

tool preserves testimonia, printed editions, commentaries, etc., which the CTE does not.

PAUP is a tool for Phylogenetic Analysis based on Maximum Parsimony [Fitch, 1971] and

other related methodologies, has been created by [Swofford, 1999] and is available online9.

To the best of our knowledge, there is no tool which presents a comprehensive picture of

the history of a text by presenting various resources useful for the reconstruction of the

history of a text like testimonia, commentaries, earlier texts, printed editions, etc.

A.1.2 Data Entry Interface

The Data entry interface, based on the user login, allows the user to start with the

creation of a new manuscript, or takes them back directly to the last entry they made in

a previous manuscript they were working on. At any point, a user can choose to start a

new manuscript creation. In such a case, the tool requests the entry of the manuscript

7http://ciham-digital.huma-num.fr/teitoolbox/
8http://cte.oeaw.ac.at/
9http://paup.sc.fsu.edu/

http://ciham-digital.huma-num.fr/teitoolbox/
http://cte.oeaw.ac.at/
http://paup.sc.fsu.edu/
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label. Upon the entry of the manuscript label, the tool presents the user with an option

to enter the manuscript data in a functional unit division or directly in a text box.

We provide this option because manuscripts are different and may not contain that text

or may contain the text in a different form. More importantly, the user can choose to

enter text directly if they do not feel the need to divide the text into logical units. In such

a case, the tool presents the users with text boxes with next and previous buttons, which

allows the user to enter the text and move on the next text entry from the manuscript.

In the case where the user chooses to enter the text in a functional unit division, they are

presented with a text ID along with a text entry field for data. Such fields can be added

or removed by the user as per the manuscript text. The user is allowed to create multiple

logical divisions, and even leave a functional unit entry empty if the manuscript data

requires them to do so. The tool requests the user to enter vulgate data which can be a

fundamental building block for manuscript data for phylogenetic analysis, if the vulgate

data is not present the user can ignore the request, and the phylogenetic analysis can then

be carried out without it; although they can enter vulgate data at any point later in time.

The data entry interface also allows a user to enter commentaries and quotations into the

database. These optional entries can allow a philologist to evaluate the phylogenetic tree

constructed, and can also aid the tree construction.

(a) View Mode Snapshot (b) Comapre Mode Snapshot

Figure A.1: Screenshot from the Textual History Tool

A.1.3 View Mode

In this mode, the user can view the manuscript version on the interface based on the

label. They can select a label from the list labels in the database or search for a label
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and view the sūtra entries, one at a time; this mode also provides the option to correct an

entry based on user privileges. We have added the functionality of viewing the sūtras in

the form of functional unit division if they were created with one. This can also be used

to instantaneously compare the current version with the Vulgate text, which appears on

the top in view mode for each manuscript (if present in the database). A snapshot of the

said mode is shown in Figure A.1a

A.1.4 Compare Mode

It allows a user to view different manuscript versions on the interface based on user

selection. The data from Vulgate, if present in the database, is always shown on top for

a base comparison. This mode does not facilitate editing of the manuscript versions but

allows one to compare versions, the outcome of which can be utilized during a manual

analysis later. It allows the user to select one to four versions for comparison. A snapshot

of this mode is shown in Figure A.1b

A.1.5 Phylogenetic Tree Mode

Figure A.2: A sample tree produced in the Phylogenetic Tree Mode

This mode is a novel contribution of our work, where based on functional unit distances,

a distance matrix can be created. These functional units are part of a text, and thus the

user has a choice for selecting one or more texts wherein the functional unit division

has been created in the Data Entry mode described in a subsection above. We use two

different approaches to create a distance matrix. The baseline approach, which uses the

notion of lexical similarity, uses Cosine Distance, Jaro-Winkler Distance, and Normalized



259 A.1. An Introduction to the Textual History Tool

Edit Distance to compute these distances. The second approach utilizes word-embeddings

learned from Sanskrit corpora, which are stored in a model. These approaches are further

detailed in Section A.1.6.2.

Eventually, the distance matrix is used to cluster similar manuscripts in the same sub-

group, and then the tree can be created using one of the distance-based methods, viz.,

Neighbor-Joining or UPGMA. These methodologies are also explained in detail here. The

tree visualization is shown on the interface in the form of manuscript labels being shown

as leaf nodes, which can be seen in Figure A.2. The user is allowed to view the tree on

the interface as well as download it in PDF format for further analysis.

A.1.6 Technical Development Details

This section provides a detailed technical description of the tool interface frontend and

backend. Along with the interface description, it also entails the methodologies used to

create the distance matrix, which is used for tree generation in the Phylogenetic Tree

mode. The tool architecture is shown as a diagram in Figure A.3.

Figure A.3: The architecture of Textual History Tool

A.1.6.1 Tool Interface

The tool is built as an online web-based interface hosted locally on an Apache Server.

It is built using PHP, Javascript and utilizes jQuery for querying the backend. The tool

backend utilizes MySQL to store the manuscript data in a relational database format
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efficiently. MySQL queries from the tool frontend are sanitized before they are sent

towards the backend to escape injection attacks. The tool consists of an authentication

interface that is based on username/password-based login. The users have to be approved

by an administrator after registration, which is available on the login page. The tool users

can be granted different privileges based on their usage and expertise in the area. The

tool source code can be downloaded and stored offline for local usage.

A.1.6.2 Methodologies for Distance Computation

The phylogenetic tree mode utilizes distance matrix creation based on code written in

Python, which can be run for selected manuscripts. Our methodology requires as input

the distance matrix between manuscript versions to infer the phylogenetic trees. This

distance matrix is computed based on the distance among the functional units, which are

divisions in the text, as described above. In case of the unavailability of the division of

functional units, the matrix can be computed based on the complete text acting as a single

functional unit. The computation of this matrix can be done based on lexical similarity-

based measures as a baseline method. Our novel approach utilizes word embeddings from

a large Sanskrit Corpus-based model, the details of which are present above in Chapter

7. We use the same methodologies as described in the previous chapter to construct trees

and display them on the tool interface.

A.1.7 Tool Features and Functionalities

The tool comprises of the following additional features and functionalities as described

below:

A.1.7.1 Manuscript Pictures

In addition to the tree generation and other salient features like a comprehensive data

entry mode, the tool comprises an additional feature where it enables the user to view the

pictures of the manuscript document as proof to substantiate the data. Philologists can

attach pictures of the manuscript entry in the data entry mode as an option along with

typing the manuscript data for the database entry. This picture (shown in Figure A.4 as

a screenshot), if uploaded by the philologist, is shown with the data entered in the view

mode (Section A.1.3).
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Figure A.4: Screenshot of view mode displaying manuscript picture along with the text in the

view mode

A.1.7.2 Critically Edited Text

The tool also allows one to view the critically edited text in the view mode of the

tool. The critically edited text allows a user to have a summarized view with additional

opinions for the philologists. This helps a user decide which portion of the manuscript

they want to consider for creating phylogenetic trees.

A.1.7.3 Critical Apparatus

The critically edited text is usually accompanied by a critical apparatus. The critical

apparatus for a text consists of the set of variations made to the critically edited text.

These changes are essential to note down as they are an essential part of the preservation

of historical texts. These changes allow one to notice the originally written text and how

it changed over some time. The tool allows a user to view the critical apparatus in view

mode as well.

A.1.7.4 Text Visualizer

Manuscripts can be envisioned as a tree in a hierarchical manner, which helps philolo-

gists analyze them conventionally. We propose a different method of viewing the manuscripts

based on their distance. This text visualizer of the manuscripts allows one to view the

manuscripts as leaf nodes connected using edges where one can manually change the leaf

nodes in the visualizer setting. The visualizer uses the database and computes a distance

matrix to visualize the graph. The graph is then creating using a javascript-based library,

which enlists all the manuscripts in an interactive way where one can manually change
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the leaf nodes and create their version of a tree.

Additionally, we also implement the visualizer to depict the relationship between the

text and earlier texts. It can also display the inter-relations between the text and its

commentaries along with the testimonia. It provides the user with an option to view

these visualizations together and also as different visualization. This feature allows the

user to gather temporal information from the visualization as the database contains dated

entries for the testimonia, commentaries, and some manuscripts. This will help the reader

to study the evolution of the text as happened over time.

A.1.7.5 Text Commentaries

There are some direct and indirect commentaries available which comment on the KV

text. The two direct commentaries are Nyāsa (Ny) and Padamañjarī (Pm).

The tool allows a user to view these commentaries on each sūtra by providing a button,

clicking on which, the commentary available for this sūtra is displayed. This button

acts dynamically on the page and is only visible as a clickable button if a commentary

is available for the said sūtra which is under view on that page. This option provides

additional insight into the text and allows a more holistic view of the work done on the

KV text. Another button to view a sub-commentary is also provided. We also provide

the option to view a consolidated version of the textual evidence available through the

commentaries, as mentioned above.

[Kulkarni, 2002a] mentions the effort on the part of its author to collect information

from the Ny and the Pm. This can act as evidence to reconstruct the text of the KV.

[Kulkarni and Kahrs, 2019a] enlist the variants of the text of the KV as found in the Pm

through more than 300 quotations.

“There are instances where both the Ny and Pm record the same pratīka.

There we can say that both the commentaries received the text of the KV in

a similar form. There are also cases when both these commentaries are silent

about certain readings. Furthermore, when they remain silent about certain

important units of the text, say a vārttika, then it increases the probability
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that that vārttika might not have been there in the original text of the KV as

received by these two commentaries. There are also cases when the pratīka

recorded by the N and Pm vary. Such cases pose a problem for an editor. In

these cases, the problem gets another dimension if the reading of both N and

Pm is seen recorded in some number of mss.”

[Kulkarni and Kahrs, 2019b] show that the textual evidence available in these two

commentaries can be classified under two broad categories: Direct and Indirect. While

Direct evidence is clearly visible in the text of the Ny and Pm, indirect evidence can

be further classified under two categories: paroksha and atiparoksha. They, in turn, can

further be classified into six and three categories, respectively. This categorization is

shown below in Figure A.5. The button in this tool does show all these categories of

evidence, thereby displaying the text of the KV as known to these two commentaries.

Figure A.5: Classification of evidence from the commentaries on the KV[Kulkarni and Kahrs,

2019b].

Indirect commentaries are the commentaries on the direct commentaries. Tantrapradipa

(Tp) is a commentary on Ny. Therefore, it becomes an indirect commentary on the KV.

Some portions of Tp which are available, are used in this work. Tp allows us to determine

readings in the Ny, thereby indirectly helping reconstruct the text of the KV.
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A.1.7.6 Earlier Texts

On the interface, we also provide an option to view the earlier texts. The purpose of this

is to provide the reader with the historical view of the text. After clicking on the earlier

texts button, the user is provided with an option to choose between “Paninian” and “Non-

Paninian” texts. By choosing the option to view “Paninian” texts, the interface shows

the earlier texts in the Paninian tradition, in this context, the Vyakarana Mahabhashya

(VMbh). This allows the user to see whether there is any historical connection between

the KV and the VMbh. It is noted that VMbh is not available on at least more than 2300

sūtras. In those cases, obviously, the tool shows “Text Not Available”.

When viewing “Non-Paninian” texts, the interface shows the earlier texts in the Non-

Paninian traditions, namely Katantra, Chaandra, etc. This allows the user to see whether

there is any historical connection between the KV and these traditions. This historical

connection is also presented in the text visualizer. The visualizer also provides an option

to compare the manuscript version in the database with the earlier texts. This allows

the user to study the inter-relation of a particular version of the text of the KV and the

earlier Paninian and non-Paninian texts.

A.1.7.7 Testimonia

The text of the KV is quoted in the later texts grammatical as well as non-grammatical.

[Kulkarni, 2002a] collected and arranged more than 1000 such quotations chronologically

as available from the later Paninian grammatical tradition. [Kulkarni, 2002b] studied one

quotation of the KV as found in the Shabdkaustubha and showed the inter-relation of KV

manuscripts and Shabdkaustubha. The testimonia button displays all these quotations

for the sūtra under study.

A.1.7.8 Printed Editions

The KV was printed for the first time in 1876. [Kulkarni, 2000] traced the manuscript

sources of this edition. Ever since then, the text of the KV got printed more than ten

times (See Footnote 4). When “Printed Editions” is clicked, the interface displays all the

printed editions’ text of the sūtra. This historical development in the printed editions is
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also presented in the text visualizer. It is hoped that the amount of variation available in

the printed editions will serve as a basis to understand the manuscript variants.

A.1.7.9 Reverse Engineering and the Critical edition

This functionality allows a user to create the manuscript versions of the text based on

the critical edition and the apparatus. We use the critical edition of the text and apply the

variations mentioned in the apparatus to populate the manuscript versions. We believe

that this function acts as a validator for the data present in the tool database.

This portion of the tool allows a user to digitize a complete text and its versions through

a data entry mode. The data entry mode allows one to partition the text data based on

functional units for a more accurate phylogenetic evaluation. The tool also comprises of

view mode and compare mode, which can allow a user to view various parts in the text,

along with the comparison of the parts in different manuscripts. Based on the data entry

and/or division of functional units in the data, the tool also allows one to compute a

distance matrix in the backend, which can be further used to compute a phylogenetic tree

in the tree mode. The tool comprises of more features like showing manuscript pictures,

visualization of manuscripts like a graph, etc. This portion of the tool successfully digitizes

one specific text, and we hope this can also be applied in a general domain. Utilizing all

the features of the tool described above, it enables us to identify the 19th century as an

essential stage in the evolution and development of this text, as the manuscripts belonging

to this period add 2.2.6.3 to the main text. The justifications for this observation are noted

by [Kulkarni, 2002d].

The tool may have its technological advantages but still needs humans to interpret

the text. We believe this tool can help the community digitize and view the manuscript

data in a format that can be helpful to philologists for drawing further insights from

the text. In the future, we would like more functionalities and different tree inferring

methods to the tool. Currently, it only supports distance-based methods, as described

in the chapter above. We would also like to provide options such as fuzzy matching

between the text and the commentaries based on which a portion of the commentary can

be aligned to a particular portion of the text. This automation can ease the philologists’
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work by automatically showing them alignments between the commentary portions and

the main text. We would also like to implement the generation of phylogenetic trees at

the micro-level (sūtras) as well as the macro-level (padas, adhyayas and entire text).

In this work, we describe a tool that captures the historical evolution of a text and

allows a user to view the transmission of a text through its history in a comprehensive

manner. The tool allows a user to digitize a complete text and its versions through a

data entry mode. The data entry mode allows one to partition the text data based on

functional units for a more accurate phylogenetic evaluation. The tool also comprises

of view mode and compare mode, which can allow a user to view various parts in the

text, along with the comparison of the parts in different manuscripts. Based on the data

entry and/or division of functional units in the data, the tool also allows one to compute

a distance matrix in the backend, which can be further used to compute a phylogenetic

tree in the tree mode. The tool comprises of more features like showing manuscript

pictures, visualization of manuscripts like a graph, etc. In this work, we show how this

tool successfully digitizes one specific text, and we hope this can also be applied in a

general domain. Utilizing all the features of the tool described above, it enables us to

identify the 19th century as an important stage in the evolution and development of

this text, as the manuscripts belonging to this period add 2.2.6.3 to the main text. The

justifications for this observation are noted by Kulkarni [2002d].

The tool may have its technological advantages but still needs humans to interpret the

text. We believe this tool can help the community digitize and view the manuscript data

in a format that can be helpful to philologists for drawing further insights from the text.

In the near future, we would like more functionalities and different tree inferring meth-

ods to the tool. Currently, it only supports distance-based methods, as described above.

We would also like to provide options such as fuzzy matching between the text and the

commentaries based on which a portion of the commentary can be aligned to a particu-

lar portion of the text. This automation can ease the philologists’ work by automatically

showing them alignments between the commentary portions and the main text. We would

also like to implement the generation of phylogenetic trees at the micro-level (sūtras) as

well as the macro-level (padas, adhyayas and entire text).
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A.2 Effective Digitization of Commentaries for Tex-

tual History

This work describes additional aspects of a digital tool called the ‘Textual History

Tool’. It has been accepted at the SSSU 2020 Conference and published under the title,

“Strategies of Effective Digitization of Commentaries and Sub commentaries Towards the

Construction of Textual History”. We describe its various salient features with a particular

reference to those of its features that may help the philologist digitize commentaries and

sub-commentaries on a text. This tool captures the historical evolution of a text through

various temporal stages, and interrelated data culled from various types of related texts.

We use the text of the Kāśikāvṛtti (KV) as a sample text, and with the help of philologists,

we digitize the commentaries available to us. We digitize the Nyāsa (Ny), the Padamañjarī

(Pm) and sub-commentaries on the KV text known as the Tantrapradīpa (Tp), and the

Makaranda (Mk). We divide each commentary and sub-commentary into functional units

and describe the methodology and motivation behind the functional unit division. Our

functional unit division helps generate more accurate phylogenetic trees for the text, based

on distance methods using the data entered in the tool.

Texts are invaluable resources of any culture. They provide information that helps a

reader understand the intellectual tradition of that culture. In the Indian context, histori-

cally speaking, Sanskrit texts were composed and transmitted, orally as well as in written

form, for more than at least two thousand years. These texts serve the purpose of sources

of Indian culture. Since these Sanskrit texts usually have a long period of transmission,

it affects the very nature of the composition of such texts and their transmission. Many

texts are composed in terse sūtra style, whereas those in elaborate verse or prose may be

prone to loss of meaning comprehension on the part of the contemporary reader. There is

another aspect worth mentioning here, since these texts travel over time, they also stand

testimony to the evolution and development of the intellectual process.

The fuller comprehension of the terse texts depends on the elaborate explanation of

words used in the sūtra. It is necessary to contain the loss of meaning comprehension of

texts which travel in the course of history by codifying a methodology to interpret those
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texts. When texts travel, they also kickstart a process of thinking based on those texts,

which causes the development of thought. All three features mentioned above are the

characteristics of what is known as “Commentatorial Texts”, popularly known as “Com-

mentaries”. Commentaries elaborately explain the wordings of terse sūtras. They codify

the various methodologies of interpreting these texts, and they also act as a mirror as far

as the process of intellectual development is concerned. When we talk of a specific case like

the Paninian tradition, we can see that the commentaries such as the Mahābhāṣya and the

Kāśikāvṛtti explain the Paninian sūtras in detail. They also put in place various method-

ologies like anuvṛtti, adhikāra, ekavākyatā, in order to interpret the sūtras of Panini.

They also represent the evolution and development of linguistic thought in India over a

period of more than one thousand years. It is therefore essential to have with us a critical

text of the commentary, for example, the Kāśikāvṛtti (KV), to accurately perform the

above-mentioned functions. Interestingly, in the Indian context, all the above-mentioned

features of a commentary (KV) with respect to an original sūtra text, the Aṣṭādhyāyī

(AST) are also applicable to that same commentary (KV) and its sub-commentaries (Ny

and Pm). It is also worth noting that what is applicable to a commentary (KV) and its

sub-commentaries (Ny and Pm), is also applicable to the sub-commentaries (Ny and Pm)

and their sub-sub-commentaries (Tp and Mk). We also believe that this recurrence con-

tinues even today and will continue in the future course of time and, most importantly,

all of this will contribute to the understanding and reconstruction of the source text.

Figure A.6 describes the evolution of commentaries for Panini’s Aṣṭādhyāyī (A) and

depicts the evolution of sub-commentaries such as the Ny and the Pm which are prominent

in terms of the evolution of thought, and in terms of richness of explanation. This is

observed in the commentaries and sub-commentaries on it. In our tool, we propose a

hierarchy of data entry for the manuscript text and its related texts. We require users

to enter the manuscript text. We, then, allow the addition of commentaries on the text

for functional units or sūtras that have already been entered into the database. Once

the commentaries are in the database, we allow the user to choose the commentary for

which a sub-commentary is to be added and allow the user the option to enter the sub-

commentary text. This recursive approach allows one to maintain the hierarchy and helps

preserve the thought development, which can be seen while entering data in a sequential
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Figure A.6: The hierarchy of evolution vis-a-vis the development of thought.

manner.

The critical contribution of this work is to describe additional aspects of the

textual history tool which embodies the strategies to effectively digitize the

commentaries and sub-commentaries towards achieving the goal of text re-

construction and its historical evolution.

A.2.1 Classification of the Textual Evidence from Commentaries

Textual evidence as available from commentaries can be classified into Direct and Indi-

rect evidence as found through the historical mentions and explanations of the text being

discussed. Indirect evidence can further be classified into various categories, as shown in

figure A.7.

A.2.2 Reconstruction of the History of the Text

We provide below two detailed examples of how commentaries and sub-commentaries
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Figure A.7: The classification of evidence found in commentaries as proposed by Kulkarni and

Kahrs (2019)

1.1.1. sūtra वृ द्धः आत् ऐच्

1.1.1.1. Introduction and Meaning
सञ्ज्ञात्वेन [िवधीयते] प्रत्येकम् आदचैाम् वणार्नाम् सामान्येन तद्भािवतानाम् [अतद्भािवतानाम्] च
तपरकरणम् [ऐजथर्म्] तात् अिप परः तपरः इ त खट्वैडकािदषु [ित्रमात्रचतुमार्त्रप्रसङ्गिनवृत्तये]

1.1.1.2. Examples आश्वलायनः ऐ तकायनः औपगवः औपमन्यवः शालीयः मालीयः
1.1.1.3. Other Occurrences of the term वृ द्धप्रदेशाः स च वृ द्धः परस्मपैदेषु इ त एवमादयः

Table A.1: Example of a sūtra from KV (sūtra 1.1.1.)

may explain the text better. These example sūtras are taken from printed editions of the

Ny and Pm, and the Ny and Tp.

A.2.2.1 Example One

It is observed that amongst the three sections of the KV 1.1.1.3 has got no support in the

form of evidence from the Ny as well as the Pm.

In the remaining two sections, there are twenty-five words out of which twenty-four

are supported by the evidence found in the Ny and twelve are supported by the evidence

found in the Pm. We note that the evidence found in the Ny and the one found in the Pm

is uniform and has no variation to offer. Based on this, we can say that the transmission

of the two sections of the KV on AST 1.1.1. can be reconstructed in near entirety on the

basis of the evidence available to us from the Ny supported by the Pm. A comparison
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2.1.22. sūtra तत्पु षः
2.1.22.1. Introduction and Meaning तत्पु षः इ त संज्ञा ऽ धिक्रयते प्राग् बहुव्रीहेः। यािनत ऊध्वर्म् अनुक्रिमष्यामः, तत्पु षसंज्ञास्ते वेिदतव्याः।

2.1.22.2. Examples
व य त, िद्वतीय श्रतातीतप तत इ त। कष्ट श्रतः। पूवार्चायर्संज्ञा चेयं महती, तदङ्गीकरणौपाधेरिप तदीयस्य
�������������, ���������������������������� ����

2.1.22.3. Other Occurrences of the term तत्पु षप्रदेशाः तत्पु षे कृ त बहुलम् इत्येवम् आदयः।

Table A.2: Example of a sūtra from the KV (sūtra 2.1.22.)

of this consistent evidence with the manuscript evidence may give rise to the knowledge

of uniform transmission of the two sections of the KV on A 1.1.1. However, the same

comparison will also reveal the fact that 1.1.1.3, which has no support whatsoever from

either the Ny or the Pm, receives concrete support from the manuscripts. This leads to

the variation in the transmission of the text of 1.1.1.3 This might suggest the fact that

the archetype of the manuscripts that we consult on 1.1.1.3 could be post-Pm.

A.2.2.2 Example Two

In Table A.2, we present the text of the KV on AST 2.1.22. This is also a saṁjñā

sūtra like A 1.1.1, so the text of the KV is also divided into three sections as above. We

observe that the Ny presents evidence that supports the existence of nine words in the

first two sections. We also note that the Tp presents evidence to support only one word

out of these nine, but without any variation. So, the textual transmission of these two

sections can be said to be uniform, extending itself to even the Tp. Even here, the Ny

does not offer any evidence to support the existence of 2.1.22.3, and we also note that

the Tp too does not offer any evidence to support the existence of 2.1.22.3. So, we can

say that overall, in all the sections of 2.1.22, a uniform transmission is observed as far as

the Ny and the Tp are concerned. As far as 2.1.22.3 is concerned, in comparison with

comments made above, we can extend the argument and say that our archetype can be

said to be post-Tp. So, a collection of evidence from the Tp on similar sections in all the

available saṁjñā sūtras can help shed more light on the transmission of this section.

Our work describes an effective method for the digitization of commentaries and sub-

commentaries available for a text. We describe a digital tool which provides access to users

based on an authentication-based platform and helps them add sub-commentary data in

a hierarchical and recursive manner. We highlight the changes made to this Textual
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History Tool describe above, and show, with the help of screenshots, how improvements

made to the tool functionalities help annotators digitize the commentary data. Using

this approach one can effectively digitize the available data and use them to create a

phylogenetic tree for the text. This is a novel contribution of our work done with the

Textual History Tool. The tree can be created by using the various versions of the text as

available in the manuscripts and including commentaries or by only using the commentary

data. The tree generation methodologies which have been described by us above, are the

same for our work. We also present examples of sub-commentary data described in this

section. The trees which are generated via our approach assume that the commentaries

present in the form of printed editions are authorized versions of the written text. We

aim to use this tool10., and the work is done to successfully help digitize many texts and

commentaries over them. In future, we would like to include the testimonia addition to

the tool. This can help create trees even based on mentions of the text in other texts.

These could belong to the same tradition or some other tradition. This can help provide

clues to the tree generation algorithms as to when and where the text was mentioned and

what form of the text was quoted in the other text. We also aim to extend our work to

other texts than the KV and show that the tool has indeed a generic applicability towards

text digitization and reconstruction.

A.3 Summary

We have described, in detail, an online tool which can be used by philologists to enter

and manipulate manuscript data, for phylogenetic analysis. Such a tool can help philolo-

gists perform phylogenetic analysis and create the the critical edition of a text. We also

add various functionalities to the tool which help it store commentaries, and printed edi-

tions. We discuss the classification of commentaries of the KV text and propose a generic

classification which can be helpful in classifying commentaries from such texts.

10Tool Link

http://www.cfilt.iitb.ac.in/that/
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Additional Trees Generated

This additional appendix presents all the trees generated during our phylogenetic exper-

iment, referenced from Section 7.4.6. Each tree is shown on a single page for reading

clarity. Please see the pages below.

B.1 For Manuscript 2.2.6

Each tree is shown on a single page for reading clarity. Please see the pages below.
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B.2 For Manuscript 1.1.3

Each tree is shown on a single page for reading clarity. Please see the pages below.
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