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Abstract 

Physics simulation of deformable objects in real-time plays a very important role in computer 

graphics. It has been widely used in interactive applications, and the demand for faster and more 

realistic solution is increasing. Moreover, the development process of such applications and the 

creation of 3D content with physics properties has been industrialised. Such process involves a 

development team with multiple roles of domain experts from different disciplines. In this thesis, 

we have proposed a new particle-constraint based model and an impulse-based method for 

modelling and simulating permanent deformable object in real-time. The new method focuses on 

simulating the behaviour of the object rather than accurately following physics law. In addition, the 

method offers a non-elastic model. Therefore, it eliminates numerical instability, which is a main 

issue in force-based method. It also maintains full degree of freedom compared to other behaviour-

based simulation methods. The simulation has low computational cost and is numerically stable. 

The solution is adaptive to different forms of material and can be used in different scenarios in 

different scales. We have also designed a new framework with a simplified workflow based on our 

method. The framework aims to assist domain experts to develop interactive applications by using 

our modelling and simulation method with minimum effort. The framework offers a complete and 

automatic solution for modelling and simulation. It reduces unnecessary workloads and 

communication for domain experts. We conducted a sequence of tests for evaluation by using 

different types of data set in different scales. The evaluation has demonstrated that the proposed 

framework and the outcomes of the simulation meet the expectation.    
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1. Introduction 

 

 

Physics simulation is an important topic in computer graphics. It creates visual effects based on 

real-world physics laws and uses computational power to calculate and predict an object’s behaviour 

over time. The result is presented visually to the audience as a sequence of animation with advanced 

rendering techniques. Physics simulation combined with computer graphics can deliver a vivid and 

realistic virtual experience to the audience while sets the artist free from manually creating all the 

animated visual effects. Nowadays, physics simulation has become a standard solution in real-time 

graphical applications for creating interactive experiences. Physics simulation offers an instant, 

real-time feedback to the user interaction and delivers convincing visual outcomes.  

However, the three biggest challenges for real-time physics simulation are the performance speed 

issue, the simulation stability, and the realism of the result. Similar to detail rendering, the finer and 

more accurate the simulation is, the slower it runs, and the more computational power is needed to 

process the simulation. Employing accurate simulation method will achieve high stability of the 

system and more realistic results, but in the meanwhile, the computational workload becomes heavy 

which results in slow performance. Therefore, it is essential to perform a fast simulation while 

keeping other features of the application behind the scene (e.g. logic function, user interaction, 

graphics rendering) running smoothly. In other words, the trade-off between speed and accuracy 

needs to be carefully balanced. Therefore, simulation methods need to be modified for real-time 

environment in order to deliver faster calculation without losing too much accuracy. A typical 

physics simulation process from implementation to execution involves physics modelling, collision 

detection, force/impact analysis and response, and time integration. 

In addition, the development of interactive applications are currently highly standardised and are in 

large-scale production, which means that a large team of developers with different roles and 

different expertise is required to develop a modern interactive application (e.g. training programs, 

video games, educational applications). The workflow of such development is very sophisticated 

and often over-complicated. The solution to this issue is to use more agile design-implementation 

workflow or to employ more efficient communication approach. 
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In this thesis, we will look into a specific type of physics simulation, which is the simulation of 

real-time permanent deformable objects. Such simulation shares the common issues with the 

general deformable object simulation, such as speed-accuracy balance and system stability. It also 

has its unique challenges like complex structure modelling and expensive computation, as 

permanent deformable objects are often volumetric (solid). All the above issues bring concerns 

regarding the real-time performance of the simulation. Therefore, such type of simulation is rarely 

seen in real-time applications. We will also look into the working process for creating such objects 

for application development, which involves separate yet connected tasks and different domain 

experts.  

We will review the above challenges and existing solutions and present our proposed approach to 

address some of the current shortcomings. We will test and evaluate our solution to demonstrate if 

our methods can deliver expected results, and the possible use of our solution in the field of 

computer graphics. 

This is the first Chapter and the introduction of the thesis. In Section 1.1, we will give a general 

background introduction from a broader scope to introduce deformable object simulation. We will 

define the purpose and the scope of our research topic in Section 1.2. In Section 1.3, we will 

introduce our research target and give a brief presentation of our contribution to the research field. 

Lastly, in Section 1.4, we will give an overview of the structure of this thesis.  
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1.1 A brief glance into physics simulation of deformable objects 

Today, deformable object simulation has become a standard solution for creating artificial and 

fictional scenes. Pioneered by Terzopoulos et al. [1] and Weil [2], deformable object simulation 

quickly became a popular topic in the field of computer graphics. It delivers realistic results based 

on physics laws and offers a powerful tool that can generate different visual effects. Below are some 

applications of deformable object simulation in computer graphics: 

1. Movies and animations: Nowadays, the demands of large-scale epic scenes regarding battle, 

massive building/structure destruction and fantasy/science fiction visualisation are greatly 

increased. The expectations of more realistic visual experiences are getting higher. In the old 

days, these special effects are usually achieved by filming and editing techniques, props and 

miniatures. These methods are time-consuming and costly and deliver results that can be easily 

identified as artificial. Today, with the development of computer graphics and physics 

simulations, most of these effects are done by computer simulation. This approach saves time 

and budget and can deliver natural and realistic results.  

2. Training programs: An example of such application is medical training. By employing 

deformable object simulation in real-time combined with visual presentation, a program can be 

developed to train surgeons to do operations, e.g. cutting through veins or muscles or skins. 

This solution can provide a realistic and immersive experience and real-time feedback to the 

trainee. It can replace real field training to some degree. 

3. Engineering and material study: Deformation simulation in computer science was originally 

developed because of this reason. It provides great support to the huge amount of calculations 

in the engineering field and greatly reduced error made by human calculation. It has a very long 

history of implementation and application in the engineering and material industry. Examples 

could be engineers use the Finite Element Method (FEM) to analysis the force load for certain 

parts of the building to determine the safety of the structure and their deformation. With 

computer graphics, the simulation can also be visualised and presented as animation to give the 

end-user a more intuitive perspective of the results. 

4. Video games and other entertaining applications: Today, video game is a multi-billion 

industry with around 2.69 billion active players around the world [3]. With the user demand 
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drives and the vast investment into the industry and the intense competition, the visual effects 

in 3D video games are developing and improving at a fast pace. Destructible environments and 

deformable objects in real-time video games are long-desired. It now becomes possible with 

advanced physics simulation and rendering technique, and the development of powerful 

modern hardware. Physics simulation in real-time is one of the key elements to deliver a 

realistic and immersive visual experience to the players. 

The application of deformable object simulation does not limit to the above area. With higher 

computation power and new technology such as Virtual Reality (VR) and Augmented Reality (AR), 

such simulation is not just a computation tool for experts and scientists anymore. It also offers 

limitless potential for everyday use applications.   

However, even with its promising results, today, the application of deformable object simulation in 

real-time still faces a dilemma: On the one hand, it introduces realistic visual feedback that follows 

the user’s interaction. On the other hand, it takes an extensive amount of computational power and 

sometimes can compromise the stability of the whole system. Therefore, the use of deformable 

object simulation is limited in real-time applications. And a lot of work has been putting in to find 

better solutions to utilise deformable object simulation in real-time. 

 

1.2 Research scope 

Within the field of physics simulation in computer graphics, there are many sub-areas which serves 

different aspects and different purposes and can fulfil one of many demands in computer graphics. 

These sub-areas can be defined and separated into different branches from different applicable 

perspective.  

From the performance-realism point of view, the two main branches of physics simulation are 

offline simulation and real-time simulation. From the physics material point of view, the two main 

branches in the physics simulation are pure rigid body (object) simulation and deformable object 

simulation.  

Below, we have briefly introduced the differences and the attributes of these branches in Table 1.2.1 

and Table 1.2.2.  
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 Offline simulation Real-time simulation 

Main features and 

concerns 

Realistic and detailed graphics.  Fast speed with low computational 

resource consumption. 

General use case Movies, animation. Large 

scale simulation. Material and 

structure analysis. 

Real-time interactive application. 

Video games. 

Method example Finite Element Method (FEM) Particle-Spring System (PSS) 

Technical 

tendency  

Detailed modelling and 

accurate integration method. 

 

Simplified modelling and fast time 

integration method. Low numerical 

error tolerance. Good system stability 

and controllability. 

Table 1.2.1 Differences between offline simulation and real-time simulation in short 

 

 Rigid body simulation Deformable object simulation 

Main features and 

concerns 

Large scale simulation. Fast 

response. Only concerns 

rotation and displacement of 

the object. 

Simulates deformation of soft object 

and plastic object. Model and analysis 

the structure and interaction of interior 

materials and how it affects the exterior 

appearance of the whole object. 

General use case Large number of small objects. 

Real-time interactive 

applications. Video games. 

Real-time interactive application. 

Video games. Mostly in offline 

simulation when a large scale scene is 

needed.  

Method example Collision detection and 

collision response based on 

displacement and rotation. 

Finite Element Method (FEM), Particle 

Spring System (PSS), Position-Based 

Dynamics (PBD). 

Technical 

tendency  

Fast collision detection and 

response. Large-scale scene 

performance. Also been used 

in particle simulation. 

Interior structure modelling and time 

integration to determine the interaction 

and displacement between discretised 

parts. Numerical stability. 

Table 1.2.2 Attributes and differences between Rigid Body Simulation and Deformable Object Simulation 
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The relationships of these four different types of simulation are not exclusive to each other but 

overlapped. They can be combined together to form more specific sub-areas. The relationships and 

the combination of the physics simulation types are presented in Figure 1.2.1: 

 

Figure 1.2.1 Relationship among different simulation types 

As shown in the figure, the four type of simulation overlaps into four more specific sub-domain of 

the physics simulation. Our research that will be introduced in this thesis falls into a further sub-

domain of Real-time Simulation for Deformable Object. Real-time deformable object simulation 

is mainly used in interactive applications such as video games and training program. It concerns 

about delivering fast yet realistic deformation for objects in 3D scene. Unlike in engineering and 

scientific simulation, where the results are taking very seriously and the outcome needs to be as 

accurate as possible. Real-time deformable simulation only aims to deliver realism as a visual effect 

instead of a precise prediction to the real-world physics. Therefore, certain modification and 

simplification can be made to the method. The modelling is also much less detailed than in the 

simulation that requires accuracy. In summary, real-time simulation of deformable objects offers an 

approximated result. The degree of the approximation is based on the application requirement and 

the controlling attributes.  

Moreover, within the sub-area of real-time deformable object simulation, there are more specific 

types of simulation, which are listed below in Table 1.2.1.  
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Object type Object main physics 

attribute 

Main simulation 

behaviour 

General approach 

Cloth-like 

Object 

Object without thickness. A 

2D sheet that can be 

deformed in 3D space. 

Bending, wrinkling, 

cover on surface. 

Particle-Spring 

system 

Shell-like 

Object 

Object without thickness. A 

2D rigid body with bending 

shapes in 3D space. 

Fracture, breaking, 

cracking pattern. 

Pattern generation 

algorithm. Particle 

with constraint 

system 

Soft Body 

(Elastic) 

Elastically body with soft 

material, the interior 

structure tends to restore 

itself to initial state. 

Deformation after 

external force or 

collision and the 

recovering process to 

initial state. 

FEM. Position Based 

Dynamics. Particle-

Spring System 

(occasionally) 

Metal-like 

Object 

(Elastic-

Plastic) 

Semi-rigid body with a 

deformation threshold and a 

deformation limitation. 

Interior structure tends to 

keep the deformation results. 

Reshaping of the 

object (deformation). 

FEM. Particle-

Constraint method. 

Table 1.2.3 A list of different type of objects in deformation simulation and their attributes 

It is noticeable that Cloth-like Object is a special case of 2D Soft Body deforming in 3D space. 

Based on our analysis (which will be introduced in the later chapters), we have found out that there 

are gaps in the simulation for metal-like objects in real-time. We have taken special interests of our 

research in this particular area. Metal-like object simulation, also often referred to as plastic 

deformation simulation, is a small branch of the whole physics simulation. It includes the change 

of the object’s shape based on its material property but still maintaining the structure integrity. And 

it will eventually break when the force load exceeds its breaking point. We take our special interest 

into the stage of deformation that we define as ‘permanent deformation’ when the changes occur to 

the structure of the object will not be recovered. Permanent deformation can be used in destructible 

scenes and terrains when non-recoverable deformation is needed. It does not have a high level of 

interactive sensitivity as a soft body, which has a low threshold to the external influence. In summary, 

Metal-like object has different physics material behaviours under different level of stress. The 
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behaviour of such object includes elastic, plastic and fracture. Our research focuses on the solution 

for permanent deformation of the object. A hierarchy of the topics and the path to our topic is shown 

in Figure 1.2.2 below. 

 

Figure 1.2.2 The hierarchy of the topics in computer graphics and our research scope selection 

It is worth mentioning that the above hierarchy does not fully capture all the sub-areas of computer 

graphics and physic simulation. For example, the topic of computer graphics also includes 

modelling, image processing, geometry analysis and manipulation, animation techniques and so on. 

Physics simulation also involves water simulation, hair simulation, terrain simulation, particle 

simulation, and other topics. We have only listed topics that are relative and have overlaps with our 
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research scope. The purpose of this hierarchy is to clarify and identify the boundary of our research 

with similar topics, and a clear path for the analysis of the topic.  

It is also important to note that in material study, the concept that refers to the opposite of elastic 

deformation of soft body is called “plastic deformation” or “plastic object”. By definition, plastic 

deformation is a permanent deformation when the stress applies to the object (or structure) exceeds 

a certain degree and causes a none-recoverable change of the structure after the external force is 

removed. Regular metal-like material has both elastic and plastic properties under different stress 

level. 

The study of the elastic material behaviour of continuum solid is the study of stress-strain 

constitutive relation between the external force/impulse and its internal response to the external 

disturbance. In computer graphics (and our research scope), the problem is simplified into linear 

elastic deformation with the combination of Hooke’s law[4] (for analysing the force) and Newton’s 

second law of motion (to determine the internal displacement of each element). The elastic-plastic 

deformation falls into the same domain. The study of solid objects is often solved based on a pure-

rigid physics material assumption and uses the law of momentum from Newtonian mechanics. The 

study of pure plastic object deformation, on the other hand, is the combination of stress-strain 

based analysis and material hardness. However, when only deformation is considered and the later 

recovery (elasticity) behaviour is ignored, the force analysis based on the constitutive law can be 

largely simplified and even omitted. Only a one-time displacement of the object’s interior structure 

needs to be considered, as the deformation is permanent from one single input.        

In this thesis, we consider the term of Permanent Deformation and Plastic Deformation are 

interchangeable. Some researchers also refer it as “elastic-plastic deformation” when describing a 

metal-like object. We believe this definition indicates that the study of such deformation follows 

the real-world law of physics. While our research only concentrates on the actual behaviour 

simulation of the subject. Therefore the term “plastic deformation” can be misleading and 

ambiguous in our case. Because it may (sometimes) imply that our method is to construct models 

like Finite Element Method and expects the results to be accurate. Therefore, to distinguish the 

difference, we have decided to use the term “Metal-like Object” and “Permanent Deformation” 

in our research because the name defines the behaviour of the object rather than the material 

property of the object.  
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1.3  Aim and Contribution 

Today, permanent deformation based on real-time physics simulation is not commonly used in 

interactive applications. Such effects are often carried out as fixed and pre-defined animation. There 

are certain limitations like large-scale performance issue, complex modelling, special requirement 

for the design, and heavy computation. The creation of a deformable object and its simulation is a 

specific research topic, but application-wise it is a component of the whole development and 

implementation process. It involves the knowledge and contribution from different types of experts. 

In this thesis, we will propose an automatic modelling algorithm that can transfer a pre-created 3D 

model into a physics model that is ready for particle-constraint based simulation. We will also 

introduce a new simulation method with stable and fast time integration that uses our modelling as 

input. To integrate and streamline these solutions, we have designed a framework to offer a 

complete workflow with supporting application. It will help the experts from different domain 

backgrounds to work seamlessly to create physics model and conduct real-time simulation. 

Deformable object simulation in real-time has a major concern about the computation time and 

numerical stability. Accuracy is not on the top priority (but still need to be reasonable). The 

underlining rendering and modelling process is completely different from static mesh or rigid body 

as the model (mesh) of deformable object is constantly changing. We are aiming to find an adaptive 

solution by using our proposed particle-constraint based modelling method and impulse-based 

distribution to determine and display the behaviour of the object. 

Therefore, in summary, our research goal is to find a solution for adaptive modelling and fast 

simulation of permanent deformation behaviour of metal-like objects in real-time scenarios, 

and to find a complete set of solution from physics modelling of the object to a fast real-time 

simulation that delivers the final visual effect with a high level of interactive experience. We 

then integrate the above solutions into a framework that contains a set of tools to enable the 

domain expert using our modelling and simulation method in an easy manner. Moreover, we 

hope this thesis can become a useful review of the field of deformable object and will help 

researchers from relative fields in the future. 
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1.4  Thesis Structure 

We will present Chapter 2 as our introduction chapter of the topic with more detailed background 

introduction. We will introduce basic concepts including general modelling, time integration and 

the workflow of physics simulation. And we will introduce some most popular methods that are 

currently used in deformable object simulation. In this chapter, we will also give a detailed review 

of related literature and important previous works. At the end of this chapter, we will present a gap 

analysis which leads to the research questions and specific drawbacks that we aim to address.   

We will then cover a proposal to these research questions in Chapter 3. In this chapter, we will 

present an in-depth discussion about the research questions and continue to narrow down our 

direction for the topic; and we will then discuss possible approaches to solve the problem. The new 

proposed method and framework will be discussed and justified. 

In Chapter 4, we will give a detailed explanation of the proposed methods and the framework. It 

involves three main topics: The automatic modelling method for our particle-constraint based 

physics structure, the impulse-based permanent deformation simulation method, and the workflow 

and interface design of our FREDOMS framework. 

After the presentation of the proposed methodology, we will discuss the implementation details in 

Chapter 5. Information will be given including solution components, key individual functionality 

and interfaces, system design and workflow, data structure and underlying simulation mechanism. 

The design of the whole system and the presentation of the user interface, the input/output flow will 

also be explained. 

In chapter 6, we will introduce our evaluation target and use five different test cases to evaluate 

different aspects of our method and framework. The test cases will examine from simple geometry 

to complex objects. The results will be presented in different forms and will be analysed to 

determine how our method successfully offers a solution to the research question that we raised and 

if the expected results are met. 

Lastly, we will give conclusion of our work in Chapter 7. This will be a summary and discussion of 

the outcome of the thesis and our contribution. In conclusion, we will discuss other possible 

applications of our solution and potential research and advancement of our work in the future.  
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2 Background and Literature Review 

 

We have given a general introduction to the research problem in deformable object simulation and 

our research goals in the last chapter. In this chapter, we are going to give a more detailed 

background introduction of real-time deformable object simulation in computer graphics and key 

methods and their development. We will begin by giving a general introduction of the physics 

simulation followed by a brief history of the field in Section 2.1. 

In Section 2.2, we will cover the key concepts in physics simulation that are important to our 

particular research topic, including modelling, force analysis, collision detection, time integration 

and different types of deformable objects.  

We will then present our literature survey of the important and relevant works in the deformable 

object simulation field in Section 2.3. We will cover the works in three main approaches: The 

particle spring system, the position-based dynamics, and the finite element method (FEM). A 

summary of other methods in the field is also given at the end of the section. 

In Section 0, we will summarise our findings from the literature survey, and give an evaluation and 

analysis of the current solutions. We will then identify the key issues and shortcomings that can 

specifically apply to our research target. And we will propose our solutions to these issues in the 

next chapter. 
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2.1  Introduction of physics simulation in computer graphics 

By definition, computer graphics in computer science is to use calculation power provided by 

modern computer hardware (CPU, GPU) to render static and animated images on display equipment. 

The origin of this technology can be dated back to 1950s [5]. The applications of computer graphics 

has been widely used in the areas of entertaining, modelling, designing, human-machine interaction, 

training, and data visualisation. With the recent rapid growth of computational power that is 

benefited by the development of more capable hardware with advanced rendering technology, 

computer graphics can now deliver very realistic visual effects to the audience. Computer graphics 

nowadays has become one of the primary host and creation platform in the world of art. 

Like any other forms of artwork, the display content in computer graphics needs to be created. In 

the old days, all the contents within the animation are manually drawn (in 2D) or modelled (in 3D) 

by the artists, which are very time consuming, as each frame (static image) of the animation were 

done manually and separately. Later on, the developers were able to employ physics simulation 

solutions into the animation creation with new computer-aid tools. Physics simulation, which uses 

force-based analysis to calculate and approximate object behaviours based on physics law, has 

become a great aid in computer graphics for creating visual effects of deformation and interaction 

between particular objects.  

It is worth mentioning that the first computer that ever made (or to be more specific as someone 

may argue, the first “general purpose” digital electronic computer), ENIAC, was designed for 

performing physics simulation [6]. Physics simulation in common sense is to give a mathematical 

description and interpretation of the physical state of an object either imaginary or in the real world 

(which are called modelling), and then predict its change of the state by any influence overtime 

following the rule of the physics law. The purpose is to get an accurate prediction of what would 

happen if the same case happens in the real world. Application of physics simulation can be 

extended from general objects of the macro world to micro particles, atoms, fluids, and quantum 

mechanics and so on.  

In general, a physics simulation involves the following key steps: Physics modelling of the object(s), 

time integration of the change of object states (shape, position, rotation, etc.), and responses to any 

external interaction. Application of physics simulation is highly demanded as it is required in many 

important domains like civil engineering, structure and material study, weapon development, 
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weather forecasting, and entertainment industry. It was then introduced into computer graphics to 

deliver more realistic visual effects and better interactive experience in real-time application. 

2.1.1 Early days of deformable object physics simulation in computer 

graphics 

The origin of the physics simulation in modern personal computer is dated back to 1980s, where 

the early ideas and methods were introduced by Weil’s work [2] and Terzopoulos’ works [1, 7, 8]. 

At the time, the hardware could not offer sufficient computational power that is capable of 

simulating and rendering large complex objects in real-time. Therefore, cloth-like objects, which is 

considered to be the simplest case of an elastically deformable object, was chosen to be the research 

topic in the early stage of the field.  

Particle-spring system (PSS) was firstly introduced with explicit time integration method for 

simulating cloth object. The method was computationally efficient, and modelling was simple due 

to the object’s 2D nature. The result was also realistic at the time considering the limited hardware 

capability. However, the initial particle-spring system has its drawbacks. The bottleneck of the 

simulation (other than hardware) was the time integration method that limits the size of the time 

step and leads to performance speed issue (small time steps leads to heavy computational workloads) 

and stability issue (calculation error accumulation introduces numerical instability such as over-

elasticity).  

In the late 1990s, Baraff et al. [9] proposed a method that can adapt large time steps for cloth 

simulation. This breakthrough greatly improved the simulation performance in elastic system as 

well as the system stability. Fast time integration with modified spring constraints and other new 

modelling arrangements transformed the Particle-Spring System to the first practical method for 

real-time deformable object simulation.  

Meanwhile, with the development of new rendering technology and hardware improvements, 

physics simulation becomes more and more popular in real-time applications in computer graphics. 

Many other methods such as Finite Element Method [10] and Particle Based Method [11], which 

were already popular in other areas, was then introduced to simulate various types of deformable 

objects. The purpose of computer graphics is to generate visual effects rather than deliver accurate 

simulation results, therefore new method such as Position-Based Dynamics[12] and shape matching 
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method [13] which concentrate on the appearance of realism were developed. 

 

2.2  Key concepts 

Deformable object simulation in general is a complex task. It involves physics modelling of the 

object, physics (material) property attribute setting, external force analysis and response, and time 

integration for the change of the structure state. These key concepts are essential components for 

all different simulation types and methods.  

It is also important to highlight the differences between different types of objects and different types 

of simulations. We have presented a general introduction of these topics in Chapter 1. In this section, 

we will give a more detailed explanation for each concept in this section. 

2.2.1 Overall workflow of Physics simulation 

The working process of creating a physics model and conducting simulation accordingly is highly 

standardised today. The workflow takes several steps and follows a similar process regardless of 

the simulation object and the simulation method. An overall representation of this process is shown 

below in Figure 2.2.1. 

The diagram presents a summary of the working process for a standard physics object simulation. 

At this level, the process of offline simulation and real-time simulation are considerably similar. 

The only differences are the choice of the type of physics mesh, collision mesh, and the fineness 

(degree of detail) regarding these meshes. 

The diagram shows that there are two main conceptual phases in a complete physics simulation: the 

modelling phase and the simulation phase. The modelling phase is the creation of a mathematical 

model with all the physics structure and geometry attributes of the object, and the configuration of 

a set of parameters (material properties) that will determine how the object behaves in the simulation 

phase. The simulation phase is the process to take the model into the program environment with 

possible interaction with other objects and external forces, and to calculate the object’s behaviour 

and response to external factors. The simulation results will be presented visually.  
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Figure 2.2.1 Workflow of a standard physics simulation for deformable object 

The solid arrow defines the processing direction for each task. The first step is to create or import a 

rendering mesh as the reference. The rendering mesh defines the finest geometry detail of the 

object. Then the physics mesh will be created manually or automatically based on the rendering 

mesh and the pre-defined physical material properties. An additional mesh for collision detection 
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will be created following the creation of physics mesh. These three meshes get coarser from one to 

the other to reduce unnecessary detail in order to reduce calculation and improve simulation speed. 

By this stage, the modelling phase is finished.  

Then the complete model with both rendering and physics information will be brought into the 

implementation phase. The first step is to maintain the initial (rest) state of the object and wait for 

any external impact. The simulation will conduct collision detection constantly to monitor if the 

object’s surface has been struck by any other object(s), or any sudden displacement occurred to any 

of its surface vertices (mainly due to user input). If a collision is detected or external impulse is 

applied, the system will analyse the incoming object or applied impulse and determine to what 

degree the change affects the current state of the object, both internally and externally. After that, 

the initial change occurs at the beginning of the time step will be passed to the time integration 

process in order to calculate the actual change that should be made to the internal structure and the 

external appearance of the object at the end of the same time step. This process will be executed 

recursively until the object reaches the next rest state. The system will make changes to the physics 

model of the object accordingly and maps the change back to the rendering mesh, this is defined as 

the collision response process.  

The dash arrow represents the relationship between different stages. Collision mesh is made 

specifically for the purpose of collision detection. The time integration is fully dependent on the 

structure and the modelling method of the physics mesh. Collision response will make changes to 

the physics mesh; the change will then be transferred to rendering mesh. This marks the final result 

of the simulation in this specific cycle.  

2.2.2 Object modelling and its mathematical explanation 

The word “modelling” can be referred to two concepts in our context. One is from the 3D object 

geometry rendering perspective, and one is from physics simulation point of view. Both modelling 

approaches are required in order to process the simulation. Modelling, in general, is to create an 

abstract interpretation that can describe one or more aspect of an object. Different objectives require 

different attributes in the modelling, which will be explained below. In this thesis, physics modelling 

is our main concern. 
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2.2.2.1 Object geometry modelling and rendering Mesh 

From the art point of view, object modelling means to create a pre-designed 3D geometry by using 

a set of polygon-based faces (mostly triangle) as boundaries. These faces are defined by a set of 

vertices that contains x, y, z coordinates. The faces share their vertices with the neighbouring faces 

and connect to each other, and thus they can form a closed surface that defines the outer boundary 

and the geometric shape of the object. The finished geometry can be recognised as a designed item. 

Usually, such items are created by artists called the modelling artists who use computer-aid tools 

to finish the task. This process is called 3D modelling.  

By applying texture material properties, the object then can be rendered by graphics engine and can 

be observed by the end-user. The final product of the 3D modelling process is called a static mesh. 

When combining computer graphics with physics simulation, in order to separate different types of 

meshes, the static meshes are also defined as rendering mesh. In this thesis, we also refer to 

rendering mesh as raw mesh because it serves as the initial reference data for the construction of 

physics mesh and collision detection mesh.  

A typical rendering mesh is a set of data arranged in a certain format that contains basic information 

of the geometry property for an object. This includes the location of all vertices, the order and the 

grouping information of the vertices that define the faces. In addition, a rendering mesh can also 

store attributes for advanced rendering purposes such as the normal for each face, reflection material 

properties and colour for each face, the texture for the mesh, and the UV coordinates for mapping 

the texture onto the geometric surface of the object. An example of a rendering mesh with vertices 

and faces is given below in Figure 2.2.2, which is a simple cube. A rendering mesh for a cube 

contains 8 vertices and 12 triangle faces. Each vertex is marked by a number as shown: 

 

Figure 2.2.2 an example of a 3D rendering mesh of a cube 
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In this example, the cube has 8 vertices (0, 1, 2, 3, 4, 5, 6, 7) and contains 6 plain faces that are 

defined by 12 triangles (145, 152, 041, 074, etc.). It is important to notice that the order of vertices 

(winding order) for each triangle (e.g. 145 or 154) will affect the front-back direction of the mesh 

and should be remain the same to keep surface normal consistent. Different graphics API has 

different standard of the face direction for face culling. For example, OpenGL accepts vertex in 

counter-clockwise order to define a triangle by default. 

2.2.2.2 Physics modelling and Physics mesh 

In deformable object simulation, we need to model the object into a mathematical interpretation of 

its geometry, material, and interior structure. Similar to a 3D static mesh model created by the artist, 

a physics model discretises a certain object into small pieces, but without all the unnecessary 

information such as texture and surface normalisation information. Moreover, rather than just 

concern about its geometry surface, physics modelling needs to capture the whole volume of the 

object, both interior and exterior. Physics modelling process is often carried out automatically by a 

program executing pre-developed algorithm with some initial input; it is the starting point and the 

foundation of the whole simulation process. It provides mathematical approximated representation 

of the following information: 

1. The space/geometry property of the object. The physics model of a certain object needs to 

represent and capture its entire internal space. In the case of real-time simulation where only the 

visual effect is expected, the geometry representation does not need to be at the same fineness level 

as the rendering mesh, but only a coarser and more approximated representation of rendering mesh 

will suffice. This is because a low-quality mesh will perform better in simulation with respect to 

speed. 

The general approach of modelling the internal space and structure of a volumetric object is to 

discretise the space volume that is captured by the object into a finite number of small parts. To 

represent the continuum of the matter the small parts are either volumetric element (e.g. tetrahedron 

in Finite Element Method) that are next to each other to fill the space, or distributed particles 

throughout the space and each particle captures its surrounding space and connected by different 

types of constraints (e.g. particle-based structure in Position-based Dynamics). An example of a 

coarse approximation of a cycle and the discretisation of its inner space is shown in Figure 2.2.3.  
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Figure 2.2.3. A 2D example of a space approximation and discretisation 

2. The physics material property of the object. Physics model needs to contain the data to define 

the material property of the object, for example, hardness, rigidness, and degree of elasticity or 

plasticity. All these material properties depend on how the internal sub-spaces interact with each 

other. Different modelling methods have different ways of defining such properties. For example in 

Particle-Spring system it is defined by a set of factors that determines the strength and the elastic 

properties of the spring, in Finite Element Method, it is defined by young’s modular of the material 

and the stress and strain factor for each tetrahedron (or other types of basic discrete elements). 

Figure 2.2.4 is an example from Wieding et al. [14] of how the same 3D object (bone structure) can 

be modelled differently to march the needs of the application.  

 

Figure 2.2.4. Different modelling for the same object 
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2.2.2.3 The Collision detection mesh 

Collision detection mesh is constructed solely based on the physics mesh and generally in a coarser 

manner. In some occasion, the collision mesh can be the same as the physicist mesh; however, this 

case is not common in modelling for real-time simulation. In real-time simulation, a good collision 

mesh has to be optimised to meet the balance between capture the most geometry information of 

the object and maintain as few faces as possible to reduce the calculation for collision. The collision 

detection process is one of the heaviest computational tasks for any physics simulation. Therefore, 

optimisation methods like Axis-Aligned Bounding Boxes (AABB) are introduced into the collision 

detection to reduce the calculation. Further details regarding this topic will be discussed in later 

chapters. 

2.2.2.4 Mesh relationship 

In earlier sections, we have introduced three mesh types: Rendering mesh (or static mesh, raw mesh), 

Physics mesh and Collision detection mesh. They are the different modelling forms for the same 

object. Each mesh type captures certain aspects of the object property of its natural existence. 

Rendering mesh describes the object’s geometry appearance. Physics mesh represents its physical 

material state both internally and externally. Collision detection mesh represents its physical surface 

boundary (different than rendering boundary) when interacting with other objects or external 

impulse during the simulation. Each mesh type represents a different approximation of the object, 

and they have a dependence hierarchy. Rendering mesh is created firstly, and it is a detailed 

approximation of the geometry of the object (from the reference of a real-world object or a concept 

design). The physics mesh is created secondly; its geometry data is based on the rendering mesh, 

and it is a less detailed approximation of the rendering mesh. Collision detection mesh is created as 

an even less detailed approximation of the Physics Mesh. In some cases, collision detection can 

share the same surface mesh as the physics mesh if more precise detection is needed. Figure 2.2.5 

gives a visualised hierarchy of the three mesh types and their differences. 

 

Figure 2.2.5 Mesh type relationship 
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2.2.2.5 Physics mesh generation and surface mesh manipulation 

Unlike the rendering mesh modelling, which is done manually by the artist (today when modelling 

objects based on the real-world items/people the rendering mesh can also be automatically 

generated based on scanning however manual editing to remove noise and error and to improve the 

quality is still needed), physics mesh is generated automatically following certain configuration. 

The generation process requires taking rendering mesh as the reference and then modify and 

simplify the geometry into a solid object model. The process has two main tasks: 

1. Make modification to the original rendering mesh so that it will fit the purpose of physics 

modelling. This includes simplifying unnecessary details, re-arranging the surface structure 

(remeshing) and construct different versions of rendering mesh with different fineness level 

(e.g. collision mesh, Bounding volume). In many cases, the surface mesh is completely 

regenerated as it has to march the standards from the interior structure mesh. 

2. To construct the physics model for the interior structure of the object. This process takes a 

discretisation approach to interpret the continuous volume structure of the object into a 

finite number of basic elements. An example can be tetrahedron elements in FEM and 

particles in all the particle-based methods. The connectivity and interaction between 

elements are also defined in this process.   

In object modelling field (computer graphics), automatic mesh generation and remeshing (mesh 

regeneration or adaptive mesh) are popular topics more towards the mathematics field (geometry 

and topology). From the two main tasks listed above, mesh generation can be referred to as surface 

mesh generation and volume mesh generation.  

Surface mesh generation exams the object’s geometry property and distribute (or re-distribute) 

vertices followed by certain standards to form a mathematically model of the surface of the object; 

this process requires a reference model of the object. In the process of creating the 3D model there 

maybe ill-shaped triangles or unnecessarily detailed area that will affect the rendering or the 

simulation of the object. Using surface mesh generation and regeneration method the user can 

automatically generate a better mesh for a specific purpose of use. An example of vertices 

remapping (mesh regeneration) process from Vorsatz et al. [15] is shown below.  
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Figure 2.2.6 Example of vertices re-mapping 

A remeshing of the surface is to re-arrange the vertices on the surface mesh to be more regulated 

but still maintain the geometry details as much as possible. The purpose of remeshing is usually to 

treat ill-conditioned faces or to generate a higher/lower resolution approximation of the surface 

mesh. Mesh generation often involves creating connectivity for a given set of vertices. It does not 

necessarily needs an existing mesh, and it often also involves re-arranging vertex to meet the mesh 

requirements.  

Model remeshing is an important topic in computer graphics and an important step in the physics 

modelling processing pipeline for creating surface mesh for the physics model. There are two main 

approaches for remeshing. The first one is parameterisation-based remeshing, and the second one 

is surface-oriented remeshing. Parameterisation-based method involves mapping the vertices onto 

a different coordinate system in order to exam and manipulate vertices; therefore, it requires more 

computation. However it is capable of delivering fine-to-coarse resolution remeshing. Surface-

oriented remeshing, oh the other hand, manipulate the vertices directly; therefore, it is faster in 

performance-wise.  

Volume mesh generation involves using basic element to fill and capture the entire space that is 

occupied by the object. The main concern is how to use a finite amount of element to model the 

interior space and the structure and their interactivity. For 3D volumetric object, the volume mesh 

generation is the key process for physics modelling. The generation of the surface mesh is also a 

result of volume mesh generation as the outer layer (surface) automatically represents the geometry 

surface of the object. 
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2.2.3 Time, forces and external disturbance analysis 

In any physics problem, one of the most important variables is time. The concept of time can be 

divided into two topics: time duration and time step. The purpose of physics simulation is to 

determine the object’s internal and external state at a particular time, and the changes over a period 

of time. In order to do this, we need to understand the initial status of the object and its reaction to 

external conditions. In most of the cases, at the beginning of the simulation, the object will be at the 

state of equilibrium (the rest state). It will retain the rest state until external force applies to it. An 

example can be that if we suddenly apply gravity to a still and unsupported object O, it will start 

falling from 0 velocity at the acceleration of 𝐺 = 9.8𝑚/𝑠, and at the speed of 𝑣 = 𝐺 × 𝑡 at time 

t. By knowing these conditions, we can simulate the movement of this object by calculating its 

position at each specific time 𝑡′. 

Therefore, force analysis and how the object reacts to specific forces are very important. The above 

example is the simplest case as we consider the object as a pure rigid body, and the gravity is applied 

to all the part of the object simultaneously. In deformable object simulation, external impulse often 

applies to a small area on the surface. In such a case, the force analysis is more difficult.  

Usually, force is represented by a 3D vector (x, y, z) which defines its magnitude and direction. 

Some forces will apply equally to all parts of the object (e.g. gravity). And some forces will only 

apply to certain parts of the object, e.g. stress from a needle to the skin. 

The common external disturbance is listed below: 

1. External Impulse. This kind of disturbance does not naturally exist in the real world. But 

in a virtual world, the system can accept and simulate all kinds of inputs. An external 

impulse is a sudden movement state change applies to a certain area of the object. It can 

occur either inside of the object or on the surface. It has two different forms: Sudden 

displacement of surface vertices without collision and sudden initial velocity gained 

without collision. External impulse is normally triggered by the system for testing purpose 

or special event/effect at run time.  

2. Collision force. The most common cause of the disturbance. This type of force often 

applies to the object surface in a very short period of time. In most cases, it happens within 

one time step. Collision force will transfer energy (momentum) from one object to another. 
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If the force exceeds a certain threshold, it will cause the object to change its movement state 

and in some case, will lead to the deformation of the object(s).  

3. Aerodynamic and gravity. Some realistic application will offer aerodynamic for the effect 

of wind or even water. The effect from aerodynamics is depends on surface area of the 

object that is facing the affected direction. Gravity on the other hand in most of the cases 

are employed by simulation by default. Both aerodynamic and gravity share the common 

attribute of that they apply to the object evenly and constantly (certain exception can be 

applied to aerodynamic when changed airflow is defined). 

4. Constraints. Sometimes the system will define certain constraints to manage the 

movements and behaviour of the object. This is an approach to improve stability and 

controllability. These constraints will interfere with the movement and the deformation 

trends of the object. 

Despite there are many different types of external disturbance, all of them have the common effect: 

Bringing changes to the movement state of the object, or a part of the object. Change of movement 

state can be defined in two forms: 

1. Change of location: Gives an instant (reasonably large) displacement to the object or part 

of the object. 

2. Change of velocity: Apply an initial velocity to the object or a part of the object. 

Therefore when we are handling the external disturbance, the results we expect are the change of 

location and/or velocity, in addition to where and when it happened (or will happen). With these 

two variables, we can perform the response accordingly. 

2.2.4 Collision detection and collision response 

In physics simulation, collision detection is one of the most important key concepts. It is the pre-

condition of the force analysis in most of the real-time simulation. In a typical simulation process, 

when two separated objects are in contact with each other, the system needs to be able to solve and 

determine: 

1. The exact time and location that these two objects are in contact with each other.  

2. The subsequent response behaviour of each object in the following time steps. 
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Collision detection involves examining and solving overlapping problems for multiple objects in 

the simulation scene. A general approach is to use geometry testing algorithms to constantly check 

and determine if an object is in contact (in geometry terms, if two objects are partially overlapped) 

with another object in a given period of time. An object OA can be either moving or at stationary 

when it has contact with another object OB, which can also be either moving or at stationary. Based 

on their masses, velocity and material property, the objects will react to this collision, and this is 

called collision response.  

The modern 3D interactive application often involves large-scale scenes with large amount of 3D 

objects. Therefore collision detection is an expensive task. How to perform quick collision detection 

is a whole research area with different proposed methods. The general approaches are: 

1. Group the objects based on their location to eliminate unnecessary detection. 

2. Make a different level of approximation of a particular object to narrow down the collision 

contact point. 

The above approaches are summarised as broad phase and narrow phase of the collision detection, 

more detailed discussion regarding these concepts and how it applies to our research will be 

introduced in chapter 4.  

2.2.5 Rigid body vs. Soft body, Temporary and Permanent deformation, 

Elastic and Plastic deformation. 

In the real world, there are different types of matter materials, some objects like rocks and crystals 

have very tough property when it comes to material hardness. Such objects are very difficult to 

reshape under reasonable forces and are hard to break its integrity. In common sense, people would 

consider simplifying such objects as ideally rigid. This means they will not be able to conduct any 

deformation, or their deformation is so small that is unnoticeable and can be ignored. Its shape will 

always be the same as origin. In addition, it cannot be broken by any form and any amount of force. 

The only two behaviours they have are moving and rotating. The knowledge from modern physics 

and material studies shows that the so-called “rigid object” still have internal deformations. 

However, the change is so insignificant that it is unnoticeable and can generally be ignored. In real-

time physics simulation for visual effects, each object is modelled as an abstract mathematical 
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concept that eliminates unnecessary properties. Therefore, such objects can be approximated as 

‘purely and ideally’ rigid. For example, a piece of rock on the side of the road in a video game can 

be hit or moved, and it will either rotate or move (most of the time both). But its shape will always 

remain the same and does not crack or break. This conceptual approximation is for avoiding 

computation and modelling tasks that will not benefit the purpose of this object in the design. In the 

final product, the broken or cracking of the rock does not make too much difference to the player 

but the recourse to calculate and represent this behaviour and the development to make this happen 

is very heavy and not worth doing.  

On the other hand, some objects have the material property that they can be easily reshaped and 

deformed. In physics, this type of object is commonly referred to as Soft body. The study of such 

type of object is called Soft body dynamics. Soft body has a rest state where every internal part 

has reached a balance from the internal and external forces. Soft body has the ability and tendency 

to recover and retain their internal structure and external appearance to the rest state over a period 

of time if the external influence is removed. Therefore, soft body deformation is generally 

temporary. For example, a cloth (fabric sheet) covered over the table is differently shaped 

compares to being hung on the robe. But the object will return to the same state when it is removed 

from any supporting object. Another example is squeezing a rubber ball. When the force is removed, 

the ball will relax and return to its original sphere shape.  

There is another type of object that can be deformed when the external force exceeds a certain 

threshold, and the deformation does not break their internal structure integrity. However, it does not 

have the ability to restore its shape like the soft body. Therefore their deformation is permanent. We 

define such deformation as permanent deformation and such object as permanent deformable 

object. In material study, such behaviour is also referred to as plastic deformation. Permanent 

deformable object is our main research topic in this thesis. 

Elastic deformation vs. Plastic deformation, stress and strain 

In physics and material study, the term elastic deformation describes a physics phenomenon that 

an object under external force will change its shape temporarily, and its internal material structure 

has the tendency to (always) retain its original shape and reverse the change when the external force 

is removed. Such force load that applies to the object and causes the change of shape is called stress. 

The internal structure’s reaction to retain its current shape and to resist such change is called strain. 
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An object that always behaves as elastic deformation under external force is called an elastic object. 

In other cases, some object is made of the material that has a different property. When stress exceeds 

a certain high level, the strain will fail to support the object to maintain its interior structure integrity 

and will make a permanent change to its internal state, in appearance the object’s shape will change 

permanently and no longer trying to recover itself to the original state. Such physics phenomenon 

is called plastic deformation. Such object is defined as a plastic (deformable) object.  

It is evident that the concept of elastic deformation vs. plastic deformation is very close to the 

concept of temporary deformation (soft body deformation) and permanent deformation. In 

computer graphics these two sets of definition are commonly mixed as the assumption that they 

refer to the same thing. We believe that plastic deformation and permanent deformation captures 

more to the material property of the object. And permanent deformation describes the behaviour of 

the object. Therefore, in our thesis we will use the term “permanent deformation” to refer such 

physics phenomenon as our research focus on simulating the behaviour without modelling the 

internal material structure that strictly based on the stress-strain system. 

Metal-like object and permanent deformation 

The typical behaviour of a Metal-like object deformation is that it will behave like an elastic 

object when under low stress, and will behave plastically when the stress exceed a certain level. 

Figure 2.2.7 shows the deformation of a metal-like object related to stress and strain level. 

 

Figure 2.2.7 Metal-like object behaviour related to stress and strain level 

As shown in the above figure, permanent deformation is one of the three deformation stages of 

metal-like material after the stress level exceeds the resisting action from the structure (strain) and 
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before the breaking point. It is the stage between elastic deformation and complete fracture of the 

object. 

2.2.6 Solving the deformation of continuum objects: The continuous 

partial differential equation and its discretization approaches 

In physics simulation, the existence of deformable objects, regardless if they are in two-dimensional 

form (cloth objects) or three-dimensional form (solid objects), are continuous throughout the space. 

The deformation process of such objects is also continuous throughout time. In addition, the 

deformation behaviour involves different partial derivatives like elasticity, force, damping, existing 

energy and other forms of disturbance introduced into the system. Therefore, the mathematical 

description of the deformation of continuum objects over time is a partial differential equation 

(PDE). To solve such a PDE, the general approach is to use discretisation to transform partial 

differential equations (PDEs) into simpler and approximated equations with finite number of 

unknowns[16], which is much easier to solve but introduces certain errors into the system. The 

aforementioned three main methods for deformable object simulation: Finite Element Method 

(FEM), Particle-Spring System (PSS) and Position-Based Dynamics (PBD) all fall into this 

approach and share the same principle. The differences are that FEM subdivides the object into 

solid, volumetric elements with a complete reservation of volume-mass correspondence, while PSS 

and PBD use a mass-constraint model where the volume information is partially lost. In addition, 

the stress-strain analysis based on the external force and the material properties is approximated 

differently in each of the three methods. FEM uses a tensor-based solver to analyse the force and 

the displacement of the nodes, where PSS uses a linear two-dimensional Hooke’s law, and PBD 

completely eliminates the force-and-change-of-length relation but uses constraint satisfaction 

condition to reflect the stress-strain model.   

This discretisation difference results in different level of complexity and difficulty in the simulation 

process, especially for the calculation of each individual subdivided element. FEM preserves more 

information and produces more accurate results however requires the calculation of its deformation 

towards all directions and it is the slowest approach (when using the same degree of discretisation). 

PSS only concerns the particles’ displacement along one axis therefore it is much faster. However, 

PSS still uses the continuums law therefore the differential equation still has to be solved for 
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simulating its behaviour. PBD, on the other hand, is a force-analysis-free approach, where no 

continuums law is employed but only uses a simplified displacement-response operation between 

particles that are connected by the constraints. Different approaches also result in different levels 

of accuracy and realism, which also partially relates to the time integration calculation involved.  

2.2.7 Time integration 

In mathematics (calculus), integral means the calculation and integration of infinitesimal data in 

order to solve numerical problems like the quantities of area, volume, and displacement. Integration 

in physics simulation commonly involves motion changes of an object over a certain time period 

that are accumulated by the small segment in each time step. A simple example could be to calculate 

a particle’s displacement in a certain period of time under certain force. In some cases, the external 

force is zero and the changing rate (first-order derivative) of displacement, known as velocity, is 

constant, the accumulation of the displacement throughout time is linear (object is moving in a 

constant speed). In such cases, a simple formula 𝑆 = 𝑣 × 𝑡 can be applied to calculate the total 

displacement S during time period t when an object is moving at a constant velocity v. The entire 

process can be considered as a whole and for any given instant the formula is universal and the only 

variable changed is the time t. However, in real-world cases, the movement state of an object is 

often intervened by a certain amount of force and its course will change. When the sum of external 

force is constant (e.g. the object is only affected by gravity without any supporting) the change of 

its moving state will constantly change (velocity increase at a certain rate, in the gravity case, free 

fall). A more often case that happens in the physics simulation is that the sum of external force 

applied to the object is not constant but changes from time to time, instantly or gradually. 

2.2.7.1 The use of time integration method in physics simulation 

When multiple sources of (potential) force are involved, the physics behaviour of the object 

becomes complicated and difficult to predict. For example, in a particle-spring system, the change 

of position (displacement) of a particle is affected by different forces and the magnitude of force(s) 

is depending on other conditions (e.g. lengthen/shorten of one or multiple springs) and is (are) 

constantly changing. In such case, the changing rate of the displacement (velocity) and the changing 

rate of the velocity (acceleration, which is directly related to the force) are no longer a linear 

dependency related to time.  
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From a mathematical perspective, we consider velocity is the first derivative of the displacement 

(the result we want to know), acceleration is the second derivative. In addition, the acceleration is 

related (linearly) to force. The change of force depends on the change of the length of spring; 

therefore, it can be the third derivate (called jerk in mathematics) of the displacement. And the 

length of the spring is related to the displacement of the particle (from the beginning of the time 

step period). This forms a typical ordinary differential equation (ODE) where the unknown variable 

is a function with its derivative. Therefore, the system is far more complicated than a linear system. 

The calculation of the displacement and summarise the moving tracks of this particle and all other 

particles in the system over a long period of time can be difficult. For example, in a regular particle-

spring system, the equation for the movement of the particle related to the applied force and the 

spring strength can be described as follow: 

𝐹(𝑡) = 𝑘𝑥 + 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑘𝑑

𝑑𝑥(𝑡)

𝑑𝑡
 

Where k is the spring constant and x is the length change of the spring, and 𝑘𝑑 is the damping 

factor. The time 𝑡 represents the “length” of the small time segment (time step). 

To solve the above problem as accurately as possible, we need to divide the movement of the object 

and the force analysis into small time fragments, which we define as a time step. From result 

numerical point of view, the principle of choosing the size of each fragment is that it has to be small 

enough (ideally close to infinite small). The reason is that we have to make the assumption that 

during this tiny segment the higher-order derivate is constant (but it is not), otherwise, the 

calculation cannot be conducted as all the variables are unsure. This assumption will introduce 

errors into the calculation. Therefore, the common solutions to eliminate (in very rare cases) or 

decrease such errors are: 

1. Pick the time step small as possible, so the difference of the change of higher order derivate 

is not significate enough to introduce much error into the system. Time step is the 

elementary unit of the calculation, the sum of the results from each time step that forms the 

positional path of the particle is called time integration.  

2. Make assumption to the change of the higher derivatives and calculate an averaged or 

balanced value that can best capture its change. And then introduce this value into the 

calculation. This comes to implicate and explicate method, which predicts the value in 
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different ways (forwards or backwards). 

3. Introduce conditions and constraints to the change of the higher order derivate or make 

adjustments to the motion formula. Or make direct manipulation to the results to limit its 

outcomes in order to maintain system stability (error preventing). 

The problem with solution number 1 is that within a fixed period of time, each time step represents 

one computation cycle. The smaller each individual time step is, the more cycles of calculation are 

needed. Therefore when the computational power is limited, and the simulation speed is a major 

concern, small time step becomes a significant drawback of the simulation. With the decrease of 

time step size, the computation consumption is increased. Small time step brings more accurate 

results; however, it is unrealistic to divide the time segment as small as desired. 

The problem with solution number 2 is that even with the most complicated prediction method, 

there are is situation where the higher order derivative have a significant change in a very small 

period of time. In some cases, an instant change of the force or direct manipulation of velocity can 

also happen. Such cases usually occur in real-time interactive application where user input can be 

unpredictable and unreasonable (where robustness is needed). In addition, sometimes the program 

will introduce unexpected calculation errors from bugs that could distribute the system. Moreover, 

the more complicated the prediction method is, the more computational tasks will be for each 

individual calculation cycle (time step), and this will significantly affect the speed performance of 

the simulation. 

The problem with solution number 3 is that this will significantly interfere with the accuracy of the 

outcome results and limits the objects freedom of motion. It can also bring false initial values to the 

next time step and causing the inaccuracy to be accumulated. This can lead to unrealistic behaviour 

of the simulated object in case of the condition, and the constraints are not carefully configured. 

This solution cannot be used in any application that requires accuracy as it introduces artificial 

manipulation to the simulation outcome. 

Therefore, a general approach is to combine these three solutions and balance them into a combined 

method that suits the specific needs of the simulation. The choosing of time integration is important 

because we are not possible to have a 100% accurate result of the simulation, but we can have a 

close approximation. The chosen of the reasonable time step, the method of integrating the 

displacement based on the ODE and the use of conditions and constraints in order to achieve balance 
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among accuracy, performance and stability are the main research goals for this topic.  

2.2.7.2 Time integration in real-time application 

In the implementation of real-time physics simulation, there are several time integration related 

issues that developers concern:  

1. Frame rate. In computer graphics rendering, each (consecutive) image is rendered on the 

display equipment for a short period of time before the next image is rendered. The frequent 

of each frame is rendered is called frame rate. When it comes to the interactive application, 

the frame rate defines the maximum time period for the program to execute each logic loop. 

This period of time is called frame time. In modern 3D application, the general requirement 

is that the frame rate should be constant. Rendering hardware speed (GPU) is the biggest 

factor for frame rate. In addition, frame rate can be affected by the complexity, the scale, 

lighting attributes and the data size of the rendering content. Frame rate has been 

standardised and 60fps (frames per second) is a common requirement in the industry.   

2. Elapsed time in execution loop. In a real-time application, in order to perform on-time 

interaction, the system generally creates a logic loop, which is the same sequence of 

execution of logic checking, input monitoring and output operation including sound, image 

rendering and so on. The same sequence will be executed repeatedly, and the new sequence 

will be executed right after the previous one is completed. Each execution can take different 

time period from one to the other because of the available resource from the hardware, or 

the increase/decrease computational tasks happen in that cycle. All the physics simulation 

happens in the execution cycle.  

3. Time steps for time integration in physics simulation.  

To deliver a smooth visual outcome, the elapsed time should not be larger than the ideal frame time 

(1/60 seconds). All the calculation in logic execution in the current cycle should be completed 

before the next frame of the image starts to render. This is because in interactive application the 

outcome of the logic execution (including physics simulation) will decide what to render for the 

next frame, a delay of the calculation outcome will delay the rendering action for the next frame, 

and will leads to inconstant user experiences. An example flow of how a rendering content is 

calculated and transferred throughout application pipeline is shown in Figure 2.2.8. 
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Figure 2.2.8 Execution pipeline in interactive applications with physics simulation 

The above figure shows one execution cycle of the application. Physics simulation is included in 

the logic cycle, therefore the execution cycle cannot be completed until the time integration is 

finished. It is worth mentioning that each logic execution cycle may contain more than one time 

step. Therefore, the time step for the integration should be equal or smaller than the elapsed time in 

this cycle. Therefore we have the following (ideal) conclusion: 

𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 ≤ 𝐸𝑙𝑎𝑠𝑝𝑒𝑑 𝑡𝑖𝑚𝑒 ≤ 𝐹𝑟𝑎𝑚𝑒 𝑡𝑖𝑚𝑒 

It is possible that the elapsed time is used as the time step. However, as discussed before the elapsed 

time can be highly unstable as there will be constant interruptions to the logic execution of the 

application; therefore, the size of the time step can be largely different. An example can be an 

unexpected pause to the application which stops the loop for a long period of time, and the elapsed 

time for that cycle can be very long and will cause the simulation to use a very large time step. 

Inconstant time steps can lead to uncontrolled error being introduced to the simulation results as the 

integration method is specifically chosen to handle certain size of the time step. Unstable and 

constantly changing time step can also affect the simulation in unexpected ways. Therefore a fixed 

time step or a limit range for controlling the size of the time step is commonly used. 

2.2.7.3 Numerical stability 

As discussed in the last section, time integration is the accumulation of the approximation of the 
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object movement in each time step. Within each time step, the results are not 100% accurate as we 

need to make assumptions to turn variables into constants. This inaccuracy is defined as errors in 

the simulation process. One of the most concerning issues of integration is the inevitable errors. 

Errors from each time step will be accumulated as the initial state of a step is based on the inaccurate 

result from the last step. After a period of time the error may become significant enough to cause 

potential problems to the simulation. For example, two particles on each end of the spring gain huge 

velocity and go apart; the spring will then apply adequate equal amount of huge force to these 

springs following Hooke’s law to prevent them from separating. This can cause the particle-spring 

system to “explode”. It is identified as the case of the over-elastic or super-elastic problem [17] 

when a simple modelling system and forward integration is chosen. The degree of the errors 

influences the simulation result is called numerical stability.  

Numerical stability is one of the key valuations of a given integration method. It represents how 

stable the system stays over time. The instability can cause the following problems: 

1. Strange and unrealistic behaviour of the simulated object. 

2. Large amount of unnecessary and heavy computational tasks that caused by inadequate 

results/inputs from the last steps. 

3. Results in large number which leads to bug or crash of the application. 

4. Fail to maintain the integrity of the object interior structure (exploding). 

In offline simulation, if a particular simulation occurs problem caused by numerical errors, the 

creator/developer has the opportunity to re-configure the inputs or the parameters and do it again. 

This can be time-consuming, but the final result remains safe and unaffected by a single time of 

failure. However, in real-time simulation, the developer has no control over the system once the 

application starts to execute, what is generated by the simulation is what will be presented to the 

end-user. Therefore, stability is vital for delivering a smooth experience. The cause of instability 

can be: 

1. Large time step. A large time step or a not-small-enough step can cause system instability 

as the error introduced can be relatively large. 

2. Inadequate integration method. 

3. Invalid and unexpected initial input. Sudden and unreasonable input, e.g. a large 
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displacement of one particle in the system or an extreme force input can cause the variable 

to be very large in a small period of time (similar to a large time step). This can cause 

instability or broken of the system. 

4. Geometry structure of the simulated array of element. The structure of how the element is 

arranged (e.g. how particles are distributed and connected in particle-spring system) can 

affect the stability as this can affect the interaction between elements (e.g. springs with 

different length but same parameters can behave differently under the same external force). 

General solutions to limit the instability are: 

1. Add constraints to the system. Constraints will work directly to the targeted elements to 

apply limits to their maximum change; this will prevent unwanted behaviour of the object.  

2. Modify the formula. Introduce extra factors (e.g. damping) that related to the change of one 

or multiple conditions and reduce the energy within the system can also prevent instability.  

The modelling and simulation of a deformable object is considered as a numerical problem and the 

solution to solve the behaviour of the object is numerical method. Therefore the system stability 

can be predicted and evaluated by numerical analysis.  

2.2.7.4 Implicit and Explicit methods for time integration 

The two main categories representing two branches of integration method are implicit integration 

method and explicit integration method. When solving ODE (ordinary differential equations) for 

the motion of an element (e.g. particles), the explicit method means to use the known element state 

at the beginning of the time step as the initial value to conduct the calculation. Implicit method, on 

the other hand, uses the element state at the end of this time step as the initial state for the calculation. 

As the state at the end of time is unknown, more computation is needed to done to find the initial 

value for the function in implicit method. Therefore, implicit method is generally more complicated 

than explicit method. 

An explicit method can be shown as the following function: 

𝑥𝑡+∆𝑡 = 𝑥𝑡 + 𝑓(𝑥𝑡) 

where for the same problem, the implicit method can be shown as: 

𝑥𝑡+∆𝑡 = 𝑥𝑡 + 𝑓(𝑥(𝑡+∆𝑡)) 
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Explicit methods use the known parameters at time 𝑡, which is independent to the other variables. 

All parameters are from the instant moment of the end of the previous time step 𝑡 (which can also 

be considered as the initial state of the current step). Explicit methods assume that the initial values 

of the parameters are constant throughout the time step. In reality, the values are not constant (but 

depend variables) and governed by different physics laws that are subject to the changes of other 

values. Therefore, this assumption that is implied in the explicit methods can introduce errors into 

the system and subsequently results in instability. In order to improve the results. Small time steps 

need to be used so the change of the value does not affect the result as much as in large time steps. 

Explicit methods are simple and easy to solve; they are often referred to as forward methods 

because they use the current state to predict into future. 

The simplest explicit integration is the Forward Euler Method [18], which is a one-step straight 

calculation to the future state of the system with an estimation of a constant k-order derivative. This 

approach is simple and easy to employ and can be fast with large time steps. Therefore, explicit 

methods are widely used in the simulation of movements with constant acceleration (e.g. pure rigid 

object simulations at free fall or moving on a supporting surface). Because the displacement model 

of a singular unattached object moving without any external interference can be simplified as a first-

order differential equation (Newton’s first law); therefore, a singular unattached object moving 

under nearly constant force can be simplified as a second-order differential equation (Newton’s 

second law).  

The simulation of deformable objects based on constitutive laws requires solving PDEs. The 

drawback of the simple first-order, one-step explicit method is that it only takes the instant value of 

the derivative at the time 𝑡 as a constant and use it to predict the slope in the future time (step) ∆𝑡. 

The issue is that during the period ∆𝑡 the derivative will change and hence introduces an inaccurate 

result at 𝑡 + ∆𝑡. The calculation will enter the next time step with an already false initial condition 

and will introduce more errors with the same issue. The errors will accumulate over time and will 

soon be accumulated to a degree that the system quickly becomes unstable.    

The forces applied to each discretized element constantly change depending on a range of factors. 

Therefore, it produces a stiff equation that is unstable for first-order integration methods, as all the 

changes to the system variables during the time step are omitted. The first-order explicit method 

can only be used in certain conditions (ideal cases) to limit the error:  
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1. We assume that the change of force (if any) over time is gradual. Therefore, each time step 

doesn’t introduce much error into the system. However, this case is only ideal and does not 

suit the scenario of real-time interactive applications, where the user input can be sudden 

and unpredictable.  

2. We use extremely small time steps to give a more precise approximation. However, small 

time steps lead to additional calculation. As the increment of the number of the time steps 

has a linear relation with the increment of the amount of required simulation, to achieve 

reasonable stability, the amount of calculation will still be considerably large. 

3. We modify the first-order method and make multiple predictions to the future derivative in 

a few instants within the future time step. 

In order to achieve more accurate results and reduce numerical error, the third approach above is 

used to transfer first-order explicit methods into multi-step or high-order methods. One of the most 

popular explicit methods of such approach is the Runge-Kutta Method(s), which nowadays has 

become a collection of integration solutions, its explicit form is often in either 2nd order form or 4th 

order form (also referred to as RK4)[19]. The 4th order Runge-Kutta Method is shown below: 

𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛) 

𝑘2 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘1) 

𝑘3 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘2) 

𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3) 

𝑦𝑛+1 = 𝑦𝑛 +
1

6
𝑘1 + 

1

3
𝑘2 +

1

3
𝑘3 +

1

6
𝑘4 + 𝑂(ℎ5) 

where ℎ is the time step, 𝑘1 is the slope at the beginning of the time step (𝑡0), 𝑘2 is the slope at 

(𝑡0 + ℎ)
2⁄   based on 𝑦 +

ℎ𝑘1
2⁄ , 𝑘3 is the slope at 

(𝑡0 + ℎ)
2⁄   again but based on 𝑦 +

ℎ𝑘2
2⁄ , 

and 𝑘4 is the slope at 𝑡0 + ℎ based on 𝑦 + ℎ𝑘3. 

The 2nd order form takes a similar approach, but with fewer steps. The principle of such approaches 

is that a single time step is divided into k number of steps, which are used as reference points to 

calculate a better approximation (but still based on the initial condition at the time 𝑡). 

The simplest form of forward Euler method can also be converted into a second-order from (mid-
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point method[20]) where the conditions are re-calculated in the middle point of the time step. 

Another popular and fast explicit integration method is the Verlet integration [21], which can be 

written in the following form[22]: 

𝑥𝑛+1 = 2𝑥𝑛 − 𝑥𝑛−1 + 𝑎(∆𝑡) 

𝑥𝑛−1 = 𝑥𝑛 

where ∆𝑡 is the time step and 𝑎 is the acceleration obtained from external forces at the beginning 

of the time step. Verlet integration obtains the first derivative (velocity) from the last time step and 

applies it to the current step. Therefore, it is numerically stable. However, an assumption is made 

that the force or the impulse is constantly applied and gradually changed. Therefore it is difficult 

for the results to maintain accuracy during dramatically changes of external condition [22]. 

Implicit methods, as shown, update the system from 𝑡 to the same level (𝑡 + ∆𝑡) by using backward 

operator and then achieve equilibrium at time 𝑡 + ∆𝑡[23]. Extra steps with additional calculation 

need to be taken to determine the initial values. However, implicit methods make a more precise 

prediction to the end of the time step and then gives a more accurate assumption of the value. It is 

more accurate and stable, and can use a large time step. Implicit method is often referred to as 

backward method because it uses the future state to project the current state and determine the 

initial value for the simulation. In order to achieve this backward and then forward prediction, 

iterations of calculations need to be done and have to pass mechanical evaluation until the result is 

satisfied. It is often used in conjunction with conjugate gradient algorithms[18].  

The simplest version of implicit integration, the backward Euler method, can be written in the 

following form [24]: 

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓(𝑡𝑘+1, 𝑦𝑘+1) 

where ℎ is the time step. We can observe that when using 𝑓(𝑡𝑘+1, 𝑦𝑘+1) instead of 𝑓(𝑡𝑘 , 𝑦𝑘), the 

potential change that occurs in the system is reduced. Therefore, stiffness is introduced into the 

system. This increases the stability but can result in a different type of error (instead of super-elastic 

problem from explicit methods), which causes the simulation to have stiff appearances and get to 

equilibrium state early. In order to overcome this problem, other variations of implicit methods are 

used to generate better results. Similar to explicit methods, high-order methods are implemented to 

take several steps of evaluation in order to produce more accurate results [18]. 
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A popular example of high-order implicit methods is the Rosenbrock method [25]. It is an variation 

of implicit 4th order Runge-Kutta methods and can be written in the following form[26]: 

𝑦𝑛+1 = 𝑦𝑛 + ℎ ∑𝑏𝑖

𝑠

𝑖=1

𝑘𝑖 

where 

𝑘𝑖 = 𝑓 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 +  ℎ ∑𝑎𝑖𝑗

𝑠

𝑗=1

𝑘𝑗) , 𝑖 = 1,… . , 𝑠. 

In order to achieve more accurate approximation, linear multistep methods are also introduced for 

solving differential equations. Multistep methods keep the results from the past time steps and use 

them as references to predict the future steps. This approach is different from high-order methods, 

as the solution from high-order methods only concerns the initial states of the specific current time 

step, but not the previous steps. An example of a two-steps method (Adams-Bashforth) is shown 

below: 

𝑦𝑛+2 = 𝑦𝑛+1 +
3

2
ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1) −

1

2
ℎ𝑓(𝑡𝑛, 𝑦𝑛) 

where ℎ is the time step. 

We can observe that unlike one-step methods, multistep methods have multiple dependencies to the 

previous steps, therefore it is important to examine their stability over time. Linear multistep 

methods can achieve “zero-stability” when a variable change occurs at the beginning of the 

multistep period does not cause the change of other values in the system to exceed a certain 

threshold [27]. Dahlquist [28] proved that the second-order accurate methods can achieve 

unconditional stability if the following condition is satisfied: 

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
1

4
ℎ2(𝑓(𝑦𝑛+2) + 2𝑓(𝑦𝑛+1) + 𝑓(𝑦𝑛)) 

where ℎ is the time step. 

Choosing the integration method is important for physics simulation, and the type of integration 

method can have a direct influence on the construction of the physics model. In summary, the 

integration method can be categorised into the following groups: 

1. Implicit and explicit methods. 
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2. Low order and high order methods. 

3. Single-step and multistep methods. 

The (2) and (3) are generally used in conjunction with (1) to give a more specific description of the 

different approaches to the same method. Therefore, our categorisation will only consider the 

implicit and explicit method. 

Below is a summary of the explicit and implicit method (Table 2.2.1). 

Integration method Explicit method Implicit method 

Parameter type Value from the previous level Value from the current level 

Computational cost Low High 

Implementation complexity Low High 

Time step required Small time step (Relatively) Large time step 

Stability  Low High 

Table 2.2.1 Comparison of explicit and implicit integration method 

In this thesis, our research goal is to simulate plastic deformation in real-time simulation. Therefore, 

high accuracy is not required for the simulation results. The system stability, as well as the speed 

performance, are going to be achieved by physics modelling. Such approach requires a different set 

of rules for the calculation instead of complicated time integration to solve differential equations. 

Therefore, in this thesis, we only concern with the simplest version of explicit integration methods.  

2.2.8 Real-time physics simulation in application development 

The purpose of physics simulation in computer graphics is to create physics behaviour in animation 

that looks realistic. In offline simulation, all the external disturbance are pre-designed and fixed. 

When doing repeating tests, the results of the simulation (visual effect in the animation) are always 

the same as the configuration and initial state are pre-defined and unchanged. Real-time physics 

simulation, on the other hand, is often used in real-time interactive applications where instant 

feedback from random input is demanded. The results of the simulation need to be stable and 

convincing as they will be visually presented to the user directly. Therefore the scenario becomes 
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more complicated than in the offline simulation, and as the input from the user can be unpredicted. 

The subsequently effect to the physics structure is unknown. Control constraints can be applied to 

limit the user’s choice of input, but a certain degree of freedom is still needed to deliver a realistic 

and immersive experience.  

Due to the above nature, physics simulation in real-time interactive applications involves experts 

from different domains. The purpose of the physics simulation happens within the application has 

to be introduced by content designer. For example, in a video game certain structures are designed 

to be destructible so that the player can gain path to the next level or retrieve certain items. The 

scale of the destructible environment and the physics property of the objects (e.g. an iron door or a 

wooden door) has to be carefully decided as the part of the storyline and game experience design. 

With the design been finalised the artist will firstly create concept art of the objects and then model 

them into 3D meshes. After that, a computer-aid tool and programmers who are experts in physics 

simulation and modelling will come to help transfer the original 3D rendering mesh into physics 

mesh. Then in the implementation phase, programmers need to employ physics engines designed 

to handle the desired simulation outcome to program the behaviour and the logic trigger of the 

physics simulation. Today, with high-level game engines, this task can be done by experienced level 

designers using premade functions that are configured by script languages. 

Therefore, implementation of physics simulation in real-time application, regardless of the type of 

the simulation, is a task beyond just a technical problem but also a chain of communication and 

decision-making process through the entire development team. 

 

2.3  Introduction and literature survey to existing methods  

In the development history of the physics simulation in computer graphics, we have seen increasing 

popularity and demands of deformable object simulation. Lately, with the development of hardware 

that offers sufficient computational power to conduct such simulation and present them visually, 

real-time deformable object simulation is widely used in a wide range of interactive applications. 

There are many methods regarding object modelling, simulation, time integration and collision 

detection etc. that has been introduced into this field. Some of the works brought significant 

contribution to the field and has become the foundation and inspiration of the new methods. Some 
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methods become industrial standard when solving certain problems. Some methods are greatly 

related to our research field and become important reference to our research.  

In this section, we will review a selection of previous works done by other researchers in the area 

of deformable object simulation. The topic involves important methods including Particle Spring 

System, Positional Based Dynamics, Finite Element Method (FEM) and an overall review of 

many Other Simulation Methods that are less popular or less relevant. In addition, the topic of 

Time Integration and Mesh generation is also included in a separate sub-section as they are also 

related topics to our research. 

2.3.1 Particle Spring System 

Particle-Spring System is the simplest and most popular method for simulating elastic deformable 

objects. It is also the first method that was proposed to simulate physics behaviour in real-time in 

the history of computer graphics. It has now become the standard solution for cloth object 

simulation. It brings the concept of particle-constraint system into real-time physics simulation. 

With the modification of the mesh structuring and configuration of the springs, the particle-spring 

system has been derived into many different methods for simulating different types of objects. 

Particle-Spring System (PSS) can also be referred to as Mass-Spring System (MSS).  

2.3.1.1   Key Concepts 

Particle-Spring System, as the name indicates, is formed with particles and springs (or dampers). 

It is a specific case of particle-constraint method. Particle is an infinitely small point in the space 

with mass property. Particle in such system does not (in general cases) have rotation state nor 

direction, but only has location and velocity information in the N-dimensional coordinate system. 

A spring can be considered as an elastic constraint that connects two particles, it has one particle 

on each end and a rest length, its behaviour is governed by Hooke’s law.  

An object that is modelled as Particle-Spring System is formed by an array of particles disturbed 

(normally evenly) in space. And all the neighbouring particles are connected by springs. When an 

initial impulse happens the spring will distribute the energy to both end and in the meanwhile limits 

the movement of the connected particles. If the distance of two particles is larger than the rest length, 

the spring will tend to pull two particles together. If the distance of two particles is smaller than the 
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rest length, the spring will push two particles apart from each other. Together with other parameters 

like damping force, particles connected with springs can form an elastic simulation system. 

2.3.1.2 Related early works 

According to review [29, 30], the first time of introducing “particle system” for object modelling 

in computer graphics was dated back in 1983 by W.T. Reeves [31]. At the time particles were 

introduced not to model solid object but “fuzzy” objects like clouds, smoke and water. The 

connectivity and interaction between particles are controlled by stochastic modelling where 

randomness is introduced, and no “real” physics law is employed. The result is for visual effect 

only (was used in sci-fi movie). This was the starting point the physics concept being introduced in 

computer graphics for generating visual effects. Moreover, it was used for simulating deformable 

objects (though the “fuzzy” objects are different from solid deformable objects). Today, particle 

system is still the standard way of simulating fire, smoke and cloud etc.  

Followed by Reeves’ work, the concept of connected particle system was employed in Reynolds’ 

work in 1987[32], in which he modelled object as a set of interacted and connected nodes with mass, 

aka “particles”. Reynolds’ work is still not regarding simulation of solid deformable objects but 

herd behaviour of birds. Each bird is modelled as an individual particle; and the difference is that 

instead of stochastic modelling like Reeves’ work, Reynolds uses a certain formula to control the 

interaction and relationship between particle elements (simplified model of birds). Therefore the 

behaviour follows configured rules and the outcomes of the simulation is controlled and predictable.  

The advantage of connected-particles model is that it uses the simplest type of basic element (a dot 

with mesh) to represent a part of the whole deformable objects and build connection, interaction 

and dependency rules to form back the whole object. It is a special case of the discretisation 

approach from applied mathematics. The model was quickly adopted to simulate simple deformable 

object forms. Terzopoulos et al. were pioneers to create elastic particle system by using constraints. 

They have published a series of works [1, 7, 8] to testify the approach. They have then discovered 

the ill-conditioned construction of the model, and the elasticity nature of the model can introduce 

numerical stability to the system [8]. Their solution to the problem was to decompose the object 

with rigid and elastic parts in order to reduce the simulation scale. This solution is still used today 

in some complicated physics model which is referred to as MBS (Multi-Body System).  

In 1994, Breen et al.[29] employed the particle system for the modelling of cloth object. They 



45 

 

described the woven cloth object as a set of particles with mass and tend to fall under the effect of 

gravity, which was the first attempt to depart completely from continuum formulations of the energy 

function. In 1995, Provot’s et al. [17, 33] built a new model based on Breen’s foundation. In his 

theory, he employed the term called “spring damper”, which was the connection of the particle 

network with a “rest length” property. When the distance of two particles connected by a spring 

equals to the rest length, the spring applies no effect. When the distance is larger than the rest length, 

the spring will perform constraint force, when the distance is smaller than the rest length, the spring 

will generate bending force. At this point, the concept of Particle-Spring System is fully developed, 

and the model became popular very soon due to its simplicity and realistic result. 

2.3.1.3 Improvements of Particle-Spring System 

Soon after the particle-spring system is introduced into the field, some drawbacks had been 

discovered. The original model has the following issues: 

1. It had a fixed, single-layer mesh structure and limited constraint choice. This limits the 

simulation outcomes. Bending, wrinkling and folding behaviours are difficult to achieve by 

using simple mesh construction.  

2. The original method uses the time integration method either with implicit method that is 

not suitable for real-time simulation [1], or explicit approach with little control factor, 

therefore the system was not stable [17].  

In order to improve the particle spring system to a more efficient model for simulation, researchers 

had made improvements based on the above analysis and took different approaches to deliver better 

results. The approaches have two main branches: To modify the modelling method (visual outcome 

and optimisation-wise) or to increase the simulation speed (performance-wise). 

The first approach is to introduce more modelling option (particle and spring arrangement within 

the mesh) for the object. The concept of mesh refinement can be traced back to as early as 1996 by 

Hutchinson et al. [34], who used physics simulation to replace keyframing method from free-form 

deformation[35]. They subdivided the mesh grid to achieve cloth-hanging-over-object effect. Soon 

the concept becomes popular. Example of this approach is Zhang and Yuen[36] employed the 

concept of mesh refinement (adaptive mesh generation) based on Provot’s model[17]. In their work, 

the particles can be generated dynamically depends on the deformable rate of a certain area. The 
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model starts with the first level, where only a coarse mesh is generated. With the level increases, 

the selected part of the mesh is refined to a more detailed mesh section and can be used to represent 

accurate, realistic appearances such as wrinkles or folds. A hierarchy tree structure was employed 

to detect the collision along with the adaptive mesh approach. 

Villard and Borouchaki[37] proposed an efficient method by refining the uniform mesh. They try 

to find a balance between fast simulation with low-quality mesh and slow simulation with high 

quality. Similar to Zhang and Yuen, they take the approach to reduce the number of the particle in 

the system without losing the details to speed up the simulation of the mechanical behaviour. The 

method is to set up a coarse uniform quad mesh at the very beginning of the simulation, then refine 

the mesh based on the movement state of the cloth – if the area is flat, then no refinement will be 

needed, otherwise, if folds or deformations occur, the meshes at that area will be refined to represent 

a realistic appearance of the cloth. By using this method, many particles generation can be avoided 

and computational costs will be saved to achieve the balance between the simulation speed and the 

realistic representation. The outcome of the visual and the comparable statistic demonstrated that 

the new method was faster compared to the previous approaches, and is specifically efficient when 

rendering collision detection with hanging. Other works done in mesh refinement includes Birra 

and Santos[38], who did the meshes refinement for triangle meshes instead of in uniformed 

rectangle grid. Mesh refinement with more constraint configuration can deliver more realistic soft 

body object such as human tissues [39]. It is worth mentioning that the concept of dynamic mesh 

refinement also applies to other mesh forms like FEM method. An example can be found in recent 

works like [40]. 

The second approach for improving the original Particle-Spring System is to improve its 

computational performance. The most popular approach is to offer solution from the mathematical 

point of view to find a fast time integration method. Baraff et al. proposed a method [9] which 

became a key contribution to the field. They uses implicit time integration combined with control 

constraint to maintain the stability of the system. The method also offers adaptive size for the time 

step to give more flexibility and stability to the simulation. Later on, with the increasing 

computational power from the development of hardware. Researchers has the tendency to use 

implicit solver more often when solving ordinary differential equation for the motion of particles 

within the particle-spring system. Other methods are introduced to speed up the implicit method 

such as pre-calculated conditions [41]. 



47 

 

In addition, new technologies such as GPU-boosted calculation and multi-thread parallel 

programming were introduced to the field. By using the specifically designed data structure, 

researchers are able to improve the simulation speed by using new hardware offerings[42]. With 

the additional computational power, the previously costly calculation such as cloth-to-object 

collision response can achieve fast speed [43].  

Besides the above approaches, an improvement to the particle-spring system can be adapt the 

advantage of the method (fast speed, simple model structure and easy implementation) and 

eliminate the drawbacks (numerical complexity, time integration trade-offs). Such approach can be 

particle-constraints approach without Hooke’s law based elasticity. However, such methods can no 

longer be identified particle-spring system. One successful example is Position-Based Dynamics 

(PBD), which will be introduced separately in later sections.  

2.3.1.4 Other applications of Particle-Spring System 

Other than simulating cloth object, Particle Spring System has many other applications. Although 

the particle system is not the ideal solution for volumetric object modelling, it is still a popular 

method for simulating volumetric soft body by applying multi-layer modelling. The approach is 

used to simulate human skin and tissue simulation [39, 44-46] and in hair simulation[47]. Moreover, 

particle-spring system with modified spring constraint can simulate cutting and splitting in real-

time. Combined with other simulation method like position-based dynamics and hardwire like 

haptic devices, this technology can be employed in medical research and developing surgery 

simulation and training application [44, 45, 48]. Even with the great limitation of capturing volume. 

Particle Spring system is an excellent interpretation of 1D and 2D elastic model, therefore, it can 

also be used in other fields like structure analysis for engineering [49]. The property of the spring 

constraints tends to retain the system equilibrium also offers a solution for surface remeshing and 

regeneration[15] when finding a balanced point on triangle vertex mapping. 

Today Particle Spring system is a very well developed method. Its advantages and drawbacks are 

caused by its own nature; therefore, the use of the method is popular but also limited within certain 

areas. Based on our review, the theoretical research in this area has dropped dramatically in recent 

years (2020). However increasing applications have employed Particle Spring System for simple, 

volume-less object simulation in real-time. 

 



48 

 

2.3.2 Position-Based Dynamics 

Another particle-based method that has been proof to be successful is Position-Based Dynamics, 

often referred to as its abbreviation PBD. It was firstly proposed by Muller et al. [12]. It quickly 

became popular for its stability and capability, along with its simplicity (relatively). It is a particle-

based system like particle-spring system. But instead of elastic springs, it uses constraints that are 

not bounded by Hooke’s law (elasticity). Instead of testing the change of length and calculate the 

relative damping and elastic force to determine the displacement of each particle in the particle-

spring system, PBD only consider the relative position (constraint’s rest length) of connected 

particles. Therefore the constraint acts as a distance holder to retain the system’s equilibrium. The 

satisfaction of the condition requires the integration process using constraints length as a reference 

to determine the displacement of each particle in each length. As the constraint applies to only 

displacement but no force (additional velocity) to the particles, the opposite movement tendency 

applies to the particle from the constraint will never exceed or less than the rest distance (length) of 

the constraint. This brings two advantage of PBD over the Particle-Spring System: 

1. It avoids the calculation for time integration in elastic system. Solving of ODE of the 

displacement related to force and time is no longer needed. 

2. It brings better stability to the simulation yet maintains the agile behaviour of the 

deformation. Particle-Spring System uses implicit method with large time steps tends to be 

too “damping” and stiff and sometimes not look nature.  

Similar to Particle-Spring system, Position-Based Dynamics can be used in cloth simulation 

but has more potential of use. It’s most successful contribution is to be able to capture 

reasonably large scale volumetric, continuum object[50] with good stability. Therefore, it can 

be used to simulate volumetric soft bodies with similar or even less calculation than Particle-

Spring System. 

2.3.2.1 Related works 

Position-Based Dynamics (PBD) is a relatively young method compares to particle-spring system 

and Finite Element Method. The fundamental theory of PBD is initially proposed and mainly been 

developed and improved by Muller and Bender and their colleges over the year [12, 51, 52]. PBD  

is used to simulate both infinite thin cloth-like object[53] [54] and continuum solid objects [55]. 



49 

 

Hair simulation and other 3D character behaviour are also possible with PBD [54]. Though PBD is 

developed mainly by a research team supported by NVIDIA PhysX lab, the application of PBD is 

wildly used by other researchers combine with other simulation methods [46, 53, 54, 56]. PBD is 

capable of performing different types of object deformation that can be difficult to achieve by 

previous methods or can only be done by complicated solutions like FEM. Kelarger et al. [57] 

proposed a different model based on PBD to simulate bending behaviour of the object. Umetani et 

al. [56] also employed PBD for simulating elastic rods with bending and twisting and in relatively 

large scale in real-time. In addition, combining with the shape-matching method [13], PBD is able 

to simulate elasto-plastic deformation on a large scale in fast speed[58]. 

The concept of Position-Based Dynamics and its uses also have evolved over time, the constraints 

it uses to manipulate the particle displacements can be in different forms, and the simulation object 

can be extended to fluids[59] and smoke[60]. A more detailed survey, along with the discussion and 

introduction of the algorithm, implementation and the application of PBD can be found in [51]. 

2.3.2.2 Difference between force-based and position-based simulation 

Both Particle-Spring System (PSS) and Position-Based Dynamics (PBD) can both be categorised 

as particle-constraint system. The main difference between the two methods is the constraint’s 

property. PSS connects particles by springs that follow the real physics law (Hooke’s law), which 

is force-based. In contrast, PBD uses dependent position sampling to control the displacement of 

the particles, which, within its name, is position-based, or behaviour-based. 

The difference between force-based and position-based approach is how they pass the external 

impulse into the structure and how to manipulate displacement for each element (in this case, 

particle). Force-based constraint does not manipulate the position of connected particles directly 

but applies certain force to it. The force will then transfer to energy (by applying acceleration to the 

element) which causes the change of velocity and brings displacement to the individual element, 

the process goes over and over until the whole system achieves equilibrium. The whole process is 

governed by elastic spring from physics law. For each time step, the applied force will be calculated 

based on the constraints states. Position-based method, on the other hand, directly apply position 

adjustment to the element. Instead of calculating force and velocity it exam the particle’s current 

position and the satisfaction with its constraints condition, and adjust the position of the element 

accordingly and gradually based on the desired effect. Figure 2.3.1 below uses PSS and PBD as an 
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example to demonstrate the difference of impulse processing. As shown, the PBD has fewer steps 

for processing the impulse influence on individual element (particle) than PSS. 

 

Figure 2.3.1 Comparison of element manipulation process between PSS and PBD 

Force-based simulation is governed by the real physics law and uses the selected time integration 

method to solve the ODE to determine the structure deformation. This approach is more accurate, 

and can deliver more detailed and diverse outcome if small time step is used. Position-based 

Dynamics delivers reasonably realistic results in fast and stable performance, and it is generally 

faster than force-based when the meshes’ complexity level are the same. However, the mechanism 

does not follow any particular physics law but only an approximation of the elasticity material 

behaviour. Therefore, its result can only be used to deliver visual effect and interactive experience 

mainly for entertainment purposes, and cannot be used as a reference for a real-world case 

simulation (e.g. for structure analysis in engineering, and accurate medical research and training).   

2.3.3 Finite Element Method 

Finite Element Method (FEM) is a big topic in applied physics, mathematics and engineering area. 

The principal of the concept “Finite Element” is to divide one complex problem that needs to be 

solved into a large collection of smaller problems, and then solve the smaller problems individually 

and integrate each solution back to solve the original problem. In the case of force analysis and 

deformable simulation in continuum mechanics, this means to divide the original solid objects into 

a large number of smaller solid elements; and then solve the stress-strain problem for each 

individual element. There are also similar methods to Finite Element Method like Finite Difference 

Method (less accurate but simpler)[61] and Finite Volume Method (geometry-based) [62].  
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Compares to Particle-Spring System and Position-Based Dynamics, the system of FEM is much 

more complicated from modelling to solve the equation. Particle method uses one-dimensional 

element (particle) and-two dimensional connections (constraint, spring) to form the structure, while 

finite Element Method in continuum solids normally uses three-dimensional tetrahedron as the basic 

element for modelling (compares to particles in particle-based methods). As tetrahedron is a 3D 

basic element with direction, the system has to use tensor instead of vector (in particle-constraint 

methods) to describe stress-strain from neighbouring elements. The simulation method and time 

integration are similar but requires more calculation and analysis compare to particle-spring system, 

because FEM is still an elastic system that follows the principle of Hooke’s Law. FEM commonly 

uses Young’s modulus for the stiffness of the material to identify different material types.  

2.3.3.1 Related works 

Finite Element Method was initially introduced in 1940’s for engineers and mathematicians to 

perform force (load) analysis for elastic problems by Hrennikoff [63] and Courant [64]. And then 

it had been widely used in structure analysis and material study. It was then introduced to computer 

graphics for simulating volumetric solid objects [10]. In its development, Finite Element Method is 

mainly used to simulate and model continuum volumetric models for serious scientific research and 

engineering simulation. It models a given object into a collection of discrete small mesh grid (or 

lattice, in 3D) that fills the inner structure of solid objects. Therefore, the way it models and 

interprets the discretisation of geometry is one of the key topics in FEM. Depending on the 

simulation purpose, different modelling approach has been developed to reduce the complexity and 

improve the quality of the mesh structure, for example, Cutler’s work in [65].  

In real-time simulation area, FEM was also used by researchers to develop applications that require 

volume deformation. FEM is proved to be a useful tool by combining with the Augmented Reality 

(AR) to deliver realistic and reasonably accurate interaction between human and the virtual object. 

Compare to the particle-based system, FEM delivers more accurate and stable result. Therefore, it 

is ideal for training purposes if the speed performance meets the requirement. For example, Beikley 

et.al[66] uses FEM with adaptive boundary conditions and constraints, and detailed model with low 

pre-processing time to model and simulate suturing operation for surgical procedure. It combines 

the results with haptic technology for training purpose. However, at the time (2004) the computer 

power was not significant enough; therefore, the simulation scale is relatively small (small part of 
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human body) and the rendering performance was limited compares to modern application. AR with 

FEM can also be used in structure analysis [67] to enhance the visualisation of the structural data. 

Similarly, Fiorentino et al. [68] also introduced FEM simulated stress/strain distribution of the 

material structure that combined with AR technology for engineering education purpose. 

The complexity and heavy computation of FEM cause it to be inefficient to simulate full-scale, 

complicated object(s) in real-time. Therefore, researchers developed workaround solutions for this 

issue. One approach is to use Multi-Body System (MBS) modelling with FEM parts. MBS models 

a selection of parts of the object with FEM, which is a sub-domain of the whole body, then during 

the simulation only the FEM parts will be simulated as deformable volumes, the rest of the object 

will be considered as rigid body or other less complex structures. Examples of such combination 

can be found in [69, 70]and [71]. The problem with MBS/FEM is that there will be extra calculation 

for inter-body interactions. It also limits the scale of the simulation. Another workaround, which is 

also an improvements of MBS, is made by doing pre-calculation to limit and reduce the Degree of 

Freedom of the sub-domain in order to reduce the run-time calculation[72]. 

Similarly to Particle systems, FEM can also be powered by GPU and parallel computing to speed 

up the simulation. NVIDIA’s GPU parallel acceleration framework CUDA (Compute Unified 

Device Architecture) became a significant aid in this area. For example, Liu et al. [73] decomposed 

the computation for solving FEM into independent tasks and uses CUDA to solve the velocity by 

using modified Conjugate Gradient Method. The solution can be directly used in 3D simulation 

system. Other CUDA-powered examples are Kiss et al. [74] with a similar conjugate gradient solver, 

and Allard et al. [75] who used GPU based computing to simulate interaction and collision between 

objects/materials with different physics properties (fluid/solid combination).  

It is worth of mentioning at the time of the writing of this thesis (2019-2020), two major graphics 

hardware manufacturer and supplier, AMD and Nvidia, both announced the support for FEM 

analysis in their upcoming physics simulation framework (FEMFX physics library [76] from AMD 

and PhysX 5.0 [77] from Nvidia). This may bring new impacts to the deformation simulation 

research area. 

A more detailed and up-to-date survey of Finite Element Method in Real-time simulation can be 

referred to Marinkovic and Zehn’s review[72]. 
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2.3.3.2 FEM in real-time physics simulation 

FEM is by far the most accurate solution available in solid object simulation. It can be used in 

serious topics such as structure analysis, material study, civic engineering and parts design etc. 

However, the above areas often involve offline simulation, and the visualisation of the results are 

not the first priority. In computer graphics, FEM is also used for offline simulation as a standard 

solution for visual effect in animation and filming industry. Because of its complication, FEM is 

mot popularly used in real-time physics simulation, especially for interactive applications with 

complex 3D scenes. The limitations that prevent FEM being widely used in such applications are: 

1. Discrete scale: Compare to particle system, physics modelling of Finite Element Method 

is more complicated as it needs to discretise the continuous internal space. The ideal 

solution is to make the discrete elements (usually tetrahedrons) more or less unified in order 

of an efficient analysis. For a relatively complex object, the elements have to be small 

enough to march the geometry in order to maintain unity, which results in an increasing of 

numbers of the elements and introduces more computation into the later analysis and time 

integration. On the other hand, real-time simulation requires fast calculation and reduce the 

system complexity as much as possible. This makes the dilemma that large discrete scale 

cannot capture the geometry well, and a coarse mesh cannot perform realistic result. At the 

same time, small scale can deliver accurate results but introduced to much computation 

loads that not suitable for real-time simulation. 

2. Modelling difficulty. Turning a 3D static mesh into a FEM model requires certain deep 

knowledge of applied mathematics. The modelling quality directly affects the simulation 

efficiency and results, especially in real-time simulation where stability and controllability 

are at a high priority. FEM is known for its difficulty and complexity when it comes to 

modelling and implementation. 

3. Computational complexity. Solving FEM stress-strain problem is a heavy computation 

task. In real-time application physics simulation can only acquire a small percentage of the 

total computational resources; therefore, the simulation method cannot consume a large 

amount of hardware resources. It will become the bottleneck of the execution cycle and 

affects the performance of the application.  

In general, when considering the “simulation speed - result realism” trade-off, simulation result 
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from FEM is unnecessarily accurate for real-time interactive application, where the requirement of 

realism is “visually convincing” rather than “mathematically precision”. FEM offers better stability 

than particle-based system when simulating elastic system. However, by using implicit or non-

elastic constraints, the stability issue can be greatly improved. In conclusion, there are other 

methods that are simpler and faster, and can deliver less accuracy but still acceptable degree of 

realism for deformable object simulation in real-time.  

There are other cases that some real-time application with special serious purposes (e.g. surgery 

training) requires realistic simulation results. In such case, simple method like particle-based 

approach can fail to deliver the desired accurate results. FEM can be employed in developing these 

applications. However, our research scope is in visual effect domain, where the simulation is only 

for entertaining purposes and accuracy is at low priority. Several research uses FEM for real-time 

simulation [78], however the implementation of FEM in such applications is only in small scale. 

Therefore, from our opinion, FEM is deemed not the first prioritised option for real-time simulation 

in large-scale interactive 3D scenes for visual effect purposes, especially when elastic deformation 

is not involved.  

2.3.4 Other methods for real-time deformable object simulation 

Apart from Particle-Spring system, Position-Based Dynamics and Finite Element Method, there are 

other methods that has been introduced to simulate deformable objects in real-time. Jones et al. [79] 

employed Example-Based Method to simulate permanent deformation of metal-like object. The 

simulation was based on the income impose and the fundamental of the method is rigid body 

simulation. Therefore it is a behaviour simulation or mock-up rather than a physics simulation. The 

method achieves fast performance and reasonable realism. The drawback is that the model needs 

extra preparation before use which introduced extra workloads to the artists. And the realism of the 

result was limited as the conditions are pre-set.   

Another approach to simulate deformation is Meshless deformation introduced by Muller et al. 

[13] where instead of connected particles, the object is represented by a loose group of particles. 

Meshless deformation uses a shape matching approach, instead of simulating the deformation 

progress in order to determine the final deformation of the object. It defines the initial state and the 

goal state and simulating the transition process in between the states. Therefore it can achieve 
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unconditional stability as the object’s behaviour only based on the geometry transition. As reviewed 

in PBD section, shape matching is also used for simulating behaviour-based plastic deformation 

[58]. However, the deformation is mainly achieved by using geometry sampling rather than physics-

based simulation. Therefore, meshless deformation loses more physics accuracy than behaviour-

based method like PBD, and its results variation is limited due to its shape matching nature.  

2.3.5 Computational complexity analysis for main simulation methods 

One of the most important concerns with real-time physics simulation is its speed performance. 

Therefore, it is important to understand the computational complexity behind each simulation 

approach. To give an evaluation of the computational cost for a given method, four major factors 

that will affect the computation cost has to be considered: 

1. The number of elements in relation to the fineness (degree) of the discrete model. 

2. The connection/node pattern between different elements. 

3. The calculation involved in solving an individual node satisfaction. 

4. Memory usage. 

In the next few sections, we will discuss the above factors in detail. 

2.3.5.1 The number of elements in the system 

In three-dimensional cases, the element number for any given model will increase exponentially. 

This is to assume that the density is unified, which means the elements and nodes are evenly 

distributed throughout the interior volume of the object. In order to compare the differences among 

different methods, we use the same object: A perfect 3D cube, as an example for the analysis. In 

such a case, the exponent for any particle-based model (PSS, PBD) is a constant 3. Therefore, the 

relation of the fineness and the node number can be written as: 

N = 𝑛3 

where N is the total number of elements, and 𝑛 is is the element density. 

The FEM model follows a similar pattern. However, the number of the elements may vary and can 

increase in a different pattern, which has the dependency on how the model is discretised. For 

example, in a Body-Centered-Cubic (BCC) scheme proposed in [80], each cuboid can be divided 
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into 12 tetrahedrons. Other schemes can result in different numbers of tetrahedron elements been 

generated. Therefore, if we use the number of cuboids to identify the density of the model, we have: 

𝑁 = (𝑛3)𝑠 

where N is the total number of cuboids, 𝑛 is the density of the cuboids, and 𝑠 is the number of 

tetrahedrons generated from a cuboid (or any elementary tetrahedron-generation unit).  

Based on the above formulas, we can conclude that in the case of a cube with a unified even density 

of elements, the FEM model will require more element than particle-based models. However, in 

real-world practice, FEM model requires less element density than the particle-based models in 

three-dimension volumetric objects, as it captures material volume much better than the particle-

based models. It is also important to mention that nowadays a general approach for deformable 

object modelling is using adaptive meshes, in which the distribution of elements in the system is 

not unified, and the density is not even. The distribution of elements can also be affected by the 

geometry of the object. Therefore, it is difficult to provide an absolute comparison for the number 

of elements in different models.  

2.3.5.2 The Connection/Node pattern between elements 

The node number for FE elements is certain, as the element is defined by basic geometry with 

certain faces and vertices. For example, in the case of tetrahedron elements, each element has four 

vertices, therefore it has four contacting points (nodes) with neighbouring elements. This case 

excludes the elements on the surface of the model, which have fewer neighbouring elements. 

The connection pattern for particle systems, including PSS and PBD, on the other hand, can vary. 

Particle-based models often employ a constraint system that connects the particles with 2D 

constraints. As reviewed before in section 2.3.1.3, there are many different connection schemes and 

even multiple layers of connections. The particles do not necessarily only connect to neighbouring 

particles, but can also connect to farther particles based on the structure design and intention. 

However, a basic single layer triangle mesh, which is the simplest form of the connection scheme, 

will require at least 10 connections to the neighbouring particles for an inner particle. Corner 

particles, edge particles and face particles can have less connection than an inner particle.  

Therefore, in general cases, the particle-based model requires more connections between elements 

than FE model with the same number of particles. 
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2.3.5.3 The calculation involved in solving one element and one node/connection 

A detailed computational complexity evaluation for FE model is given in [81]. The researcher gives 

the computational complexity in asymptotic notation 𝑂(𝑓(𝑁)) as the following equation: 

𝐶 = 𝑂(𝐸) + 𝑂(𝑁𝑊) + 𝑂(𝑁𝑊2) + 𝑂(𝑁𝑊) = 𝑂(𝑁𝑊2)    (1) 

Where 𝐶 is the computational cost, 𝑊 is the bandwidth for the stiffness matrix, 𝐸 is the number 

of elements in the system, and N is the number of nodes (connections). From the equation, we can 

conclude that with the increasing number of W, the left side function will converge to 𝑂(𝑁𝑊2). 

Considering that the above equation is for 𝑁 number of nodes, by not considering 𝑂(𝐸) which 

represents the calculation for boundary conditions, we will have the computational complexity for 

a single node: 

𝑂(𝑁) + 𝑂(𝑊) + 𝑂(𝑊2) + 𝑂(𝑊) 

If we apply the same evaluation to particle-constraint based models, we will have the following 

equation for a single node (two particles connected by one constraint): 

𝐶 = 𝑂(2) + 𝑂(1) 

where 𝐶  is the computational cost, 𝑂(2) represents the calculation to solve the displacement 

function 𝑓(𝑣) for the two connected particles, and 𝑂(1) represents the calculation to satisfy the 

condition of the constraint.  

If we apply the total number of particles E and total connection number N to the formula, we will 

have the formula for the whole system: 

𝐶 = 𝑂(𝐸) + 𝑂(𝑁)                            (2) 

Comparing (1) with (2), we can conclude that with the same number of nodes/connections (𝑁), the 

particle-based model has much less complexity than the FE model. The other important conclusion 

is that the number of nodes is the key factor for the computational complexity for both approaches. 

A similar conclusion is also given in [81]. 

The above analysis is conducted by using asymptotic notion. Therefore, the detailed computational 

cost for the individual algorithm is omitted and the result only shows the value of computational 

complexity in regards to the input data size (in this case, the number of nodes and the number of 

elements). We use this evaluation approach because it is very difficult to compare the accurate 
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computational cost in each individual calculation task as they use different approaches and solutions 

(e.g. different integration methods, different force analysis models). Therefore, a more generic 

evaluation is given. 

2.3.5.4  Time complexity analysis for parallel computing  

In the previous section 2.3.1.3, we have discussed the implementation of multi-thread parallel 

computing in deformable objects physics simulation, which can greatly increase the speed 

performance of the simulation. All the physics models follow the same discretisation scheme, 

therefore, each element and node can be processed and calculated independently. 

We already have the equation (1) and (2) from the last section for computational complexity of FE 

model and particle-based model. To analyse the computational speed with parallel computing, we 

firstly view the computational complexity as the time complexity, then we need to determine which 

part of the calculation tasks can be distributed into independent computation process. For both FE 

based model and particle-based model, the calculation regarding the condition satisfaction of each 

node 𝑁  can be distributed into separate computation tasks. The calculation to determine the 

displacement of each element 𝐸 can also be treated the same way. 

In order to perform parallel computing, an extra step of operation needs to be taken, which is the 

data preparation for grouping the computational tasks. Therefore, if we assume there are number of 

𝑇 threads in the parallel computing process, we will have the following formula for FE based model: 

𝐶 = 𝑂 (
𝑁

𝑇
) + 𝑂 (

𝐸

𝑇
) + 𝑂 (

𝑁

𝑇
𝑊) + 𝑂 (

𝑁

𝑇
𝑊2) + 𝑂 (

𝑁

𝑇
𝑊)      (3) 

where 𝑂 (
𝑁

𝑇
) represents the computational cost for data processing. 

Similarly, the time complexity for the particle-based model can be summarized into the following 

formula: 

𝐶 = 𝑂 (
𝑁

𝑇
) + 𝑂 (

𝐸

𝑇
) + 𝑂 (

𝑁

𝑇
)                            (4) 

In (3) and (4), it is important that the condition 𝑁 ≥ 𝑇 and 𝐸 ≥ 𝑇 is met. The number of threads 

in use cannot exceed the number of nodes or the number of elements. From the formula, we can 

conclude that parallel computing in multi-threads can greatly reduce the computational time cost 

for both models. It is worth mentioning that computational complexity is not reduced in parallel 

computing; on contrary, the parallel computing increase computational complexity as an extra step 
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is introduced for data processing. However, the time cost is dramatically reduced in proportion to 

the number of threads that are available.   

2.3.5.5 Memory usage 

In the real-time simulation, memory usage is a less concerning factor, as the simulated object 

generally does not have a complex model. As disused previously, the total number of elements plays 

a vital role in the computational cost; therefore, to optimise the system to be ready for real-time 

simulation, the number of elements are generally reduced to the minimum degree. In addition, with 

the advancement of hardware development, computers nowadays have significantly larger memory 

space, and it is more than enough to store simplified physics model data and intermediate 

calculation data. Therefore, memory usage is not our main concern. 

By comparison, a single element in FE models requires memory space to store its stiffness matrix, 

along with the force and position information. On the other hand, the data structure for the particle-

based model is much simpler as they only require a position vector and a force vector. 

 

2.4  Discussion and Summary of Gap Analysis 

As reviewed in earlier sections, there are many available methods to simulate deformable object. 

Each method can best capture a certain aspect of the simulation and has its advantages and 

disadvantages. However, there are still some simulation demands that cannot be fully covered; and 

some application requirements are not met by using the available methods. In this section, we will 

discuss modern real-time physics simulation for real-time application and the existing issues.  

2.4.1 Current stage of deformable object simulation 

Rapid development of hardware and parallel computing enables developer and researcher to 

conduct faster computation to solve the physics problem. Many simulations that were not possible 

to run in real-time are now possible. By the time this paper is written the new generation of GPU is 

just released (GTX 3080). Today the demands on the software and visual effects also increase 

dramatically. More and more physics simulations are used in interactive. Physics-based video 

games where the game’s mechanism are driven purely by physics simulations are developed and 

becomes popular. In visual-aid simulations like surgery simulation and human body simulation, 
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more accurate and more detailed simulations are needed in a real-time based. The development of 

VR and AR technology also requires physics simulation as the interaction with virtual environment 

can bring more immersions to user experience. Instead of pre-defined animations and deco-textures 

which was the normal approach for deformable/destructible objects one decade ago, today’s real-

time physics simulation can offer more possibilities for visual effect yet still maintain fast speed 

and stable behaviour. 

Today, the simulation of rigid body is well developed and are widely used. However, such 

simulation is limited to the interactions between non-deformable objects and focuses on large scale 

collision detection, motion projections etc. There are increasing yet still a small number of general 

application using the deformation of plastic solid body itself, like bending, folding, denting and 

cracking. The material proprieties are represented only by its texture materials but not the way it 

behaves. On the other hand, deformable object simulation is very well developed for elastic objects. 

However such simulation and the methods being employed fail to capture another group of 

deformation: plastic deformation. 

2.4.2 Our concerns regarding the deformable object simulation  

In this thesis, our research goal and focus is the simulation method for plastic behaviour of solid 

objects in real-time interactive applications. Other than elastic objects, we concern about the 

deformation of solid, volumetric objects with permanent deformable material properties, like metal. 

Such method requires the following properties in order to function: 

1. Captures the demanded material property. The model does not require any elasticity, and it 

should follow the metallic material deformation that we have discussed in Figure 2.2.7 Metal-

like object behaviour related to stress and strain level, in which we replace the elastic phase 

with rigid phase and ignore the fracturing phase. 

2. Fast and simple. Our intention is to develop a method that can be used in real-time applications 

with high-grade 3D graphics and large scale scenes. Therefore, only a limited amount of 

computational resources can be allocated to do the physics simulation. The simulation needs to 

be fast to catch up with the update of each frame (preferably 60 frames per second, and in future 

cases with higher refresh rates of modern displays, up to 144 frames per second). To achieve 

that the calculation needs to be kept minimum, and the subsequent related physics calculation 
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(e.g. collision detection) also needs to be simple. The method will also require to be adaptive 

in different scales to suit different situation. 

3. Controllability. Real-time interactive application offers experience that is free yet pre-designed, 

and the content in the application (scenes, interactive-able objects in the scenes) are all built in 

the purpose of helping users to experience the virtual scene in the way it is designed. Therefore 

the behaviour and the final outcome of the simulation should have the possibility to be restricted 

within some degree by the designer. 

4. Easy to implement/apply. Our other intention of this research is to deliver a tool (framework) 

for an easy creation and implementation workflow. Therefore, the simplicity of the method is 

important, as it should be easily adopted by other developers. 

5. Unification. The method should be able to cover a large selection of material based on similar 

modelling and simulation process. Different behaviours of the material should not require 

individual implementation but only a pre-configured parameters. The targeting effects are hard 

metal like behaviour such as denting and bending. Moreover, the method should be able to 

apply to different shapes and scales. Based on unification attributes, a framework can be applied 

to generalize the modelling and simulation process. 

2.4.3 Comparison and discussion of key methods  

In the literature review, we have mainly focused on the three most relevant simulation methods: 

Particle Spring system, Position-Based Dynamics and Finite Element Method. Each method can be 

used to simulate certain types of deformable objects. In Table 2.4.1 below, we have listed the three 

methods together with respect to parameters from different aspects for comparison.  

Method Particle 

Spring 

System (PSS) 

Finite Element 

Method (FEM) 

Position-based 

dynamics (PBD) 

Foundation Hooke’s Law Young’s Modula Position-based 

constraint 

Time integration Euler vector 

based 

Implicit tensor 

based 

Constraint-condition 

satisfaction based 
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System stability Medium High High 

Most usage (simulation) Infinite thin 

objects 

Solid Infinite thin objects 

and Solid 

Physics accuracy Medium  High Low 

Visual realism  Acceptable Very good Good 

Implementation difficulty  Low High Low 

Performance High speed Slow speed High speed 

Able to capture cloth-like 

objects 

Yes Not 

recommended 

Yes 

Able to capture shell objects Yes Not 

recommended 

Not recommended 

Able to capture volumetric 

objects  

Not 

recommended 

Yes with high 

accuracy 

Yes with low to 

medium accuracy 

Table 2.4.1 Comparison of PSS, FEM and PBD 

As shown above, Particle-Spring System (PSS) and Finite Element Method (FEM) are both based 

on elastic physics models. PSS, in a way, is a special case of FEM which offers simpler modelling 

and calculation and faster performance; hence it was also the first method being employed for real-

time deformable object simulation. It is mainly used for Cloth Simulation.  

When simulating impulse transition, PSS uses the spring as the intermedia, therefore the integration 

of internal structure change is interpreted as a 2D elastic problem for an element pair component 

(particle-spring-particle), which can be calculated by using Hooke’s law. Due to PSS’ modelling 

nature, the behaviour of the object fully depends on the structure arrangement of the particle-spring 

mesh. When a certain behaviour is expected, it could be difficult to tune the mesh structure and the 

parameters to match the requirement. In other words, the change of material property cannot be 

achieved simply by applying new parameters but often require restructuring the whole mesh (adding 

more springs, re-arrange the spring connection between particles, etc.). Particle-Spring system also 

suffers from over elastic problem when using explicit integration and over damping problem when 

using implicit integration with large time steps.  
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Finite Element Method, on the other hand, is a generalised method to deal with objects that have 

stress-strain related elasticity. By using 3D elements, it captures volumetric space much better for 

solid objects, and produces better stability as its stress-strain analysis is in 3D (by using tensor).  

The core of PSS and FEM is to calculate the position displacement of each sub-domain of an object 

and work out how its displacement will affect its relationship with its neighbouring sub-domains in 

a stress-strain relationship. The degree of fineness and the internal structure will largely affect the 

behaviour of the object and the numerical errors that brought into the system. In this case Finite 

Element Method is more accurate and stable than Particle-Spring system. However, increasing the 

fineness of the subdivision of the object will also bring extra computation to the simulation. 

Due to its modelling nature, PSS is more suitable for simulating cloth-like object, where the 

simulation only focuses on the 2D surface rather than volume space. Though researchers did 

conduct research in doing cloth simulation by using adaptive FEM method[82]. Muller et.al [83] 

also wrote a thorough review of real-time physics simulation to introduce and summarise the 

development in real-time physics. Including Mass Spring System (or Particle-Spring System, PSS), 

the Finite Element Method (FEM), Position-Based Dynamics (PBD), Rigid Body simulation and 

Fluids simulation. 

Topics from Muller’s review covers from physics modelling, meshes construction, integration 

method to collision detection and response. In this paper, the authors pointed out that the interaction 

between user and physics-based simulation in real-time is very important and challenging, and the 

keys to the simulation are fast computational speed and unconditionally stable, also known as 

numerical stability. Muller et al. stated that Particle-Spring system is simple to use but has major 

limitations: 1. The Internal spring structure determines the behaviour of the object. 2. Parameters 

are hard to tune for specific behaviour. 3 PSS is not able to capture the volumetric property of the 

object. Therefore they suggested to use FEM for a more complex structured object. 

On the other hand, Position-Based Dynamics (PBD) also in some way follows the basic concept of 

Newton’s third law (action-reaction), but its constraints are no longer governed strictly by physics 

rules; and instead of as an intermedia to pass on the energy, the constraint will direction manipulate 

element’s position. By using this approach, PBD gains speed and stability in exchange of simulation 

accuracy.  

As a particle-based method, PSS’s instability will increase as the structure becomes more 



64 

 

complicated, especially when being implemented into a higher dimension (3D volumetric objects 

instead of 2D infinite thin objects). PBD, on the other hand, can still maintain good stability as it 

does not have over-elastic problem and the numerical errors from time integration. Therefore, PBD 

is suitable for 3D soft body simulation.  

2.4.4 Summary of Gap Analysis and drawbacks 

Before real-time simulation was brought into computer graphics for visual effects, the solution of 

deformable object effect was pre-defined animations created by artists. The object can only interact 

with the users in the exact way it was designed but not have flexible responses from different input. 

This causes the user to lose the sense of plausibility. With physics simulation, users can observe 

realistic reaction with randomness from the scene to experience immersion. However, there are 

common problems with elastic physics models that will break the immersive experience:  

1. In elastic system, time integration always brings errors to the system. As the error 

accumulate, the system can become unstable, and the outcome will become unexpected. 

Such unstable behaviour can be identified immediately by the user.  

2. Damping and other constraints can be introduced into the system to deal with the instability 

of the system, but it also introduces more errors. Therefore, such constraints cannot 

guarantee the system to be stable. In addition, damping problem can cause the deformation 

to act “stiffly” which is also not realistic to user. 

3. The behaviour of the system largely depends on how the constraints are constructed. In the 

case of solid deformable objects, it is difficult for particle system to capture the volumetrics 

and simulate the internal displacement of the object. FEM is a better choice; however, it is 

slow for real-time simulation. Therefore certain demands from the interactive application 

are not met.  

In summary, physics simulation based on force and time integration can bring many uncertainties 

to the system, and those uncertainties can become a key negative factor to the user experiences. In 

real-time application, controllability and stability is the key to the visual experience of the 

simulation, where the randomness and (considerably) realistic physical behaviour still exists but the 

behaviour of the object is controlled by given conditions and should not exceed the desired degree. 

Moreover, from the developer’s perspective, implementing physics model and rea-time physics 
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simulation is a multi-disciplinary task. The creation of the model and the implementation of the 

actual simulation requires a lot of external supporting tools. Currently, there are many tools/plug-

ins and game engine/physics engine supports for the artists to create artworks (3D static meshes) 

with physics properties and for programmers to implement the simulation. However, the majority 

of such tools only offer simple physics simulation like solid rigid body simulation and collision 

detection, and simplified case of cloth simulation. The deformation of a solid object itself is still a 

missing feature in the mainstream, high-level engines, and requires case-by-case implementation. 

The most popular way of doing the large-scale deformation simulation, such as destruction of the 

scene/visual environment, is still premade animations and uses multiple static meshes to present 

destructed scenes.  

The reason with this issue is not because the lack of motivation of developing such tool, but lack of 

a standard solution for solving solid deformable object. The solution should involve modelling, data 

interface, a fast and stable simulation method that uses the model structure, and a set of tools for 

different domain experts to work seamlessly.  

Thus a simple way to assist the creation of 3D solid object assets with deformable properties is 

needed. The ideal approach is to take an arbitrary 3D geometry mesh and auto-generate physics 

mesh and its internal structures based on the chosen simulation method, along with a set of 

parameters that can be modified such as the material property factors, surface property, mass etc. 

Then in the real-time simulation, the physics engine will automatically take the physics meshes and 

the parameters and do the simulation in the real-time. The simulation should be fast and stable in 

order to match the key requirement of real-time interactive application.  

Based on the above analysis, we have proposed a new behaviour-based method specifically for 

simulating permanent deformable object in real-time. We have also designed a matching framework 

to give a standard solution to model and simulate such object from a static mesh. In the next chapter, 

we will discuss in detail the purpose and the aim of our method, and give a brief introduction of the 

proposed method.     



66 

 

3 Research Problem and Thesis Proposal 

 

In this chapter, we continue with the analysis from the last chapter, and we are going to discuss the 

current status of real-time deformable object modelling and simulation; and a review of the 

workflow for creating and implementation of such simulation. An overview of the current state for 

deformable object modelling and simulation and the current development workflow will be given 

in Section 3.1. Before conducting the problem analysis, we will give a brief summary of our 

research scope in Section 3.2. Then in Section 3.3, we will give the gap analysis and address the 

current drawbacks in both research and application area. In Section 3.4, we will make a proposal to 

address the problems that we have identified from the previous section. The proposal includes a 

new particle-constraint-based modelling method, an impulse-based real-time simulation method. In 

Section 3.5, we will propose a framework that integrates the two methods with a specific workflow 

to offer fast physics model processing. For demonstrating our methods, we propose to implement a 

prototype application, and we will introduce the implementation plan in Section 3.6. We will then 

discuss our evaluation plan and test cases in Section 3.7. At the end, we will give a summary of the 

whole chapter in Section 3.8. 
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3.1  Research problem overview 

3.1.1 The demands for deformable objects simulation in real-time 

In interactive applications such as video games, education and training applications, visual realism 

is one of the critical factors. A realistic virtual world offers the user an immersive experience that 

the designer wants to express. One part of realism is achieved by cutting-edge graphics rendering 

technology and accurate artwork (models and textures). The other part of realism is determined by 

how the objects in the scene react to user inputs. If the objects give the response that can be related 

to everyday experience, users will have a realistic feel. Such feel will greatly enhance the sense of 

immersion. In order to achieve this effect, realistic physics simulation is needed to model and 

calculate the behaviour of the objects. Modern physics simulation has developed a long way since 

its first establishment in computer graphics. Today, real-time simulation has become a reality and 

has already been used in many areas for interactive applications.  

Physics simulation gives an approximation of how an affected object will develop its behaviour 

governed by physics laws and its physics attributes. Rather than hand-drawn by artists, physics 

simulation can provide a more efficient workflow and more realistic results. Combine these 

advantages with state-of-the-art rendering technology; physics simulation has become popular for 

fiction and destruction scenes.  

However, realistic and accurate physics simulation is mostly done by off-line simulation, which 

means hours of calculation and rendering are spent for just one frame. It is enough for making films 

or animations or even for structure analysis in engineering. However, due to the limitation of 

computational power, such realistic and complicated simulation cannot be achieved in real-time for 

general-purpose interactive graphic applications. 

Currently, a lot of progress has been made to simulate rigid body. Bullets and PhysX are the two 

main physics engines in the industry to perform these simulations. The simulation mainly focuses 

on collision detection and rigid body rotation and displacement. The object itself does not break nor 

deform. The deformable object simulation, on the other hand, is still a difficult task for real-time 

application. Much progress is made for simple structures such as cloth simulation, but for 3D solid 

deformable object, real-time force-based simulation still has performance and stability problem. 

Therefore, researchers were seeking alternative solutions. PBD (Position-based dynamics) [12] 
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offers a fast way to simulate elastic 3D object on a behaviour basis and delivers good results. Shape 

matching method [13] was also proposed for simulating deformable objects from mesh reformation 

perspective. 

3.1.2 Current process for creating 3D objects with physics proprieties 

Nowadays, the production of interactive applications such as games and training system has become 

a well-established industry with a huge market. As the development of hardware computation power, 

3D interactive applications has become very common. The graphics quality and realism have 

achieved a very high level. The development of such applications is very mature. Advanced 

modelling and designing tools and software engineering approaches are widely used in this area. 

In the real-time interactive software industry, workloads for creating an immersive virtual world are 

generally cross-disciplinary. For example, the following working steps and domain experts are 

involved in creating a 3D object with physics behaviour: 

 

Figure 3.1.1 General workflow to create an object with physics properties 

Artists create 3D static mesh with rendering properties (for example, textures and materials). This 

creation process often involves more than one type of artist. The roles include concept artist, texture 

artist, and modelling artist.  

Scene designers are experts in designing the scene with the available objects. They construct the 

scene based on project requirements, and the placement of each object needs to fulfil a particular 

purpose. Not all the object in the scene needs to have physics properties. Some objects are rigid, 

some objects are deformable (soft body, plastic body), and some objects are only decorations that 

have no interaction with users. Scene designers have the responsibility to define physics properties 
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for objects to serve certain purposes that are written in the design document. In industrial production, 

it is important that the simulation behaviour is under control and does not produce any unexpected 

results. Thus the physics behaviour of the object itself needs both flexibility and stability. All these 

are tuned carefully with a set of parameters by the designer with the assistant from programmers. 

Programmers are the creators of the physics simulator and graphics engine or the developer who 

utilise such tool to program game logic and visuals. Programmers have the control of how each 

object actual behaves in real-time. Programmers often work with the guidance of the requirements 

from designers to setup the physics simulation as needed.  

The three above roles have to work together in order to create all 3D objects in the application as a 

standard workflow in the industry. However, each role does not necessarily have the knowledge and 

skill for the other roles. For example, the artist and scene designer often do not know how to 

program physics rules and calculation details for the simulation. The programmer does not know 

modelling techniques and does not have control over how the object is modelled. 

These three steps happen in three different stages. Artist creates the 3D model in computer-aid 

modelling software like Maya, 3Ds Max, Blender, etc. Then the model will be exported and handed 

to the scene designer. The scene designer will then load the model into scene editor, and set the 

physics attributes accordingly (assuming the scene editor supports this function). 

The programming requires specific skills and knowledge. For physics simulation in real-time 

application, the programmer does not only need to handle the programming but also have to acquire 

solid knowledge in mathematics (geometry, surface analysis, time integration) and physics (motion, 

force/structural analysis). Moreover, 3D modelling and rendering related knowledge are needed to 

evaluate the simulation result. 

As shown above, the process of creating a deformable 3D object in real-time involves a very 

complicated workflow and many different roles. In order to finish creating the physics model, all 

three parties needs to work together and get feedback from each other, and constantly make 

modifications until all three parties are satisfied. This process is time-consuming and creates extra 

workload for all parties.  
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3.2  Research Scope 

Our research scope restricts the problem analysis perspectives and defines our research direction. It 

can be concluded in the following conditions: 

1. Simulation type: Our research only concerns real-time deformable object simulation, with least 

60FPS frame rate.  

2. Deformation behaviour types: Our research topic is limited to permanent deformation of 3D 

objects, including but not limited to bending, denting, twisting and general structural 

deformation.  

3. Modelling method: Our proposed method will be based on the particle system. 

4. Realism degree: The result is only for visual effects. It is governed by modified physics law 

with enough realism level for animation and interaction, but not accurate for simulating 

structure and material properties that for use in engineering or material studies. 

5. Development solution: We concern the development tasks and domain experts that are 

involved in the physics modelling and simulation process.  

 

3.3  Overview of the Gaps and Short Comings 

From the literature survey and the above overview, we have identified the current gap in 

implementing deformable objects simulation in real-time applications. Moreover, the modelling and 

programming process for objects with physics property is too time-consuming for different domain 

experts that are involved in this task. In this section we will discuss the short comings in current 

state. 

3.3.1 The issue with real-time deformable object simulation 

In modern time, the majority of the real-time physics simulation in interactive applications are rigid 

body simulation and cloth-like objects. These two types of simulation are widely used due to their 

simplicity and efficiency. With careful scene design, physics attribute configuration and other 

premade animations, it is enough to deliver realism at an acceptable level. However, in more 

complicated situations, users expect volumetric objects can be interacted with and perform 
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deformation effect. There are many works that look into the problem of simulating deformable 

object based on our literature review. However, at the moment, the majority of these works still 

focus on offline simulation. The solution cannot be directly used for real-time simulation. 

On the other hand, current real-time simulation is mainly for soft and elastic object. Not much 

research looks into the problem of plastic object and permanent deformation or even fracture effects. 

Permanent deformable object simulations are rarely seen in interactive applications. The visual 

effects of such deformation are often made up by pre-set animations instead of real-time calculated 

simulations. Small to medium scale of cloth simulation and small scale FEM solid simulation is 

achieved in real-time and had already been used in real-time applications (games, training). 

However, in interactive applications (mostly games), static meshes are still the standard approach. 

Below is a summary of the objects in real-time environment in current interactive applications: 

1. Most of the objects in the scene are static. They cannot be moved and have no reaction to 

user input. 

2. Most of the objects with physics simulation capacity in the scene are absolutely rigid. The 

objects that can be simulated are often rigid body, which means they do not deform. 

3. Deformation/Destruction are often done by premade animation and a replaced static mesh. 

4. Deformable object simulation is used in a very small scale with simple object structures.  

The current situation has the following drawbacks: 

1. For the static object, the interaction with these object are limited to none. They only serve 

as a decoration and obstacle in the scene with a coarse collision mesh. 

2. Rigid body object limits the variety of interaction.  

3. Premade animation and destructed mesh replacement always produce the same result 

regardless of the input differences. 

4. Lack of realism.  

These drawbacks limit the user’s experience and can break the sense of immersion. In order to 

improve realism, objects in the scene should have a natural reaction from the user’s action. User 

interaction with the objects should not be limited to just get simple feedback but also can cause 

changes to the surrounding environment. This change requires a new modelling system that can 
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quickly convert the object between static mesh and physics model. In addition, the application has 

to be able to perform such simulation in a fast and stable manner with an acceptable degree of 

realism.     

3.3.2 The problem of the pipeline of creating and simulating deformable 

objects 

As presented in Section 3.1.2, it takes multiple roles of experts to collaborate by using different 

platforms to create an object with physics behaviour. The workflow crosses at least three different 

stages and requires a lot of feedback for any justification in order to meet project requirements. The 

disadvantages of such workflow are: 

1. The process cannot be done by one person. The task requires multiple to work together. 

2. The work has to be done in a specific order; each step has a dependency relationship to the 

previous step(s). 

3. Different parties do not have the required knowledge and skills for other parties. They need 

to rely on other parties to make modifications. 

4. The workflow requires extensive communication. 

The disadvantages can cause further problems: 

1. Each party lacks control over the tasks they do not understand. For example, an artist does 

not have control over the physics properties; therefore, it is difficult to preview the object’s 

deformation behaviour. This can cause potential problems later, as the mesh created does 

not meet the deformation requirement according to the design. Lack of knowledge can also 

cause miscommunication between different parties hence reduce the quality of the work. 

2. As each party relies on other parties, unnecessary overlapped workloads can be created due 

to the collaboration. Result testing and modification require all three parties to work 

together. 

The above problems are very common in the developing process of the interactive applications.  

 



73 

 

3.3.3 Lack of permanent deformation simulation in real-time application 

Based on our literature review, we did not find many works that relate to permanent deformable 

simulation. Most of the research in the simulation domain concerns elastic objects. The simulation 

for permanent deformable objects, especially the particle-based modelling of such objects, are 

overlooked. However, we believe that permanent deformable object is an important topic in real-

time simulation. It has more potential useability than elastic objects. While elastic objects are often 

used for character and key items, permanent deformable objects can be used in a larger scale for 

constructing the environment components. We have summarised some reasons that prevent 

permanent deformation from being used in real-time interactive applications: 

1. Most permanent deformable objects are volumetric objects. The modelling for such objects 

often requires complex structures. FEM is the best solution for such objects. However, 

complex modelling leads to expensive computation for solving the system. For real-time 

simulation, this is a big drawback.  

2. Simple modelling methods like particle-based approaches are difficult to capture the 

volumetric structure.  

3. Most of the simulation methods are force-based (particle-spring system, FEM), which 

brings stability problem to the simulation. Deformable objects are often on a larger scale 

than elastic objects. Therefore, it brings more difficulty to maintain the stability. In addition, 

force-based methods usually bring heavy computation. 

4. From the comparison, behaviour-based approaches (PBD, face matching) can deliver a 

faster solution. However, as they do not strictly follow the physics law, the real-time result 

presentation may not be as realistic as the physics-based methods.  

From our evaluation, with modification, the behaviour-based approach can be a better solution than 

the force-based method for generating real-time interactive deformation effects. In addition, despite 

the fact that FEM is the best solution for modelling volumetric objects, it introduces an extensive 

amount of calculation and potential numerical stability issue to the system. Therefore, we believe 

the particle-based method can still be used for such task, especially in behaviour-based approach 

with non-elastic model.  
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3.3.4 Research Target 

Based on the previous analysis and our research scope, we have setup our research goals to target 

some of the existing issues in the real-time physics simulation and modelling process.  

Firstly, we believe a new method for modelling and simulating permanent deformable object in 

real-time is needed. The new method should have the following key attributes: 

1. It should use simple physics modelling system to reduce the computational demands and 

the usage of memory, which are very important in large-scale real-time simulation. 

2. It should simulate permanent deformation of an object. This means we have to eliminate 

the elastic property from the object. This is very different from PSS, FEM and PBD. 

3. It should be numerically stable and can be controlled by a set of parameters. In addition, 

the physics property should be represented by parameters that can be easily modified.  

4. It should have the controllability to handle any unexpected input and maintain stability. 

5. The result does not need to be as accurate as high-precision simulations (like FEM used in 

structure analysis and force analysis), but it has to have visual realism that can offer real-

world-like experiences to the end-user.   

Secondly, we believe that a complete solution for modelling a static mesh into a physics model is 

useful for interactive application development. This can be particularly helpful for permanent 

deformable object modelling; because the structure of such object are often more complicated than 

simple objects that are currently used for interactive application (like cloth objects).  

The proposed solution should have the following key attributes: 

1. It should be able to directly take standard raw data (3D static mesh) format as input. 

2. It should be able to process the raw data automatically generates physics mesh structure 

without human intervention. 

3. It should have the interface to allow non-expert users to have control over the physical 

structure and material properties of the object. 

4. It should have a physics simulator for simulating real-time deformable object simulation. 

5. The whole solution should be designed to reduce unnecessary workload between different 
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groups of domain experts. Therefore, the user interface should be intuitive to offer a tool 

for non-expert users to complete technical tasks that can only be done by experts.  

In order to tackle the discussed drawbacks and achieve our target, we will propose a solution 

including a modelling method for permanent deformable objects; and a simulation approach for 

such objects in real-time. Also, we will propose a framework that utilizes our solution and integrate 

the methods into a seamless workflow for physics model generation and simulation. 

 

3.4  A new solution for modelling and simulating permanent 

deformable objects in real-time 

Based on the current shortcomings we have discussed in Section 3.3.1 and Section 3.3.3, there is a 

demand for a fast, stable and reasonably realistic solution for deformable object simulation in real-

time environment. Such solution requires special physics modelling method to the object, and a 

corresponding simulation method that can take the benefit of such modelling approach and bring it 

into real-time simulation. 

In order to achieve this, we would like to propose our new solution, including a particle-constraint-

based modelling system with a face-body-centred cubic mesh structure. And an impulse-

distribution-based real-time simulation method.  

3.4.1 A particle-constraint based modelling 

Our proposed modelling method is particle-based; each particle represents its mass and the 

surrounding spaces. The benefit of particle-based modelling is its simplicity. Compare to FEM 

modelling, the particle system is much easier to calculate and model. Moreover, it has a simple 

structure. For the connectivity between particles, we propose to use a distance-based constraint. But 

unlike from PBD, the constraint has little to none elasticity as its length is flexible. 

With a flexible constraint length, our Particle-Constraint based system is able to simulate object 

deformation, while in PSS and PBD the system will always tend to recover to its initial state. With 

correct distribution of the particle and constraints, particle system is capable of simulating 

volumetric object and perform deformation under external force or collision. With the similar 

modelling elements to PBD and PSS, it is also very easy to convert the object to use another particle-
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based simulation algorithm. Therefore, particle-based modelling also has a good comparability. The 

constraint in our method is also a path representation for a network structure, which we will be 

using for impulse distribution in the simulation phase.  

The advantage of a Particle-Constraint-based system is its simplicity. It is easy for modelling and 

calculation. Particle-based system has its drawback when representing a continuum material object. 

This case usually happens in soft-bodies which has elastic property. However, in non-elastic 

systems with distance constraints, this drawback becomes less problematic as the movement of each 

particle is limited. 

3.4.2 A physics structure based on Body-Face-Centred Cubic (BFCC) 

The interior particle structure is expected to be generated in a fast and simple manner with good 

stability. Our framework concerns about plastic deformation, which normally occurs in metal 

material, therefore, it is reasonable to consider the real-world crystal structures in Metals. We have 

considered the Body-Centred cubic (BCC) [84] and the Face-Centred Cubic (FCC) [85]. By 

analysing both approaches, we have found that BCC does not offer a structure symmetry, and FCC 

has a large empty space in the centre. Therefore, we combine the two structure together and propose 

a Body-Face-Centred Cubic (BFCC) pattern as a unit element to generate the structure grid.  

BFCC is not only responsible for generating the internal structure of the object but is also 

responsible for constructing the surface mesh of the physics model. By using BFCC approach, we 

can automatically generate approximated surface based on the rendering mesh in fast speed with 

reasonable triangle quality. 

3.4.3 An Impulse-based Real-time Permanent deformable simulation 

We propose an impulse-distribution-based simulation for simulating the deformation of the 

structure. An impulse represents a one-time displacement of a particular particle. Our idea is to 

distribute such impulse throughout the entire structure.  

The initial term proposed for our method was Velocity-Based Dynamics (VBD, in the spirit of 

distinguishing our method from Position-Based Dynamics, PBD). However, the term was already 

occupied in other fields [86, 87]. Therefore we use the term “Impulse-based” to name our method.  



77 

 

In the simulation, the physics material behaviour of the object depends on the property of the 

constraint. The constraint act as a connection and transfer intermedia of the impulse. We define the 

collision or any other external applied disturbance to the object structure as an initial impulse. Once 

the initial impulse is detected, the affected outer particles will automatically gain initial 

displacement. Then the impulse will be distributed throughout a network structure. The 

displacement of each particle can be determined after solving the satisfaction with all the constraints 

that connects to it (Similar to PBD). The advantage of this solution is that the constraints do not 

apply velocity to particles, therefore, calculating particle’s displacement can be much simpler as 

there is no differential equation to solve. The displacement has only two steps (initial displacement 

and constraint condition adjustment).  

3.4.3.1 Difference between Impulse-based and Position-based 

From a broader view, PBD can still be considered as an elastic system, though it does not follow 

the Hooke’s law and with less numerical issues. The constraint itself is commonly in a fixed state 

(always follows the same constraints parameter, same rest length and same stiffness). Impulse-based 

method, on the other hand, is proposed to solve permanent deformable (elastic) object specifically. 

Therefore elastic solution does not apply to our method. In our proposed method, constraints will 

still apply adjustment to particle’s position however the trigger for the constraint condition to take 

effect is much flexible than a fixed-length constraint.  

Moreover, in force-based methods like PSS, the displacement of particle is determined by force, 

which is its second derivative. In PBD, the particle still has velocity. Therefore, the displacement is 

determined by its first-order derivative. In the impulse-based method, we manipulate the particle’s 

position directly without calculating its change over time. Therefore time integration process based 

on particle’s velocity is eliminated from our system.  

3.4.3.2 Difference between our Impulse-Based Real-time Permanent deformable 

simulation model and the Impulse-Based Dynamic  

In 1995-1996, Mirtich, B published his work named impulse-based dynamic simulation [88] [89], 

which has a similar name to our proposed system. This coincidence may cause potential confusion 

to the reader. However, the two concepts behind similar names are different. Mirtich’s work 

proposed a constraint-less solution to handle object contact and its response for rigid objects. It 
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belongs to the rigid-body simulation domain, which was categorised in Figure 1.2.2. 

Our proposed method, on the other hand, is a solution for simulating the permanent deformation for 

plastic objects, which belongs to a different research field. We use the term “Impulse-based” 

because the method does not analyse any form of force and material strain-stress problem. Therefore, 

the term is used to distinguish our method from the “Force-based” methods, such as Particle-Spring 

System (PSS). Moreover, a counterpart and the original base of our method is “Position-Based 

Dynamics”, also known as PBD. Therefore we named our method as such in order to emphasise the 

physics foundation that the method is based on. An analysis of the difference between the Force-

based Method and Position-Based Method is given in Section 2.3.2.2. 

Therefore, our method relates to a different research area to Mirtich’s Impulse-Based Dynamics, 

which focuses on rigid body. The two methods do not share many similarities with regards to the 

simulation process. In addition, our simulation model is a component of the proposed “FREDOMS” 

framework, which will be introduced in the next section. It is a standalone concept, but its 

implementation also relies on specific physics modelling methods.  

 

3.5  A Framework for Permanent Deformable Object Modelling 

and Simulation 

3.5.1 Purpose 

We have discussed the drawbacks of current workflow for creating physics objects in Section 3.3.2, 

and we have listed our requirement for such workflow in Section 3.3.4 . To address these problems, 

we propose an all-in-one solution to simplify the working process. The proposed framework 

provides a tool for different domain experts to easily process an initial data (raw rendering mesh) 

to meet their requirements. Most of the work that previously needed to be done manually can now 

be handled automatically by our system. Communication and collaboration between different 

parties can be reduced to minimum. By employing the proposed framework, the development team 

should significantly reduce time consumption when creating 3D deformable objects and the 

implementation of simulation for such objects. In addition, our framework offers direct access to 

some technical and professional tasks that can only be done by specialists to other non-expert users.  
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3.5.2 Target Users (Framework involved professional stakeholders) 

Our framework is designed to offer assistance to different professional stakeholders involved in the 

creation process and give each user access to other users’ tasks in the same platform. Our framework 

has the following targeting users: 

1. Artist (3D Modelling specialist). The creator of the raw 3D rendering mesh. 

2. Scene designer. The domain expert to determine which object(s) in the scene should be 

involved in physics simulation. Scene design is responsible for deciding and configuring 

the type of material property of the object, the purpose and the degree of the object 

deformation and the control factors that need to be applied.  

3. Programmer (Interactive logic programming and Physics simulation specialist). The 

developer who programs the designed and required activity and input/output logic into the 

application and uses the applied API (Application Programming Interface) to integrate our 

simulator into the game system for permanent deformable object simulation. 

3.5.3 Framework Functions and Architecture 

We call our proposed framework “A Framework for REal-time Deformable Object Modelling 

and Simulation”, known as FREDOMS. We propose this framework as a complete solution to the 

creation process. Therefore it should offer a full set of function to satisfy the purpose and target 

users from the beginning to the end of the workflow. The framework is a one-step integration of our 

proposed modelling and simulation method combined with an intermedia interface.  

The framework should offer the following core functions: 

1. Automatic geometry analysis and physics modelling from an existing 3D rendering mesh. 

2. Direct editing and manipulation to physics material properties to the object.  

3. Real-time demonstration and feedback for reviewing the visual effect. 

4. Real-time simulation from a simulator that can be integrated into other applications.  

In order to achieve the above functions, we proposed to have two main components in functional-

wise prospective in our system: 

1. The Automatic Physics Modelling Functionality Component (APMFC). 
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2. The Deformable Object Simulation Functionality Component (DOSFC). 

APMFC will offer the solution for functions #1 and #2. The system will require parameters from 

user input to define the desired physics property. It will then automatically analyse the object’s 

geometry and conduct physics modelling based on the input parameters.  

DOSFC is responsible for functions #3 and #4. In words, DOSFC is a physics engine we designed 

to specifically simulate 3D deformable object by using our proposed simulation method. To achieve 

function #3, DOSFC will work with an additional user interface to offer instant simulation feedback 

to the user.  

FREDOMS also provides an interface for artists and level designers to view, model and test the 

object. The interface is called Automatic Physics Modelling Interface (APMI). APMI is a CAD-

like application that gives users access to all the configurations that we used in FREDOMS. It also 

uses a reverse-data interpretation to hide technical details for non-expert users. Therefore the skill 

requirement for using the interface is low.  

 

3.6  Implementation Plan 

In order to test and demonstrate our proposed methods and the framework, we will implement a 

prototype based on the functionality of APMFC and DOSFC. In Addition, we will implement an 

interface with the integration of APMFC and DOSFC that follows the ideology of FREDOMS 

framework. The final implementation will have two products: A fully functional application 

combined with APMFC and DOSFC with an editor interface. And a standalone physics simulator.  

3.6.1 Automatic Physics Modelling Interface (APMI) 

Our first system is Automatic Physics Modelling Interface (APMI). APMI system is an application 

with a 3D model editor interface. It is a toolset for artists and scene designers to create 3D physics 

objects. It has the following functions: 

1. File input/output. It should be able to input rendering mesh file (in .obj format) and export 

the same object with additional information (physics mesh and mapping information). 

2. Object mesh viewing interface. This includes the review of rendering mesh and physics 
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mesh with different display options. It gives a visual aid to the user to identify its geometry 

and physical structure. 

3. Parameter toolsets. It allows users to input material parameters to adjust the desired physics 

property that can determine the object’s behaviour when doing the simulation. The input 

interface should be intuitive and with a reasonable number of pre-defined configuration, so 

users do not have to have physics or programming knowledge to create the physics model. 

4. Automatic generation of physics model. This includes surface mesh generation, weighted 

mapping, distribution of particles and the final generation of the physics mesh. The 

generation process and key information should be displayed. 

5. Real-time testing review. User should be able to conduct tests and initiate interaction with 

the object and observe its deformation behaviour in real-time.  

3.6.2 The PanGu Physics Simulator 

The functionality for standalone Physics simulator is already implemented in APMI. However, it is 

important to implement a separate simulator that can be embedded into other platforms. Therefore, 

the simulator is the implementation of DOSFC functionality and is already integrated in APMI. We 

call this simulator as PanGu Simulator (PG simulator, or PGS). 

We name this physics simulator as “PanGu” which in ancient Chinese mythology is the first being 

in the universe, and its dying body creates everything in the world. We choose this name as we 

would like to create a virtual and realism world for real-time interactive applications in computer 

graphics. 

The simulator should have the following functionalities: 

1. Load data that are exported from APMI (APMFC) and construct the object accordingly. 

2. Collision detection. 

3. Force analysis and impulse distribution to the internal structure. 

4. Real-time simulation of the physics mesh. Calculate displacement for each particle and the 

total structure deformation of the object. 

5. Map the deformation of the physics object back to original raw rendering mesh. 
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3.7  Plan for Evaluation  

3.7.1 Evaluation Matrix 

After finishing the implementation, we will test the framework as a whole workflow, as well as its 

individual functionalities. Based on the aspects we have discussed in gap analysis (Section 0), we 

will evaluate our framework by testing the implementation result in the following areas: 

1. Modelling and simulation capability: The most important task for our proposed methods 

and FREDOMS framework is to deliver modelling and real-time simulation for permanent 

deformable objects. Therefore, we will test how the automatic modelling function can 

handle different types of mesh geometries. And if the system is able to carry out real-time 

simulation for such model and deliver different effects. 

2. Behaviour Controllability: We will test how the different parameter settings can affect the 

behaviour of the object’s physics material during the simulation. 

3. Structure Stability: We will test if the object is numerically stable and how it reacts to 

external impulse and how it achieves structure balance. 

4. Result Realism: We will observe the visual result from the tests and evaluate the realism 

degree. 

5. Speed Performance: We will conduct speed test in different conditions to evaluate if our 

simulation achieves real-time requirement. 

6. Usability: We will conduct a test for our APMI interface by using a specific use case, and 

evaluate its usability for our desired tasks (modelling and real-time simulation testing). 

3.7.2 Design of the Test Cases 

In order to conduct the above evaluation, we will design five testing cases: 

1. The Metal Bar Case: We will use a simple rectangle metal bar object for simulating different 

deformation types, including bending, compressing, and twisting. 

2. The Metal Plate Case: We will use a flat metal plate to simulate denting effect. Moreover, 

we will use this case to test different configurations of parameters and their effects on the 



83 

 

material property. 

3. The Torus Case: We will use a torus object to test how our framework can handle more 

complex geometry. We will also continue to test the torus object with the same parameters 

configurations in the Metal Plate Case to measure the material behaviour in different scales. 

4. The Alex’s Car Case: We will give a case study of a video level designer named Alex who 

uses APMI to generate physics model for a car mesh. By using this case study, we can 

demonstrate how our framework can assist user to perform quick and easy physics 

modelling and simulation. 

5. The Speed Testing Case: We will conduct test specifically for speed test in different particle 

and spring density. 

In correspondence to our evaluation matrix, we have summarised the testing aspects for each case 

in the following table:  

 Capability Controllability Stability Realism Speed Usability 

Metal Bar ✓   ✓  ✓ 

Metal Plate ✓ ✓ ✓ ✓   

Torus ✓ ✓ ✓ ✓   

Alex’s Car ✓ ✓  ✓  ✓ 

Speed Test  ✓   ✓  

Table 3.7.1 Test case summary in relation to the evaluation matrix 

From Table 3.7.1, we can see that the five test cases have covered all the aspects from the evaluation 

matrix.  

 

3.8  Proposal Summary 

In this chapter, we have reviewed the current stage and drawbacks of real-time physics simulation. 

We have identified that currently, most of the popular methods are for elastic systems, and there is 

no efficient method for simulating permanent deformation (metal-like rigid body) in real-time 

interactive applications. In order to address this gap, we proposed a new solution for modelling and 
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simulation method that uses a particle-based system and non-elastic constraints instead of springs 

to model and calculate internal structure and deformation of the object. The proposed model is 

expected to significantly improve the stability and the performance (speed) of the simulation and 

also provide reasonable realism in visual effect. 

We also reviewed the current states of the workflow for creating and simulating 3D objects in 

industry. We believe there are cumbersome steps and workloads existing in the current workflow, 

and some of the workload can be avoided. We then proposed a Framework for REal-time 

Deformable Object Modelling and Simulation, known as FREDOMS. This framework offers 

permanent deformable object modelling and simulation solutions for artists, scene designers and 

programmers to share the same platform. The platform provides an intuitive environment to enable 

domain experts from one discipline to collaborate on tasks in other disciplines.  

For demonstrating our proposed methods, we introduced the implementation plan for APMI and 

PanGu system and their functionality requirements. We then present an evaluation matrix for 

measuring the key aspect of our contributions. We designed 5 cases based on the evaluation matrix 

and the results are expected to cover all the research goals and can demonstrate the validity of our 

proposed methods.      

In the next chapter, we will give a detailed introduction and discussion of our proposed methods 

and the FREDOMS framework.   
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4 A Framework for REal-time Deformable Object 

Modelling and Simulation (FREDOMS) 

 

 

In the last chapter, we have introduced a new method for modelling permanent deformation of solid 

objects and a new method for simulation such objects. We have integrated our solutions into a 

framework with a complete workflow for automatically processing a static rendering mesh into a 

physics mesh. The framework will provide an intuitive and fast solution to the domain experts for 

quickly creating physics mesh with desired material properties. Then the framework will conduct 

simulation of the created object in real-time interactive applications.  

We structured the FREDOMS framework into two major functional components and an interface 

design. The two components are responsible for the physics modelling and the physics simulation. 

In this chapter, we will give a detailed introduction to these components and the solutions that we 

employ to address the issues in each tasks in order to present a complete view of the framework. 

In Section 4.1, we will give an overview of the tasks in FREDOMS workflow, and a review of the 

current physics object content creation process for application development. In Section 4.2, we are 

going to introduce the first component, which is an automatic modelling solution by using a BFCC 

(Body-Face-Centred Cubic) unit-based structure and a grid-based surface generation method. In 

Section 4.3, we are going to introduce our impulse-based method for simulating permanent 

deformation objects in real-time, and the solution to handle collision detection, impulse distribution 

and structure maintenance. In Section 4.4, we will present our user interface design based on the 

principle of FREDOMS. At the end of the chapter, we will give a summary in Section 4.5. 

 

  



86 

 

4.1 An overview of FREDOMS workflow 

By definition, a framework is a collection and integration of solutions that are arranged to a certain 

workflow for a given problem. In our context, a framework for real-time permanent deformation 

simulation requires multi-step processing of a static rendering mesh.  

We have proposed FREDOMS (“the system”) to target the complicated developing process for 

physics modelling and simulation. The proposed framework should only require a minimum 

amount of input and user intervention yet can still provide desired results. To achieve this, we have 

to make standard procedures for solving each task in the process, and employ methods that are 

adaptive for different inputs and scenarios.  

In an ideal case, the beginning of the workflow starts with an artist creating a detailed 3D model, 

also known as rendering mesh, or raw mesh. Commonly, the creation of a 3D model includes 

defining all the vertices, faces, shading material properties, textures and UV mapping, and possibly 

other information, e.g. bone structure and skinning. Our physics modelling method only concerns 

geometry information; therefore, the only required information is vertex and face data. Once the 

system gets the information of the mesh, the first step is to test if the information is valid and the 

mesh is ready for physics modelling.  

After the valuation check, the system proceed to the automatic modelling phase. By using the 

rendering mesh as a reference, FREDOMS first generate a boundary box for the mesh. Then, 

FREDOMS construct the particle-constraint structure within the boundary box. Based on the 

physics structure and the rendering mesh, FREDOMS generate the surface mesh for the physics 

model. At last, the system set the constraint parameters and perform a reverse weighted mapping to 

attach the physics mesh back to rendering mesh.  

In the next stage, the physics model is exported and then imported into the simulation phase. The 

first step in the simulation phase is to reconstruct the physics model by a set of proper data structures. 

The data types and structures are already defined in modelling phase and the standard is universal. 

Then the model is loaded into the interactive scene along with other deformable or non-deformable 

objects. It is worth mention that the simulation itself is just a part of the user-experience therefore 

a concern is that it should only take a limited amount of system resource to compute. In the real-

time interactive environment, FREDOMS performs constant collision detection and impulse 



87 

 

analysis (with optimisation conditioning to avoid unnecessary computation). Once a collision or 

other form of external impulse is detected, the system starts to respond. It first determine the 

collision or impulse effect to the object and start to exam the affected surface particles, and then it 

applies initial impulse to collided particles and distribute the impulse throughout the structure. The 

system solves individual particle’s displacement base on their position in the network structure. 

Then the constraints are checked to identify if their conditions are satisfied, if not, the system adjusts 

the particle’s position accordingly. After determining all the particles current position, the system 

remaps the displacements (deformations) back to the rendering mesh and then a physics simulation 

for a given execution cycle is completed. This process, along with all other logic executions, will 

be executing constantly as the application is running. 

This proposed framework contains two core parts: The first part, as proposed in Chapter 3, is called 

Automatic Physics Modelling Functionality Interface (APMFC). APMFC contains all the 

functions that are required for object modelling. The second part is The Deformable Object 

Simulation Functionality Component (DOSFC) which is the physics simulation component for 

real-time deformable object simulation. Our proposal also includes interface design; however, the 

interface design can be subject to change to suit different scenarios, but APMFC and DOSFC are 

fixed standards with specific methods. Therefore, the interface design is not listed as the essential 

part of FREDOMS. 

Below is a summarised illusion of the FREDOMS workflow (Figure 4.1.1): 
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Figure 4.1.1. The FREDOMS workflow 
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In the following sections, we will discuss each task in the workflow in detail and we will introduce 

the methodology for addressing and solving problems that are related to each individual task. 

A note on Pre-calculation for Real-Time Simulation 

Functionally, our framework as two main components: APMFC for physics modelling and DOSFC 

for real-time simulation. It is worth pointing out that all the modelling operation and computation 

that happen in APMFC are offline computation, which means it happens in a separate stage that 

before the real-time simulation started. In application development case, this happens before the 

application is fully developed. Therefore, speed-wise performance is not concerned for APMFC. 

This approach is in the similar principle to optimisation in FEM where the Degree of Freedom of 

each element is limited (as review in literature survey and [72]). The spirit of such process is to 

prepare the data quality and reduce the data size to minimal in order to boost real-time simulation 

by saving unnecessary calculation. This approach is different from the principal of another 

optimisation concept like Multi-Body System (MBS) where the preparation of the model is to reduce 

the model simulation complexity from modifying the simulation mechanism itself.  

Therefore, aside from simply converting rendering mesh to physics mesh, one of the purposes of 

APMI is to construct and prepare a better physics mesh that is specifically optimised for our 

simulation method that are employed in PanGu Simulator and make it more efficient. The 

optimisation method of the mesh is also suitable for other similar simulation methods with a little 

modification as the mesh quality standard is universal in computer graphics. Moreover, this process 

will be done automatically therefore the standard can be executed in good consistency and no 

human effort is involved (except doing initial configuration) to save the workload from the artist 

(unlike some methods that need extra preparation from artist [79]). Therefore, we believe the pre-

calculation process in preparing the model is necessary.    

 

4.2  Automatic modelling method for particle-based physics 

model 

The first step of physics simulation is to perform physics modelling to a given object. Physics model 

defines the object’s geometry information, internal structure and physical material properties. The 

selection of modelling approach will directly define and limit the possible simulation method(s) 
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that can be employed. 

Current industry solutions for physics modelling for real-time simulation purpose is limited with 

little freedom and require extra training, the Bullet Physics Engine in Blender[90] and the PhysX 

in Unity [91] are examples of modern physics libraries that are integrated with modelling and scene 

designing platforms for physic simulation. In most of such platforms, the direct physics modelling 

or physics properties configuration process is limited to simple physics problems like rigid body, 

basic character animation and cloth simulation.  

An ideal workflow for domain experts to create objects with physics properties is that an artist 

creates a detailed rendering mesh (static mesh) for the object. Then the artist can select and define 

the physics properties of the object (e.g. rigid body, absolute static object, soft object, permanent or 

elastic deformation etc.) from a set of options and can modify the properties by parameters/factors 

based on common sense (rather than knowledge in mathematics and physics and material studies). 

Then the computer-aid creation tools automatically does the physics modelling and creates a 

mathematical description of the physics property of the object based on the rendering mesh. Then 

it should be able to export the object into files just like any other standard 3D models but also attach 

its physics information with the file.  

The simulator should be able to load such file and understands its physics interpretation and execute 

the physics simulation accordingly. The workflow of automatic generation of physics model can be 

summarised as below: 

 

Figure 4.2.1 Modelling workflow 
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modelling
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4.2.1 A Particle-Based Modelling 

In the literature review, we have discussed different types of simulation method, which includes 

particle-spring system, FEM, position-based dynamics and other particle-based methods. Each 

method prefers the simulated object to be modelling in a specific way. In Chapter 3, we have 

analysed these methods based on our research purpose, and we have chosen particle-based 

modelling method for our simulation method.  

There are two most popular model approaches for deformable objects. One is particle-constraint 

based modelling, which is widely used in particle spring system and position-based dynamics. The 

other one is volume-based space discretization, which uses small solid elements to fit the interior 

space of a continuum object. An example of such method is tetrahedron groups in Finite Element 

Method (FEM). A good modelling method will provide fast proceeding speed and structure stability. 

And the selection of the modelling method is highly related to the simulation approach. For example, 

a particle system is not suitable for FEM method because it cannot fully occupy the whole internal 

space of the object. Therefore the simulation is not able to apply tensor analysis to stress/strain to 

each element. In APMFC, we only concern speed in real-time and simple interface for non-domain 

experts (in physics and programming term). Therefore the chosen modelling method should satisfy 

the following conditions that are listed from high to low priorities: 

 

Figure 4.2.2 Priority for modelling condition 

1. Good performance: Model should be prepared and optimised to perform fast speed calculation. 

Good performance also implies the possibility to employ the modelling method in large scale.  

2. Ability to capture volume space. Our research goal is to simulate 3D volumetric objects, 
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therefore, the method should be able to capture internal space of the with good structure stability. 

3. Numerical stability. The model should consider the stability problem as the deformable object 

is often affected by constant change of external force. The force applies to the object is the 

second derivatives of the displacement/deformation of a sub-space part. Therefore when 

calculating the total displacement in a given interval (time step) there are usually errors 

introduced to the system based on the integration method and the time step we chose. 

4. Adaptivity: FREDOMS is expected to take a large range of input data from large scale of 

simple simulation or small scale of complicate and detailed simulation, and with different 

geometry features. The modelling should be adaptive to fit the purpose of the model while 

maintaining optimisation to boost the performance in the simulation stage.  

5. Realism: The purpose of physics simulation is to deliver an immersive experience to the end 

user; therefore, the visual effect should be realistic enough to convenience people. Because we 

have limited our application scope to entertaining/non-crucial training purposes, there is no 

requirement for physics accuracy. 

6. Method complexity, Difficulty for implementation and manipulation: APMFC is designed 

for users that are not an expert in physics and mathematics field, and the system is expected to 

deliver an easy and intuitive interface to the user. Therefore, it is important that the method 

behind the automatic modelling is not over complicated and the interpretation of input data 

needs to be understandable by such users. This factor will also affect the implementation stage 

where the programmer needs to integrate the simulator into the application.   

7. Data size: As we are going to pack the physics data into the model file, therefore the size of the 

file should be considered and kept as minimal. Also, minimum data is preferred when it comes 

to memory consumption in real-time execution of the simulation. 

In the literature review, we have already compared some popular modelling methods, as discussed, 

the discretisation in FEM has a great advantage in result accuracy; but as it requires heavy 

calculation and complicated analysis. Particle system, on the other hand is fast and straightforward. 

Below is a comparison of the two approaches based on our modelling method evaluation matrix: 
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 Particle system FEM discretization 

Fast simulation Yes No 

Capture 3D volume Yes (conditionally and have 

limits) 

Yes 

Numerical stability Yes (conditionally) Yes (conditionally) 

Adaptivity High Low 

Method complexity Low High 

Result of Realism Medium  High 

Degree of freedom Yes Yes 

Table 4.2.1 Comparison of Particle based modelling and FEM based modelling 

As listed in Table 4.2.1, particle-based modelling meet all requirements (with some condition). In 

comparison, FEM has some major drawbacks in meeting some of the conditions. In elastic particle-

based system, numerical stability is always an issue when extreme condition is applied. However, 

some particle-based system does not follow the elastic law (e.g. PBD), therefore, numerical stability 

is improved. FEM suffers the same problem, but because of higher accuracy of the modelling, it 

produced less error in the system than particle-spring system.  

The biggest problem with FEM for real-time simulation is its complicated and heavy computation. 

And the trade-offs between the realism and the simulation speed seems not worthy for real-time 

interactive application. The accurate result that produced from the heavy computation is not needed 

for real-time, effect-wise simulation. It is still possible to implement FEM in real-time, however the 

scale of the simulation is restricted. FREDOMS targets to a larger scope of use rather than small 

scale simulation; therefore, we find FEM and solid element based modelling is not suitable for our 

research purpose. Particle-based method still has certain problems with numerical stability and 

limitations for modelling space volume, but it can be solved by using alternative solutions.  

Moreover, by using a particle-constraints based method, the model can be used not only by our 

proposed method but also other similar particle-constraints based method like particle-spring 
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system and Position-Based Dynamics. The object structure generated by FREDOMS is still valid 

for other particles. With a little modification of the input parameters and a different physics 

simulator, APMFC can be applied to many other methods as a modelling tool.  

Therefore, in our system, we have decided to use a particle-based system for physics model. The 

object will contain a finite number of particles. Each particle is the representation of its surrounding 

space and mass. There are three groups: The first group is the surface particles which defines the 

outer boundary of the physics mesh. They also act as vertices of the collision mesh. The second 

group is the inner particles group which captures the inner volume of the object. The third group is 

the outside particles which are within the object’s boundary box but outside the object’s geometry 

mesh. This group is reserved for AABB frame referencing, which will be introduced in later sections. 

4.2.2 Constraint 

In FREDOMS, particles are connected by distance-based constraints. Constraints in particle-spring 

system apply force to the particle. While in PBD, constraints limit the position of the particle. In 

FREDOMS, constraints is a connection between two particles with length limit and length 

flexibility ratio value; it serves two purposes: 

1. To pass impulse to the particles at each end. 

2. To limit the movement of particles by checking if the distance condition is satisfied. 

We use a network-based data structure and a one-way impulse passage algorithm (will be discussed 

later) to distribute the impulse gained from external disturbance. Constraint structure is a reference 

to the system for determining the path for impulse distribution. Only the connected particles will 

have direct interaction. The constraints contain the parameter that can decide how much impulse 

will be passed from one particle to another. In addition, constraints have direct manipulation to the 

displacement of the particles. Compares to Particle-Spring System, the constraints itself does not 

offer extra force or impulse (elasticity) to the particles. And compares to PBD, constraints do not 

give a fixed rest length to be satisfied but have a minimum and maximum range.  
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4.2.3 Reverse-data interpretation 

One of the purposes of FREDOMS is to provide a tool for “amateurs” of physics modelling. 

Therefore, the terminologies we used in the framework, even has been greatly simplified, is still 

complicated to the targeted user. Therefore, when designing the interface and defining the 

terminology of the system, the expression of physics and mathematical descriptions will be 

transferred into a more understandable context for average users to understand. We require input in 

the same form, and then we interpolate the data back to the form that the system can understand, 

we define this process as reverse-data interpretation.  

4.2.4 Rendering mesh proceeding 

The entry point of FREDOMS is the creation of a 3D rendering mesh and the import into APMFC. 

Once loaded, APMFC will perform an initial mesh condition check. FREDOMS uses BFCC 

approach, which is very adaptive to the input mesh quality. However, there are still certain 

requirements for the mesh conditions. If the mesh doesn’t meet the conditions, the system will 

Reject the input data and give feedback to domain expert who is responsible for the task. If the mesh 

meets the condition, it will proceed to the next modelling step. 

4.2.4.1 Triangle-based mesh 

In 3D modelling, the surface mesh is defined by face elements. Each face is defined by a number 

of vertices (usually from 3 to 5) within the same 2D plane, and their connections form a closed 2D 

shape. In computer graphics, there are three types of elements: Triangle, Quadrangle and Polygon.  

 

 

Figure 4.2.3 A triangle face 
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Figure 4.2.4 A quadrangle face 

 

Figure 4.2.5 A polygon face 

In modern modelling software, triangle and quadrangle mesh are the most used types. Quadrangle 

performances better for editing operations like surface subdivision and loop cutting. Therefore, it is 

a popular solution in filmmaking where great details are needed. Triangle mesh, on the other hand, 

does not work perfectly with these algorithms; but its simplicity provides great performance-wise 

advantage in real-time graphics like video games and other real-time simulations. In standard 

industrial procedure, most of the models can be exported as triangle mesh. Therefore. FREDOMS 

framework uses triangle type as the default mesh type. 

4.2.4.2 Loading the geometry (rendering mesh) 

The geometry that is loaded into the memory will be stored in our system following the pre-defined 

data structures (for more introduction regarding data types and data structures, please refer to 

Section 5.2.1 and Section 5.2.2 ). As introduced before, vertex and face data will be the only loaded 

information for further process. Once the data is loaded, APMFC will exam the data contents to see 

if it contains required information in correct format. After verifying the data, the system will 

construct the original geometry based on the data. The original geometry (also referred to as “raw 

mesh”) will be permanently reserved throughout the entire APMFC workflow as this mesh is 

directly linked to rendering information. At the end of the modelling phase, the system will map the 

physics mesh back to the raw mesh. Any modification we made to the raw mesh will be stored 

separately.  
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4.2.4.3  Mesh condition expectation 

FREDOMS requires the imported rendering mesh to meet the following requirement: 

1. It has to be a manifold mesh. 

2. It has to be a triangle-based mesh. 

3. It should not have a large triangle difference ratio. In other words, it should not have a large 

flat surface that only contains a small number of triangles. 

The last requirement is not because FREDOMS cannot handle large triangles, but only because 

during the simulation, DOSFC will map the change of physics mesh to rendering mesh after each 

deformation. Therefore the rendering mesh should have sufficient vertices and faces to present the 

deformation.  

4.2.5 Particle-Constraint Structure Generation Based on BFCC Unit 

A unique issue of volumetric object modelling by particle-based system is that a particle element 

does not capture any volume. Furthermore, there are only a limited number of constraints to prevent 

particles from moving freely throughout space. For example, a particle that is connected by n 

number of constraints only has displacement limitation in these n directions. However, there are 

still infinite directions that it can move. The constraints from other directions can apply indirect 

restrictions to the particle’s movement; however, the restrictions are based on the structure of the 

particle-constraint mesh. In many cases, the restrictions are insufficient and the particle can move 

across other particle’s domain (if we define a domain as the particle’s surrounding space within a 

certain range at the system rest state). This is a common problem in cloth simulation. But a cloth 

object is a 2D structure; therefore, the issue is less problematic than 3D volumetric solid objects. In 

3D object, the particle-constraint structure can quickly become unstable during the deformation 

because of crossover particles, especially in non-elastic systems, where the system has little to none 

tendency to restore its structure to the original state and maintain the structural integrity.   

4.2.5.1 Physics mesh structure requirements for FREDOMS 

Based on the previous discussion, the structure of how the particles are distributed throughout the 

space and how the constructs are constructed to offer the structure support to particles are very 

important for permanent deformable physics model. When choosing the particle-spring structure 
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for FREDOMS, we have the following requirements: 

Uniformity: The structure should be uniformed throughout its entire boundary. A uniformed 

structure provides a stable and predictable deformation pattern. In addition, it is easy for 

implementation and analysis. A uniformed structure can also share universal constraint parameter 

configurations.    

Supporting and restriction equity (structure symmetry): It is important for a particle to receive 

an equal amount of supporting and restriction through the constraint. This requires the distribution 

and the constraint connection formation to be symmetric from all directions in relation to the 

particle itself. For a better understanding, Figure 4.2.6 gives an example of symmetric and 

asymmetric structures.  

 

Figure 4.2.6 Symmetric and asymmetric particle-constraint structures 

In REDOMS, we require structure symmetry because we also use the constraint as a path reference 

to define the impulse distribution network. Therefore, it is important to ensure the neighbouring 

particles within the same distance range are all connected. However, in the asymmetric structure, 

as shown in the above example, there is one pair of corner particles (P2, P4) that are not connected. 

This result in a problem that when P2 is distrusting impulse, based on the constraint connection, P1 

and P3 will be affected. When P1 is distributing impulse, P2, P3 and P4 are all affected. Therefore, 

the impulse from different direction will result in different distribution pattern, and the deformation 

behaver will be different. The symmetric structure, on the other hand, as shown in the figure, has 

the same distribution pattern regardless of which particle is distributing.  

Someone may argue that the structure P1, P2 and P3 in symmetric structure example are the same 

as P2, Pc and P1 in asymmetric structure example. However, if we put a single structure unit into a 

mesh, a difference in pattern can be easily identified, as shown below in Figure 4.2.7. 
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Figure 4.2.7 Symmetric and asymmetric structure unit in a mesh 

This 2D example shows that in the asymmetric structure, the impulse translation from the starting 

point (the red point) to the entire mesh structure are different based on the direction of the blue 

constraints, the mesh structure in Case 1 will be more engaged to external impulse than Case 2. This 

asymmetric distribution can cause the mesh to deform in a strange pattern along the blue line.  

The asymmetric mesh structure is often used in cloth object simulation because it is simple and 

adaptive. Moreover, cloth objects are 2D elastic objects that often uses a loop-through-all particles-

and-springs approach rather than a distribution operation; therefore, the short appearance of the 

unnatural pattern can be adjusted quickly. However, such structure can still suffer a non-recoverable 

deformable like cloth-over object deformation. Therefore, in order to achieve a smooth deformation, 

it also has to employ other solution like adaptive mesh [92] to generate uniform mesh for the 

deformation section. However, dynamic generation of structure mesh is costly in real-time 

simulation, especially for 3D structures. In addition, a dynamic regeneration of structure mesh 

requires much more complicated algorithm in 3D; therefore, it is not suitable for FREDOMS 

framework.  

Evenness in distribution pattern: The particles should be evenly distributed into the boundary 

space of the object. We define each particle captures a certain space domain, and all the domain size 

is related to the particle’s mass. Therefore, for particles with the same mass, they will capture the 

same size of the space domain. Based on this principle, the particle distribution pattern should be 

as even as possible.  

4.2.5.2 Determine the structure generation method 

Based on the discussion from the last chapter, we have looked into different structure generation 

approaches to match the requirements. As our research target concentrates on volumetric solid 
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objects, we consider the tetrahedron structure form is the simplest and most stable structure in three-

dimensional space. Therefore, we have looked into tetrahedron methods that are commonly used in 

FEM methods. After allocating particles on each vertex of the tetrahedron and replace the edges 

with constraints, we will have a stable particle-constraint structure based on tetrahedron form.  

Using tetrahedron to fill the space – problems and compromises  

An important note before further introduction of our structure generation is that research shows a 

group of regular/unformed tetrahedrons (with four edges are all equal) cannot fully fit and tile 

a close space without gaps[93]. Tetrahedron packing is the research field in geometry to 

specifically study how to capture maximum volume using regular tetrahedral with minimal gaps, 

more details is out of our research scope therefore further discussion and explanation is not offered 

in this thesis. Because of this problem, even though the ideal solution for the mesh structure is 

to have uniform edge length, compromise has to be made.  

Real-world metallic crystalline structures 

Our main goal is to simulate objects with plasticity property, which normally are metal. Therefore 

it is reasonable for us to look into real-world metallic crystalline structures to see how the atoms in 

metal are connected and interact. This path has already been employed in the past for physics 

modelling in computer graphics [84]. The three common metallic crystal structures are Body-

centred cubic (BCC), Face-Centred Cubic (FCC), and Hexagonal Close-Packed (HCP). An 

illustration of BCC and FCC structure is shown below in Figure 4.2.8. A Hexagonal Close-Packed 

structure is too complicated to be used for modelling in such case.  

 

Figure 4.2.8 Illustration of BCC and FCC 

BCC structure is already used to generate adaptive tetrahedron mesh (Teran et al. in [80] and 

Drakopoulosa et al. in [94]). The advantage of BCC is that it can generate unformed tetrahedrons 

from a simple and fast manner with good space occupation and almost equal distribution of the 
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particles (atoms). This offers a great degree of freedom of movement of each particle, and it will 

benefit the later deformation. However, when constructing connections for the nodes in, BCC 

cannot offer a symmetric solution without constructing cross constraint between nodes, which is to 

be avoided for any mesh construction. The BCC lattice proposed by Teran et al. [80] can deliver a 

symmetric and uniformed tetrahedron mesh by constructing overlapping structures between 

neighbouring cube units. However, the same solution does not apply to a particle-based system as 

each corner node on the same square face has to form connections. In tetrahedron form this 

connection is implied as the square face is subdivided by four tetrahedrons volume that contains 

four corner nodes. However, in a particle-based system, such implication does not exist. The nodes 

have to be actually connected. Therefore, a BCC-based particle-constraint mesh looks like this 

(Figure 4.2.9):        

 

Figure 4.2.9 BCC-based particle-constraint structure 

From the illusion, we can see that the side faces of BCC form an asymmetric structure that we have 

described in Section 4.2.5.1. Therefore, the BCC structure does not match our requirement without 

further modification.  

In comparison with BCC, FCC structure was also used for tetrahedron mesh generation [85]. FCC 

does offer a symmetric particle distribution on the side face; however, it has a much weaker structure 

for particle-constraint based system. The centre space is missing from the occupation of particles. 

This violates our requirement for particle distribution evenness. Therefore, FCC also has its 

drawback to be used in FREDOMS. 

Combining BCC and FCC 

To utilise the advantages from BCC and FCC, and to eliminate the limitations, we have combined 

the structure characteristic from both BCC and FCC, and developed a new structure. 

The new structure has a centre node as well as six nodes on the centre of each face. Therefore we 
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name the new structure Body-Face-Centred-Cubic (BFCC). An illustration of the BFCC structure 

is shown below in Figure 4.2.10: 

 

Figure 4.2.10 BFCC structure 

The new BFCC structure is able to generate a mesh that meets all our requirements. By replacing 

the nodes with particles, and connect them with constraints in a certain arrangement, we can form 

a mesh structure. An illustration of BFCC-based particle-constraint structure is shown below in 

Figure 4.2.11. 

 

Figure 4.2.11 BFCC-based particle-constraint structure 

From the illustration, we can see the connections we have made are: 

1. The eight corner particles are connected in order to form a cube structure. 

2. The eight corner particles are connected to the centre particle of the cube. 

3. The four corner particles on each face are connected to the centre particle of the face. 

4. The six face centre particles are connected to the centre particle of the cube. 

For a clearer illustration, the three connection types (2, 3, and 4) are presented separately in Figure 

4.2.12. The cube structure is implied and can be viewed in Figure 4.2.10.   
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Figure 4.2.12 Particle-Constraint connection types 

By using this arrangement, we have a cube unit that can represent the space structure of our physics 

model in FREDOMS. BFCC unit is a very important concept in FREDOMS; it acts as an element 

to subdivide the space. For each BFCC, it has its internal structure, which is defined by particle-

constraint connections that we have described above.  

The edge length and number for each length is given below in Table 4.2.2 with the assumption that 

the cube edge length is 𝑙. 

 Cube edge Corner to Cube 

Centre 

Corner to Face 

Centre 

Face Centre to 

Cube Centre 

Length 𝑙 √3

2
𝑙 ≈ 0.87𝑙 

√2

2
𝑙 ≈ 0.71𝑙 

0.5𝑙 

Number 12 8 24 6 

Table 4.2.2 Constraint length and number for a single BFCC unit 

By using BFCC to subdivide the object’s boundary, we will have a FEM-like discretisation process, 

and we are able to use particle-constraint to capture volume. Therefore, the first step of the 

modelling process is to generate the boundary of the rendering mesh for subdivision. 

4.2.5.3 Define bounding volume by generating Axis-Aligned Bounding Box (AABB) 

In order to determine the boundary volume of the given object, FREDOMS will generate the Axis-

Aligned Bounding Box (AABB) of the rendering mesh. AABB aligns with the x, y, and z-axis and 

defines the minimum and maximum x, y and z value for all the particles in the mesh. Therefore, the 

generation of AABB is straightforward. An example of AABB is shown below in Figure 4.2.13: 
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Figure 4.2.13 An example of AABB box 

AABB is widely used in rigid body collision detection. In such cases AABB can be rotated with the 

object by linking the rotation matrix of the AABB box to the object rotation matrix. However, 

FREDOMS only concerns permanent deformable object, which means the physics mesh and 

rendering mesh will keep changing as the physics simulation proceeds and deformation occurs. 

Therefore in the run-time simulation, when a collision happens, FREDOMS will re-calculate and 

update the AABB information to make sure that it still captures the maximum bounded volume of 

the object.  

In APMFC, the purpose of AABB is for modelling referencing, therefore; the AABB generated is 

based on the rendering mesh. However, in DOSFC, the purpose of AABB is for collision detection.  

The AABB is updated with the physics mesh instead of rendering mesh. 

4.2.6 Physics structure and surface mesh generation 

4.2.6.1 Particle distribution by AABB subdivision 

To generate the physics structure for our particle-based method, we have to confirm the pattern of 

the distribution of the particles. In Section 4.2.5.2, we have defined the BFCC unit as our physics 

structure element. BFCC unit is a combination of a group of particles and their connected 

constraints. BFCC as a solid cube is much easier to fill the space than particles. Therefore, to 

distribute particles, we use the BFCC unit to subdivide the boundary space of the object. 

AABB provides a good reference for the object’s boundary. Moreover, it is axis-aligned and in 3D 

rectangle form. Therefore, it is prefect for BFCC subdivision. However, the AABB is generated 
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based on the rendering mesh, which can have any possible size. The AABB of an arbitrary 3D 

model is not necessary a cube, nor can be perfectly and equally divided along x, y and z-axis by the 

same unit length. Therefore, in order to fit BFCC unit perfectly into AABB box without any gaps 

or overlaps, the size and edge length of BFCC unit have to be adjusted in regards to the edges’ 

length of AABB.  

AABB subdivision 

In Section 4.2.5.1, one of the structure requirement for the structure mesh is that the particle should 

be distributed as evenly as possible. Therefore, we use an AABB minimum length referencing and 

size matching method to adjust the BFCC edge length and size properties. 

At this stage, APMFC needs a user input parameter in order to proceed to the next task. The user 

has to define the “density” value for the particle distribution. From the system point of view, the 

density applies to the cube density in relation to the shortest edge length of the AABB. 

Once APMFC acquires the density value, it will start doing the subdivision of the AABB. The 

subdivision is summarised into an example shown in Figure 4.2.14 at density = 2.  

 

Figure 4.2.14 AABB subdivision by using BFCC at density = 2 

From the example, we can see the system uses the shortest edge of the AABB as the reference. By 
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knowing density = 2, the system divides the shortest edge by 2 to get a unit length 𝑙, and uses 𝑙 as 

the edge length to generate a group of BFCC in cube unit to fill out the space of AABB until all the 

AABB volume is covered by the BFCC cubes. 

In most cases, the cube structure does not perfectly match the volume of AABB; there is a gap 

between the BFCC group structure and the AABB. The system will then analysis the gap and uses 

a rounding method to determine the adjustment to the BFCC unit: In a certain direction (x, y, or z), 

if there is a gap with the length of 𝑔, and 𝑔 < 0.5𝑙, then the total number of BFCC in this direction 

will be rounded up (from 3 to 4). If 𝑔 ≥ 0.5𝑙, then the number of BFCC will be rounded down 

(from 4 to 3). At 𝑔 = 0.5𝑙 we always prefer to round down the number of cubes, as this will 

generate a less complex structure. The rounding operation will result in the change of edge length 

of the BFCC. Now, BFCC is not a cube but a cuboid, as it has different edge lengths. 

By rounding up and down the BFCC size, the system does not just adjust the size for an individual 

BFCC but all the BFCCs in the system. Each BFCC will be stretched or squeezed to fill in the 

AABB’s volume to create a perfect match. At this stage, we have an AABB boundary that filled 

with BFCC units. In 3D cases, there is an extra axis for the AABB and the BFCC; we apply the 

same procedure to the new axis to generate a 3D match of the two structures (AABB and BFCC 

group). More detailed processing steps with visual demonstrations can be referred to our 

implementation of the AABB subdivision in Section 5.3.1.1. 

Particle distribution and constraints connection generation 

BFCC unit has already defined its particle and constraint components and their relative position in 

the cube unit. Therefore, after the AABB is properly subdivided, we distribute particles based on 

the BFCC structure, and connect the particle based on the constraint arrangement that we have 

introduced in Section 4.2.5.2. There will be overlapping structures on each contact face of the 

neighbouring AABB unit. APMFC will identify the duplicate generated/distributed particles and 

constraints and remove them from the system accordingly. 

At this stage, the physics structure is distributed throughout the entire space that is occupied by 

AABB; the object to be modelled is included within this volume. The next modelling step is to use 

the physics structure and the rendering mesh as references to generate the surface mesh for the 

physics model. 
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4.2.6.2 BFCC Grid-based surface mapping 

The result from AABB subdivision gives a particle cloud with a set of constraint connections. For 

generating the surface mesh over a particle cloud, we employed the grid-based meshing approach. 

Grid-based meshing approach has been employed by other research for mesh generation for FEM 

elements [95]. BFCC structure can be considered as grid-based. The benefit of grid-based is that it 

provides a uniform sampling of element group size. The size and the structure of the element are 

highly adaptive based on the density and the form of the grid. In BFCC, an element (unit) is defined 

by a group of particles and constraints. This is different from grid-based meshing in FEM, where 

the tetrahedron itself is defined as an element.  

The two fundamental approaches for generating a mesh surface over a particle cloud are 

parameterisation-based and surface-oriented. As we use grid-based mesh generation, it implies that 

we will use surface-oriented mesh regeneration. However, our approach is different from a typical 

remeshing operation like works from Botsch et al. [96] where the operation of existing and new 

inserted particles are based on geometry analysis of the current mesh. Our approach is to use both 

original surface mesh and the BFCC as references and manipulates and insert/delete vertices in 

order to make the surface mesh satisfy with the grid condition. Therefore, the surface vertices 

distribution cannot be manipulated by just satiations of edge lengths and valence (6) but has to be 

considered together with the BFCC structure. We have the following requirements for the physics 

surface mesh: 

1. Each vertex on the mesh has to be an existing particle in the system. No new vertex or 

particle is added into the system. 

2. Surface triangles are defined by vertices that are connected by constraints. No new triangle 

edge or constraint is added into the system. 

We set these requirements because the physics surface mesh should be generated by the physics 

structure elements instead of a conceptual mathematical model. The surface mesh will be later used 

to test the collision and identify the affected particles and conduct the impulse distribution 

simulation phase. Direct use of the structure elements (particles, constraints) can offer a direct link 

to the internal structure of the object, and direct interaction with the physics model; rather than 

mapping the impact or the change from another mesh into the physics structure. 
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Mapping between two systems 

Therefore, we will need a mapping system: 

𝑓: 𝑣 → 𝑅  

𝑓: 𝑐 → 𝑅  

with 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶 

where 𝑣 and 𝑐 are the sets for surface particles and constraints. 𝑉 and 𝐶 are the sets for all 

particles and constraints in the system, 𝑅 is the rendering mesh. A satisfied constraint 𝑐 does not 

necessarily lay perfectly on the rendering mesh, but the mapping indicates that the two ending 

particles of the constraint should both be mapped on to the rendering surface mesh. 

There are two mapping options: we can either do 𝑓: 𝑣𝑟 → 𝑃, where 𝑣𝑟 ∈ 𝑉𝑟, to map a selective of 

vertices (𝑣𝑟 ∈ 𝑉𝑟) from the rendering mesh to the particle cloud 𝑃 of the physics mesh. This 

approach adjusts the rendering mesh to match the particle-constraint structure. The 𝑓 

operator will need to find a suitable mapping from the vertex to the particle, e.g. find the nearest 

particle.   

The other approach is the opposite from the first one: we do 𝑓: 𝑝 → 𝑡, where 𝑡 ∈ 𝑇 represent a 

triangle on the rendering mesh, 𝑝 is the suitable particle from the physics determined by 𝑓. By 

using this approach, we adjust the particle-constraint structure to match the rendering mesh. 

Due to the nature of the real-time physics simulation, the physics structure should only maintain a 

minimal fineness. In most cases, the BFCC grid is much coarser than the rendering mesh. Therefore, 

adjusting the rendering mesh to match the physics structure can generate an inaccurate geometry 

approximation of the original object. Therefore, in FREDOMS we use the latter approach, which is 

to adjust the particle-constraint structure to match the rendering mesh. In order to conduct such 

mapping, we have proposed a constraint-mesh intersection sampling method.  

4.2.6.3 Constraint-mesh intersection sampling 

In FREDOMS, the volume space of rendering mesh is a subset of AABB, and the volume of AABB 

overlaps the volume space that is captured by the BFCC grid. Therefore, the object rendering mesh 

is fully contained within the boundary of the BFCC grid. We can use the grid as a reference to check 

and manipulate the particles’ position based on the rendering mesh.  

The distribution of particles is already finished when constructing the BFCC grid (as the process of 
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constructing the grid is the process of distributing potential particles). Therefore, the first step is to 

overlay the grid with the rendering mesh, as shown in Figure 4.2.15. 

 

Figure 4.2.15 Rendering mesh overlay with the grid 

By using an inclusion test, APMFC will determine the particles that are located inside the rendering 

mesh (represented by the enclosed blue line range), as shown in Figure 4.2.16, the inner particles 

are marked in red. 

 

Figure 4.2.16 Identify inner particles 

At this stage, the particles are sorted into two groups: Inner particles and outer particles, which are 

defined based on their position in relation to the rendering mesh. By exam the two ending particles 

of each constraint, we can identify the constraints that have intersections with the rendering mesh: 

If the two ending particles contains one inner particle and one outer particle, the constraint crosses 

the rendering mesh.  
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This process is illustrated in Figure 4.2.17 where crossing constraints are marked in bold red lines. 

 
Figure 4.2.17 Constraint-mesh intersection 

Now we have a set of constraint 𝐶 that satisfies the condition that each 𝑐 ∈ 𝐶 is intersected with 

a triangle 𝑡 ∈ 𝑇 from the rendering mesh. Each pair of (𝑐, 𝑡) will be examined to determine three 

values: 𝑝1, 𝑝2, 𝑝𝑡, where 𝑝1, 𝑝2 are the ending particles of 𝑐, and 𝑝𝑡 is the intersecting point of 

𝑐 and 𝑡. Then we have a mapping operation 𝑓: ({𝑝1, 𝑝2}) → 𝑝𝑡, where 

𝑓: ({𝑝1, 𝑝2}) → 𝑝𝑡 = { 
𝑝1 → 𝑝𝑡           |𝑝1 − 𝑝𝑡| ≤ |𝑝2 − 𝑝𝑡|

𝑝2 → 𝑝𝑡           |𝑝1 − 𝑝𝑡| > |𝑝2 − 𝑝𝑡|
 

The → operator in the above expression does not only define a mapping relationship but also 

define a mapping operation to move the particles’ position to the intersection point. It is important 

to mention that a particle is possible to have more than one mapping operation, as this particle 

can be connected with multiple constraints that have multiple intersection points for each constraint. 

Therefore the final position adjustment made to the particle has to be averaged from all the 

adjustment suggestions.  

After all the particle’s position are confirmed, the structure of the constraints will be adjusted 

accordingly based on the particle’s position. Each moved particle will be identified and flagged as 

a surface particle in the system. The operation is illustrated in Figure 4.2.18. The surface particles 

are marked in yellow. 
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Figure 4.2.18 Surface particle position adjustment 

With the particle cloud is adjusted to match the surface of the object, the BFCC structure is also 

changed; this change was not shown in Figure 4.2.18, but is illustrated in Figure 4.2.19. 

 

Figure 4.2.19 BFCC structure change after the particle mapping 

To this point, the particles do not form cuboid structures anymore, especially in 3D cases where the 

face centre particles may also be moved. Therefore, the concept of the BFCC unit and the grouping 

of its related particles and constraints are no longer needed. Now we only concern the structure that 

is made of a particle cloud and its constraints connectivity. As we have already identified the face 

particles for the physics surface mesh, the BFCC functioning as a grid reference for mesh generation 

is also no longer needed. After each surface particle is confirmed and adjusted to the correct position, 

we have finished the physics structure generation. The next step is to generate the surface mesh 

based on the surface particles. 

Constraint length analysis 

It is important to know the possible constraint length arrange in the physics structure, as the 
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constraint length represents the distance between particles, constraint length can be calculated using 

the following formula:  

𝑙𝑐 = 𝜑(𝑙) ∙ 𝜎(𝐴𝐴𝐵𝐵, 𝑑) ∙ 𝜏(𝑐, 𝑡) 

         (1)            (2)               (3) 

where 𝜑(𝑙) (1) is the constraint length in relation to its position in the original BFCC structure. 

𝜎(𝐴𝐴𝐵𝐵, 𝑑) (2) is the rounding result of the edges other than the shortest length from the BFCC 

adjustment in regards to the density value. 𝜏(𝑐, 𝑡) (3) is the constraint length after the surface 

particle justification. 

In Table 4.2.2, we have listed the constraints length in BFCC unit, therefore if we assume the edge 

length of the initial BFCC is 𝑙, then we have: 

𝜑(𝑙) = {

𝑙                                           𝐶𝑢𝑏𝑒 𝑒𝑔𝑒
0.87𝑙          𝐶𝑜𝑟𝑛𝑒𝑟 𝑡𝑜 𝑐𝑢𝑏𝑒 𝑐𝑒𝑛𝑡𝑟𝑒
0.71𝑙          𝐶𝑜𝑟𝑛𝑒𝑟 𝑡𝑜 𝑓𝑎𝑐𝑒 𝑐𝑒𝑛𝑡𝑟𝑒
0.5𝑙   𝑓𝑎𝑐𝑒 𝑐𝑒𝑛𝑡𝑟𝑒 𝑡𝑜 𝑐𝑢𝑏𝑒 𝑐𝑒𝑛𝑡𝑟𝑒

 

For AABB rounding, we have: 

𝜎(𝐴𝐴𝐵𝐵, 𝑑) = 𝜎(𝐿, 𝐿𝑚𝑖𝑛, 𝑑) = (𝐿 /𝑅 (
𝐿

𝐿𝑚𝑖𝑛
𝑑⁄
))/𝐿𝑚𝑖𝑛 

where 𝑅(𝑥) is the rounding function. 

For constraint length, we have: 

𝜏(𝑐, 𝑡) = 𝜏(𝑝1, 𝑝2, 𝑡) =
|𝑝1 − 𝑝𝑡|

|𝑝2 − 𝑝1|
 

We then exam the minimum and maximum limits for (1), (2) and (3). We have 

𝜑𝑚𝑎𝑥 = 𝑙, when the constraint is on the edge of BFCC. 

𝜑𝑚𝑖𝑛 = 0.5𝑙, when the constraint connects the particles from the face centre to cube centre.   

𝜎𝑚𝑖𝑛 = 0.75, when 𝑑 = 1 and 𝐿 𝐿𝑚𝑖𝑛⁄ = 1.5. 

𝜎𝑚𝑎𝑥 = 1.25, when 𝑑 = 1 and 𝐿 𝐿𝑚𝑖𝑛⁄ = 2.5. 

𝜏𝑚𝑎𝑥 = 1, where one particle lies perfectly on the interacting triangle with no position adjustment. 

𝜏𝑚𝑎𝑥 = 0.5, where the intersection point is in the middle of the constraint. 

Therefore, by combining the limits, we can calculate the maximum possible length for the constraint 
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is1.25𝑙 , and the minimum possible length for the constraint is  0.1875𝑙 . This indicates the 

minimum/maximum distance between any pair of particles. 

The result from the analysis shows that the constraint difference is relatively large (666.7%) 

and can be a drawback in our approach. However, it is not large enough to produce a vertex 

(particle) reduction and merging. This is because: 

1. The BFCC unit length 𝑙 is often large because we only generate coarse grid for the physics 

structure. In the demonstration sections, we will show that often we only use density value 

at 2 and 3 to simulate a whole object. Therefore, even the length difference exists, in 

absolute value, the shortest length still has a long distance. 

2. The shortest case and the longest case will not happen in the same triangle nor the same 

tetrahedron structure. As presented from Figure 4.2.11 and Figure 4.2.12, the longest 

constraint and the shortest constraint does not share any particle endings. 

3. Unlike in an elastic system, where the stress/strain is based on the absolute change value of 

the constraints, our constraint provides a proportional factor for condition satisfaction check. 

This can omit the problem from having different sized constraints for structure maintenance. 

4.2.6.4 Final surface regeneration and the mesh construction 

From the requirement we have discussed in Section 4.2.6.2, the surface mesh is based on a particle-

constraint connection with no additional triangle vertices and edges. From the previous sections, 

we have already mapped the particles as well as the constraint structure by applying BFCC grid 

sampling to the rendering mesh. Therefore, the generation of the surface mesh is straightforward. 

APMFC will exam the surface particle’s connectivity and form triangles based on the nature of the 

triangle: Find two constraints that share the same surface particle, and if the other ending particles 

for the two constraints are also surface particles, and also form a constraint, a surface triangle is 

identified. 

Triangle duplication and face order 

During this process, it is possible to form duplicated triangles and back-faced triangles. APMFC 

will perform a check and remove these triangles. In FREDOMS, we define the triangle winding 

order as the clockwise. This is applied to our implementation. However, when designing and 

developing application based on the FREDOMS framework, this arrangement can be changed. 
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Mesh quality requirement 

BFCC grid-based mapping generates an approximated surface structure to the original rendering 

mesh by using particles and constraints that already exist in the physics structure. Based on the 

constraint analysis, the surface structure will have triangles with large edge differences in some 

case, but not large enough to produce very ill-conditioned triangles. However, we do not have a 

high expectation for the quality of the surface mesh because: 

1. The only purpose for the physics surface mesh is for collision detection. As long as the 

collision point is identified, the quality of the mesh is not concerned. 

2. The mesh is carefully arranged with minimum modification from the original BFCC based 

physics structure and has mostly captured the object’s surface geometry. Therefore, a 

remeshing may lose the geometry detail and is not recommended. 

It is possible to propose a method to conduct vertex relaxation process while still keep the particles 

on the rendering mesh. However, such methods are beyond our research scope and can be an 

extension to FREDOMS in future works.  

4.2.6.5 Advantage of using BFCC-based grid mapping 

From the generation process, we can see that BFCC-based grid has the following advantages: 

1. It gives a one-step mapping solution for both internal and surface structure of the physics 

mesh.  

2. It is simple to configure by using just one parameter (density). This gives an easy and fast 

solution for physics model generation from both users and developers perspective. 

3. It provides a stable structure for modelling volumetric objects. 

4. The generated surface mesh uses particles and constraints as the triangle components; 

therefore it can be directly used for impulse distribution. 

5. It is specifically designed for FREDOMS system for permanent deformable object 

simulation. But it can also be adapted to other particle-based systems without any structural 

modification. 

In Appendix A, we introduced a possible alternative and more complicated approach of a grid-based 

physics mesh and surface mesh generation method that could be used in FREDOMS. 
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4.2.7 A Weighted deformation mapping method for rendering mesh 

In the mesh generation process, FREDOMS flags the surface particle as well as keeping the original 

rendering mesh. In order to visually present the deformation of the object, we have to map any 

changes in the physics mesh back to the rendering mesh. This process can also be referred to as 

skinning. 

We use a weight-based mapping to create a mapping between the original mesh and the physics 

mesh. After loading the original raw mesh M, we have a set of vertices 𝑉 =  {𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛} 

where n is the total number of vertices. Then after the surface mesh generation, we have a new 

surface mesh 𝑀𝑛𝑒𝑤 which has a new set of vertices  𝑃 =  {𝑝1, 𝑝2, 𝑝3 … 𝑝𝑢} where u is the total 

number of vertices in P. The new mesh is a coarse approximation of the original mesh; therefore 

we can expect that 𝑢 ≪ 𝑛. The physics surface mesh, especially the surface particles, are considered 

as the “skeleton” of the rendering mesh. Therefore, a mapping operation 𝑃 → 𝑉 is employed to 

transfer the change of each p to a set of v. In this operation, each particle acts as a control point to 

the mapped vertices.  

Determine the mapping relationship 

Our principal for deformation mapping is that each vertices should be influenced by its nearest 

particle. However, as 𝑢 ≪ 𝑛, there is a high possibility of multiple vertices being mapped to one 

particle. When deformation occurs, if we transfer the full particle displacement value to all the 

particles, the final deformation result on rendering mesh can present unrealistic sharp patterns, 

which was confirmed in our testing. On the other hand, if we create a weighted mapping based on 

vertex-particle distance, it can produce a smoother result. However, the vertices displacement are 

unbalanced because of the different weight value, and cannot best capture the actual deformation 

pattern. As shown in Figure 4.2.20, 𝑣1  and 𝑣5  have the least influence from the particle 

displacement based on the distance weight. This uneven distribution can cause a wave structure 

when combing other particle’s mapped vertices. In addition, with the particle moving further, 𝑣1 

and 𝑣5 will generate more distance from their neighbouring vertices as well as the particle itself.  
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Figure 4.2.20 Example of single particle to multiple v weighted mapping  

In order to generate a smooth mapping result as well as keeping the vertices to the accurate position, 

we propose a reversed approach. Instead of mapping multiple vertices to one particle, we map one 

vertex to multiple particles. 

The proposed method uses a 𝑣 → 𝑞  mapping where 𝑞 ∈ 𝑃  and  𝑞 = {𝑝1, 𝑝2 …𝑝𝑛} , 𝑃  is the 

particle set and 𝑝1, 𝑝2 …𝑝𝑛 are the 𝑛 nearest particles to the vertex 𝑣. 

By applying this mapping, each 𝑣 will be influenced by the change of the 𝑛 nearest surrounding 

particles. A mapping relationship is illustrated in Figure 4.2.21. 

 

Figure 4.2.21 Vertices mapping to particle 

From the example we can see that 𝑣1 is mapped to 𝑝1, 𝑝2 and 𝑝4, and 𝑣2 is mapped to 𝑝1, 𝑝2 

and 𝑝3. In the example, we didn’t specify the physics surface mesh because in our new mapping 
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method, a vertex is not necessary to be mapped to a surface particle, but can be mapped to 

any particle in the structure, as long as the particle is within its 𝒏 nearest range set. Moreover, 

it can be mapped to a particle outside the physics surface mesh but within the AABB boundary. 

This approach is called AABB frame referencing, which will be introduced later. 

Determine the weight value: 

For a given vertex that is mapped to 𝑛 particles, we apply a distance-based calculation to assign a 

weight value w to all the particles in the mapping group (𝑣 → 𝑞). To determine w the weight value 

w of each vertex v to particle p. Firstly, we calculate distances for each 𝑣 → 𝑝𝑛, therefore we have 

𝐷 = {𝑑(𝑝1, 𝑣), 𝑑(𝑝2, 𝑣)…𝑑(𝑝𝑛, 𝑣)} = {𝑑1, 𝑑2 …𝑑𝑛}, 

where 𝑑(𝑝, 𝑣)  is the distance between 𝑣  and 𝑝 , and 𝑛  is the total particle number in the 

mapping group.  

We define that for each vertex, it has a total weight value of 1, which will be distributed to the 𝑛 

particles that it is mapped to. By doing a distance-based calculation, we can have the weight 𝑤𝑖 

value for each particle 𝑝𝑖:  

𝑤𝑖 =
𝑑𝑖

∑ 𝑑𝑚
𝑛
𝑚=0

 

and  

∑𝑤𝑖 = 1

𝑛

𝑖=0

 

To implementation such structure, a new paring data relation has to be made to describe the one-to-

multiple relationship of the vertex mapping. More detailed discussion and explain can be referred 

to Section 5.2.1.5 and Section 5.3.3. In our implementation, we use the value 𝑛 = 3 to define the 

number of particles a vertex is mapped to.  

4.2.8 Particle proprieties and Mass assignment 

In FREDOMS framework, each particle  𝑷  has its mass 𝒎  and position  𝒑 , in most of other 

particle-based methods (PSS, PBD, etc.), a particle also has a velocity value  �⃗⃗� . However, 

FREDOMS simulates permanent deformation on an impulse-based approach. We assume the 

displacement is instant. Therefore, we do not calculate the particle’s position over time by using 
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velocity. Instead, we consider the term impulse is an instant velocity. The difference is that instead 

of causing an incremented displacement ∆�⃗⃗� , the impulse will cause a one-time displacement to the 

affected particle.  

FREDOMS follows the same approach as Particle-Spring System and Position Based Dynamics, 

which is to discrete a three-dimensional volumetric object with a set of particles that are distributed 

throughout the space. Therefore the particles will share the total mass of the object. Assume the 

object has a total mass M. For each particle 𝑝𝑖we have an individual mass 𝑚𝑖, so we will have: 

∑𝑚𝑖

𝑛

𝑖=1

= 𝑀 

and we have centre position of the mass: 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 = 
∑ (𝑚𝑖𝑥𝑖)

𝑛
𝑖=1

∑ 𝑚𝑖
𝑛
𝑖=1

 

where 𝑥𝑖 denotes the position of a given particle 𝑝𝑖. 

In majority cases, the object being simulating does not have uniformed particle density. In addition, 

during the deformation, the mesh density and the structure of the internal particles will continue to 

change. In some cases, particle merge or split operation will be conducted to adjust the inner 

structure after it breaks certain conditions. Moreover, certain behaviour and material property can 

be achieved by assigning different mass to the particles in different areas.  

Therefore each particle does not need to have the same mass value. The mass for each individual 

particle can be pre-defined in the physics model before the simulation start, or been merged or split 

or distributed during the simulation.  

For simplicity in our prototype, we have assumed the mass for each particle to be all equal at the 

very beginning when the physics mesh is initially constructed. Therefore, for each 𝑚𝑖 we have: 

𝑚𝑖 =
1

𝑛
𝑀 

And we have the centre of the mass: 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 =
∑ 𝑥𝑖𝑛

𝑖=1

𝑛
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In our current implementation, we used a uniformed mass for the system. Future implementation 

should be able to assign different mass value to the particles and affects its impulse distribution 

attributes.   

4.2.9 Constraints, parameters and material properties 

FREDOMS uses a single-level connection structure rather than a multi-level structure that is used 

in cloth simulation, for example, works done by Zhang and Yuen in [97]. Single level means the 

constraints will only connect particles that are neighbouring to each other and not connects particles 

that are far away and with other particles in between.  

Multi-level structure can improve structure integrity; however, it introduces unnecessary position 

influence from an area that is not affected by the deformation. Therefore it is useful for generating 

certain patterns (e.g. bending), but in overall it can add unnecessary “stiffness” to the whole 

structure. An illustration of single level and multi-level structure is given in Figure 4.2.22. 

 

Figure 4.2.22 Single level and multi-level mesh construction 

4.2.9.1 Constraints behaviour  

Constraints are important intermedia for simulating the interaction between two connected particles 

by applying conditions and restrictions to the movement of each particle. The properties of the 

constraint need to be defined based on the requirement from different cases. FREDOMS is 

specialised in creating and simulating permanent deformable behaviour. Therefore, regardless of 

the property setting, the FREDOMS constraints should follow the basic rules of material behaviour 

in the real world. Based on the research of material study[98], soft metal material under stress will 

undergo elastic stage, yield point, plastic stage, necking point and fracture point. An example can 

be found in Figure 4.2.23. 

Our focus is in the middle stage of plastic (permanent deformation) behaviour. Therefore, we only 
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concern the stage between the elastic and fracture stage. Also, in the material study, the temperature 

of the material is also taken into account as an important condition of the object behaviour but we 

do not consider temperature as a parameter in our simulation as it is irrelevant to visual effect.  

 

Figure 4.2.23 Stress-strain curve for metal-like material 

In FREDOMS, we have simplified this process and only apply the plastic behaviour to the object, 

we have taken out the elastic phase and the fracture point (which is still possible to be implemented 

within our framework). The behaviour of a constraint related to the particles’ impulse (displacement) 

in FREDOMS is shown in Figure 4.2.24. 

 

Figure 4.2.24 Constraints behaviour in FREDOMS 
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In the figure, “Sum of Particles Momentum” is a broad definition that refers to the constraint 

operation that tends to keep two particles together. This is a similar definition to strain, and we use 

a different term as the method is nor force-based. Similarly “Change of length” refers to the initial 

change that applies to the constraint and can be related to the term stress in material study. In most 

cases in permanent deformation, the change of length refer to both shorten and lengthen. There will 

be occasions that two particles will be pulled further apart however in most of the cases the action 

is pushing, or compressing because the initial external influence is most likely to be an impulse that 

causes the object to perform a denting-like deformation.  

4.2.9.2 FREDOMS Constraint Parameters 

Constraints in FREDOMS have the following four parameters: 

1. Rest length: This is the nature and initial state of the constraint without any displacement 

of the two connected particles. Rest length is defined at the time when the physics structure 

is completely generated. The rest length is also an important reference for defining the 

minimum and maximum length of the constraint. 

2. Minimum length ratio (coefficient): The minimum length of the constraint defines the 

minimum distance between two particles. The two connected particles cannot move closer 

than the minimum length without violating constraints condition. This defines the 

maximum compression degree of the material. The purpose of this value is to maintain 

minimum structure integrity of the object. We use the rest length as the constant reference, 

and the minimum length ratio is the ratio of minimum length to the rest length.  

3. Maximum length ratio (coefficient): As opposite to minimum length. This defines the 

maximum distance that two particles can be pulled further apart. Same as minimum length, 

we use the rest length as the constant reference and define the ratio of minimum length to 

the rest length.  

4. Impulse distribution factor (Stiffness): The definition of stiffness under permanent 

deformation is different than in the elastic deformation. In this context, it means the 

resistance from the material to undergo deformation. In case of a constraints, stiffness 

means the absorption degree of the external impulse. From the implementation point of 

view, this stiffness determines how much impulse value will be transferred from one 
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particle to the other particle. 

A summary of the parameters is given below in Table 4.2.3 

Parameter Denoting Value range Value type 

Rest length 𝑙0 𝑙0  Distance 

Minimum length coefficient 𝜀𝑚𝑖𝑛 0~1 Ratio (∆𝑙
𝑙0

⁄ ) 

Maximum length coefficient 𝜀𝑚𝑎𝑥 0~∞ Ratio(∆𝑙
𝑙0

⁄ ) 

Impulse distribution factor µ 0~1 Percentage (ratio) 

Table 4.2.3 Constraint parameters 

When a stress s is applied to one of the two ending particles and cause the particle to move, the 

constraint will start to deform (change its length). The deformation will be intervened when the 

minimum length or the maximum length is reached. Table 4.2.4 gives a summary of the constraint 

simulation phases and their conditions. 

Stage Condition 

Deformation phase  |𝑙0 − ∆𝑙| > 𝑙𝑚𝑖𝑛 or | 𝑙0 + ∆𝑙 < 𝑙𝑚𝑎𝑥| 

Deformation intervention phase | 𝑙0 − ∆𝑙| < 𝑙𝑚𝑖𝑛 or | 𝑙0 + ∆𝑙 > 𝑙𝑚𝑎𝑥| 

Table 4.2.4 Constraint behaviour and conditions 

4.2.9.3 Purpose and advantage of the FREDOMS constraint 

The advantages of our constraint compare to a regular spring constraint that are used in PSS and 

other systems are: 

1. The FREDOMS constraint decreases computational tasks dramatically compares to a 

regular spring. Spring (or damper) in PSS follows Hooke’s law. The instant force applies 

to the connected particles are related to its change of the length. Therefore the instant 

velocity V of the particle at time t is the second derivative. To calculate the displacement 

of the particles that are connected by spring, a time integration is needed. The computation 
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can be a heavy task depends on the chosen of time steps.  

2. The FREDOMS constraint is numerically stable compares to any other elastic method. 

Time integration from elastic constraints can introduce numerical errors that can be 

accumulated and bring unstable simulation if not carefully handled. While FREDOMS 

constraint only applies predictable manipulation to the connected particles. 

3. The FREDOMS constraint captures the property of continuum object better, especially for 

hard solid body like metal. Elastic spring makes object act like rubber and takes time to 

achieve equilibrium. The particle-spring structure will also create unstable displacements 

that pass down to the whole internal structure and consumes unnecessary computation 

power to resolve (e.g. adding extra damping force to balance the system and make particles 

stop oscillation). FREDOMS particle-constraint system will always consume the energy of 

each particle, and the system will become stable quickly after a certain deformation action. 

4. The FREDOMS constraint is designed to simulate non-recoverable deformation like 

denting and compression reshaping. Springs has the property to always recover to its initial 

state (rest length), all the deformation that is done in elastic spring system is temporary and 

will be soon to recover in the rest state. Our constraint only has a minimum length and 

maximum length to define the material limits, and there is only limited ability to recover. 

This means the particles that are linked by the same constraint can be pushed closer or 

pulled further permanently.   

4.2.9.4 Discussion of simulating elastic-plastic behaviour for metal-like objects 

FREDOMS uses particle-constraint based modelling method that has the potential to simulate 

elastic and plastic behaviour and object fractural, which requires a more complicated setup to the 

constraint. As discussed before, we simplified the constraints property by ignoring its behaviour 

when the stress is below the hardness threshold or the minimum/ maximum length is reached. To 

simulate elastic property, we could simply replace (or temporally switch) the constraint’s property 

to elastic.  

In the case of elasticity simulation in FREDOMS we would prefer position-based dynamics (PBD) 

rather than Particle-Spring system as PBD has more stability and requires less constraint setup. The 

fracture can happen after the maximum length is reached; however, it will not happen instantly at 
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the necking point. In order to give realistic simulation and follows the rule from material study, 

another parameter is needed to define the facture threshold for the material. In the case of fracture 

simulation, a mesh split algorithm and real-time robust surface regeneration method are needed to 

restructure one object into two separate ones. This requires further study and is not included in this 

thesis. 

4.2.10  Global parameters for FREDOMS physics mesh 

Besides the parameters for FREDOMS constraints, there are a set of global parameters in 

FREDOMS framework that has to be configured for physics modelling and simulation, some of 

which has been discussed before. Below is a list of the global parameters for the physics mesh: 

1. Density: The density value was discussed in Section 4.2.6.1. It defines the BFCC unit’s 

density in relation to the shortest length of the AABB. Density defines the fineness of the 

physics mesh. 

2. Hardness. Hardness describes a threshold for the material to perform deformation. Each 

incoming impulse are checked against this threshold. If the impulse is smaller than the 

hardness threshold, it is deemed that the impulse is completed absorbed by the material 

without causing any change of the shape. Therefore hardness defines the minimum 

condition that will cause a deformation of the object. Otherwise, the object will behave like 

a rigid body. Hardness setting also offers an optimisation solution to ignore any 

insignificant impact on the object.  

3. Energy lost factor. In Newton’s experimental law, energy lost factor it is referred to as the 

coefficient of restitution [99]. This value applies to the whole object instead of each 

individual particles or strains. It defines the ratio of the velocity change for the same object 

before and after the collision. It indicates how much energy (impulse) is lost during the 

collision and implies how much impulse will be applied to the object (the surface particles) 

that has been collided on. This value can also act as a control factor to increase the stability 

of the simulation (preventing instant massive displacement of some of the particles).  

4. Impulse maximum distribution level: This parameter offers a hard control to the degree 

of distribution during the simulation phase. It is useful for optimisation (control the 

distribution calculation) as well as creating some special effects (a sharp deformation). 
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4.2.11  AABB frame referencing 

During the BFCC-based structure generation phase (Section 4.2.6.1), the BFCC structure is 

distributed throughout the entire AABB space. After the physics structure is completely generated, 

there are still particle-constraint structures in the space inside the AABB boundary but outside the 

object surface mesh. 

There are two approaches to deal with these structures: Remove them from the system, or reserve 

them for future reference. In FREDOMS, we have chosen the latter solution. We keep the whole 

structure that was originally generated and apply the same rule to the whole structure during the 

simulation phase. We name this approach as AABB frame referencing. 

The purposes of employing AABB frame referencing are: 

1. To improve structure stability. Unlike elastic deformation, the permanent deformable 

objects are easier to lose their structure ability as the structure has much less tendency to 

recover the change. In other words, physics elements (particles) has more freedom to move 

through space than in an elastic system. Therefore, additional constraints are always helpful. 

2. To give a reference to its original shape: Some objects like the Torus case (Section 6.1.3) 

has a thin and hollow structure. If we remove the structures outside the surface mesh, only 

a small number of physics elements are kept. In this case, the structure integrity is difficult 

to maintain. With the additional constraints, the structure will have more structural 

reference to maintain its shape.  

3. To offer an adaptive solution: this is a result from purpose #2. By having the full structure, 

the geometry shape of the object does not play any part in the physics simulation. The 

system will simulate the full structure instead of the structure inside the object, this will 

give a predictable uniformed results. By using such approach, we do not concern about the 

quality of the input data or any unique and unusual shape. It can also simulate deformation 

for very thin and long structures.  

4. To offer smoother skinning: This was discussed in Section 4.2.7. More surrounding particle 

reference options can offer a better rendering mesh mapping arrangement. 

The result of AABB frame referencing is demonstrated in the test Chapter. However, as FREDOMS 

is an open framework with a lot of flexibilities, it is always possible for developers to use the first 
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approach to remove the outer structures based on their particular requirements. 

 

4.3  Fast simulation of permanent deformable material for solid 

objects in real-time 

4.3.1 Overview of the physics simulation in FREDOMS 

In FREDOMS, we proposed a new impulse-based method with non-elastic constraint to handle 

the simulation phase. The impulse-based method eliminates the calculation of ordinary differential 

equations and the subsequent complicated time integration. Therefore, the simulation can achieve 

fast simulation speed with high stability. The simulation is also controllable by adjusting simulation 

parameters and material properties (which are provided in APMI).  

The method does not follow a stress-strain analysis. Therefore, the simulation is phenomenological 

rather than accurate. The value of the phenomenologically-based (or behaviour-based) method is 

evaluated by how well it represents the visual results of the deformation in real-time while 

maintaining fast speed.  

The real-time simulation of FREDOMS includes collision detection (broad phase and narrow 

phase), impact analysis from external impulse which is gained from collision, collision response (to 

the other collide object), determining displacement for affected surface particles, impulse 

distribution, constraint conditions satisfaction, and optimisation. These functionalities are 

implemented into PanGu simulator for conducting the simulation task. An illustration of the 

workflow for the simulation phase is shown below in Figure 4.3.1.  
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Figure 4.3.1 Physics simulation workflow for FREDOMS 

 

4.3.2 Collision detection 

The starting point of the simulation in FREDOMS is when a collision is detected. Collision 

detection is a necessary but not a core component in FREDOMS framework; this functionality can 

be achieved in conjunction with other physics libraries. Therefore collision detection is not our 

research focus. However, as our permanent deformable object model has its unique attributes and 

needs special treatment from collision detection. In FREDOMS we uses a two-phase approach for 

collision detection. A detailed introduced of our approach can be found in Appendix A. Collision 

Detection in FREDOMS. 
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4.3.3 Collision response of the deformable object 

In FREDOMS we separate the simulation of the kinematic movement of the object and the structure 

deformation of the object into two separate processes. We have defined two coordinate systems for 

the object. The first one is Global Coordinate System (GCS) that reference to the global system 

of the whole scene. All kinematic movement, including object displacement and rotation, are 

simulated based on the global coordinate system. In this progress, the object is considered as a rigid 

body. We define it by using the position transmission matrix 𝑀𝑝 and the rotation quaternion 𝑄 to 

represent the object’s state within the global coordinate system. The second coordinate system is 

the Local Coordinate System (LCS), which is originated at the object’s geometry centre and is 

used for recording positions for local structural elements (particles, constraints). We use GCS for 

object’s kinematic movement, including displacement and rotation. We use LCS for deformation 

simulation by defining the position of each particle on LCS and perform calculation to determine 

each particle’s displacement. We conduct the simulation individually and in parallel and map them 

together at the end of each frame to show the final results. An illustration of LCS and GCS is shown 

in Figure 4.3.2 Global and Local coordinate system of the object. 

 

Figure 4.3.2 Global and Local coordinate system of the object 

Simulation of rigid body behaviour is not within the scope of our research. It is a well-studied area 

with many established approaches. Therefore this topic will not be included in the later discussion. 

Using quaternions to represent rotation in 3D 

Mathematically speaking, there are three main approaches to describe an object’s rotation. The first 

one is Rotation Matrix in linear algebra. The second one is Euler Angles and the third one is 

Quaternions. Rotation matrix is widely used as a standard solution in mathematics and physics 
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when numerical analysis required. Euler angle is an easy and quick solution with the least memory 

usage (with only 3 numbers) but suffers gimbal lock problem. Quaternion is less analytical but has 

a better memory usage (4 scalars) than rotation matrix (3x3=9 values) and the operation of 

quaternion is faster. Therefore quaternion is widely used in real-time application for object rotations 

in computer graphics. It has become a standard in many popular game engines e.g. Unity. The 

simulation of deformation within LCS in FREDOMS does not involve rotation, and we simulate the 

movement of the whole object as a rigid body in a separate process. Therefore quaternion is an 

excellent option to be used for representing object rotation and the calculation. It is also easy to 

use quaternions to map the change of the rotation state to each particle. PanGu simulator will 

provide the rotation information in quaternion form for comparability. 

Weighted distribution for gained impulse on intersection triangle 

The collision will happen on a specific triangle on the target object (unless there are multiple 

contacts simultaneously). At the time of a collision, part of the impulse from the incoming object is 

instantly transferred to the target object. According to the formula of momentum for perfect elastic 

collision, we know that: 

𝑃0 = 𝑀𝐼𝑛𝑐𝑣0𝑖𝑛𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑀𝑡𝑎𝑟𝑣0𝑡𝑎𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑀𝐼𝑛𝑐𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑀𝑡𝑎𝑟𝑣𝑓𝑡𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

where 𝑃0 is the total initial momentum, 𝑀𝐼𝑛𝑐 and  𝑀𝑡𝑎𝑟 represents the mass of the incoming 

object and the target object. 𝑣0𝑖𝑛𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑣0𝑡𝑎𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑣𝑓𝑡𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  represents the initial momentum (𝑣0) 

and the momentum after the collision (𝑣𝑓) for the incoming and the target object. The illustration 

of the momentum exchange process is shown in Figure 4.3.3.  

 

Figure 4.3.3 Object collision and the exchange of momentum between two objects 
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In this case, we use ∆𝒕 notion to indicate “after collision” instead of a specific time step. In 

FREDOMS, we make the assumption that the collision and separation of two objects happen 

instantly with no time delay (which is different in real-world physics, where for a minimal time 

window the two object attach to each other for energy exchange etc. and then separate). 

We know that the initial velocity of the target object 𝑣0𝑡𝑎𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is zero (based on our assumption and 

the definition of target object that were discussed in the subsection Dynamic collision detection). 

We have also introduced energy lost factor 𝛾 to indicate the total energy (momentum in our case) 

change in collision process. Then (1 − 𝛾) represents the coefficient of restitution of the collision. 

In real world phenomena, the lost kinetic energy has turned into heat because of the collision. 

Therefore, the change in total momentum is 𝛾𝑃0. The remaining total momentum is (1 − 𝛾)𝑃0. 

According to the above discussion, we now have:  

𝑃∆𝑡 = (1 − 𝛾)𝑃0 = (1 − 𝛾)𝑀𝐼𝑛𝑐𝑣0𝑖𝑛𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑀𝐼𝑛𝑐𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑀𝑡𝑎𝑟𝑣𝑓𝑡𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     (1) 

Finding the momentum distribution for two objects after the collision means finding the exact value 

of 𝑃∆𝑡𝑖𝑛𝑐 and 𝑃∆𝑡𝑡𝑎𝑟(the sum equals (1 − 𝛾)𝑃0) and how the total momentum is distributed in 

such way, can be solved by using the conservation of kinetic energy. We have a momentum loss 

of 𝛾 therefore the initial kinetic energy after the collision but before the distribution is: 

𝐸𝑖 =
1

2
𝑀𝑖𝑛𝑐((1 − 𝛾)𝑣0𝑖𝑛𝑐)

2 

Therefore we have: 

1

2
𝑀𝐼𝑛𝑐𝑣𝑓𝑖𝑛𝑐

2 +
1

2
𝑀𝑡𝑎𝑟𝑣𝑓𝑡𝑎𝑟

2 =
1

2
𝑀𝑖𝑛𝑐((1 − 𝛾)𝑣0𝑖𝑛𝑐)

2
                     (2) 

We combine equation (1) and (2) then we can find the equation to describe the relationship between 

𝑣𝑓𝑖𝑛𝑐 and 𝑣𝑓𝑡𝑎𝑟:   

𝑣𝑓𝑖𝑛𝑐 =
(𝑀𝑖𝑛𝑐 − 𝑀𝑡𝑎𝑟)

(𝑀𝑖𝑛𝑐 + 𝑀𝑡𝑎𝑟)
(1 − 𝛾)𝑣0𝑖𝑛𝑐 

𝑣𝑓𝑡𝑎𝑟 =
2𝑀𝑖𝑛𝑐

(𝑀𝑖𝑛𝑐 + 𝑀𝑡𝑎𝑟)
(1 − 𝛾)𝑣0𝑖𝑛𝑐 

The momentum will be conserved on all x, y and z-axis. Based on the above calculation, we are 

able to find the impulse that are passed on to the target object. The impulse will be passed on to the 

contact triangle T on the physics mesh of the target object, which is shown in Figure 4.3.4. 
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Figure 4.3.4 Contact triangle 

Once the contact triangle and the intersection point on the triangle are confirmed, we will perform 

a distance-based weight assignment for each particle. The simple approach is to calculate the 

distance between the intersection point and each particle of the triangle. An illustration of this 

operation can be found in Figure 4.3.5.  

 

Figure 4.3.5 Finding the distance-based weight for each particle 

As shown in the figure, we have: 

𝑤1: 𝑤2:𝑤3 = 𝐿1: 𝐿2: 𝐿3 

and: 

𝑤1 + 𝑤2 + 𝑤3 = 1 

Therefore we can calculate 𝑤1, 𝑤2, 𝑤3 for 𝑝1, 𝑝2, 𝑝3: 

𝑤𝑛 =
|𝑃𝑖 − 𝑃𝑛|

∑ |𝑃𝑖 − 𝑃𝑛|3
 

where 𝑛 ∈ {1, 2, 3}, 𝑃𝑖 is the intersection point of the triangle that is defined by three particles 

𝑝1, 𝑝2, 𝑝3. Now by combining the equations we know that for an incoming 𝑃0 we can calculate the 

momentum that are distribute to one of the three particles to the intersecting triangle is: 

𝑝𝑛 =
|𝑃𝑖 − 𝑃𝑛|

∑ |𝑃𝑖 − 𝑃𝑛|3
× 𝑀𝑡𝑎𝑟𝑣𝑓𝑡𝑎𝑟 
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We already know the mass for each particle, therefore, by using 𝑣𝑛 =
𝑃𝑛

𝑚𝑛
, we have the velocity for 

each particle on the triangle. The value of this velocity will be transferred into impulse, which is a 

one-time displacement applies to the particle. 

Determine the direction of movement for the objects 

Collision in FREDOMS is elastic. The incoming object will “bounce” from the contact surface. 

Therefore it follows the reflection rule. The bounce-back direction (represent by vector 𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) can 

be found by firstly calculate the normal (represent by vector 𝑣𝑛⃗⃗⃗⃗ ) for the contact surface, and the 

path of 𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is symmetrical to the incoming direction (represent by vector 𝑣0𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) in relation to n. 

The direction can be calculated by: 

 𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑣0𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −
2𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝑣𝑛⃗⃗⃗⃗ 

‖𝑣𝑛⃗⃗⃗⃗ ‖
2

𝑣𝑛⃗⃗⃗⃗  

The target object, on the other hand, will be moving towards the opposite direction of the normal 𝑣𝑛⃗⃗⃗⃗ . 

Therefore 𝑣𝑓𝑡𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (−1) ∙ 𝑣𝑛⃗⃗⃗⃗ . An illustration is shown below in Figure 4.3.6 where angle (a) equals 

angle (b). 

 

Figure 4.3.6 Object's moving direction after collision 

 

Determine the direction of movement (tendency) for particles on the contact triangle 

Once the impulse is passed on to the contact triangle and the weight factors of the three particles 

are confirmed, we apply the impulse to the particles. The particles will instantly gain displacement 

with the same direction of the total velocity. Therefore, the three particles will have the tendency to 

move in the same direction but in different amount of distance. The difference depends on the 

distribution weight of the particle. Two cases are shown in Figure 4.3.7 Incoming velocity 

perpendicular to the contact triangle and Figure 4.3.8 Incoming velocity angled to the contact 
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triangle. The displacement happened in the figures are the projected tendency without any 

constraints. In real cases, the particle’s movement will need to satisfy other conditions. 

 

Figure 4.3.7 Incoming velocity perpendicular to the contact triangle 

 

Figure 4.3.8 Incoming velocity angled to the contact triangle 

4.3.4 Performing object deformation 

After the initial velocity for the particles on the contact triangle is calculated. FREDOMS will start 

the impulse distribution process throughout the. Our method takes the simulation in the following 

steps: 

1. The distribution of the impulse. 

2. Particle displacement projection. 

3. Constraint satisfaction.  

4. A one-step integration for the final deformation. 

Before these four steps, the system will check if the incoming impulse exceeds the hardness factor 

of the constraint. The hardness factor 𝜏 was defined in Section 4.2.10. If 𝜏 < 𝑝0𝑖𝑛𝑐 it means the 

impact is not strong enough to break the internal structure integrity and the object will remain as a 

rigid body. The system will stop the rest of the simulation process and waiting for the next collision 

event. 
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4.3.4.1 A network structure for connecting particles by constraints 

FREDOMS distributes the impulse by using a network structure. A network structure will record 

every node (particle) to the current node (particle). Therefore it is easy to index all the particles that 

have direct connections (via constraints) to the selected particle. The benefit of using such structure 

is that it can generate a distribution tree structure quickly with level of depth from any arbitrary 

particle as a starting point. 

 

Figure 4.3.9 Distribution tree construction based on network structure 

In Figure 4.3.9, we give an example of a fragment of object structure been affected by an external 

impulse. The blue and red line represents the surface of the physics mesh. The two L0 (level 0) 

particles are the particles on the contact triangle and been directly distributed with the impulse. The 

L1 particles are the first level tree nodes that will get the impulse distribution from L0. L2 particles 

are the second-level nodes, and L3 are the third-level nodes, the depth will extend until: 

1. All the particles in the structures are reached. 

2. During the distribution, the impulse is below a certain threshold that is insignificant to cause 

noticeable displacements of the particles in the next level. 

3. It has reached the maximum depth level that is defined by the user. 
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4.3.4.2 Impulse distribution 

The impulse distribution is based on the following rule: 

𝑝𝑛 = 𝑃0 ∙ µ𝑛 

where n is the depth of the distribution of the tree, 𝑃0 is the impulse of level 0, and µ is the general 

impulse distribution factor. We also proposed a first-level impulse factor that only applies to level 

1 particles. However, in the following introduction, we will assume the two factors share the same 

value (which is a common case).  

We achieve the distribution by using a distribution-and-finish approach one layer at a time in a top-

down level. Before proceeding into the next level, the impulse distribution for all the particles in 

the current level is finished. A top-down view of the structure is shown in Figure 4.3.10.  

 

Figure 4.3.10 Top-down view of the distribution tree 

From the above example, it is noticeable that two L0 particles share the same L1 child node (the 

red node). This is allowed in our method, and the L1 particle (red node) will receive two distributed 

impulses from each L0 node. If we define L0 is the highest level, L1 is the lower level and L2 is a 

further lower level, In FREDOMS, one lower child node can be shared by multiple higher parent 

nodes. However, a child node cannot be shared by nodes from different levels. It is always assigned 

to the highest possible parent node. For example, if an unsigned particle node has a L3 node and a 

L4 node connect to it, it will become a child node to the L3 node instead of L4 node. A node also 

cannot be a child node to a same level node or a lower level node.  

By doing the above structure generation, we have a hierarchy of particles. This structure will be 

dynamically generated once the collision is detected, and the initial contact particles are confirmed. 

As it benefits from the network structure, such a tree can be generated quickly based on any input. 

Once the structure is generated, we flag each particle with the level number for future reference.  
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At the impulse distribution stage, the particle will gain displacement from the impulse, this 

displacement is temporary and can be adjusted later by constraint’s condition satisfaction check. 

Therefore, we refer the temporary displacement as “proposed displacement”. 

We conduct impulse distribution one level at a time. For example, we do the distribution from L0 

nodes to L1 nodes first. Once complete, the L1 impulses are fixed and unchanged. The particle’s 

proposed displacements are recorded, and the distribution will proceed to the next level (2). The 

proposed displacement for L2 nodes will be fixed after distribution from L1 to L2 is finished. The 

process will go on until the exit condition we have introduced in Section 4.3.4.1 is met. 

After the distribution is finished, all the particles will have an impulse value as a vector that indicates 

its projection to the new position. The particle as the joint nodes that received multiple impulses 

will use an average value of all the received impulses for projection. Once all the particles have 

their new projected positions, the next step is to perform constraint condition check. It is worth 

mentioning that with AABB frame referencing, the structure elements outside the physics 

surface mesh are also affected and are distributed with impulse and take displacements.  

The nature of permanent deformation in FREDOMS 

A difference between elastic deformation and permanent (elastic) deformation in computer graphics 

is the time taken to perform the deformation. In elastic object deformation like cloth and soft body, 

the observer can always see the deformation process happens gradually with an animated visual 

effect. The presentation takes a period of time until the internal structure achieves static equilibrium. 

Permanent deformation, on the other hand, does not present the deformation process gradually. 

Instead, it happens and finishes instantly. The exception is when the object is under constant stress. 

Therefore, instead of simulating the change by each time step and displace them frame by frame, 

FREDOMS calculates the object’s potential final state without satisfying the constraints within a 

fixed time step. Then FREDOMS makes adjustments to the particle’s displacement based on the 

constraint condition.  

The whole process happens within one application execution cycle, which means within this cycle, 

we calculate and predict the whole physics behaviour and give the result. The result is a final output 

for the simulation without any further processing (except for further constraint condition check). 

Therefore, the deformation of the object is instant. 
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4.3.4.3 Constraint satisfaction 

In Section 4.2.9 Constraints, parameters and material properties, we have introduced the properties 

and the definition of our constraint. In the run-time simulation, the constraint act as a distance-based 

operator to the position of the connected particles. The constraint also acts as a network relationship 

flag to define the tree structure. Therefore, in FREDOMS, the influence from the neighbouring 

particles is in a one-direction form. In the process of impulse distribution and particle projection, 

the influence is not mutual. Therefore, the constraint satisfaction process is the only stage where 

the interaction of two neighbouring particles is considered. 

In last section, we have introduced the operation for particle displacement projection. An example 

of the result of the projection is shown below: 

 

Figure 4.3.11 Particle displacement projection with satisfying constraint condition 

Figure 4.3.11 shows a scenario of the particle displacement projection, where after the projection the 

minimum length of constraint is satisfied. From the example, the length of the constraint between 

two particles is changed. We define the change of constraint length during as  ∆𝑑 , the initial 

constraint length at the beginning as 𝑙0. Then the satisfaction condition is: 

𝑙𝑚𝑖𝑛 ≤ 𝑙0 + ∆𝑑 ≤ 𝑙𝑚𝑎𝑥 

where a negative value of ∆𝑑 represents shorten and a positive value represents lengthen.  

When the change of length for the constraints does not meet with the satisfaction condition, 

FREDOMS will need to adjust two particles projected position. There are two cases: 

1. Distance between two particles is less than the minimum length (example is shown in 

Figure 4.3.12). The particles’ position will be adjusted. The adjustment operation is to 

lengthen the distance between the two particles P1 and P2. If we define the distance D 

between P1 and P2 as 𝐷 = 𝑋1 − 𝑋2 then D is the distance between P1 and P2 with the 

direction from P1 pointing to P2. And we have d as the unit vector of D. Then we use the 
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following equations to determine the degree of lengthening of the constraint, and the 

adjustment to the position for two connected particles: 

𝑃1𝑓 = 𝑃10 −
𝑚1

𝑚1 + 𝑚2

|𝑙0 − 𝑙𝑚𝑖𝑛|𝑑 

𝑃2𝑓 = 𝑃20 +
𝑚2

𝑚1 + 𝑚2

|𝑙0 − 𝑙𝑚𝑖𝑛|𝑑 

2. Distance between two particles is larger than the maximum length (example is shown in 

Figure 4.3.13). In this case, we use the similar approach as in the first case. We shorten the 

distance by using: 

𝑃1𝑓 = 𝑃10 +
𝑚1

𝑚1 + 𝑚2

|𝑙0 − 𝑙𝑚𝑎𝑥|𝑑 

𝑃2𝑓 = 𝑃20 −
𝑚2

𝑚1 + 𝑚2

|𝑙0 − 𝑙𝑚𝑎𝑥|𝑑 

 

 

Figure 4.3.12 Particle displacement projection dissatisfying the constraint condition (distance too close) 

 

Figure 4.3.13 Particle displacement projection dissatisfying the constraint condition (distance too large) 

As shown in the equations, the adjustment to the particles follows the rule to divide the total 

adjustment amount proportionally to the connected particles based on the ratio of their mass. If they 

have the same mass value (which is the case in our implementation), then the adjustment to both 

particles are equal. An illustration of the summary of the whole adjustment process for the particles’ 

positions are shown in Figure 4.3.14 in below: 
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Figure 4.3.14 A step by step illustration of repositioning the particles based on constraint conditions 

In this process, one particle can be adjusted multiple times if it has multiple connected constraints 

that has a dissatisfied condition.  

4.3.5 Finishing the deformation for the current cycle 

At the end of the impulse distribution, we will have a physics mesh that reaches static state and 

(temporarily) meets all the constraint satisfaction. At this stage, the simulation of the object 

deformation is completed for the current execution cycle. As the FREDOMS permanent 

deformation simulation happens instantly within one cycle, we can also state that the permanent 

deformation is finished. The constraint satisfaction will still be executed in the following cycles 

until all the conditions are met. But the object’s structure is mostly fixed and the impulse distribution 

is finished. Then we map the change of the physics mesh back to the rendering mesh as discussed 

in Section 4.2.7 A Weighted deformation mapping method . This is a process for distributing the 

vertex displacements based on the weight value. It is worth mentioning that after this process, the 
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surface normal for each triangle needs to be recalculated for the rendering mesh. The surface normal 

for physics surface mesh also needs to be recalculated for collision detection preparation. The Axis-

Aligned Bounding Box (AABB) of the physics model will be regenerated as well.  

4.4  User input data and User Interface (UI) design 

As a complete workflow, the FREDOM framework is made to deliver a solution to certain targeted 

users to complete a set of tasks seamlessly without extra effort to communicate and clarify 

information from other parties. The user interface will guide the user to input their requirement in 

order to generate physics mesh that meets their requirements. Our approach for the solution is to 

provide an editor user interface that can associated with the commonly used modelling software to 

provide a platform for the end-user to input their data. The interface should be able to offer an 

intuitive experience and requires minimal inputs, and should not require users to have extensive 

knowledge that beyond their field. It should also be able to give instant visual feedback (real-time 

simulation demonstration) and let the user to adjust the parameters accordingly. 

4.4.1 Common workflow 

The creation of a visualised interactive application involves a team of domain experts and a well 

prepared and planned workflow. A standard workflow in nowadays to process the complete tasks 

in our framework is separated into several steps.  

For example, to create a video game. Firstly, the story designer will establish the initial background 

storyline and the interaction details. Then the designer will separate the whole story into one or 

multiple scenes with different tasks and events to serve the purpose of delivering the story and the 

game experience. Based on the design requirements, many 3D objects (models) needs to be created 

and placed in order to construct the scene. Some of these objects will be backgrounds and decoration 

for constructing the environment, and some of the objects are the key elements or specially designed 

items (can be part of the environment) that are expected to be able to interact with the user in order 

to proceed the story. For example, in a puzzle game, some objects can be picked up by the player 

or can be pushed/moved to a different location to resolve a quiz. Or in an RPG (Role-Playing Game) 

game the player may need to break a particular wall or clear some obstacles in order to move 

forward.  
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The designer will then pass these ideals and detailed specification to the concept artist to create 

conceptual arts for every aspect in the game. This task will give initial feedback to the designer 

Once the conceptual design is confirmed, the 3D modelling artists will start to create 3D models 

(mesh) based on the design description and the concept art. The artists will first create a detailed 

3D modelling with all the rendering properties (vertices, faces, material and textures, animation 

skeleton and joints, etc.). At this stage, some physics simulation settings can be configured if the 

modelling tool supports such function.  

After the 3D model are complete they will be passed on to two different parties: the scene designer 

and the programmer. The job for scene designer is to take all the 3D model that is created by the 

artist and use them to construct the scene as required by the design document. They need constant 

and direct visual feedback for their creation, and the tool they are using is CAD-like scene editors 

which serves as an intermedia between 3D modelling and the programming. The programmer will 

write the function to import 3D models into the programming and conduct rendering and basic 

physics simulation, e.g. collision detection. They have the direct power to manipulate the 

appearance (rendering) and behaviour (physics simulation) of the model, and they will also create 

the logic behind the scene. 

In Figure 4.4.1 below, we show the workflow for creating physics objects in general approach and 

involved parties for each step. Designer and concept artist’s work is the design phase where all the 

initial ideas and implementation specifications are formed. 3D modelling artist, scene designer and 

programmer are in the development phase, where the actual content and the final product are created. 

Our FREDOMS framework is designed to assist the domain experts in the development phase. 

We offer new features to this phase by applying FREDOMS framework for modelling and 

simulating permanent deformable object. We also create a set of interfaces to simplify and speed up 

the workflow in the development phase by introducing automatic modelling and easy physics 

property configuration to avoid unnecessary communication between different parties. 
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Figure 4.4.1 A general workflow for creating a graphical interactive application 

4.4.2 End-user definition 

One of the purposes of FREDOMS framework is to assist the domain expert to do their tasks easily 

in development phase. Another purpose of the framework is to deliver a reasonably realistic and 

accurate simulation result. Therefore, for evaluating the FREDOMS, we need to consider user 

experiences from both perspectives. In order to create a realistic experience, the application user’s 

experience important to our simulation results. Based on the above conclusion, we have separated 

the targeted end-users into two groups:  

1. Domain expert. The domain expert is the party that creates the content. A domain expert 

in this context is normally a 3D modelling artist or a scene designer. This type of end-user 

will be dealing with creating and importing raw 3D model into the system and setup the 

required or demanded physics attributes to define the physical properties of the object. 

Domain experts are the users of APMI. 

2. Application user/player. This group of end-user is the direct user of the final interactive 

application. The FREDOMS framework is proposed to assist the domain expert to create 

interactive content easily. The final content will be directly delivered to application user 
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and game players who will be using and experiencing the product. Therefore we consider 

the application user/player as the end-user of the framework.    

It is worth mentioning and clarifying that our framework involves another type of end-user, which 

is the programmer who will be using PG simulator as a developing (programming) tool. The 

simulator will provide a set of Application Programming Interface (API) for the programmer to 

integrate our physics engine (for real-time permanent deformation simulation) into their 

application. In this case, the API is also an “interface” to the programmer. However, in this section, 

we define the User Interface as a visualised graphical interface that can instantly handle user input 

and give real-time feedback. Therefore, the discussion of the Programming Interface is out of our 

topic. 

4.4.3 The scope of user input 

For proceeding the modelling and testing, FREDOMS requires user input and provides the interface 

for such input accordingly. A summary of the user input is listed below in Table 4.4.1. 

Input type Input value 

Data import and export File name and format 

Configuration for physics structure 

generation 

Physics structure density 

Object size 

Configuration for physics material 

property 

Minimum and maximum length ratio 

Impulse distribution factor 

Configuration for optimisation Maximum distribution depth 

Minimum distribution threshold 

Input for testing Interaction trigger 

Table 4.4.1 User Input Overview 

The above user input is handled by Automatic Physics Modelling Interface (APMI). 
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4.4.4 The scope of system output 

As an assisting tool provided to the domain expert, the FREDOMS framework needs to give instant 

feedback to the user in order to let them review and modify their creation accordingly. A list of all 

the output types are listed below: 

Input type Input value 

Rendering model review Rendering mesh display 

Grid mode 

Mesh mode 

Physics model review Mesh mode 

Exterior display 

Interior display 

Particle-only mode 

Rendering mesh information Vertices counts 

Edge counts 

AABB information 

Physics model property information Particle counts (inner, outer and total) 

Constraint counts 

Surface particle and face display 

Collision detection mesh display 

Inner/surface/outer particle display 

Particle information  Particle position (in drawing) 

Particle type (in drawing with colour-coded) 

Constraint information  Constraint position (in drawing) 

Constraint type (in drawing with colour-coded) 

Real-time simulation feedback Real-time deformation simulation with interaction 

Table 4.4.2 System output overview 
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4.4.5 Framework/ APMI User Workflow 

The user flow of using the interfaces that are provided by APMI (and PanGu simulator for the test 

simulation). A working process for generating a physics with feedback is presented in the below 

illusion (Figure 4.4.2): 

 

Figure 4.4.2 The flow of using the APMI user interface 

A detailed interface design presentation can be seen in Section 5.6.  

 

4.5  Summary 

Following the proposal we gave from Chapter 3, in this chapter, we presented the mythology behind 

our proposed FREDOMS framework in details. The presentation is divided into two primary 

components of the framework: The Automatic Physics Modelling Functionality Interface 

(APMFC), and the Deformable Object Simulation Functionality Component (DOSFC). In addition, 

the interface design is also introduced. 

We structured the presentation following the workflow of the FREDOMS. Firstly, we gave a more 

detailed discussion regarding our selection of the physics modelling approach. Then, we introduced 

our Particle-Constraint based model. The model includes a BFCC (Body-Face-Centred-Cubic) unit 

based physics structure generation, a BFCC-grid based space subdivision and surface mesh 

generation, and a weighted mapping method for rendering mesh. We also discussed the physics 

mesh parameters and their purposes. We also proposed an AABB frame referencing approach for 

delivering a more stable structure. 

Then we looked into the real-time physics phase and discussed each topic followed by the 
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processing order. We introduced the two-phase collision detection that is specifically modified to 

suit FREDOMS; we discussed the collision response and the determining of the impulse; we then 

introduced our proposed impulse-based network distribution method, which uses a single step 

impulse (displacement) distribution based on the network depth level. We also proposed a flexible 

length constraint condition satisfaction for performing permanent deformation simulation while still 

maintain the structure integrity.  

At last, we introduced our design ideology for the user interface. 

From the summary, we can conclude that the FREDOMS framework offers a complete set of 

solutions for modelling and simulating permanent deformable object. It contents sufficient 

functionality to cover all the tasks that are involved in the process. The proposed methods and the 

processing flow integrates seamlessly. Moreover, our proposed new methods offer a fast and stable 

particle-based model for permanent deformation simulation, which could only be achieved by more 

complicated force-based method.  

In the next chapter, we will present how we implemented our proposed methods into an APMI 

prototype application and how we achieved each task by using programming solutions. 
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5 Implementation of FREDOMS framework 

 

In Chapter 4, we gave a detailed introduction of the methodology behind our proposed modelling 

and simulation approaches. The new methods include an automatic BFCC particle-constraint based 

physics modelling solution and a real-time impulse distribution based permanent deformation 

simulation method. In addition, we have designed a FREDOMS framework that utilizes and 

integrates our methods and offers a seamless and efficient workflow for 3D static mesh processing 

for physics simulation. 

In order to demonstrate and evaluate of our proposed methods, we have developed a prototyping 

APMI platform that integrated with our PG simulator. In the implementation, we used the Unity 

Engine [100] for rendering and User Interface layout and interaction, we also used the Unity 

integrated PhysX engine for conducting ray casting operation. The prototype application strictly 

follows the FREDOMS design and the proposed methods as a proof of our concepts. In this chapter, 

we will introduce and discuss the implementation details of our APMI application.  

In the first section, we will give an overview of the FREDOMS functionality components regarding 

its functionality and workflow. In Section 5.2, we will introduce the data types and data structures, 

and how they are organised in the implementation. In Section 5.3, we will introduce the workflow 

and implementation of each tasks in physics modelling component (APMFC). In Section 5.4, we 

will explain the implementation and execution for real-time simulation phase (DOSFC). In Section 

5.5, we discuss our I/O procedure of the data and file format for FREDOMS. In Section 5.6, we 

will present our interface design for APMI. Finally, we give a summary of the chapter in Section 

5.7. We will demonstrate and evaluate the results of our implementation in the next chapter. 
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5.1 An overview of the implementation of FREDOMS  

As proposed in Chapter 3, a complete FREDOMS framework has two main functional components: 

A physics model generation component, and a real-time simulation component. The tasks of 

modelling components are done offline, and the simulation is executed in real-time. Therefore the 

implementation focus for these two components are different. The physics modelling phase 

concerns more about generating an adaptive and accurate mathematical and physical interpretation 

of the given object. While the simulation phase concerns about delivering a fast and stable 

presentation of the results. Moreover, as our goal of FREDOMS system is not only to achieve its 

proposed functionalities but also integrate the provided solution into an automatic processing 

workflow for interactive application development with a smooth and intuitive interface, therefore, 

aspects like usability, controllability and simplicity have to be taken into account for the 

implementation.  

In this section, we will give an overview of the functionality components and architecture design 

of our implementation of FREDOMS framework. 

5.1.1 Functionality components of FREDOMS 

In Chapter 3, we have introduced our implementation plan for Automatic Physics Modelling 

Interface (APMI) and PanGu Physics Simulator (PG Simulator). APMI and PG simulator are 

two different systems from the end-user perspective of view. However, they also have a partial 

inclusion relationship and share some functionalities. APMI system is integrated with PG simulator 

functions in order to provide real-time testing feedback. PG Simulator can also be used as a 

standalone component for integrating with other existing graphics and physics engines.   

To clarify the ambiguity of the terms when explaining the implementation process, we have 

separated the functionality of FREDOMS into two main components: 

1 The Automatic Physics Modelling Functionality Component (APMFC). 

2 The Deformable Object Simulation Functionality Component (DOSFC). 

APMFC handles physics modelling tasks. It takes a rendering mesh as input and a physics mesh as 

output. DOSFC handles the physics simulation process. It takes a physics mesh (and the 

corresponding rendering mesh) as input and the real-time deformation visual effect as output. 
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By combining two components in an APMFC → DOSFC order, we have the whole physics model 

proceeding pipeline (as shown in Figure 5.1.1):  

 

Figure 5.1.1. Component relationship 

From this context, APMI contains both APMFC and DOSFC functionalities. PanGu simulator only 

has DPSFC functionalities.  

5.1.2 Review of FREDOMS workflow in relation to functionalities 

Before breaking down the component functionalities into more specific modulus, it is essential to 

review the FREDOMS workflow to make our implementation goal clear. The workflow had already 

been introduced in Section 4.1. A summary diagram can be found in Figure 4.1.1. The FREDOMS.  

Now, we analysis the workflow again from an implementation point of view. Using our APMI (with 

PG simulator integration) prototype as an example, the whole processing and simulation process 

should take the following steps: 

1. Import rendering mesh as input data. 

2. Acquire physics structure and material property settings from user input.  

3. Automatic physics modelling. 

4. Physics model data construction and export. 

5. Physics model data construction and import. 

6. Real-time impulse detection. 

7. Real-time deformation. 

8. Real-time deformation mapping to rendering mesh. 

9. Offline and real-time material property modification. 

10. Real-time visual presentation of the results. 

In the above steps, functions required in step #1，step #10 and a part of step #2 and 6# can be done 
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by using third-party APIs. The rest of the steps has to be implemented within our project as they are 

specifically designed for demonstrating our proposed methods.  

From the user point of view, Step #1, #2, #4, #5 and #9 involves user input via the provided interface. 

Step #7 also involves user input; however, this is for initiating an external impulse to the system; 

no (informative) interface is required.  

Therefore we analysis these required steps and summarise them into different system function 

modulus, and present them in the next section. 

5.1.3 Functional modules for APMFC 

As discussed from functionality perspective of view, our FREDOMS system contains two major 

modules: 

The Automatic Physics Modelling Functionality Component (APMFC) is the component that 

designed for the artist. It takes a raw 3D mesh as input and generates a physics model as output. In 

APMC the default ‘end-user’ is domain experts who designed/created the input mesh.  

In order to achieve the above takes, we designed APMFC into the following function modules: 

1. Raw data import module. This module is responsible for importing raw rendering mesh 

data and construct the rendering mesh for display.  

2. Physics data import module. This module is responsible for importing and reconstruction 

of the physics information that was previously exported by FREDOMS. 

3. Data export module. This module handles the data formatting and exporting of the physics 

mesh information. 

4. AABB update module. This module dynamically updates the AABB for a given particle 

cloud. 

5. BFCC cube generation module, this module contributes to the generation and construction 

of particles and constraints, and their geometry connectivity structures.  

6. Surface generation module. This module’s function is to analysis both rendering mesh and 

physics mesh and adjusts the particles and constraints’ position to match the surface of the 

rendering mesh. It is also responsible for generating a triangle mesh based on the surface 
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particles. 

7. Rendering mesh mapping (skinning) module. This module is responsible for mapping each 

vertex on the rendering mesh to a set of particles in the physics mesh with weighted values. 

This module is also responsible for remapping any change from the physics mesh to 

rendering mesh based on the weighted value. 

8. Parameter managing module. This module is an intermedia between the user input value 

and the parameter archive. It retrieves and stores externally defined factor values for the 

system. 

5.1.4 Functional modules for DOSFC 

The Deformable Object Simulation Component (DOSFC) is a separate system that is independently 

implemented and embedded with other physics engine. It is part of a complete interactive real-time 

application that is developed following FREDOMS framework. It takes FREDOMS physics model 

as input and simulate and displays visual effect as output. We have implemented DOSFC 

component into the following functional modules: 

1. Collision detection module. It handles object collision detection with other objects in the 

scene and provides the colliding information. 

2. Network structure generation and impulse distribution module. This module dynamically 

generates network structure based on each initial impulse and uses a depth-based approach 

to distribute the impulse into the whole physics structure.  

3. Constraints condition satisfaction module. This module provides a constraint condition 

solver to adjust particle’s position based on the condition satisfaction check.  

4. Particle update module. This module is responsible for updating each particle’s position 

based on the impulse distribution as well as the constraint condition satisfaction.    

5.1.5 Functional modules for User interface and feedback 

Besides the two core components (APMFC and DOSFC) of FREDOMS, in order to implement a 

usable APMI prototype, we need the following additional function modules to provide an interface 

for users: 
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1. Visualisation module. This module provides the function to render the rending mesh and 

physics mesh, as well as different elements (particles, constraints, AABBs, etc.). The 

rendering function in our implementation is achieved by using Unity Engine. 

2. User Interface module. This module provides a user-machine communication interface for 

users to input variables. It also allows users to interact with the model for real-time testing. 

All UI layout display and the interaction function in our prototype application is also 

implemented by using Unity Engine. 

The primary purpose of FREDOMS framework is to offer the ideology behind the integration of 

workflow and the interface design, therefore, it leaves freedom for graphics rendering and interface 

implementation. We have introduced a conceptual and fundamental design protocol for the user 

interface. However, in future works, the visualisation and user interface for FREDOMS can be 

implemented in different forms based on each application’s requirement. 

5.1.6 Summary of functional components in FREDOMS 

In Figure 5.1.2, we have summarised the functional component and their modules’ relationships 

and visualised the structure into an architecture diagram. This presentation offers a clear view of 

how the information flows in FREDOMS framework, and how each module interacts with each 

other over the two main components. 

In the following sections, we will use this flow as a reference to give a detailed introduction of how 

we have implemented each functionality.  
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Figure 5.1.2 Overview of functional components in FREDOMS 
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5.2  Physics data types and structures in FREDOMS 

5.2.1 Defining elementary physical primitive types 

FREDOMS is a physics-based framework; therefore, in order to process physics problems and 

interpolate object’s properties, we have defined the basic primitive types into programming data 

types. Primitive types are the elements of the data structure in FREDOMS system. In this section, 

we will introduce the basic primitive types and their attribute components for FREDOMS. 

5.2.1.1 Particle 

Particle is the main structural element of FREDOMS system. The distribution of particle defines 

the space structure of the object. Furthermore, the displacement of particle represents deformation 

of the object. A particle structure contains the following attributes (Table 5.2.1): 

Data type Description 

Position The 3D local position of the particle. 

Mass The mass of the particle 

Particle Type Indicates if the particle is on the mesh surface or inside/outside of the 

surface mesh boundary.  

Velocity The displacement that about to happen in the current execution cycle 

(regardless of elapsed time) 

Velocity distribution 

buffer 

A list of impulse distribution that been passed by from all the higher 

level tree nodes. 

Constraints list A list of constraints that connects to this particle 

Table 5.2.1 Particle primitive type attributes 

Particle is the basic element to all the more complex structures, like a point element in geometry. 

The position property of all the other primitive types are defined by multiple particles. 

For implementation of APMI, particle is useful to assign a basic graphical geometry primitive (e.g. 

a point, or a small cube) to each particle; this will give a visual presentation for users to view the 

structure of the physics mesh and identify the position for each (or chosen) particles. 
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5.2.1.2 Constraint 

A constraint is a virtual connection made of two ending particles and a set of parameters. It is the 

interaction intermedia of the connected particles. The positioning interference from the constraint 

defines how the connected particles take displacement based on external impulse. A constraint 

structure has the following attributes (Table 5.2.2): 

Data type Description 

Particle p1 One particle that is connected by this constraint 

Particle p2 The other particle that is connected by the constraint 

Rest length (𝑳) The initial state of the constraint length (distance between two 

particles when the object is at its original shape with no deformation)  

Maximum length 

coefficient (𝜺𝒎𝒂𝒙) 

The maximum length ratio of the constraint with respect to its rest 

length. The maximum length 𝑙𝑚𝑎𝑥 = 𝐿 ∙ 𝜺𝒎𝒂𝒙  where 𝐿 is the rest 

length of the constraint. This defines the maximum distance of two 

particles without constraint intervention.  

Maximum length is responsible for material expansion ability. 

Minimum length 

coefficient (𝜺𝒎𝒊𝒏) 

The minimum length ratio of the constraint with respect to its rest 

length. The minimum length 𝑙𝑚𝑖𝑛 = 𝐿 ∙ 𝜺𝒎𝒊𝒏  defines the minimum 

distance between two particles without constraint intervention. 

Minimum length is responsible for material compressibility 

Impulse distribution 

factor (𝝁) 

The proportional factor of impulse transmission from one particle 

(from a higher level) to the other connected particle.  

Table 5.2.2 Constraint Type Attributes 

In FREDOMS, the maximum length and minimum length coefficients, as well as the impulse 

distribution factor, are normally defined by a same set of value for every constraint in the structure. 

This results in the whole structure having the same physical propriety. It is possible to individually 

configure the attributes for each (group of) constraint into different settings if we require an object 

to behave differently in different parts (e.g. rigid at the bottom and soft on top). In our 

implementation, all the constraints are applied by the same set of value by default.  

In APMI, the constraint is visualised by drawing a line between two connected particles, and is 

colour coded to represents its different types. 
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5.2.1.3 Triangle 

FREDOMS defines triangle primitive as a face element for defining the surface boundary. This 

boundary will then be used for collision detection and initial impulse distribution purpose. Similar 

to the triangle used in rendering mesh, a collection of triangle primitives will form a closed surface 

mesh. In FREDOMS, each vertex of a given triangle is made of a particle. A triangle contains the 

following attributes: 

Data type Description 

Particle Array[3] The array of three particles that defines the FREDOMS triangle. The 

index order 0, 1, and 2 are in clockwise and this represents the front 

direction (the normal direction) of the triangle (winding order). 

Triangle normal Triangle normal is calculated by taking cross product based on the 

given edges (defined in order by the particles). Triangle normal in 

FREDOMS is for collision detection and response, and in some case, 

the visualisation of the physics mesh surface (in physics model view 

in APMI).  

Table 5.2.3 Triangle Attributes 

In FREDOMS, we generate the actual triangle object instance instead of using vertex index value 

as for the rendering mesh. This is because:  

1. The triangle size in physics mesh is much smaller than rendering mesh.  

2. The vertices (particles) can be changed or removed during the simulation. Therefore, it is 

more efficient to use the memory reference to the particle rather than its index.  

In APMI, the triangle is visualised by drawing a triangle face using the three particles’ position as 

the vertices. The face winding order is clock-wise around its normal in our implementation. 

5.2.1.4  BFCC Cube 

FREDOMS uses a BFCC cube unit as the foundation for physics mesh construction. Each cube is 

a unit that occupies certain space. BFCC cubes are usually not perfect regular cubes but a cuboid 

generated by using AABB and density factor as reference. The edge length may differ. All the cubes 

units in the same object mesh are identical regarding to its size and internal structure. A BFCC cube 

unit has the following attributes: 
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Data type Description 

Particle array[15] An array of particles that defines the cube unit. The index of each 

particle in the array are in order for identify its position in the cube. 

Particle [0 -7] are the 8 corner particles. Particle [8 – 13] are the 6 

face particles, and Particle [14] is the centre particle. 

Constraint list A list of constraint that is generated based on the cube unit structure. 

AABB position The cube’s x, y and z position in relation to other cubes in AABB. 

Table 5.2.4 Cube Primitive Attributes 

Unlike the other primitive types, the cube unit will only exist shortly during the beginning phase of 

the modelling process. The purpose of the cube unit is to determine how to generate constraint 

connections between particles. After all the particles and constraints are generated, the cube 

structure is no longer needed. Therefore, the cube data will not be exported. 

Cube unit will not be individually visualised in APMI as it can be represented by its edge constraints. 

It is worth mentioning that BFCC cube unit and BCC cube unit are capable of tetrahedron mesh 

generation. Therefore as FREDOMS uses BFCC, it has the potential to generate tetrahedron mesh. 

5.2.1.5 Rendering mesh- Physics mesh Mapping (RPM) pair  

A RPM pair is specifically designed for rendering mesh skinning purpose. After each deformation 

of the physics mesh, the rendering mesh needs to be updated accordingly. RPM pair is a weighted 

mapping from a vertex in rendering mesh to a group of particles’ position in physics mesh.  

Data type Description 

Rendering mesh vertex 

index 

An integer index value refers to the vertex in the rendering mesh. 

Reference particles 

array [3] 

An array of the three particles that the vertex will use for position 

reference. 

Weight value array [3] The weight value (0<w<1) for each particle in the array. 

Table 5.2.5 RPM pair attributes 

Each vertex exists in the rendering mesh has a related RPM pair element. 
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5.2.2 Data structures 

In both APMFC and DOSFC component, certain important and universal data structures has to be 

defined, stored and updated throughout the entire modelling and simulation process. In fact, 

APMFC’s purpose is to properly feed these data structures with correct values. These data structures 

are the programming representation of the physics model. A list of the data structures is shown 

below in Table 5.2.6. 

Data type Description 

Particle List An indexed list of references to all the particles in the physics model.  

Constraints list An indexed list of references to all the constraints in physics model 

Triangle List An indexed list contains the reference to all the triangle primitives in 

the physics model. Unlike the triangle list in rendering mesh where 

the elements are only integer indices to the vertices list, FREDOMS 

triangle list has the elements that are referencing to the actual triangle 

object (instance). 

Cube list A list of cubes generated based on the AABB. This list only exists for 

a short period of time and will not be used in real-time simulation 

phase. 

RPM Pair list A list of RPM pairs for mesh deformation mapping. It requires the 

vertex array from rendering mesh as reference. 

Table 5.2.6 A list of important data structures 

There is another key information in the processing phase: The data for rendering mesh, including 

the vertex list and triangle list. However, as FREDOMS does not offer rendering functions, such 

information will work as a reference to FREDOMS framework and is not included within the scope 

of our system. In most cases, this information can be retrieved and manipulated via the interface 

provided by the graphics engine (e.g. Unity Engine).  

5.2.3 Object and scene level structures 

In the implementation of FREDOMS, we used a Manager Design Pattern for our system design, 

which is a special case of Mediator pattern [101]. Manager design pattern is commonly used in 

interactive application development where a set of objects with the same type are grouped into a 
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manager type that is responsible for conducting communication with other types of objects. In our 

content, we created a physics manager type for managing all the physics mesh in the system. This 

structure exists at the scene level (the multiple-objects execution environment for the application). 

5.2.3.1 The Axis-Aligned Bounding Box (AABB) 

AABB is a simple yet important component to our FREDOMS system (especially in APMFC 

component). Each object model has an AABB that defines its rectangle volume boundary. Unlike 

in rigid body simulation where AABB is only used for collision detection, AABB in APMFC serves 

as a modelling reference and is used for generating the BFCC structures. 

5.2.3.2 Physics mesh 

Physics mesh is a conceptual object that contains all the data structures and primitives’ information 

for the object that we are going to model. Physics mesh object in FREDOMS has the following 

attributes: 

Data type Description 

Particle List A list of all the particles in the physics mesh  

Constraints list A list of all the constraints in the physics mesh 

Triangle List A list of all the surface triangles in the physics mesh 

Cube list A list of all the cube units in the physics mesh 

RPM pair list A list of all RPM pairs in the physics mesh 

Rendering mesh  A reference to the rendering mesh data structures of the same object 

AABB The AABB of the physics mesh 

Table 5.2.7 Physics mesh attributes list 

5.2.3.3 Physics mesh manager 

A physics mesh manager is the control and function master for all the physics mesh in the scene. It 

organises, manages, creates and updates all physics mesh. It is also responsible for managing the 

collision detection of the physics meshes. 
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Data type Description 

Physics mesh list A list of all the physics mesh in the current scene 

BVH Tree A tree structure list for all the AABB’s in all physics mesh 

Table 5.2.8 Physics mesh manager attributes list 

5.2.4 The data type hierarchy summary 

For a better understanding of the structure of a physics model in FREDOMS, we have summarised 

the physics modelling data types and their connections into a hierarchy. As introduced in Section 

5.2.3, our design follows a manager design pattern, which is present it in Figure 5.2.1:  

 

Figure 5.2.1 Physics model data type hierarchy 

In the diagram, a solid line with arrow indicates an inclusive dependent relationship. For example, 

a constraint contains two particles, and the particles define the constraint. BFCC cubes are made of 

constraints as well as particles. A dashed line with arrows indicates a non-inclusive referencing 

dependency. For example, RPM pair list requires reference from both particle list and rendering 
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mesh (vertex list) for deformation mapping (skinning).  

The data types are classified into four different layers. The Primitive types are the basic elements 

for representing our physics model. Data structures are the collection of each element types in the 

mesh. Object level integrates all the data into a whole interoperation of the given object model. The 

scene level is the collection of all the objects that are loaded into the current interactive environment. 

This level is for real-time controlling of the interactive scene. 

In our implementation, we mainly focused on Physics mesh manager and its subordinate levels. The 

rest layers and elements (which are marked as dashed rectangles) are for a bigger picture and are 

often handled by other systems beyond our scope. 

 

5.3  Implementation of Physics Modelling Phase (APMFC) 

In this section, we will give a detailed introduction of how we implemented the APMFC component 

for our APMI platform. The introduction is given in the order of the physics model processing 

workflow. We will explain how we have addressed the problem for each task, and what functionality 

component and data types were involved for each task.  

5.3.1 Generating BFCC structure 

The generation of BFCC is the process of subdividing the given volume and construct the space 

structure occupation and interaction model based on the subdivision.  

5.3.1.1 Generating AABB 

The first step of BFCC structure generation is to generate its AABB. The AABB is an important 

reference to the physics modelling. The generation of AABB is straightforward. We go through 

each vertex in the rendering mesh and check the maximum and minimum x, y, z value, and define 

the AABB accordingly by the 8 farthest corner vertices. An illustration of AABB generation is 

shown in Figure 5.3.1.  
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Figure 5.3.1 AABB Generation 

Once the AABB was generated, we analyse its edge length in three directions (width, height and 

depth), and identify the shortest edge with length 𝑙𝑚𝑖𝑛 as the reference to subdivide the boundary. 

For a better explanation, make the assumption that the shortest edge is along-y axis (as shown in 

Figure 5.3.1) and the length of the edge is 𝑙𝑦. 

We need an input value to define the subdivision density. This enquiry is made by using APMI 

interface. A general input range for subdivision density value is between 1 and 4, where 1 is the 

most coarse and 4 is considerably very detailed, our recommended values are 2 and 3. 

After receiving the density value 𝑑, we divide the shortest edge length by this value. Then we have  

𝑟 =
𝑙𝑦

𝑑
 

where 𝑟 is the reference unit length for AABB subdivision. 

Assume the edge length for the other two directions are 𝑙𝑥 and 𝑙𝑧 we have  

𝑑𝑥 = 𝜏(
𝑙𝑥
𝑟
) 

where 𝜏(𝑛) represents a rounding operator to give the result of the closest integer to 𝑛. In this 

case, 𝑑𝑥 is an integer equals to a rounded result of 
𝑙𝑥

𝑟
. We then do the same operation for 𝑙𝑧: 

𝑑𝑧 = 𝜏(
𝑙𝑧
𝑟
) 

Now, we have the integer density value 𝑑𝑥 and 𝑑𝑧 and we are able to calculate the unit length 

for edge x and z as 𝑟𝑥 and 𝑟𝑧. Also we know that 𝑟𝑦 = 𝑟. The calculation indicates that there 
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should be 𝑑𝑥 cubes in the x-direction, and 𝑑𝑦 cubes in the y-direction, and 𝑑𝑧 cubes in the z-

direction. Each cube unit has the edge length of 𝑟𝑥 in the x-direction, 𝑟𝑦 in the y-direction and 

𝑟𝑧 in the z-direction. 

Subdividing AABB 

We then start to subdivide the AABB by using the calculated density. We construct the cubes by 

distributing the corner particles first, which generates an array of particles with the size of (𝑑𝑥 +

1) ∙ (𝑑𝑦 + 1) ∙ (𝑑𝑧 + 1), as shown in Figure 5.3.2. We add 1 to each edge density because it needs 

(𝑛 + 1) particles to construct 𝑛 edges, 

 

Figure 5.3.2 Corner particle distribution 

We use the corner particles to define and generate cube units, which is in the size of 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧. 

Then we have subdivided the AABB into a uniform cube array. A visualisation of the structure is 

shown in Figure 5.3.3. 

.  

Figure 5.3.3 Cube unit generation 
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5.3.1.2 Generating BFCC structure for cube units 

As each cube unit is confirmed, we start to generate BFCC particle and constraint structure for each 

unit. Besides the 8 corner particles, the proposed BFCC cube has 6 face particles and one centre 

particle. In the implementation, we first generated centre particles for each cube unit, and we have 

a BFCC cube array, as shown in Figure 5.3.4. 

 

Figure 5.3.4 Centre particle generation 

And then we generate face particles for each cube unit to form an array of BFCC cubes as shown 

in Figure 5.3.5: 

 

Figure 5.3.5 Face particle generation 

At this stage, all the particles in the structures are generated. As cube units have shared faces, 

neighbouring cubes have shared face particles. Therefore, duplicate particles are generated. We use 

a temporary particle list to store all the generated particles and perform a check to remove the 
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duplicate particles from the list, and then, we copy the remaining particles to the new list, which 

was our current particle list.  

Now, the system has a particle cloud that evenly distributed throughout the AABB boundary. A 

visualisation of the particle cloud is shown in Figure 5.3.6. 

 

Figure 5.3.6 Particle cloud 

5.3.1.3 Generating constraints 

Then, we use the cube unit as the reference to connect particles with constraints. We use the 

following procedure to generate constraint connection: 

1. Generate constraints on each cube edge to connect corner particles. This generates 12 

constraints for each cube unit. 

2. Generate constraints from each corner particles to the centre particle. This generates 8 

constraints for each cube unit. 

3. Generate constraints from face particles to the centre particle. This generates 6 constraints. 

4. Generate constraints from corner particles to face particles for each rectangle face. This 

generates a total 4 𝑥 6 = 24 constraints. 

For neighbouring cube units, step 1 and 4 can generate duplicate constraints. We use the same 

procedure for removing duplicate particles, which is to use a temporary constraint list to remove all 

the same constraints, and then, we store the constraints in the current constraint list. This is the 

ending of the BFCC structure generation. The final result of the structure is presented below in 

Figure 5.3.7. 
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Figure 5.3.7 Particle and constraint structure of a complete BFCC formation 

5.3.2 Generating Surface Mesh 

We have described a grid-based sampling method to generate the surface for the physics mesh in 

Section 4.2.6.2. During this process, we retrieve the vertex and triangle data from the rendering 

mesh as the surface reference. In order to generate physics surface mesh, firstly, we need to 

determine the surface particles.  

5.3.2.1 Identifying inside/outside particles 

We conduct an inclusion test for each particle against the rendering mesh. We then mark each 

particle as either inside the rendering mesh or outside the rendering mesh.  

For checking if the particle is inside the rendering mesh boundary, we use the popular even-odd 

rule algorithm [102] to cast a ray from the testing point to an arbitrary direction and exam the 

number of intersections from the ray to the rendering mesh surface boundary. However, instead of 

shooting ray the arbitrary direction (normal approach is either up or down along y-axis), in 

FREDOMS we do the even-odd checking twice and shoot the ray in the opposite direction (up and 

down). 

This is because the unique issue with particle generated based on AABB boundary, there is a great 

chance that some particles will be on the surface of rendering mesh, especially for a large flat area 

that is completely attached to the AABB (example can be seen in Section 6.1.1 The Metal bar Case 

and Section 6.1.2 The Metal Plate Case). Testing even-odd intersection only once is not enough to 
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identify the particle’s inclusion status. Especially if the implementation involves a third-party 

physics library where the float number rounding tolerance value is black-boxed and unknown. We 

had encountered this problem during the initial testing, and we adjusted the method accordingly to 

solve this issue. 

Then, we use this algorithm to loop through each particle to check its inclusion status and mark 

them individually as the particle type attribute. Illustrations of inclusion checking result are given 

below in Figure 5.3.8 and Figure 5.3.9: 

 

Figure 5.3.8 Result of particle inclusion check 

 

Figure 5.3.9 Inside particle with rendering mesh 

5.3.2.2 Identifying intersected constraints 

Once the inside/outside state is confirmed for each particle, we exam each constraint in the object’s 

constraint list.  
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For a given constraint, we check the inclusion state for its two ending particles. If both two particles 

are outside, then the constraint is outside of the rendering mesh boundary. If both particles are inside, 

then the constraint is inside the rendering mesh boundary. If one particle is inside and one particle 

is outside, then we define the constraint as an intersected constraint. We mark all the intersected 

constraints for further processing. Example result of intersected constraint check is shown in Figure 

5.3.10, where intersected constraints are marked in blue lines. 

 

Figure 5.3.10 Intersected constraint check 

5.3.2.3 Adjusting particle positions 

After having a list of intersected constraints, we start to conduct a constraint-to-rendering-mesh 

intersection check. We have already known that the constraint is intersecting with the rendering 

mesh, this operation is to find the exact intersection point. 

After finding the intersection point for each constraint, we conduct a distance check between each 

ending particle and the intersecting point. Then we move one of the particles based on the following 

procedure: 

IntersectionPoint p 

distance1 = |p - constraint.p1.position| 

distance2 = |p – constraitn.p2.position| 

IF distance1 > distance2 

constraint.p2.positionBufferList.add (p)  

END IF 

IF distance1 < distance2 

constraint.p1.positionBufferList.add (p) 

END IF 

IF distance1 == distance2 
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 IF constraint.p1.type == inside 

  constraint.p1.positionBufferList.add (p) 

END IF 

 IF constraint.p2.type == inside 

  constraint.p1.positionBufferList.add (p) 

END IF 

END IF 

The positionBufferList is a temporary list for storing the suggested position of the target 

particle. By doing this operation, we give the suggested position to a particle based on its distance 

to the intersection point. If the two distances are the same, we always prefer to move the inner 

particle to the intersecting position. 

After the whole constraint list is finished with the operation, we go through each particle again and 

use the position buffer list to calculate the averaged position for each particle. And then, we move 

the particle to the new position accordingly. 

After all the particle’s position is moved, the constraint structure is also updated. Now instead of a 

perfectly unformed BFCC structure, we have a particle and constant array shifted slightly but 

captures a rough surface shape of the rendering mesh. An example of result is shown below in 

Figure 5.3.11.  

 

Figure 5.3.11 Result of particle position adjustment based on constraint-mesh intersection 

We mark the moved particles as well as the particles we already identified as on the AABB 

boundaries as the surface particles. In the above figure, the surface particles are marked in yellow 

colour. At this stage, we have sorted the particles into three groups: Inner Particles (marked in red 

in the figure), Surface Particles (marked in yellow in the figure) and Outside Particles (marked in 

white in the figure). 
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In our prototype, we use the proposed AABB frame referencing method for implementation, as 

introduced in Section 4.2.11. This requires the reservation of all the particles and constraints, 

regardless of their inclusion type. Therefore, in our implementation, we kept all the particles and 

constraints in the system. For other implementation that uses our framework, it is up to the 

developer’s choice for whether or not to clean up the outside particles and constraints (if not using 

AABB frame referencing). A demonstration of AABB framing result can be referred to the torus 

case in Section 6.1.3. 

5.3.2.4 Generating surface triangles 

The final step of physics mesh generation is to find the surface triangles from the surface particles 

and constraints. To find the surface triangles, we first choose an arbitrary constraint that is on the 

surface (the two ending particles are both surface particles) and go through each other surface 

constraints to find two constraints. Assume that the first constraint is 𝑐1 , the other two found 

constraints are 𝑐2 and 𝑐3, when the three constraints meet the following condition: 

 𝑐1. 𝑝1 == 𝑐2. 𝑝1 &&  𝑐1. 𝑝1! = 𝑐3. 𝑝1  

 𝑐2. 𝑝2 == 𝑐3. 𝑝2 &&  𝑐2. 𝑝2! = 𝑐1. 𝑝2  

 𝑐3. 𝑝3 == 𝑐1. 𝑝3 &&  𝑐3. 𝑝3! = 𝑐2. 𝑝3 

where the operator == is a condition operator to determine if the two particles are the same 

particle. Then we have a surface triangle that is defined by three edges 𝑐1, 𝑐2 and 𝑐3, which are 

made by 3 particles ( 𝑐1. 𝑝1,  𝑐2. 𝑝2,  𝑐3. 𝑝3). 

By conducting the above condition check through all the surface constraints, we will have a list of 

triangles that defines the surface of the physics mesh. This mesh is a coarse approximation of the 

rendering mesh, and it’s all vertices are made of particles. 

Correction to triangles’ winding order 

The problem with the generated triangle list is that the winding order for each triangle is not 

determined. Therefore, for each particle groups of 3 that defines a triangle, we first add the two 

possible triangles (with the same vertex particles but different winding orders). This gives us a list 

of doubled triangles with both facing directions. 

We then cast an arbitrary ray from an arbitrary origin point outside the AABB towards the centre of 

the AABB, this can normally generate an intersection with one of the triangles. In some cases where 
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the surface shape is hollow in the middle (like the torus case in Section 6.1.3), it is possible that the 

ray has no intersection with the mesh, if this happens, we cast a different ray to shoot towards the 

centre of the AABB until we get the first intersection. 

Then we use the dot product of intersected triangle normal with the ray to determine if the triangle 

is facing inward or outward (if dot product is negative then it is outward, which is the correct order, 

if dot product is negative then it is inward, which is incorrect).  

With one confirmed correct order triangle, we can start to exam its surrounding triangles (triangles 

that shares the same edge). The same edge defines in the next triangle should have the opposite 

particle order. For example, the same edge p1, p2 in the correct ordered triangle should be defined 

as p2, p1 in the next triangle that shares this edge and has the correct order.  

By recursively executing this operation, we can identify all the triangle with correct winding order 

and delete the inward facing triangles. At this stage, the modelling of the physics structure is 

finished. A final physics mesh with particles distribution in AABB frame referencing scheme and a 

presentation of physics surface mesh (collision mesh) is shown below in Figure 5.3.12. 

 

Figure 5.3.12 Physics surface mesh with d = 2 

5.3.3 Mapping from rendering mesh to physics mesh  

We use a quick and simple weighted mapping method from rendering mesh to physics mesh. We 

loop through all the vertex in the rendering mesh. For each vertex 𝑣, we test its position with each 

particles in physics mesh and find n closet particles with position 𝑝1, 𝑝2 , 𝑝3 …𝑝𝑛 to 𝑣. Then the 
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weight value 𝑤𝑖 for 𝑝𝑖 can be calculated by  

𝑤𝑖 = 
|𝑝𝑖 − 𝑣|

∑ |𝑝𝑛 − 𝑣|𝑛
0

 

In our implementation, we used 𝑛 = 3.  

For each vertex in the rendering mesh, we generate an RPM pair with the vertex index equal to the 

vertex index in rendering mesh. We set the reference particles as the 3 closest particles and the 

weight value for each particle in the same order. 

By going through each vertex with the same procedure, now we have a complete weighted mapping 

from rendering mesh to physics mesh.  

It is worth mentioning that our implementation uses AABB frame referencing. Therefore it is logical 

to go through all the particles including the outside ones when finding the referencing particle. This 

mapping gives a smoother mapping result. 

5.3.4 Assigning constraint and global attribute values 

The final step of completing the physics modelling phase is to assign parameters to each constraint 

and to set the global attribute values to the whole system. This process involves getting user input 

for constraint settings. A list of constraint attribute and their effects has been introduced in Section 

4.2.9.2 and Section 4.2.10. The interface of constraint attribute input will be introduced later.  

In our implementation, we applied a universal setting to all the constraints, meaning that all the 

constraints had the same property and behaviour. In the future implementation, it is possible to set 

different parameters to different groups of constraints, and give an object different material 

properties for different parts. 

 

 

 



173 

 

5.4  Implementation of Real-time deformable object simulation 

(DOSFC) 

5.4.1 Collision detection 

The collision detection procedures in FREDOMS has been extensively discussed in Appendix A. 

Collision Detection in FREDOMS. In our implementation, we used the Unity Engine integrated 

PhysX component for conducting ray-casting and ray-to-triangle intersection testing. Since it has 

been explained in details and collision detection is only used as the entry point of the simulation 

and not a core part of the FREDOMS framework, we will only give a brief introduction of its 

implementation. 

5.4.1.1 Broad phase collision detection 

Our prototype only concerns FREDOMS object testing, and we treat the incoming rigid collider 

separately. Therefore, the BVH tree that we proposed in section A.2 contains only FREDOMS 

deformable objects.  

AABB update for physics model 

The AABB for each physics mesh was an important and fundamental reference in APMFC. 

However, after finishing the modelling and moving to simulation phase, the AABB information can 

be updated (even by using AABB referencing scheme) as the structure is already generated, and 

AABB for modelling purpose can be discarded for the physics mesh as well as BFCC cubes except 

for collision detection purpose only. Therefore in DOSFC, AABB for physics mesh has the same 

function as in rigid body simulation. And for each deformation happens to the physics mesh, the 

AABB has to be updated accordingly. 

A noticeable difference between deformable object and rigid body is that the vertices (surface 

particles) of deformable objects are already updated during physics simulation phase for each frame 

(expectation cycle). Therefore, in particle position update loop, we can insert the checking operation 

for x, y, z minimum and maximum value within the position update function instead of creating a 

separate loop through each vertex again. Therefore if we review the equation from Construction 

of BVH in Section A.2: 
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𝑇 = ∑ 2
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐼𝑁

𝑇𝐴𝐴𝐵𝐵 + ∑
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐿𝑁

𝑁(𝑏)𝑇𝑡𝑟𝑖 + 𝑀(𝑏)𝑅𝐴𝐴𝐵𝐵 

We can find out that 𝑅𝐴𝐴𝐵𝐵 (regeneration time for AABB) is fast. Therefore, at the end of each 

physics cycle, we update the AABB of the object and its centroid. We have the following procedure: 

START PHYSICS LOOP 

DO impulse distribution 

DO constraint satisfaction 

LOOP foreach particle in particle list 

UPDATE particle position 

UPDATE minimum/maximum x, y, z information for AABB 

END LOOP 

UPDATE AABB 

UPDATE BVH 

END PHYSICS LOOP 

By using this approach, the AABB will be automatically updated with the particles update. 

AABB in DOSFC 

In order to generate a BVH tree, AABB data type in DOSFC has to be constructed differently to be 

capable of forming a tree structure. Table 5.4.1 gives a summary of the attributes for AABB data 

type in DOSFC. 

Data type Description 

Minimum x, y ,z 

Maximum x, y, z 

Defines the AABB boundary 

Centroid The centroid of AABB, this is the representation of the position of 

AABB. 

Parent node The parenting AABB reference 

Child node list A list of AABB type child node 

Table 5.4.1 AABB data type attributes in DOSFC 

BVH tree generation 

As discussed, we use a Dynamic BVH tree (DBVT) for our deformable object. Therefore, besides 

the boundary information, the centroid of AABB has to be updated as well.  

For generating the first level of BVH tree, first, for quick identify the top tree node, we uses an 

octant subdivision to divide the scene space into 8 sections: (+++), (-++), (+-+), (--+), (++-), (-+-), 
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(+--), (---). By using this approach, we can quickly assign each AABB into one of the eight groups 

by checking the sign of x, y and z value of its centroid. The benefit of using an octant subdivision 

for the first level is to reduce the AABB searching and generation cost as a sign condition check is 

much faster than the value check. 

Secondly, for each of the 8 sections, we use the origin point (0, 0, 0) as the min/max point of the 

parent AABB and check through child AABBs’ centroid for the other min/max point to define the 

AABB. With two edge points (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛) and (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥) we can define AABB 

for all the 8 octants. For any octants with no AABBs, we ignore this node and proceed. 

Thirdly, we uses the operation we have proposed in Figure A.2.4 to subdivide AABBs for each 

octant AABB recursively to generate a complete BVH tree. 

The BVH tree generation for deformable object is conduct at the beginning of the execution and 

updated at each frame (if needed). 

5.4.1.2 Narrow phase collision detection 

As the methods are highly specific and applicable, the execution procedure for narrow phase 

collision has been discussed and explained extensively in methodology chapter, to avoid repeating, 

we only give a brief workflow and implementation-specific comments for narrow phase. 

Two types of AABBs 

In DOSFC there are two types of AABBs: The AABB for physics mesh, and the AABB for AABBs. 

In the broad, phase we concerns only about AABB for AABBs, and in the narrow phase, we look 

into the AABBs for physics mesh. 

AABB subdivision 

The difference is that AABB for physics mesh has one more operation, which is an octree 

subdivision as proposed in Section A.3.  

In our implementation, we were unable to embed the subdivision of AABB and sorting triangles 

into the subdivided sections into the update function for the position for each particle like in AABB 

update for physics model. Because at the time of particle updating, the AABB has not been finalised. 

Therefore, AABB subdivision requires an additional step after the AABB is generated. 
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Ray casting from the incoming object 

When an object with a collider (Collison mesh) is moving in the scene, for each frame we will cast 

a ray from its AABB centroid and uses its velocity direction as the direction of the ray. This function 

is universal and can be provided by many third-party libraries. In our implementation, we have used 

the PhysX library for this task.  

5.4.2 Impulse distribution 

5.4.2.1 Dynamic generation of distribution network structure 

Once the initial impulse is calculated from the collision module and has been passed to the contact 

particle, we generate a network hierarchy of the particle for executing particle impulse.  

We set the initial three particles as level 0, the next level as 1, and the further level as 2 and so on. 

Level 0 and level 1 are special as they use different distribution factors than the rest level. 

To construct the network structure, we uses the constraint as a connectivity relationship indicator. 

With a higher level particle p with a list of connected constraints (a reference of particle types can 

be seen in Table 5.2.1), we have the following check: 

Particle p; 

LOOP: foreach constraint c in constraint List in particle P 

IF c.p1 != p and c.p1.level = -1 

c.p1.level = p.level +1; 

END IF 

ELSE IF c.p2 != p and c.p2.level = -1 

p2.level = p.level +1; 

END IF 

End LOOP 

We check level = -1 because we initialise all the level information with -1 to indicate it hasn’t been 

assigned a level yet. The above procedure doesn’t happen alone but also comes with the impulse 

distribution.  

Network construction for multiple impacts 

As each impulse distribution happens within one execution cycle, therefore case like “an impact is 

taken place before the distribution from the last impact has finished” does not exist. However, there 

is a chance that multiple impacts happen simultaneously in the same frame, especially when 

multiple contacts are from the same incoming projectile.  
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In such case, the network construction will happen multiple times along with the impulse 

distribution.  We deal with this by finishing one network mapping and distribution and then start 

another one. By the end of each distribution, we will initialise the level information for each particle 

back to -1. Therefore, for each impulse, a new network structure is generated.  

5.4.2.2 Dynamic impulse distribution through the network 

For impulse distribution, we need the following input from the user: 

1. General impulse distribution coefficient (µ): This parameter controls how much impulse 

will be transferred from the higher level to the lower level. 

2. First level impulse distribution coefficient (𝝁𝟏 ): This parameter decides how much 

impulse will be transferred from level 0 into the first level. In our implementation, we set 

this parameter the same as the general impulse distribution coefficient by default. However, 

there are cases that a user requires a smoother transition for each level’s deformation. For 

example, to create a round dent. First level coefficient is usually set at a higher value than 

the general coefficient (if set differently).    

3. Minimum distribution threshold: This parameter is for preventing the system to conduct 

unnecessary distribution when the impulse is decreased to an insignificant degree. In many 

cases, a distribution only affects a part of the object directly (the other effects will be 

indirectly influenced by constraint condition satisfaction). Therefore, the distribution does 

not need to go through the whole network. 

4. Max distribution level: In addition to the minimum distribution threshold, a max level can 

give a hard control of how many levels of distribution is taken place. This is helpful in 

giving additional control for behaviour effect and optimisation.  

The parameters should be already acquired in the APMFC phase and imported into DOSFC. With 

the parameters ready, we can start the impulse distribution. 

As a review of the concept, in FREDOMS, an impulse is a one-time displacement to the particle. 

The starting point of the impulse distribution is from the three affected particles from the collide 

triangle. This is the level 0 of the network. In our implementation, we have a separate step to 

distribute impulse from level 0 to level 1, as the first distribution has a different coefficient. 
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Before the first level distribution, an important parameter has to be considered (if entered), which 

is the Impulse Proportion Factor (marked as impulse factor in the interface). This factor is entered 

by the user to adjust the incoming impulse value with a proportion value (usually between 0 and 2). 

The purpose of this value is to adjust the deformation degree based on the density of the BFCC cube 

unit (or the particle distribution density), more detailed discussion with demonstration regarding 

this value can be referred to section 6.1.3.2. 

Then by modify the pseudocode from 5.4.2.1, we have  

Particle p; 

LOOP: Foreach constraint c in constraint List in particle P 

IF p.level > max distribution level (exit condition 1) 

END LOOP AND RETURN 

END IF 

 

IF p.velocity <=minimum distribution threshold (exit condition 2) 

END LOOP AND RETURN 

END IF 

IF c.p1 != p and c.p1.level = -1 

c.p1.level = p.level +1; 

c.p1.displacementBuffer <-add (p.impulse * µ); 

END IF 

ELSE IF c.p2 != p and c.p2.level = -1 

c.p2.level = p.level +1; 

c.p1.displacementBuffer <-add (p.impulse * µ); 

END IF 

END LOOP 

We run this procedure recursively throughout the tree structure until exit condition 1 or 2 is met. In 

the procedure, it also implies the third exit condition where there’s no further level, the current loop 

will also break. Meeting the exit condition means the distribution for current path is finished. After 

all the path are finished. The distribution operation is finished. 

At this point, the impulse distribution is assigned into the buffer list for each particle. If there are 

multiple impacts within the current frame, we make sure that all the impulse distributions are 

finished. 

Then we loop through each particle to update its initial position with the displacement: 

LOOP: foreach particle p in particle list  

p.position = current position + Average (displacementBuffer) 

UPDAE AABB x,y,z 

End LOOP 
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The average () function returns the average impulse that has been passed to the current particle.  

Update AABB operation can be referred to the collision detection in section 5.4.1. It is noticeable 

that the distribution of the impulse and update of the particle position all happens within one 

execution cycle and will bring extra calculation into one frame. It is a drawback to our method. The 

effect and valuation of this approach in regard to speed performance are presented in Section 6.3. 

It is also a reminder that the velocity term we used in pseudocode only represents a single frame 

displacement rather than a continuing moving trend. Therefore, the displacement for each particle 

caused by external impulse is time-irrelevant. Time integration is not needed in our approach. 

5.4.2.3 Constraint condition satisfaction 

Our constraint condition satisfaction procedure is similar to PBD’s constraint condition satisfaction 

in time integration that Bender and Muller et al. introduced in [51]. But unlike PBD, FREDOMS 

particle does not have a continuous velocity. Therefore, for each frame that is not a key frame (in 

which the impact happens). The particles can be considered as static at the beginning of the frame. 

Therefore, the condition satisfaction in FREDOMS is considerably easier than PBD, as the position 

projection in regards to velocity is not needed for each particle. 

The general case of constraint condition satisfaction process takes the following procedure: 

LOOP: foreach constraint c in mesh constraint list 

IF c.length > maximum length 

length excess = (maximum length – c.length) * 0.5; 

direction1 = getUnitVector (c.p2-c.p1); 

direction2 = getUnitVector (c.p1-c.p2); 

c.p1.displacement Buffer<-add (length excess * direction1); 

c.p2.displacement Buffer<-add (length excess * direction2); 

END IF 

IF c.length < minimum length 

length excess = (minimum length – c.length) * 0.5; 

direction1 = getUnitVector (c.p2-c.p1); 

direction2 = getUnitVector (c.p1-c.p2); 

c.p1.displacement Buffer<-add (length excess * direction1); 

c.p2.displacement Buffer<-add (length excess * direction2); 

END IF 

END LOOP  

In summary, the constraint will push the particles apart by ½ of the excess length if they are too 

close and pull them back together by ½ of the excess length if they are too apart.  
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The above procedure only describes the common case. However, there are cases where one of the 

particles has one or several degrees of freedom locked (e.g. contact with ground and cannot go 

lower). In such cases, we remove the displacement from the locked axis and add it to the other 

particle. Using the case of constraint length is less than the minimum length, we have the following 

procedure:  

IF c.length < minimum length 

IF c.p1 is locked 

length excess = (minimum length – c.length) * 0.5; 

direction1 = getUnitVector (c.p2-c.p1); 

direction2 = getUnitVector (c.p1-c.p2); 

displacement1 = dot product ((length excess * direction1), lock vector); 

   locked displacement = length excess * direction1 – displacement1; 

   displacement2 = (length excess * direction1) + locked displacement * -1; 

   c.p1.displacement Buffer<-add (displacement1); 

   c.p2.displacement Buffer<-add (displacement2); 

END IF 

END IF 

In the above process, we use a dot product for the proposed displacement and a lock vector. We 

transfer the locked displacement (the displacement that the given particle should have taken but is 

prevented by the lock) to the other particle by assigning an opposite direction. The lock vector is a 

vector that has gimbal lock information where the x, y, z value for the locked axis is set to 0, if it is 

not locked, the value is 1. For example, a lock vector for preventing object move in the x-direction 

is (0, 1, 1). Therefore, the dot product has a zero value for x, which means no displacement in the 

x-direction. We used lock vector as an example of apply external constraint to the particle’s 

movement in our implementation. Such displacement constraint can be implemented in other 

approaches when combining with other physics library that provides the collision or constraint 

information. 

In the end, we do the same procedure to update each particle again as well as update the AABB 

information. 
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5.5  Physics data I/O Procedure 

5.5.1 Input file format and data presentation 

FREDOMS takes raw rendering mesh as input for APMFC, after physics modelling, the resulting 

physics model has to be exported. Therefore, it is important to define a standard file format having 

the following key features: 

1. It contains all vertices and faces information of the object.  

2. Easy to add text-based extra data information without compromising the existing 

information and can still be read/imported to other systems.  

Based on the above requirements and in the spirit of making the implementation simple, we have 

selected Wavefront .OBJ file format as our standard. This format was used in our demonstration 

and implementation. In future works, FREDOMS be able to handle most of the standard file format 

with minimal modification to the current system design, considering that different 3D file formats 

constants very similar information.   

FREDOMS provides an interface to import selected 3D mesh files (in .obj format) via APMI. This 

interface will be discussed later. Once the file is imported into the system, FREDOMS requires the 

following key information from the input data: 

1. Vertices position information. 

2. Vertices orders for triangles.  

A 3D model file has many other information for rendering purposes; however, FREDOMS only 

concerns and retrieves the vertices and face information from the file. Rendering information such 

as texture and materials are not concerned. Rendering information is reserved and passed on 

(directly or via export file) to real-time simulation for graphics engine.  

OBJ is an industry standard format. Below is a sample fragment for vertices information in .obj file: 

v 0.523 0.542 0.052 

v 0.231 1.012 0.932 

Where letter v stands for “vertex” and the following three float value are the x, y, z coordinator of 

the vertex.  
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A sample fragment of face (vertices order) information in .obj file is as below:   

f 3 2 4 

f 1 3 4 

Where letter f stands for “face” and the following 3 numbers in the same line indicates the index of 

the vertex.  

FREDOMS reads these information accordingly and construct rendering mesh data type to store 

the information as physics modelling reference. 

5.5.2  Output data structure and file format for the physics model 

The export format for physics model follows the same standard as the input .obj file but with 

additional physics data information. We have listed all the data types and formats for the physics 

object in Table 5.5.1.  

Data name Data type Data form 

Particles Coordinate (3D float 

vector) with mass 

sp x, y, z, m  

Surface particles Index array (integer array) ip 𝑖𝑛𝑑𝑒𝑥 

Triangles Index (3 integers in order)  sf  𝑖𝑛𝑑𝑒𝑥𝑝1, 𝑖𝑛𝑑𝑒𝑥𝑝2, 𝑖𝑛𝑑𝑒𝑥𝑝3 

Constraint 2 Indices with 3 parameters ct 𝑖𝑛𝑑𝑒𝑥𝑝1, 𝑖𝑛𝑑𝑒𝑥𝑝2, 𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥, 𝜇  

 

RPM pair Two indies with weight 

factor 

wm  𝑖𝑛𝑑𝑒𝑥𝑣𝑒𝑟𝑡𝑒𝑥 , 𝑖𝑛𝑑𝑒𝑥𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 , 𝑤 

1st level impulse 

distribution coefficient 

float fl 𝛾  

Maximum distribution 

level 

int mdl   

Minimum distribution 

Threshold 

float mdt  

Table 5.5.1 Data information of physics model in FREDOMS 
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BFCC cube information will not be exported as it only needed for the modelling phase. The AABB 

will be recalculated in real-time phase; therefore, it is also not included. 

The general impulse distribution coefficient is stored as a parameter for each constraint, as they 

may have different values. In our implementation and demonstration, we used a global value. In 

future work with more capable interface, it is possible to assign different coefficients to different 

constraints. 

The first Level impulse distribution coefficient, the maximum distribution level and minimum 

distribution threshold are global parameters; therefore, they are recorded separately. 

An example of a fragment of physics data output by using the proposed format is given below: 

sp 1.1255 1.2351 -0.1566 1 

sp 1.5256 0.6358 -0.1566 1 

sp 0.3525 0.1351 -0.1566 1 

sp -0.9632 0.2515 1.3562 1 

sp -1.1891 0.1051 1.2667 1 

… 

ip 15  

ip 23 

ip 14 

ip 37 

… 

sf 1 3 4 

sf 1 3 5 

… 

ct 1 2 1.5 0.8 0.65 

ct 1 3 1.5 0.8 0.65 

… 

wm 1 53 0.5359 

wm 1 46 0.3125 

wm 1 21 0.1516 

… 

fl 0.8 

mdl 8 

mdt 0.005 

APMI provides an interface to allow user to export the data into .obj file following the above format. 

PG simulator (DOSFC) is designed to read the data from this format and re-construct the physics 

mesh accordingly. 
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5.6  APMI User Interfaces 

We have designed APMI to provide a user interface for modelling and real-time testing. APMI 

integrates functionalities from both APMFC and DOSFC. One of our goals is to offer a smooth and 

easy-to-use tool for fast physics modelling. Therefore, user interface design is an important aspect 

of our implementation. In this section we will give an introduction of our UI implementation. A 

complete demonstration (Alex’s car case study) is given in the testing Chapter in Section 6.2. 

5.6.1 Overview of User Interface Design 

The principal of interface design of FREDOMS is to deliver an intuitive user experience. To achieve 

such a goal, we have proposed APMI as an intermedia interface to import, export, process, and 

simulate tasks for deformable objects. From the user point of view, APMI should contain the 

following interface components: 

1. Dialogs to import and export rendering mesh and physics mesh. 

2. View window to show the rendering mesh from different perspectives in different modes. 

3. Information panel for displaying attributes of rendering mesh and physics mesh. 

4. Attribute input panel (s) for users to configure a set of physical parameters that meet their 

requirements. The attributes including particle properties and constraint parameters as well 

as universal settings to the physics model. The parameters were discussed and listed in 

4.2.9.2 FREDOMS Constraint Parameters. 

5. Different view mode option (toggle) for physics object. 

6. Real-time simulation scene with user interaction input for testing the physics model. 

In the following sections, we will introduce and discuss each interface component. The introduction 

will focus on the presentation and design concept for user interface rather than the implementation 

detail for each function. The underlying implementation of UI items like buttons, dialogs, and 

panels shares no interest in our research topic. 

5.6.2 Data import and export 

We have implemented a standard and straightforward file open/save dialogue for users to choose 
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the import file. The current version of APMI does not have an intermedia file format but only 

accepts .obj as the default format for importing and exporting. Figure 6.2.1 shows a screenshot of 

the file dialogue in the demonstration section. This is a straightforward interface with a standard 

file explorer interface that is normally provided by invoking the API from the operating system.  

The functionality module behind the interface also contains a file reader/writer function for 

explicitly reading and writing the data information follows the I/O procedure (reference: Section 

5.5 Physics data I/O Procedure).  

5.6.3 Rendering mesh view window 

After loading the rendering mesh, APMI provides a 3D view window to present the object’s visual 

with texture/material and/or wireframe. It allows the user to use keyboard and mouse to rotate and 

view the object. Rendering mesh view has two modes: 

1. Model display with texture, material and other rendering properties (3D model mode).  

2. Model display with only vertices and edges (wireframe mode). 

 

Figure 5.6.1 3D model view 

 

 

Figure 5.6.2 Wireframe view 
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Both views offer an overall impression to the user and give them a reference of the detailedness and 

the scale of the object for the later modelling. The same is also used to present the deformed object 

after the simulation test. 

5.6.4 Attribute information display panel 

On the top left of the view window, APMI offers a panel to display attributes information for both 

rendering mesh and physics mesh. The panel shows the following information for rendering mesh: 

Data Interface form Data type 

Vertex count Text with number Integer 

Triangle count Text with number Integer 

Edge count Text with number Integer 

File name Text String 

Table 5.6.1 Display data list for rendering mesh panel 

The panel shows the following information (as shown in Table 5.6.2 Display data list for physics 

mesh panel) for the physics mesh: 

Data Interface form Data type 

Surface particle count Text with number Integer 

Total particle count Text with number Integer 

Surface triangle count Text with number Integer 

Constraints count Text with number Integer  

AABB information Text with number Min/Max Coordinates (x, y, z) 

Table 5.6.2 Display data list for physics mesh panel 

5.6.5 Parameter input and review panels 

In the modelling phase, we have implemented a series of panels for APMI that will automatically 

popup input interfaces to guide user throughout the entire workflow. The information provided and 
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required through these panels is on a need-to-know basis. The user entered parameters are essential 

for proceeding the modelling. The panels are: 

1. Physics structure information panel (Titled as “Generating Physics model”). This panel 

is data-reverse interpreted for user. It requires inputs for the object size and physics 

simulation detail level. Object size input related to the calculation of impulse proportion 

factor. The physics simulation detail level is a reverse interpretation of the cube density. 

The panel also gives an input field for cube density for users that understand the term. It is 

marked as advanced setting.   

2. Physics material attributes configuration panel. It requires the user to input constraint 

properties. The properties are interpreted into hardness/softness, expansion and 

compressibility for easy understanding. They represent the value for general impulse 

distribution coefficient, constraint maximum length ratio and constraint minimum length 

ratio. The panel also offers access to Advanced setting panel and preset configuration panel. 

3. Advanced physics attributes setting panel. This interface is provided specifically for 

users have experience with FREDOMS system. It offers direct input for 

minimum/maximum constraint length ratio, general impulse distribution coefficient and 

first level distribution factor. It also give access to the minimum deformation threshold 

value and the impact proportion factor. 

4. Material pre-defined configurations panel. This interface provides quick access to 

physics material settings that had been pre-defined. It provides a drop-down list of all the 

available material settings. The drop-down list is read from an external configurable text 

file. As the pre-defined material settings are object size-relevant, it also requires input for 

impulse proportion factor; this value will be automatically calculated based on the previous 

input for object size and give as a recommended default value.  

5. Real-time simulation test active panel (Titled as “Commence real-time simulation 

testing”), it gives a basic instruction of how the user can interact with the physics model. It 

also gives the option to disable the rigid sub-mesh so the user can focus on deformable body 

parts of the object. 

6. Model export panel. This panel actives a similar file explorer dialogue for exporting the 

physics mesh. In addition, it provides input field for the universal settings of physics mesh, 
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including maximum distribution depth, minimum deformation threshold, and maximum 

deformable times. It also gives the option to export the current deformed object mesh into 

a static rendering mesh. 

An illustration collection of the panels in APMI is given below in Figure 5.6.3. 

 

Figure 5.6.3 Assembly popup input panels 

5.6.6 Model view options toggle 

It is important to offer display mode options for users to visualize different aspects of the physics 

mesh structure. In APMI, we have implemented the following display options: 

 

Display mode Interface  Data type 

Particle information Toggle  Display all particles by drawing a small dot over the 

particle’s position. The outside particles are colour 

coded in white. The surface particles are colour 

coded in yellow. The inner particles are colour 

coded in red. 

Constraint information  Toggle Display all constraints by drawing a line between 

two ending particles. The intersected constraints 

are colour coded in blue. The rest are in black. 

Surface constraint 

information 

Toggle  Display only the surface constraints of the object. 

This gives a wireframe view of the Collison mesh.  
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Physics Surface mesh Toggle Display the surface triangles for the collision mesh. 

AABB  Toggle Display the boundary of AABB in black lines. 

BFCC cube unit Toggle Display each BFCC cube unit by wireframe lines. 

Rendering mesh Toggle Display rendering mesh with material and texture 

Rendering mesh 

(wireframe) 

Toggle Display wireframe for rendering mesh. 

Table 5.6.3 Model display options for APMI 

The display options are designed in a toggle switch UI form. By using a combination of the display 

option, users can have a better understanding of the physics mesh and make adjustment accordingly. 

5.6.7 Real-time simulation test scene 

APMI offers real-time testing for the physics model once the construction is completed. The test 

interface shares the same scene with the mesh view model. The only difference is the integrated PG 

simulator (DOSFC component) starts to run physics simulation in the execution cycle.  

Real-time simulation offers two interaction with the tested object that can be initiated by users: Ball 

dropping and ball shooting. Ball dropping triggers a ball collider to fall from a certain height and 

strike the object (on top). Ball dropping test offers the exact impulse in each time. Therefore, it is 

good for comparison test. Ball shooting actives a ball shooting from user camera’s current position 

which forms a projectile towards the object. This offers a free-form interaction to the different part 

of the object, and it’s close to what happens in real-time applications.    

We have used the real-time simulation test scene extensively for our behaviour and material testing. 

We will demonstrate and present the results in Chapter 6 Test Cases and Results Analysis.  

 

5.7  Summary 

In this chapter, we used our APMI prototype as an example to introduce how we have implemented 

the FREDOMS framework into a working application that can fulfil our functionality requirements. 

We have introduced the functionality components and architecture of the framework, we have 
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discussed the data types for the system, the implementation detail and workflow procedure for 

physics modelling and real-time simulation process. We also explained our import/export protocol 

in relation to the data presentation of the physics model. Lastly, we introduced our design of user 

interface for APMI, which uses reverse-data interpretation to deliver a smooth user experience with 

various information display options.  

The implementation of FREDOMS is a heavy task as it offers a complete pipeline from modelling 

to simulation with other supporting functionalities. Therefore, a lot of functional modules need to 

be integrated into the system and have to be tailored to suit our specific type of model. The overall 

system architecture is complex as a cross-disciplinary system. Our main purpose of this thesis is to 

prove the core functions of the framework (modelling and simulation for deformable object). In 

addition, the FREDOMS framework is meant to be integrated with other development tools rather 

than a standalone application. Therefore, the implementation solutions that we employed for other 

functions may not be the best options. However, as a framework is an open system with a lot of 

flexibility, better solutions such as file handling, rendering, UI display and design can be improved 

in the future works.  

The APMI prototype presented in this and the next chapter is available upon request. 

In the next chapter, we will use APMI as a tool to conduct a series of test cases to demonstrate our 

proposed methods and FREDOMS framework. And evaluate the results accordingly to testify if 

they meet our expectations and research goals.  
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6 Test Cases and Results Analysis 

In this chapter, we will evaluate the implementation results of our proposed method by conducting 

a series of tests cases. First, we identify and set goals for each test case. Then, we will discuss and 

evaluate the outcomes with respect to our research objectives. The test cases are designed to 

demonstrate the following aspects of the FREDOMS framework, which was proposed as our 

evaluation matrix in Section 3.7.1: 

1. Modelling and simulation capability: We have designed three test cases: The Metal Bar 

Case, the Metal Plate Case and the Torus Case to demonstrate modelling and deformation 

capability of our proposed method. These test cases will be presented in Section 6.1. 

2. Controllability: In Section 6.1, we gave a detailed discussion of how the parameters can 

affect the behaviour of the simulation. In Section 6.2, we presented a case study to show 

how a user can access and configure these parameter settings. 

3. Stability: In the three cases in Section 6.2, and especially in the Torus Case, we showed the 

object’s deformation in different stages and how the parameter settings can ensure the 

stability of the simulation.  

4. Realism: Visual results will be given for each test cases in Section 6.1 and 6.2 for the 

evaluation of realism of the simulation results. 

5. Speed: In Section 6.3, we have conducted a speed test by using different parameter settings 

to evaluate our real-time simulation efficiency. 

6. Usability: We presented a user case study in Section 6.2. The case described a non-expert 

level designer, Alex, who finished a car modelling task by using our APMI platform. We 

will use this example to introduce the workflow of FREDOMS framework as well as a 

demonstration of usability.  

In Section 6.4, we will give a summary and overall evaluation of the results based on the above 

aspects. 
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6.1  Material deformation behaviour testing 

One of our research goal for this thesis is to simulate permanent deformation of objects for visual 

effects. Therefore, the outcome of the material behaviour in visual representation is important. We 

uses simple geometry structures along with different parameter settings to simulate different 

behaviour of typical metal-like permanent deformation. The expected behaviour includes bending, 

pressing, twisting, denting, and general energy transition to the whole structure. The testing also 

involves the automatic mesh processing workflow, which includes how the raw mesh is proceeded 

through our FREDOMS framework (APMI) for physics modelling. We use the metal bar case as an 

example to introduce a complete walk-through of the modelling and simulation process. For the rest 

of the cases, we do not need to follow the same detailed explanation (as the workflow is repetitive), 

only key information will be presented. 

6.1.1 The Metal bar Case 

The first case we have chosen for evaluating our method is a single metal bar. The reason is that a 

bar is the simplest geometry form with great flexibility and freedom for manipulation. It is also a 

good example that can be related to everyday experience, and the visual presentation can be 

compared and judged by using common sense. In addition, deformation on a simple, perfect plain 

geometry is easier to analysis than a complex, detailed geometry. Therefore, for testing and 

demonstrating our result from the material behaviour point of view, the metal bar is a good option 

as the first introductory case. Table 6.1.1 gives an overview of the metal bar testing case. 

Scenario description Load a simple metal bar into the scene and use external impulse to 

interactive with it and observe the deformation behaviour. 

Purpose and goal The purpose of this testing case is to design the simplest scenario to test 

and review the simulation. Throughout this case, we will test the 

following basic functions: 

1. Import raw data/mesh. 

2. Proceed raw data/mesh to physics mesh. 

3. Proceed mesh into real-time simulation. 

4. Test collision detection and response. 

5. Test bending. 
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6. Test pressing (compressing).  

7. Test twisting.  

8. Test material non-elastic recovery 

9. Test the same input with different combinations of parameters 

and compare the differences. 

Object involved  Two: A deformable metal bar and a rigid ball collider. 

Testing environment 

configuration 

Intel i5 6800k with NVidia 980ti, 32GB DDR4 RAM.  

Table 6.1.1 Scenario summary for Metal Bar Case 

6.1.1.1 Modelling 

To conduct simulation testing of the bar object we need to perform physics modelling to the simple 

3D model we created in blender. The modelling will take the following process: 

Original raw rendering mesh 

The bar is a hanged and unsupported long 3D rectangle. Figure 6.1.1 Metal bar Raw mesh with 

vertices and triangles shows the initial view of the metal bar raw mesh after it has been loaded into 

APMI editor. Usually, a static mesh as simple as this bar only requires minimum triangle to generate, 

which is 12 edges and 6 face edges in total. However, as stated in previous chapters, unlike static 

meshes where faces remain the same, a plain face will deform later in deformation simulation. The 

change of shape from the deformation simulation has to map back to the rendering mesh. The 

rendering mesh needs to have a certain flexibility and enough vertices to present the detail of the 

change. This is the input data requirement of our system. Therefore, we added extra faces when 

modelling the bar. In the end, we have a model with 138 vertices and 272 triangles. It is worth 

mentioning that when the raw model is loaded into a different graphics engine, the vertex count get 

from the engine may differ. Key vertices are duplicated for normalisation and shading purposes. 

In addition, as one of our input modelling requirements, the geometry of the model should be 

aligned with one axis. Therefore, when creating the bar model, we made its long edge aligned with 

the x-axis and the other two edge aligned with the y and z-axis. The whole bar is symmetric with 

respect to the x-axis. 
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Figure 6.1.1 Metal bar Raw mesh with vertices and triangles 

Generation of AABB 

After the bar is loaded into our APMI interface, we proceed to physics modelling. The first step is 

to generate the AABB of the object as a boundary reference for the following steps. In the metal 

bar case, the AABB will match the exact model shape. Figure 6.1.2 shows the generated AABB in 

bold line. 

 

Figure 6.1.2 AABB generation for the metal bar 
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Distribution of particles and BFCC cube units 

Then we use the AABB as a reference to distribute our BFCC structure-based particle. Before the 

distribution, we have to configure the density parameter of the particle. Considering the shape of 

the bar, the narrow end should only have one or maximum two cubes generated. Figure 6.1.3 and 

Figure 6.1.4 shows the generated particle structures based on different density settings. The number 

of particles is noticeably much higher when density is 2. 

 

Figure 6.1.3 Particle distribution for the bar with cube density = 1 

 

Figure 6.1.4 Particle distribution for the bar with cube density = 2 
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Constraints Construction 

The next step is to generate constraints based on the particle per cube unit. The generation follows 

our proposed BFCC rule, which results in 48 constrains for each cube. The shared duplicated 

constraints from neighbouring cubes are identified and eliminated by FREDOMS. The constraint 

structure has been shown in Figure 6.1.3 and Figure 6.1.4. At this stage, the constraints’ material 

parameters and rest length are not set. 

Surface generation for physics mesh 

Now the system will map the surface mesh for the physics mesh by using the surface particles that 

is represented in the above figure as yellow dots. As introduced previously, the purpose of this 

surface mesh is for collision detection and to determine which area of the object has been affected 

by external impulse. In FREDOMS we define triangle face order that follows the “left-hand rule”, 

which means the order of the point is always clockwise ordered around its normal. A visual 

representation of the surface of the physics mesh for the metal bar is shown in Figure 6.1.5 and 

Figure 6.1.6. 

 

Figure 6.1.5 Surface mesh when density = 1 
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Figure 6.1.6 Surface mesh when density = 2 

Weighted mapping from physics mesh to rendering mesh 

Finally, APMI will perform a weighted mapping from physics mesh to rendering mesh. Each vertex 

on the rendering mesh is mapped to three nearest particles in the physics mesh. Each mapping has 

a weighted value based on the distance between the vertices and the particle. At this stage, the 

vertices to particle deformation influence relationship is finalised.  

Finalising rest state for the model 

The last step of the modelling process is to calculate the rest length for each existing constraints 

based on the current distance between the two ending particles. The current mesh structure is at the 

“rest” state. In order to complete the modelling process, we also need to configure the parameters 

of the constraints. In metal bar case, our goal is to test different parameter settings; therefore, we 

set the parameter value by the default value offered from APMI as below in Table 6.1.2:  

Configuration Maximum 

length 

factor(𝜀𝑚𝑎𝑥) 

Minimum 

length  

factor(𝜀𝑚𝑖𝑛) 

Material 

deformation 

threshold 

Impulse 

distribution 

factor (𝜇) 

Maximum 

depth control 

factor 

Default 1.15 0.85 1.2 0.9 30 

Table 6.1.2 Default parameter setting for metal bar case 
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6.1.1.2 Case discussion for metal bar modelling 

Our automatic modelling solution calculates the cube unit density based on the shortest AABB edge 

length, and applies it to the rest edges. Table 6.1.3 shows the physics model figures and compares 

the differences between two density settings. This is a summary of key information about the 

physics structure that will directly affect the simulation speed and visual outcome. The data for 

density value = 3 is not practical for this simple case but just to show as a reference to the increment 

of other values caused by higher density.  

Density Cubes Cube distribution Particles Constraints Surface Triangles 

1 20 1 x 1 x 20 205 848 328 

2 160 2 x 2 x 40 1173 5668 1312 

3 540 3 x 3 x 60 3505 17940 5904 

Table 6.1.3 Summary of structure data with different density values 

It is worth mentioning that not all the particles and constraints will be calculated in every loop. The 

impulse distribution factor and the impulse distribution depth control factor will affect the tree depth 

of the velocity distribution. It is also worth mentioning that the bar geometry is a special case as: 

1. The short edge length is much shorter than the long edge, which results in a large number 

of cube number on the long length (ratio 1:20). Increasing the cube density will result in 

large particle and constraint change as they increase exponentially. This situation can apply 

to any object when the length of the long edge is much higher than the short length. 

However, in the real-world scenario the AABB box is more close to a regular cube 

structure where the three edges along x, y and z does not have large differences in length. 

Moreover, based on our testing, a healthy number of cube density for the shortest length 

(density values equals to 2 - 4) is often enough to simulate object in any size by using 

AABB frame reference method. Therefore, the density value will not become very high in 

most cases. This avoids creating a large number of cube units. 

2. The bar is a perfect cuboid geometry, which means it fully matches the space boundary 

that is defined by AABB. Therefore, every cube division unit and every defined particle 

and constraint is included in the bar. In the real-world scenario, the AABB only defines 
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the axis boundary of the object. Usually, there is a lot of empty space (which contains cube 

units, particles and constraints) in between AABB boundary and the actual model volume. 

FREDOMS is able to perform redundant inner/outer particle and constraint check and 

remove unnecessary elements to reduce the calculation for optimisation (if AABB frame 

reference method is not used). 

3. The two shorter edges on the bar have the same (similar) length, therefore increasing the 

density number will results in large increment on only the long axis. Which has much less 

shared vertices and constraints that can be reduced. When the AABB is more close to a 

regular cube shape, there will be more ratio of shared vertices and constraints. 

4. As the shape of the bar is perfectly aligned with AABB with no gap, there is no particle 

position manipulation for matching the rending mesh’s geometry. We will demonstrate this 

process in later cases. 

Choosing the suitable density for metal bar testing case 

As stated in Table 6.1.1 , one of the testing goals for metal bar case is the material compressing. 

This behaviour requires the object to be pressed in one direction. The expecting behaviour is that 

the material should be extended in other directions to release the tension. Based on the observation 

from Figure 6.1.5 and Figure 6.1.6, when density = 1, the mid subdivision line (the loop cut through 

y-axis) of the raw mesh will be automatically mapped to the corner particles for each cube unit. 

This will result in the deformation of the physics mesh not being fully mapped to the rendering 

mesh; thus, the result presentation is less realistic (even though it behaves correctly in the physics 

mesh). Therefore, choosing a higher density is not only for simulating more accurate deformation 

but also have the visual presentation advantages as the rendering mesh will have more referencing 

point when doing the mapping. In the spirit of demonstrating material behaviour, we choose the 

physics mesh with density = 2 for metal bar testing as our default option, unless otherwise specified. 

6.1.1.3 Real-time material behaviour testing for metal bar 

After finishing the modelling, we can load the metal bar object into our real-time simulation scene 

for behaviour testing. The setup for the behaviour testing in metal bar case contains: 

1. A ground surface, which acts as a movement restriction (lock) to the negative y-axis.  

2. A deformable metal bar with no gravity and no rigid body simulation.  
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3. An incoming ball collider with mass = 1 unit that takes freefall from a certain height.  

The unit can be interpreted to any real-life unit system, by default when introduced in the later 

sections we refer the unit to the metric system. 

Bending test 

We conducted a bending test by dropping ball collider on one end of the bar and observe its reaction. 

Firstly, we used the default settings that is stated in Table 6.1.2 to conduct the first round testing.  

 

Figure 6.1.7 Bending deformation after 1st strike by using default configuration - rendering mesh 

 

Figure 6.1.8 Bending deformation after 1st strike by using default configuration - physics mesh 
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Figure 6.1.7 shows the screenshot of the rendering mesh after the first time collision with the falling 

ball. It is clearly seen that the structure had bent from its original shape and formed a nice smooth 

curve. The deformation was instant, and there was a short period of time for the constraints to 

recover if its threshold is breached. 

Figure 6.1.8 gives the visualised presentation of the physics mesh. Compare two figures together, 

we can observe that the deformation happened to the physics mesh had been correctly mapped to 

the rendering mesh. We marked the collision point (triangles) in green and the affected constraints 

also in green (lines). The black lines represent the constraints that had not yet been affected by the 

initial velocity distribution. The black constraints were still updated to satisfy the constraint 

conditions. 

After the first deformation, the collision mesh was also updated (as shown in Figure 6.1.8). We then 

conducted the same procedure to drop the ball and we had the second round deformation. The metal 

bar deformed (bent) further, as shown in Figure 6.1.9 and Figure 6.1.10. At this stage, the lower 

end of the metal bar had touched the ground. By repeating the same ball dropping procedure, we 

tested how the material react when it has one degree of freedom is locked (cannot pass through the 

ground).  

 

Figure 6.1.9 Bending deformation after 2nd strike by using default configuration - rendering mesh 
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Figure 6.1.10 Bending deformation after 2nd strike by using default configuration - physics mesh 

Compressing test 

We conducted the compressing test by continuing from the 2nd strike of the bending test. We 

repeated the ball dropping action to the same metal bar. The result is shown below in Figure 6.1.12 

and Figure 6.1.13. 

 

Figure 6.1.11 Compressing test initial state 
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Figure 6.1.12 Compressing test 1st strike 

 

Figure 6.1.13 Compressing test 2nd strike 

It is noticeable that the part that was contacted with the ground had been compressed in volume. 

The deformation primarily happened on y-axis as it was the ball dropping direction. In this test, the 

bar did not stretch its structure very much to the x and z-direction as expected. This is because we 

used the default parameter settings where 𝜀𝑚𝑎𝑥 = 1.15. This length flexibility only offered a very 

little extension to the length of each constraint and limited the stretching of the structure. A closer 

view of the compressed part can be seen in Figure 6.1.14 and Figure 6.1.15. 
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Therefore, to further exam the compressing-stretching ability of our system. We repeated the exact 

same testing with all the same parameters and initial input. The only difference was we changed the 

constraint max length ratio to 1.7 instead of 1.15. The testing results presented in Figure 6.1.16 and 

Figure 6.1.17 show that change the maximum length ratio affected the stretching ability of the 

material. The physics mesh view in Figure 6.1.17 shows more obvious stretching than in rendering 

mesh. This is because the weighted mapping automatically smoothed out the transformation. 

Therefore, the large stretching occurred in physics mesh was averaged out in rendering mesh 

presentation. This is a drawback to our RPM mapping method. When averaging the displacements 

from multiple reference particles, some deformation becomes lets significant from the rendering 

mesh view. However, the deformation effect is still very noticeable. 

 

Figure 6.1.14 Close view of compressing part - rendering mesh 
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Figure 6.1.15 Close view of compressing part - physics mesh 

 

 

Figure 6.1.16 Close view of second round compressing testing – Rendering mesh 
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Figure 6.1.17 Close view of second round compressing test - Physics mesh 

Twisting test 

Twisting behaviour is a typical deformation for metal-like objects. In FREDOMS, the behaviour of 

this deformation is not achieved by the impulse distribution, but the constraint structure 

arrangement in our model. With a small set of particle starts to twist, their connected constraint will 

soon exceed the maximum length and start to pull the neighbouring particles towards the twisting 

direction.  

The action of temporary twisting can also be achieved by other particle-constraint based method 

like PBD and PSS. However, in other elastic systems and in PBD, the deformation will be eventually 

recovered after the external interference (twisting action) is removed. Our method, on the other 

hand, can provide a permanent deformation to the object as our constraint offers certain tolerance 

for deformation. 

We conducted the twisting test to the metal bar by selecting a group of particles on one end of the 

bar and rotated each particle around the x-axis. Figure 6.1.18 shows a presentation of such operation, 

where blue dots represent the selected particles that are to be rotated (twisted). 
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Figure 6.1.18 Twisting test preparation 

The key to twisting test is the configuration of the constraint length ratio. If it is too loose (high 

deformation tolerance), the structure will not perform twisting. If it is too tight (both 𝜀𝑚𝑎𝑥 and 

𝜀𝑚𝑖𝑛 are close to or equal to 1) then the twisting will be soon recovered.  

For the twisting test, we made two changes. The first change was that we switched to the cube 

density = 1 for the modelling. This is because higher density value results in more constraints, and 

leads to more constraints satisfaction check. In such case, the deformation has more details, but the 

twisting process is slow. This slow process is not caused by the extra calculation but because of the 

distribution of the deformation. The satisfaction and recover process takes more loop cycles than a 

simple structure to perform a decent twisting. Figure 6.1.19 shows the twisting simulation in 

physics mesh with cube density = 2. 
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Figure 6.1.19 Twisting simulation with density = 2 

The second change was that we disabled one-to-multiple weighted mapping from rendering mesh 

to physics mesh and used one-to-one mapping. In FREDOMS, this can be achieved by setting the 

RPM pair list size from 3 to 1. The reason for such change is that when conducting twisting 

deformation, the frequent, large angle change from the rotation can result in unrealistic mapping to 

the rendering mesh. Therefore, we chose a less smooth but more stable one-to-one approach for 

simulating the twisting behaviour. 

Figure 6.1.20 and Figure 6.1.21 shows the operation of twisting the metal bar structure along the 

x-axis in progress. With cube density = 1, the result was still realistic. As we had set the structure 

deformation tolerance considerably tight, therefore, after the twisting, the structure started to 

recover from the deformation in a small degree. Figure 6.1.22 shows the metal bar entered relax 

state and form a permanent twisting deformation.  

To test the structure stability, we used the twisted model to perform an additional ball dropping 

collision test. The result is shown in Figure 6.1.23. This result showed a clear difference in material 

property from the collision testing in bending, as this material is much more “rigid” (tight).   
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Figure 6.1.20 Twisting test in progress - Physics mesh view 

 

Figure 6.1.21 Twisting test in progress - Rendering mesh view 
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Figure 6.1.22 Final permanent twisting result 

 

Figure 6.1.23 Twisted structure with collision deformation 

 

 



211 

 

6.1.1.4 Case Summary 

In the metal bar testing case, our main purpose is to present and demonstrate the possible material 

behaviour our modelling method can deliver. We have successfully simulated bending, compressing 

and twisting with the metal bar object and achieved realistic result. All the simulation were 

conducted in real-time environment. We also gave a basic introduction of the modelling process 

and how the modelling configurations can affect physics material behaviours in simulation. 

From the testing, we have found that similar to other particle-based methods, the structure of the 

model can largely affect the behaviour of the object. The metal bar had to be modelled differently 

in order to achieve certain behaviour (e.g. cube density settings for compressing). However, as 

discussed in Section 6.1.1.2, metal bar is a special case that has may unique properties. Some issue 

will become less problematic in more general cases.  

In this testing case, we mainly focused on presenting the desired material behaviours rather than 

material properties and how they linked to the parameter settings. Because of the geometry nature 

of the metal bar, we were unable to fully test the denting deformation, which is one of the key 

behaviour of metal-like, permanent deformation. In the next section, we will demonstrate denting 

and material deformation in a larger scale case. And we will also test different parameter settings to 

show how these values can affect the object’s behaviour during simulation. 

6.1.2 The Metal Plate Case 

The second case we used for testing our method is The Metal Plate Case. A plate is still a simple 

geometry, but it offers a large, flat surface that is suitable for perform denting. If we consider a 

Metal Bar object as 1D, then Metal Plate is 2D, and it has the ability to perform visible deformation 

in an additional degree. It is worth to clarify that when we referred to 1D and 2D objects, we didn’t 

mean they are mathematically one or two-dimensional, which does not have any depth in other 

directions. We meant that it still has depth and physics structure in all three dimension, however, 

due to its shape nature, their behaviour is only obvious in one or two dimension. For example, 

during the bending test, all the particles on top surface of the metal bar had the same deformation 

(displacement) in the z-axis as the bar’s surface in z-direction is very narrow and only contains one 

or two surface subdivision. Therefore, denting behaviour was not visible. 

The Metal Plate Case can be generalised to any surface of the object. For example a metal wall, a 
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metal door or a furniture surface that can perform permanent deformation. Similar to a metal bar, a 

metal plate with certain thickness is a common basic structural component to many complex objects. 

Its deformation can be widely used in different simulation cases.  

Table 6.1.4 gives a summary of the Metal Plate testing case. In the presentation of this case, we will 

focus less on discussing the modelling process (which was explained in the Metal Bar Case) but 

more on different material parameter settings.   

Scenario description Load a simple Metal Plate object with certain thickness into the scene 

and use a projectile to shoot the structure and observe its deformation. 

Purpose and goal The purpose of this case is to design a more complicated scenario 

compare to case 1 in order to test the usability of the framework for a 

more complex raw mesh. Throughout this case, we will mainly test the 

following basic functions: 

1. Compressing 

2. Denting 

3. Partial deformation and its influence to the whole structure 

4. Test the same input with different combination of parameters 

and compare the differences. 

Object involved  Two : A deformable Metal Plate object and a ball collider as the incoming 

projectile 

Testing environment 

configuration 

Intel i5 6800k with Nvidia 980ti, 32GB DDR4 RAM. 

Table 6.1.4 Scenario summary for Metal Plate Case 

6.1.2.1 Metal Plate Modelling 

Similar to Metal plate, the original rendering mesh of metal plate is manually modelled in Blender. 

As stated previously, we added extra face subdivisions to its x-y plane surface in order to give extra 

rendering flexibility for the later deformation. Table 6.1.5 gives the raw rendering mesh information 

that we imported to APMI modelling process. Figure 6.1.24 shows the screenshot of the raw 

rendering of metal plate with the mesh wireframe displayed.  
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Object Type Vertex Count Triangle Count 

Metal Plate 629 1152 

Table 6.1.5 Rendering mesh information for Metal Plate Object 

 

Figure 6.1.24 Rendering mesh visual presentation of Metal Plate 

We then proceed the mesh into automatic modelling with density = 1 with the default constraint 

parameter setting. The physics mesh information is shown in Table 6.1.6, and a screen shot of the 

physics mesh at its rest state is presented in Figure 6.1.25.  

Density Cubes Cube distribution Particles Constraints Surface Triangles 

1 256 1 x 16 x 16 1890 9185 2304 

Table 6.1.6 Metal Plate Physics model information with density = 1 

It is noticeable that the metal plate case and metal bar case has a similar issue: the number of 

particles and constraints are relatively large compare to its simple geometry type. This is caused by 



214 

 

the large difference of the shortest AABB edge to the longest AABB edge ratio. The topic has 

already been addressed and discussed in Section 6.1.1.2.  

 

Figure 6.1.25 Metal Plate Physics mesh at rest state 

6.1.2.2 Testing sequence introduction 

We conducted the real-time deformation testing by throwing a metal ball with mass = 1.0 with a 

horizontal velocity (magnitude) of 1.5 and vertical velocity of 3.0. The horizontal direction 𝑣(𝑥, 𝑧)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

is always from the current camera position to the origin point of x-z plane (0.0, 0.0). With gravity 

applied, the incoming ball can form a projectile with an expected target aims roughly to the centre 

point of the metal plate. By adjusting the camera position, we are able to shoot the ball from a 

different direction. Figure 6.1.26 gives an illustration of the testing sequence where the ball is 

shooting at the metal plate object. 

In order to test the different parameter settings, we took several rounds of testing that follows the 

same input but different constraint settings. For each test round, we shot the ball with the same 

velocity for the same amount of time and observed the results.  
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Figure 6.1.26 Testing sequence illustration for Metal Plate Case 

6.1.2.3 First round test with default constraint parameters 

In the first round test, we used the default constraint parameter settings, which was listed in Table 

6.1.2. This was the same setting we used for metal bar case. We repeatedly shot the metal plate by 

the ball collider and observed its deformation behaviour. The results of the first 4 impacts from front 

and back view are shown in Figure 6.1.27 and Figure 6.1.28. The number on each image indicates 

the times of strike the object has taken. 

From the result observation, we can identify that the plate performed deformation from its collision 

point, the deformation stretched out to the whole structure. The four corners of the plate are the 

least deformed as they have the longest distance to the collision point (which is in the centre of the 

plate). This result meets our expectation with a fast and stable deformation process. And the visual 

presentation is realistic. 

We used the default parameter sets where the impulse distribution ratio is high, and the structure 

integrity setting (constraint length flexibility) is high. Therefore, the deformation from the collision 

point was easily transferred to the whole structure. One of our other tasks for the metal plate case 

is to exam denting. The denting effect often occurs on a more rigid material where only a limited 

area is deformed while the majority part of the object remains undeformed. In order to achieve this, 

we adjusted the parameters and conducted a second-round testing. 
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Figure 6.1.27 First round metal plate testing sequence 1-4: Front View 
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Figure 6.1.28 First round metal plate testing sequence 1-4: Back View 

6.1.2.4 Second-round testing with low velocity distribution ratio 

For simulate denting, we configured a new constraint parameter setting, which is shown below in 

Table 6.1.7. In order to achieve denting, we modified two factors: the impulse distribution and the 

maximum depth control factor. We reduced these two values in the new parameter setting.  
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Configuration Maximum 

extension 

factor(𝑙𝑚𝑎𝑥) 

Minimum 

compression  

factor(𝑙𝑚𝑖𝑛) 

Material 

deformation 

threshold 

Impulse 

distribution 

factor 

Maximum 

depth control 

factor 

2nd Denting 1.15 0.85 1.2 0.5 10 

Table 6.1.7 Parameter setting for denting test 

The result of the second-round testing is shown below in Figure 6.1.29 and Figure 6.1.30. This time 

as we had reduced the impulse distribution ratio, the deformation only happened within a small area 

on the surface of the plate, which formed a smooth denting effect. 

 

Figure 6.1.29 Second round metal plate testing sequence 1-4: Front View 
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Figure 6.1.30 Second round metal plate testing sequence 1-4: Back View 

6.1.2.5 Third and fourth-round testing for material rigidity testing 

We further reduced the velocity distribution factor from the second testing, and the material became 

more rigid-like and the denting area decreased. We adjusted the parameters again for a third-round 

testing with the expectation of a smaller denting deformation. This time, we had also adjusted the 

first level velocity distribution factor to 0.4 to form a “sharper” looking denting. The configuration 

is given below in Table 6.1.8.  
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Configuration Maximum 

extension 

factor(𝑙𝑚𝑎𝑥) 

Minimum 

compression  

factor(𝑙𝑚𝑖𝑛) 

Material 

deformation 

threshold 

Impulse 

distribution 

factor 

Maximum 

depth control 

factor 

3rd Denting 1.15 0.85 1.2 0.2 8 

Table 6.1.8 Third round testing parameter 

Figure 6.1.31 shows the third round result with reduced denting. The figure shows the result after 

10 times strikes from the ball collider because the material becomes harder, and each deformation 

after one strike is small.  

 

Figure 6.1.31 Third-round metal plate testing front and back view after 10 impacts 

It is noticeable that after certain impacts, the plate did no longer perform permanent deformation. 

It still responded to the impact and performed deformation; however, the deformation was soon 

recovered. This is because the deformed area had reached its maximum constraints flexibility. In 

order to have further denting deformation, we had to adjust the constraint minimum/maximum 

length coefficient to give more freedom for the particles to take displacement. This gave us the 

fourth-round testing with adjusted constraint length flexibility.  

Therefore, we conducted a fourth-round test by modifying the constraint minimum/maximum 

coefficient. The new parameter setting is presented in Table 6.1.9, and the result is presented in 

Figure 6.1.32. The result shows a more obvious denting deformation than the third-round testing. 
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Configuration Maximum 

extension 

factor(𝑙𝑚𝑎𝑥) 

Minimum 

compression  

factor(𝑙𝑚𝑖𝑛) 

Material 

deformation 

threshold 

Impulse 

distribution 

factor 

Maximum 

depth control 

factor 

4th  Denting 1.5 0.5 1.2 0.2 8 

Table 6.1.9 Fourth round testing parameter 

 

Figure 6.1.32 Fourth round metal plate testing front and back view after 10 impacts 

6.1.2.6 Material properties and constraint parameters 

From the above 4 rounds of tests, we can come to the conclusion that the constraint configuration 

can largely affect the material property and the deformation behaviour of the model. We have 

summarised the material property that can relate to our deformation model into the following two 

categories:  

1. Rigidness/Softness: This property represents how sensitive the object can respond to the 

external impact. Rigid material has little deformation, and soft material is easily deformed. 

The Rigidness/Softness property is determined by the impulse distribution factor (𝝁). 

The effect is achieved by determining how much impulse will be transferred into the deeper 

level of the system. The higher the factor is (closer to 1), the softer the material becomes, 

and the lower the factor is (close to 0, the), the harder (more rigid) the material becomes. 

For the first and second level, the relationship of distribution the distribution factor and the 
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material rigidness/softness is linear, but when getting to the deeper level, the relation 

becomes exponential, which can be present as the equation:  𝑑𝑛 = 𝐷0 ∙ µ𝑛 , where 𝑛 

represents the depth of the network impulse distribution, and 𝑑𝑛 represents the impulse 

(deformation) been distributed to the current (nth) level. 

2. Compressibility/Expansion: In test cases design, we make the term “maximum extension” 

and “maximum constraint length” exchangeable, same arrangement applies to “minimum 

compression” and “minimum constraint length”. These properties represent how much 

deformation the material can perform. These are two separate factors, unlike rigidness and 

softness which are highly related. Compressibility is determined by the minimum length of 

the constraint and expansion is determined by the maximum length of the constraint. The 

relations between compressibility/expansion and minimum/maximum constraint length are 

linear. 

By manipulating and combine the above properties, we can set the parameters to simulate different 

matters in the real-world, especially a wide range of metals. We conducted a series of experiments 

in Metal Plate Case and gave recommended parameter settings to simulate common materials in 

this case. 

Material Maximum extension 

factor(𝜀𝑚𝑎𝑥) 

Minimum compression  

factor(𝜀𝑚𝑖𝑛) 

Impulse Distribution 

factor (µ) 

Iron  1.6 0.75 0.5 

Steel 1.5 0.8 0.35 

Aluminium 2.0 0.3 0.95 

Copper 1.8 0.5 0.8 

Titanium 1.05 0.98 0.05 

Table 6.1.10 Parameters for different materials 

Table 6.1.10 gives a set of parameters that we found is suitable for simulating certain types of metal 

materials. There are infinite possibilities of combinations of the values, the above table offers a 

reference and guidance of how to simulate different types of material. We have experimented the 

above values in metal plate case. The visual presentation is given in Figure 6.1.33, Figure 6.1.34, 
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Figure 6.1.35, Figure 6.1.36, and Figure 6.1.37.  

 

 

Figure 6.1.33 Material simulation - Iron 

 

 

Figure 6.1.34 Material simulation - Steel 
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Figure 6.1.35 Material simulation - Aluminium 

 

Figure 6.1.36 Material simulation - Copper 
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Figure 6.1.37Material simulation - Titanium 

Besides the above three parameters, there are also the first-level impulse distribution factor and the 

deformation threshold, which are up to the user’s preference to configure based on the requirement 

for each application. They will affect the deformation type, however they will not directly determine 

the material deformation property. The deformation threshold is related to the rigidness of the 

material. It triggers deformable/rigid state of the object.  

Important issue when using parameter presets 

It is important to state that the above parameter configurations cannot be blindly used in 

arbitrary scenarios without further exam of the particular case. These values are given as 

references.  

The reason for this statement is because the material priorities gained from the parameters 

(especially the velocity distribution factor) are highly dependent on the density of particles and the 

level of constraints. An example can be an object with the same volume size but object A has two 

particles with one constraint in a certain distribution path, but object B has three particles with two 

constraints in the same path. When the impulse reached the end point in object A, it was only 

decreased once. But in B the same end point has lost impulse twice, as there is one more layer in 

the path than A. This causes the impulse passed to the same endpoint having different values.  

Therefore, with the same constraint settings and same object structure and volume, but different 

particle distribution density, the model with the lower density always seems “softer”. This makes 
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sense in the real world common experience as matters with lower density are usually softer. 

Therefore when modelling large object with low-density particles distribution, the solution to 

maintain the correct material properties will be: 

1. Use an impact-density factor to adjust the impact amount that matches the density of the 

object.  

2. Use a different set of configuration. This can also be achieved by using an impulse 

proportion factor.  

The above problem only applies to the softness/rigidness property. The Compressibility/Expansion 

property will not have the same problem as no matter how much the density is and how many 

constraints, the total constraints length change and tolerance are the same. Therefore this problem 

is unique in our method when comparing with PBD and PSS, as their energy loss is independent to 

particle and constraint density. 

6.1.2.7 The “bullet hole” effect – Handling large impact 

One special denting would be a bullet hole on a metal wall (without causing fracture). This effect 

is a special case to the previous denting effect, but it is generated from a large, sudden impact which 

results in the collide area to have large deformation. In order to maintain an obvious and sharp 

change to the whole surface, little deformation should be transferred to the next level (s). 

Based on the above behaviour, we can predict that the material should have low distribution ratio 

and high deformation flexibility, therefore, we have a new configuration that is shown below: 

Configuration Maximum 

extension 

factor(𝑙𝑚𝑎𝑥) 

Minimum 

compression  

factor(𝑙𝑚𝑖𝑛) 

Impulse 

distribution 

factor (µ) 

1st level 

distribution 

factor 

Bullet hole  2.0 0.2 0.01 0.1 

Table 6.1.11 Bullet Hole test parameter configuration 

Please notice that this time we setup a different 1st level distribution factor, this is to ensure a smooth 

hollow shape and still have shape deformation for the next level distribution. The result is shown 

below in Figure 6.1.38.  
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Figure 6.1.38 Metal Plate Bullet Hole test result 

6.1.2.8 Metal plate Case summary 

In the metal plate case, we have accomplished three tasks: Firstly, we have tested permanent 

deformation of a large surface with thickness. The metal plate reacted to the impulse and deformed 

while maintaining its structure integrate, and generated nicely metal-like effects. Secondly, we have 

tested the denting effect, where only a small area of the surface deformed and left the rest of the 

surface unchanged. Thirdly, we have looked into how different combinations of parameter values 

can affect the material property. We conducted several rounds of tests and analysed the results. We 

summarised the relation between key parameters and deformation behaviours. Based on the 

findings, we have proposed a set of configurations that can represent several common metal 

materials. 

The first two test cases (Metal Bar and Metal Plate/Panel) concentrated on the material behaviour 

and basic modelling process. We used simple geometries for demonstration, and they gave a good 

presentation of what material behaviours our method is capable of; and how to model the object 

based on the requirements. In the next section, we will present a test case with more complex 

geometry shape and discuss its deformation behaviour accordingly. 
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6.1.3 The Torus case 

The previous two cases demonstrated the deformation ability and possibility for our method. 

However, the geometry we used was relatively simple. It didn’t demonstrate how our automatic 

modelling and real-time simulation can handle more complex geometry. Therefore, we setup a third 

test case, where we use a torus model with handle as our test subject. 

 

Figure 6.1.39 The torus object 

A torus structure is a unique two-dimensional compact manifold. It has a hole in the middle but yet 

it also has a closed surface with a closed inner volume space. It also has a perfectly rounded surface 

presentation that can easily identify any deformation shape. Therefore, this simple yet still complex 

geometry is perfect for testing object deformation as a whole. Figure 6.1.39 gives a presentation of 

the torus object that we used in this case. An overview of the case is given in Table 6.1.12. 

Scenario description Load a torus object (as shown in Figure 6.1.39) into the scene and use 

dropped ball and shooting projectile to the structure to observe its whole 

structure deformation behaviour. 
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Purpose and goal The purpose of this case is to see the change of whole structure rather 

than exam individual material property. The main testing goals are: 

1. Automatic modelling of complex geometry 

2. Structure stability 

3. Deformation degree and realism 

4. Object deformation behaviour in different parameter settings 

Object involved  Two : A deformable tours object and a ball collider as the dropping and 

incoming projectile 

Testing environment 

configuration 

Intel i5 6800k with Nvidia 980ti, 32GB DDR4 RAM. 

Table 6.1.12 Scenario summary for Tours Case 

6.1.3.1 Torus Modelling 

The tours model is a more complex structure than a plate structure by the first looking. However, 

when it comes to vertex and triangle count, the tours object we modelled has similar figures 

compares to our metal plate object. The rendering mesh information of the tours model is given in 

Table 6.1.13 as well as a comparison to the numbers for the metal plate. 

Object Vertex Count Triangle Count 

Torus 673 1224 

Metal Plate 629 1152 

Table 6.1.13 Rendering mesh information for Tours Object 

The similarity in numbers of vertex count and triangle count of two objects is because the (relatively) 

complex raw surface mesh of the torus has already given it enough detailed vertices in rendering 

mesh to represent further deformation. Therefore, we didn’t add many extra surface subdivision to 

the rendering mesh. In contrast, a metal plate is simple as it can be represented by 12 triangles; 

however, we needed to add a lot of extra subdivisions to its plane surface for further deformation. 
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For automatic physics modelling of the torus, we still used the standard density = 2 considering the 

AABB boundary of the torus object (large difference between longest and shortest edge). After 

APMI finished proceeding the model, we had a physics mesh with the following properties:  

Test Case Density Cubes Cube distribution Particles Constraints Triangles 

Torus 2 240 2x12x10 1553 7968 1479 

Metal Plate 1 256 1 x 16 x 16 1890 9185 2340 

Table 6.1.14 Torus object rendering mesh information overview with comparison to the metal plate 

In Table 6.1.14 we also give the values in comparison with the metal plate, it is noticeable that torus 

has less particles, triangles and constraints counts than in the metal plate. Therefore, the complexity 

of the structure in our model is not directly related to the complexity of the geometry. Figure 6.1.40 

shows a presentation of the complete physics model of the torus object. 

 

Figure 6.1.40 Physics modelling visualisation for torus object 

It can be observed that different from the previous two test cases, the AABB of the torus object does 

not fully match the shape boundary of the physics mesh. There is a lot of empty space in between, 

and the distributed particles are not included within the physics boundary. Such particles are marked 
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as white dots in the figure. It is also noticeable that some particles (yellow ones) are moved from 

its original distributed position and shifted to match the geometry of the rendering mesh. This is the 

result of constraint-rendering surface intersecting and shifting operation from APMFC. This action 

was not observed in previous cases. 

We used the AABB frame referencing method (introduced in Section 4.2.11) for the simulation. 

Therefore, even the particles are outside the volume of the torus we still kept them and construct 

constraint in between. This gave extra support and deformation reference for the whole structure to 

help it maintain integrity. 

6.1.3.2 Testing with different parameter settings 

We have introduced the possible deformation behaviour types in Section 6.1.1. We have discussed 

and analysed different parameter settings in 6.1.2. In the torus case, we will skip these topics and 

go straight into the testing results by using different sets of parameters. 

Torus object density 

From the configuration showed in Table 6.1.14 we can identify a decreased density of FBCC cube 

units on y and z-axis. This led to a very soft material to the torus when using the same set of 

configuration and the same impulse. In the spirit of testing how the object density differential issue 

can affect the result, for the first test round we still used the default constraint configuration with 

the same initial impact value to observe the behaviour of the torus structure. 

Default parameter settings with same the impact value from previous test case  

For the first testing scenario, we still used the default parameter configuration (Table 6.1.2). As 

discussed in Section 6.1.2.6 Material properties and constraint parameters, this setting offers a soft 

material behaviour. In addition, because of the reduced cube density, the material should be even 

softer. Therefore, we expect the structure to perform large deformation very easily.  

We conducted the experiment by the same procedure of dropping a ball collider with mass = 1 and 

gravity = 9.8 from the same height for three times. The collision position for the first contact is on 

the top left area (as shown below) of the torus. Figure 6.1.41 shows the result of three collisions 

from the ball dropping test. As we expected, the object had a significant vertical deformation after 

only three times of collision. 



232 

 

 

Figure 6.1.41 Torus dropping ball test with default parameter settings 

We also conducted a sideway shooting test by using the same parameter settings. In the test we 

aimed at one side of the torus and shot the ball to the upper section of the ring, this generated a 

sideway impact and deformed the structure horizontally along z-axis direction (primarily). The 

result of sideway shooting test is shown in Figure 6.1.42. Similar to the ball dropping test, the torus 

had a large deformation after three collisions.  

From the visual presentation in the two tests we can observe that the deformed structure formed 

several metal-like patterns, including a combination of bending, folding, compressing and slight 

wrinkling, as well as the whole structure shifting. The visual experience can also identify this 

structure has a very soft material, which matches our prediction based on the selected parameter 

settings. However, the behaviour may be too soft for some applications as the structure will lose its 

identifying geometry (the unique form that can be easily identified as a pre-designed object, even 

with some degree of deformation). 
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Figure 6.1.42 Sideway shooting test by using default parameter settings 

We continued with one more test by using the parameter setting for iron that was given in Table 

6.1.10. We conducted a ball-dropping test with the same impact input from the default parameter 

test. The result is shown in Figure 6.1.43. As the parameters are more rigid, we can observe a less 

deformed result. It is noticeable that the material around the collided area had large deformation 

while the other part of the object still maintained its initial structure (mostly, but with a slight, 

unnoticeable deformation). This is caused by the low distribution rate as well as the additional 

structural support from the AABB frame.  
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Figure 6.1.43 Torus dropping ball test by using iron parameter 

Testing with impulse (proportion) factor 

In order to achieve a more nature and smooth deformation for the torus, we applied proportional 

changes to the impact values instead of changing the parameter settings. The reason behind this is 

that it is easier to adjust one value for the input factor instead of at least three values for the 

constraint factors. Moreover, it is reasonable to assume that the impact change is proportional to the 

size change of the structure (in this case, the cube density). 

In order to determine the value of the impact factor, we made an assumption of the actual size of 

the torus. In modelling interpretation, both the metal plate and the torus had an AABB size 

represented by three float numbers. Table 6.1.15 gives a list of the AABB size for the metal bar, the 
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metal plate and the torus, which are the three test objects we have discussed so far. The X, Y and Z 

values that represent the boundary of the object do not have a universal unit assigned, meaning that 

it can be scaled to any size as desired.  

Object X-length Y-length Z-length 

Metal Bar 3.22 0.16 0.16 

Metal Plate 0.29 4.71 4.71 

Torus 0.49 2.86 2.46 

Table 6.1.15 AABB size for different objects in modelling unit 

Therefore, we had to make our own assumption of the size of the test object, and use the AABB 

difference as a reference to adjust the impact factor, along with the known cube density for each 

structure. As shown in Table 6.1.14, the torus has 12 cubes on y-axis, and metal plate has 16 cubes 

on y-axis. This makes each cube edge of torus 0.24 unit, and each cube edge on metal plate is 0.26 

unit. Therefore, the cube sizes are very similar to each other. This also gives one explanation of the 

issue we raised early as the torus is half the size of the metal plate (in other words, low density) but 

was assigned with the same set of parameter. 

We used the deformation happened in the metal case as a reference and compared to our desired 

deformation that wanted for torus structure. We assumed that this torus structure should be at least 

as big as the size of the metal plate (in terms of y-z dimension). Therefore, by combining the above 

conditions, we had chosen an impact factor (modifier) of 0.5. This reduced the initial impulse 

applies to level 0 particles by half. 

We then applied this factor into the simulation and conducted a new test round. In this round, we 

used the ball collider to strike the structure for 4 times. We first used the default parameter settings 

to see the difference. The result is shown in Figure 6.1.44, compare this result with Figure 6.1.41 

we can clearly identify the difference in material behaviour. We also conducted the sideway 

shooting test in the same configuration, and the result is shown in Figure 6.1.45, as a comparison 

with the result in Figure 6.1.42.   
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Figure 6.1.44 Torus ball dropping test with default parameter and impact factor = 0.5 
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Figure 6.1.45 Torus sideway shooting test with default parameter and impact factor = 0.5 

We then applied different parameter settings to the model and conducted the same test to observe 

the torus’ behaviour. We had chosen parameter settings for iron, steel, copper and titanium from 

Table 6.1.10 as examples. We also set the impact factor = 0.5 as in the previous test. The result for 

iron material is shown in Figure 6.1.46 and Figure 6.1.47. The result of steel material is shown in 

Figure 6.1.48 and Figure 6.1.49. The result for copper is shown in Figure 6.1.50 and Figure 6.1.51. 

The result of titanium is shown in Figure 6.1.52 and Figure 6.1.53. 
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Figure 6.1.46 Iron configuration test - ball dropping 

 

Figure 6.1.47 Iron configuration test - sideway shooting 
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Figure 6.1.48 Steel configuration test - ball dropping 

 

Figure 6.1.49 Steel configuration test – sideway shooting 
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Figure 6.1.50 Copper configuration test - ball dropping 

 

Figure 6.1.51 Copper configuration test – sideway shooting 
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Figure 6.1.52 Titanium configuration test - ball dropping 

 

Figure 6.1.53 Titanium configuration test – sideway shooting 

From the above results, we observed that the tests with the adjusted impulse factor produced similar 

material properties compares to the results in metal plate case. The deformation behaviour is very 

different based on different configurations, from soft and easily deformable like copper to rigid 

material like titanium, which didn’t perform very noticeable deformation after 4 strikes in both 

cases. This has proven that with the correct size assumption and proportion factor, our constraints 

parameter configuration can be used as a universal standard for simulating different types of 

materials. 
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In addition, the deformation didn’t break the structure integrity and unique identification of the 

structure. This can deliver a nice visual effect with the ability to be interacted with in real-time. 

6.1.3.3 Torus test case summary 

In the torus test case, we have tested the modelling and simulation of material behaviour on a more 

complex geometry structure. Rather than looking into individual deformation behaviours, we 

concerned more about how the whole structure deforms. As shown in the results, our system is able 

to handle automatic modelling for a relatively complex geometry and proceed it to the real-time 

simulation. In the deformation test, we have given solution to the over-soft problem when using the 

same external impulse and same parameter settings for objects with different cube unit density. In 

the end, we have tested different sets of constraint parameter configuration, and the results from the 

torus case matched the result from the metal plate case. The visual result presented realistic 

deformation to the whole structure of the torus. 

At this point, we have had three test cases covered the testing topic from material behaviour testing 

(deformation type), degree of deformation (material type) and structural deformation, and the 

automatic modelling from simple to more complex objects. These tests had covered all the 

functionality of our proposed automatic modelling method and impulse-based simulation method 

for permanent deformable objects. In these three tests, we didn’t focus on presenting the workflow 

interface (except the process flow in Metal Bar case), but the results achieved still implied the 

success of our framework. The whole testing process for all three cases did not require extra 

implementation or manual setup of the model except input for parameters. Therefore, we can state 

that our framework does meet the definition of “automatic generation of physics model”. 

In the next section, we will give a case study that focused more on the workflow of FREDOMS 

framework. This will give a clearer demonstration of the efficiency and simplicity of our proposed 

framework, and how it combines our two main contributions (modelling and simulation) seamlessly 

to offer a computer-aid solution for permanent deformable objects.   
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6.2  FREDOMS workflow case study: Alex’s Car modelling task 

In the previous test cases, we have demonstrated the capability and usability of our proposed 

modelling and real-time simulation method. In order to take more advantages from our automatic 

mesh processing workflow, we have proposed a framework that offers a complete solution to the 

deformable object modelling and simulation. The detailed design and implementation of the 

framework have already been introduced in Chapter 4 and 5.  

The framework utilises each individual functionality of our proposed methods and organised them 

into a sequence of tasks. By following these steps, users can easily create and simulate deformable 

object with only common sense and no additional effort and expert knowledge. In order to 

demonstrate our framework, we have developed a prototype application with APMI interface and 

PanGu physics component integrated real-time testing environment (which was already partially 

shown in the previous test cases). In this section, we will introduce a fictional user case which goes 

through the whole process of the framework. In this case, the user needs to use our framework to 

accomplish a particular task. We give a complete walk-through of the whole process, which gives 

a clear explanation and demonstration of how FREDOMS works. 

6.2.1 Scenario overview 

Alex is a level designer in a video game company. She is currently using an in-house level editor to 

design a game scene for a new 3D game project. The scene is a small section of city blocks where 

the cars on the street are deformable when the player fires projectile to it. This feature is important 

for a certain game design purpose. 

Alex has just received a 3D car model from the artist team, the static mesh of the car is modelled to 

suit for real-time rendering, and the surface are subdivided for deformation purpose. However, it 

still needs physics modelling and behaviour testing, and programming implementation to make the 

model perform physics simulation in the game. As the deadline is approaching, Alex has little time 

to communicate back and forth between art team and the programming team to organise meetings 

and tests. In addition, Alex has no experience in 3D mesh modelling, and has little knowledge in 

physics modelling and simulation, and is not good at programming. In the development 

specification, the requirement for the car model is “to be able to have light to medium degree 

damage without breaking apart. The deformation of the car has to correctly respond to user input, 
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and presents a soft, iron-like physics behaviour. The deformation of the car will stop when the 

damage reaches a certain degree”. 

Now Alex has to use the FREDOMS platform (APMI) to quickly turn a 3D model into a physics 

model, and has to setup the run-time physics behaviour test based on the specification and her 

common sense knowledge. Her final goal for this task is to deliver a 3D model file with physics 

properties. The model should then be ready to perform designed behaviour when been imported 

into the game engine, which has already integrated with the PanGu physics simulator. 

6.2.2 Breaking down the tasks 

Alex’s mission can be simplified into the following tasks: 

1. Load the car model received from the artist into APMI. 

2. Set the desired physics settings. 

3. Perform physics modelling to the car model by using the settings. 

4. Quick real-time testing of deformation behaviour of the car. 

5. Observe if the car behaviour matches the requirement, if yes, go to task 6, if no, go back to 

task 2. 

6. Export the model with physics modelling and property settings. 

In task 5, when going back to modify the physics property, some changes require a complete 

remodel of the object (e.g. change of cube density). However, some other attributes like constraint 

parameters can be adjusted at run-time without regenerating the physics structure. 

6.2.3 Physics modelling phase 

After executing APMI platform, firstly, Alex is required to import a 3D model that can be 

recognised by the system. APMI provides a standard file explorer interface, as shown below in 

Figure 6.2.1. Alex then selected the given CarModel.obj as the input file. 
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Figure 6.2.1 File explorer interface 

Now the car model is loaded into APMI editor mesh view. APMI will display the object’s rendering 

mesh along with its surface (triangle) by drawing wireframe of rendering mesh. APMI also has a 

text panel for displaying important information about the current object. A screenshot of this step is 

shown below in Figure 6.2.2. 

 

Figure 6.2.2 Car model - Rendering mesh view 
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In the mesh view, Alex has the option to toggle the display of the wireframe and rendering mesh. 

By the time the mesh is loaded, the AABB box is already automatically generated. Alex can also 

toggle the display for AABB using the display options panel that is shown in Figure 6.2.3. 

 

Figure 6.2.3 Display options for rendering mesh 

After proceed to modelling, APMI will pop up an interface asking for basic modelling requirements. 

For all interfaces provided in APMI, we have used Reverse-data interpretation as introduced in 

Section 4.2.3. The concept is to hide the detailed and specialised terminology and interpret the 

information into expressions that can be easily understood by using common sense.  

 

Figure 6.2.4 Modelling initial conditions input 

As shown in Figure 6.2.4, APMI askes for the object size and physics detail level instead of 

“absolute length unit ratio” and “cube/particle distribution density”. This is for users with less 

specified knowledge like Alex to understand the context. The cube density value input field is on 
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the interface as in many cases the user needs to manually and specifically adjust this key value and 

avoid using the fuzzy conceptualised “low” and “high” in simulation detail. However, for the 

physics simulation detailed level, we set low at cube density = 1, and high at cube density = 4. 

Based on our testing, this range can cover most of the simulation cases. Usually, the value is between 

1 and 3. 

Alex understands the interface, from the project specifications she knows that the size of the car 

(the longest edge of the car) is around 4.3 meters, which is a normal size for cars in the real world. 

She decides to give a good detail simulation as the car object can be seen very closely from the 

player, and it is a relatively small object compares to buildings and other big structures. Therefore, 

Alex selected the detail level as indicated in the screenshot. This value equals to cube density = 3. 

The cube density input field is marked as advanced and it is optional. Therefore, Alex ignored this 

input and hit the “OK” button to proceed to the next step. As Alex pressed the “OK” button, the 

modelling process has begun. The physics model was generated in a short period of time. Normally, 

there is no noticeable lag when the mesh is constructed. However, for large structure with high cube 

density, a small period of pause of the application can be experienced. 

 

Figure 6.2.5 Physics material attribute configuration interface 

After the physics model has been generated, the system immediately popped up another interface 

asking Alex to specify more values for the physics model. The values are for material attributes, 

APMI interprets the value as hardness/softness, material expansion ability and compressibility, 
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which can be easily understood by non-experts, like Alex. Moreover, the values are already set as 

default values, and the impact factor is automatically calculated based on the previous calculation.  

To give more intuitive and efficient solution for choosing the values, APMI offers preset function. 

The interface is shown in Figure 6.2.6. The presets are a list of pre-defined parameter settings very 

much like what had been discussed and introduced in Section 6.1.2.6 Material properties and 

constraint parameters. By selecting presets, users can quickly configure the material property 

without coming back and forth to do multiple testing. 

 

Figure 6.2.6 Preset interface 

The preset configurations are loaded from an external editable configuration file. Users can freely 

edit the file if they found a more useful combination of parameters that can simulate a certain 

material behaviour. The format of the configuration file follows a name tag standard which is shown 

in Figure 6.2.7. When Alex was exploring the presets options, APMI had already listed some default 

configurations that are ready to be used. 

 

Figure 6.2.7 Fragment of a sample preset configuration file 
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The use of presets requires the correct setting for the impulse factor. APMI had already calculated 

a recommended impulse factor based on the size and density input. The input field had been filled 

with the recommended value. 

The physics attribute configuration interface also offers the option to activate a more advanced 

setting interface for expert users that have a good understanding of the FREDOMS framework. The 

interface is shown in Figure 6.2.8. Advanced setting interface offers full access to every aspect of 

the constraint settings.  

 

Figure 6.2.8 Advanced physics attribute setting interface 

After viewed all the options, Alex has decided to use preset option and selected the iron material 

preset. After confirmed her choice by clicking the “Ok” button, APMI applies the selected 

configuration to the constraints in the physics mesh. At this stage, the modelling process is finished.  

A simple two-steps operation for modelling 

In the first phase of the case, we can see that from a raw rendering mesh to a physics model, Alex 

only needed to go through two interfaces: Firstly, she set the physics structure attribute of the model 

(density). Secondly, she set the physics material attribute of the model (rigidness, compression, 

expansion, etc.). And that’s all the actions required from Alex to create a new model with physics 

simulation ability. The interfaces are designed to be as simple and understandable as possible; 
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therefore, Alex only needed to input a few values for the car mesh to be physically modelled. The 

whole process took only a few minutes. However, this is usually not the end of the case. For most 

cases, the user needs to have a quick test to see the simulated effects based on the selected 

configuration; so does Alex. 

6.2.4 Real-time testing phase 

Alex now has the option to either directly export the physics mesh with all the attribute settings, or 

can proceed to the real-time testing scene. At this point, Alex has no idea of how the simulation will 

look like in the real-time games. Therefore she has decided to conduct some real-time tests and 

observe the behaviour of the deformation. Then she can confirm if the simulation matches with the 

design document and her expectation. As shown in Figure 6.2.9, Alex proceeded to real-time testing. 

 

Figure 6.2.9 Commencing real-time testing 

APMI is integrated with PanGu physics component which is able to conduct quick real-time test. 

The simulation presentation the APMI provides is based on a WYSIWYG (What You See Is What 

You Get) bases, assume that the game engine is integrated with PanGu. The model will behave 

exactly the same when been imported into the game environment. 

Real-time testing scene is for the deformable parts only, as the game design document stated, the 

tyres of the car are rigid and should not perform deformation. Therefore, when loading the model 

into the testing scene, as shown in Figure 6.2.9 the rigid sub-meshes are disabled, only the main 

body of the car is loaded, as we can see in Figure 6.2.10.  
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Figure 6.2.10 Car body section for physics attribute testing 

The interface gives instruction on how to active impulse to trigger the simulation as shown in Figure 

6.2.9. APMI offers ball-dropping and sideway-shooting. These two types of interaction have 

already been introduced and used in the previous 3 test cases. 

For viewing the physics model from different perspectives and visualise its physics structure, APMI 

offers several different model display options. By toggling the options in Figure 6.2.11 the user can 

have different views of the model by displaying a combination of information. Examples of 

different views of the same car model are shown in Figure 6.2.12, Figure 6.2.13, Figure 6.2.14 and 

Figure 6.2.15. There are many other possibilities of combination based on user’s demands. However, 

these options only act as a visual aid but not an essential requirement to proceed the test. 

 

Figure 6.2.11 Model display options 
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Figure 6.2.12 Physics collision mesh 

 

Figure 6.2.13 Physics mesh with AABB and particles 
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Figure 6.2.14 Physics surface mesh wireframe triangle disabled 

 

Figure 6.2.15 Cube unit and constraints structure 

Now, Alex started to test the deformation, she began the testing with ball-dropping. She dropped 

the ball collider on the car several times. Figure 6.2.16 shows the result that Alex observed. Based 

on her own judgement, she felt the deformation looks good. Then she proceeded to sideway 

shooting test. The two tests can be conducted at the same time. Therefore, Alex used different 

combination of inputs to interact with the car model.  
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Figure 6.2.16 Ball-dropping test for car model 

 

 
Figure 6.2.17 Car deformation: left side and top collision 
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Figure 6.2.18 Car deformation: left side and top collision, rear view 

 

 

 

Figure 6.2.19 Car deformation: front and top collision 
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Figure 6.2.20 Car deformation: front and top collision, side view 

Alex found out that the settings are reasonably realistic and the behaviour of the care deformation 

matches her expectation (based on her understanding of the requirement). Therefore, after several 

more repeated tests, she had decided to use this model configuration, and she started to export the 

model. 

 

Figure 6.2.21 Physics Model Export interface 

For exporting the model, Alex proceeded to the last interface, which requires Alex to give some 

more values. These values are for run-time optimisation purposes. As usual, the values were already 

set by recommended values.  
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APMI also provides a very useful function to export the current deformed mesh (caused by 

APMI real-time testing) as a rendering mesh. Therefore, if Alex found the destructed (deformed) 

can be served as a static mesh in the application, she can export the current geometry of the car 

model separately. This provides a quick tool for modelling destructed static model. The function 

can be directly used by artists to quickly generate deformed static mesh based on a given 

original mesh. 

Based on the project specification, Alex set the maximum deformation times to 8. Firstly because 

the requirement says the in-game effect should not be over-deformed and requires the deformation 

of the model to be controlled within a certain degree. Secondly, this will reduce the physics 

simulation once the maximum deformation is achieved. Thirdly, based on Alex’s testing, she has 

found out that 8 times of deformation shows enough visual effect to deliver the sense of destruction. 

After Alex finalised all the configurations, she successfully exported the model into the same .obj 

file. The rendering mesh information remains the same, but there was additional physics model 

information written into the file. With any game engine that is embedded with PanGu physics 

simulator, the new model can be directly used for permanent deformable object simulation in real-

time. This marks the end of Alex’s case of generating a deformable physics model from an original 

rendering mesh. 

6.2.5 Case Summary 

In Alex’s Car Modelling Case, we presented a walk-through of FREDOMS framework from user’s 

(Alex’s) point of view. Instead of a detailed behind-the-scene introduction, we explained how our 

reverse-data interpretation concept and simplified APMI interface could assist a non-expert user to 

quickly generate physics model and conduct physics simulation for application development.  

In this case, we have demonstrated that our modelling and simulation method can be seamlessly 

integrated with interactive application development process. With the proposed interface design and 

workflow, the user (Alex) only needed to take 4 major steps to finish a physics modelling task: 

1. Set the structure information. 

2. Set the material information. 

3. Conducted tests to see the results. 
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4. Added optimisation options after finalised the settings. 

For each step, the interface was kept as neat as possible, and the operation steps were kept at a 

minimum degree. The automatic processing was handled by our proposed particle-constraint and 

BFCC unit based modelling, and our impulse-based deformation simulation, which deliver a 

realistic and fast end result. 

 

6.3  Simulation Speed Test and Evaluation 

As FREDOMS framework is designed specifically to conduct real-time simulation, it is important 

to test the speed-wise performance in relation to the structure complexity. So far, we have already 

conducted many tests in real-time with no noticeable delay in simulation process. However, the 

exact speed performance is not yet analysed. In this section, we will look more into the simulation 

speed test and evaluation. In modelling process, speed performance is not our major concern, as it 

happens in offline. Therefore, our speed performance test only focus on run-time simulation. 

6.3.1 FREDOMS system speed-wise performance factors 

During the real-time simulation process of FREDOMS, the two main physics-related tasks are: 

1. Impulse distribution, which requires a run-time generation of particle tree hierarchy and 

distribute the impulse and set the displacement of each (node) particle accordingly. 

2. Constraint condition satisfaction check and balance, which loops through each constraint 

and adjust the connected particle’s position if the condition is not met. 

Task #1 takes place within one execution cycle when a collision is detected. Within this cycle, the 

simulation will conduct impulse distribution. Task #2 is conducted constantly in each execution 

cycle if the constraints are active. In addition to these two tasks, after each deformation, the changes 

in physics mesh is mapped back to the rendering mesh, this also happens in each execution cycle 

followed by the constraint condition satisfaction. In order to evaluate the speed performance, we 

need to test how the above tasks affect the speed of the simulation. 

The amount of computational loads for impulse distribution is determined by two factors: the 

physics mesh structure, and the depth of the distribution. Physics mesh structure determines how 
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many neighbouring particles are operated for each tree path node. The depth of the distribution will 

affect the total number of nodes (particles) to be operated. The depth of the distribution is related 

to two factors: The initial impulse, and the constraint impulse distribution factor. The initial impulse 

defines the magnitude of the impulse (instant displacement to the level 0 particles), and the 

distribution factor defines the decrease rate of the impulse. With a defined minimum impulse update 

control factor 𝑘. We know that the distribution depth can be defined as 

𝑑 ∙ µ𝑛 ≤ 𝑘 

where 𝑑 is the initial impulse, µ is the constraint impulse distribution factor, and 𝑛 is the depth 

of the distribution.  

There is another control factor that directly affects the performance, which is the maximum depth 

factor for impulse distribution. It puts a pre-defined, artificial hard control to the total calculation 

workloads. Therefore, we do not consider this factor in the following tests. 

From the above discussion, we can come to a conclusion that the amount of computation workload 

for impulse distribution is not related to the number of particles and constraints, but the structure of 

the mesh and the impulse distribution factor. From the material behaviour of view, the softer the 

material is, the heaver calculation is needed for the simulation. 

The general constraint condition satisfaction check is depended on the number of constraints in the 

system. However, unlike the impulse factor, which brings an exponential influence to the simulation 

workload, the relation between the number of constraints and the computational load is linear. 

Moreover, only a part of the constraints have dissatisfied conditions at one time; therefore, only a 

part of the constraints are calculated and updated in most of the cases. 

6.3.2  Speed Test Case Design 

Based on the discussion from the last section, we understand that the goal for the speed test is to 

determine to what degree the impulse distribution process and the constraint updating process 

affects the execution speed of the application. As it is difficult to establish a “standard” testing 

environment (a universal computer hardware configuration, operating system, etc.), we decided to 

use a relative testing method that compares the same application running with and without the 

physics tasks. We then analyse the performance difference and summarise the result. 
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Therefore, the test procedure is: 

1. Run a simulation with all the 3D static mesh loaded but no physics mesh loaded. Then we 

record a collection of execution cycle elapsed time. We call this the Rendering speed. 

2. Load the physics mesh and start updating the constraints. In this case, we activate all the 

constraints, therefore every constraint in the system is updated constantly. Then we record 

a collection of execution cycle elapsed time. We call this the Constraint update speed. 

3. Apply an impulse to the object to trigger a deformation simulation, and record the elapsed 

time for the exact execution cycle that the initial deformation took place. We call this the 

Deformation speed.  

After repeating these three steps, we will have an application execution speed (the time spent for 

completing the current cycle) with no physics (idle), an execution speed with constraint update 

simulation, and an execution speed when having collision and conducting impulse and deformation. 

By examining the differences between three types of speed, we can evaluate how the physics 

simulation affects the application performance, and if the effect is significant enough in real-time 

simulation.  

6.3.3 Speed Test Results 

Based on the test design, we conducted several rounds of tests. We chose the torus object we used 

from Section 6.1.3, and the Car object from Section 6.2. In order to have case variations, we have 

modelled the car object to different densities from 2 to 5. Based on our understanding, a density 

value above 4 (or even at 4) is not practical and unnecessary. However, this case is included in our 

test for theoretical purpose to exam the density-speed relation. 

We ran all the tests on the same hardware and software configurations, which is Intel i5 6800k with 

Nvidia 980ti, 32GB DDR4 RAM. The simulation didn’t involve any GPU accelerated feature or 

multithreading computing; therefore, the calculation is CPU-based.  

For each test round, we conducted the same test for 22 times, and we eliminated the highest and the 

lowest value as exceptions and used the left 20 values as our result reference. There were a few 

cases where the elapsed time had big differences from the same test, and this was due to 

interruptions from the computer operating system. However, our tests focused on a generalised 
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evaluation of the execution speed of the simulation on an arbitrary hardware configuration rather 

than a standardised environment; therefore, a very precise result is not needed. 

Then, we averaged the value from the 20 tests and put all the results into the table below in Table 

6.3.1 and Table 6.3.2. We set the test cases into two groups, one group with distribution factor = 0.5 

(iron material configuration), and one group with distribution factor = 0.8 (copper configuration). 

Case Name Torus Car (d=2) Car (d=3) Car (d=4) Car (d=5)  

Particles 1553 394 1051 2350 4677 

Constraints 7968 1937 5442 12485 25304 

Cubes 240 56 165 392 810 

Cube distribution 2x12x10 4x2x7 5x3x11 7x4x14 9x5x18 

Distribution factor 0.5 0.5 0.5 0.5 0.5 

Rendering speed 6.82 6.96 6.93 7.01 6.95 

Constraint speed 7.79 7.01 7.13 10.26 17.62 

Deformation speed 9.86 7.07 10.30 12.65 23.42 

Table 6.3.1 Simulation speed test with distribution factor = 0.5 

Case Name Torus Car (d=2) Car (d=3) Car (d=4) Car (d=5)  

Particles 1553 394 1051 2350 4677 

Constraints 7968 1937 5442 12485 25304 

Cubes 240 56 165 392 810 

Cube distribution 2x12x10 4x2x7 5x3x11 7x4x14 9x5x18 

Distribution factor 0.8 0.8 0.8 0.8 0.8 

Rendering speed 6.85 7.01 7.03 6.95 6.97 

Constraint speed 7.24 7.03 7.17 11.06 18.03 

Deformation speed 13.83 9.79 14.61 33.80 87.95 

Table 6.3.2 Simulation speed test with distribution factor = 0.8 
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In the above results, the speed number is in milliseconds. The number is based on measuring the 

elapsed time for each execution cycle.  

6.3.4 Speed performance Evaluation 

For a more straightforward evaluation, we visualised the increment relation between constraint 

number and constraint update speed, the increment relation between cube density and constraint 

update speed into the following figures:   

 

Figure 6.3.1 Constraint number and constraint update speed relationship 

 

Figure 6.3.2 Cube density and constraint update speed relationship 

From Table 6.3.1, Table 6.3.2 and Figure 6.3.1, Figure 6.3.2, we can observe that the time 

consumption for constraint update at each execution cycle increases with the complexity of the 

physics model. This is directly related to the increase of constraint and particle size. The increment 

is small and not significant to produce any noticeable lag until the cube density reaches 5. 

In Figure 6.3.1 and Figure 6.3.2, we only used data from the car model tests with different (4) 

density values. This is because the comparison with the same object in different density gives best 
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evaluation perspective. The torus object has a different geometry, therefore its structure and the 

distribution path pattern are different than the car model.  

The benchmark line we used in the figures are set at the value of 16.67 milliseconds, which is the 

requirement of a smooth real-time rendering speed (60 FPS). By using this benchmark, we can 

clearly state that: 

1. The constraint update ran at a fast speed when cube value is less than 5; the update of 

constraints did not bring significant impact to the simulation speed. When density value 

was at 2 and 3, it introduced almost no extra lag compares to the rendering (idle) speed. 

When density was 4, there was a noticeable increase in the execution cycle elapsed time 

but still fast. At value 5, the performance was slightly below our 60FPS benchmark (with 

the frame elapsed time exceeds the benchmark line). 

2. The impulse distribution factor plays no role in the constraint update phase; the results are 

almost identically with different values of the impulse distribution factor. 

We have also visualised the relation between cube density and deformation speed, and the relation 

between constraint number and deformation simulation speed into Figure 6.3.3and Figure 6.3.4: 

 

Figure 6.3.3 Relation between constraint number and deformation simulation speed 
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Figure 6.3.4 Relation between cube density and deformation simulation speed 

From the above tables and figures, we observed that: 

1. The deformation time consumption increased dramatically with increased cube density. It 

performed fast and smooth simulation at lower densities (2-3). When distribution factor = 

0.5 and density = 5, the car model simulation cannot maintain 60fps framerate as it has an 

average collision time at 23.42 milliseconds, which is slightly above our benchmark. For 

distribution factor = 0.8 and density at 4, the simulation speed had a significant decrease. 

We also visually identified a noticeable pause in the simulation. For distribution factor = 

0.8 and density over 5, the simulation became slow and cannot be used in real-time. 

2. In conjunction with the previous point, the impulse distribution factor value introduced a 

significant impact to the simulation performance. 

Similarly, we visualised the relation between the cube number and the constraint update, and the 

relation between the cube number and the speed performance for reference, as shown below in 

Figure 6.3.5 and Figure 6.3.6: 

 

Figure 6.3.5 Relation between cube number and constraint update speed 
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Figure 6.3.6 Relation between cube number and deformation simulation speed 

The cube number gives a better indication of the structure complexity it represents an absolute value 

of the number of the cubes, while density only indicates the cube density along one of the three 

directions and the structure can vary in the other two directions. However, as FREDOMS uses cube 

density value as the foundation of the structure generation, it is important to consider its relation 

with the performance. Cube number and performance relation shows the same trends as the previous 

relation figures.  

From the testing results, we can state that our run-time simulation is fast for conducting real-time 

deformable simulation within a reasonable density scale. One of the advantages of our modelling 

method is that the size and degree of detail of the object do not have direct relation to the density 

and complexity of the physics model. For most cases, a cube density value at 2 or 3 is enough. 

Therefore, most objects, regardless of their size and geometry, can be modelled by our BFCC unit 

based structure with very low density, and such model can perform realistic deformation in real-

time simulation.  

The drawback of our framework is that due to the nature of uniformed FBCC unit modelling, the 

cube number has an exponential relationship with the cube density, and greatly affects the speed 

performance. This issue limits our solution only to offer a low density modelling. However, this is 

enough for real-time interactive applications where detailed and accurate results are not needed. 

In Addition, FREDOMS uses AABB frame referencing in the simulation, which means all the 

structures that we originally generated by BFCC cube grid are involved in the calculation. Therefore, 

the simulation speed has no relation to the rendering mesh’s complexity. 
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Performance potential  

Based on the result numbers in the table, at density 2 and 3, the execution time consumption for the 

physics simulation is low, leaves a lot of extra computation power to conduct other logic 

calculations within the cycle. As the simulation didn’t use any GPU acceleration, the rendering of 

graphics remains unaffected. Moreover, the testing hardware is three generations behind the current 

state, which implies that more powerful hardware is available now, and the simulation can run much 

faster on new hardware configurations.   

It is also important to state that the speed test was done without applying any control factors. 

Therefore, there is a lot of potential to improve the speed performance. By applying depth control 

factor and minimum update threshold, the speed performance can be greatly improved.  

A one-step simulation 

The unique issue of our speed performance is that due to the nature of permanent deformation and 

our tree-based distribution, the majority of the deformation calculation are conducted within one 

execution cycle. A tree structure path finding can be a very expensive execution from computer 

science performance-wise, especially when the tree path has to be decided at run-time. However, 

our method ensures that the calculation at each node is kept at minimum. This unique property of 

our method can be both advantageous and disadvantageous. Its benefit is that in most of the 

execution cycles, the deformation simulation won’t affect the application performance. Its problem 

is that once triggered. A lot of calculation will happen within one cycle. This may cause potential 

performance issue when the simulation is running in a large scale scene.   

 

6.4  Summary 

In this chapter, we have conducted a series of tests for our proposed methods. We have tested the 

deformation capability in metal bar case. We have tested the physics material property presentation 

and configuration in metal plate case. We have tested complex geometry structure deformation in 

torus case. Then we have demonstrated our FREDOMS framework and our prototype platform in 

Alex’s car case. We have also conducted multiple tests for real-time simulation speed performance. 



267 

 

6.4.1 Simulation performance 

For each test, we have discussed the results and evaluated the outcomes. The evaluation outcomes 

can be summarised in the following aspects: 

1. Modelling and simulation capability: Our FREDOMS framework can handle different 

types of closed geometry shape and conduct automatic modelling. The simulation offers 

different deformation behaviours, including bending, compression, twisting, denting, and 

general large scale arbitrary structure deformation (see demonstration and evaluation in 

Section 6.1). It also offers the simulation of different material properties such as 

softness/hardness, compressibility and expansion. 

2. Controllability: FREDOMS offers many control parameters to manipulate and restricts the 

simulation behaviour. The object can be tailored to perform a specific behaviour to a 

specific degree (see Section 6.2). The parameters also control the deformation condition 

(e.g. deformation threshold) and performance (e.g. distribution depth). 

3. Stability: The advantage of our permanent deformable object is that it does not have the 

time integration method based on differential equations. Comparing to other elastic systems, 

FREDOMS performs a one-time initial impulse distribution. Therefore, the system is stable 

with no unexpected system development nor any numerical problems. The only automatic 

manipulation of the structure is the constraint condition satisfaction operation, which is also 

limited by control factors (see Section 6.2). 

4. Realism: We have demonstrated that our method presents realistic metal-like deformation 

in different material behaviours. The deformation is entirely based on user interaction and 

has a natural feeling. The results were shown in Section 6.1 and 6.2. 

5. Speed: We have demonstrated that our simulation can run smoothly in real-time within a 

reasonable scale in Section 6.3. The simulation takes only a proportion of the computation 

resources and can be integrated into a larger scale scene with other logic calculations.   

6. Usability: We conducted a case study to demonstrate our APMI platform for easy modelling 

and simulating deformable object in Section 6.2. The result shown that we have integrated 

the functionality of FREDOMS into a smooth workflow with a simple interface. It provided 

an easy and fast solution for non-expert users to conduct modelling and simulation tasks.   
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6.4.2 Comparison with Position-Based Dynamics (PBD) 

The inspiration of our simulation model is from PBD, and our method has many similarities with 

PBD. Therefore, it is important to compare our impulse-based model with PBD. This section will 

compare the two methods with their computational complexity and performance results. 

6.4.2.1 Computational complexity comparison 

A complexity comparison between FE model and the Particle-Based Model was given in Section 

2.3.5. Our impulse-based method and the PBD both belong to the Particle-Based Model. However, 

the PBD is based on an element-node connection relation, where the constraint satisfaction gives 

direct operation to the position of the particles (hence “position-based”). Below is the computational 

complexity denoted by asymptotic notation: 

𝐶 = 𝑂(𝐸) + 𝑂(𝑁) +  𝑂(𝐸)      (1) 

Where the first 𝑂(𝐸) represents the computation of proposed particle displacement for the number 

of 𝐸 particles, 𝑂(𝑁) represents the computation of constraint satisfaction for the number of 𝑁 

constraints, and the second 𝑂(𝐸) represents the modification to the final position of the given 

particle based on both the proposed initial position and position adjustment from the constraint 

satisfaction operation. Within each time step, each constraint only needs to be calculated once and 

the initial and final displacement operation for each element also only happens once.  

Our impulse-based model, on the other hand, has a different implementation process. Apart from 

particle displacement and constraint satisfaction, there is another step for impulse distribution. The 

distribution of the impulse is through a tree structure and the operation of such distribution can 

happen multiple times for each node, and the numbers of distribution for each node is not constant 

but based on the initial collision contact position as well as the construction of the mesh structure. 

Therefore, if we analyse the computational complexity for our impulse-based model, we have the 

following equation: 

𝐶 = 𝑂(𝐷) + 𝑂(𝐸) + 𝑂(𝑁)     (2) 

Where 𝐷 is the total number of node paths in the tree, 𝐸 and 𝑁 has the same meaning as in 

equation (1). 𝐷 does not necessarily equal to 𝑁 and in most cases 𝐷 > 𝑁. Because one node path 

that is defined by a constraint connection can be used multiple times to distribute the impulse. 
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From (1) and (2), no significant difference can be found between the two methods. Therefore, in 

general case, without concerning the complexity for the individual 𝑂(𝑓(𝑥)) computation, our 

model has similar computational complexity with PBD. For comparison purpose, we need to further 

examine the individual computation that happens within 𝑂(𝐸), 𝑂(𝐷) and 𝑂(𝑁) to evaluate and 

compare the two methods. 

The first 𝑂(𝐸) from (1) calculates the particle’s proposed displacement projection. It is based on 

Newton’s first law therefore a simple 𝑣∆𝑡 is calculated. As for 𝑂(𝐷) from (2), it calculates the 

distributed displacement based on the impulse distribution factor µ and the depth of the current tree 

level 𝑛. The calculation for 𝑂(𝐷) is 𝑃0 ∙ µ𝑛, where 𝑃0 is the displacement from the parent tree 

node. In this comparison, our method conducts more calculation than PBD.  

The calculation 𝑂(𝑁) from both methods conduct a similar check. The differences are that firstly, 

in PBD, the attempt to reach constraint satisfaction is applied to the velocity of the particle, while 

in our impulse-based method, the manipulation applies to the position directly. Secondly, the 

operation happens to both connected particles, while in our method is a one-way operation and only 

applied to the lower level node. In this comparison, our method conducts less calculation than PBD. 

The second 𝑂(𝐸)  from (1) and the 𝑂(𝐸)  from (2) both finalise the particles’ position. The 

differences are in PBD, this is done by finalising the velocity of the particle, and then the 

displacement will be determined. In our method, the final displacement is determined by averaging 

the displacement proposals received from both impulse distribution from higher-level nodes and 

the satisfaction condition check and response from the constraints. In this comparison, our method 

conducts less calculation for a single element (particle). 

However, all the above comparison are for general case, where PBD is used for elastic object 

simulation, and our impulse-based model is used for plastic object. If we compare both cases for 

plastic object simulation, then the PBD needs to be modified from its original form to conduct 

plastic simulation. [103] proposed the application of PBD for solid object simulation. In this case, 

the oriented particle is introduced to PBD, and an extra step of calculation to determine the angular 

states of the particle. Therefore, for the calculation in 𝑂(𝐸) in (1) involves more tasks, and it 

introduced more computational complexity to the task. In this case, our method is simpler and faster 

to compute. 
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In overall comparison, the computational complexity has no significant difference between our 

model and PBD, however, PBD has constant computational complexity once the structure of the 

system is confirmed. The computational complexity for our model, on the other hand, may vary as 

D is not a constant number but depends on many different conditions. 

In addition, in real-world implementation, many control factor will be put into the system, for 

example, our method introduces a depth factor to control the impulse path depth, which will 

dramatically affect the value of D, and E (as less element will be involved in the simulation). PBD 

can be generalised and modified to many other forms, including using oriented particles[103], 

which will introduce extra angular calculation into 𝑂(𝐸). Therefore, the comparison above is based 

on the simplest and generic scenario, and should not be regarded as an absolute result to the 

computational complexity for both models.  

6.4.2.2 Performance comparison 

Performance-wise (other than speed), our method can produce more detailed deformation than PBD. 

PBD for plastic deformation requires extra steps of calculation, and it can support fewer number of 

particles than our impulse-based method. Both methods are behaviour based simulation methods 

therefore the stability and controllability are all good in comparison to force-based methods. 

However the system scope is very different between PBD and FREDOMS, as PBD is a framework 

only for physics simulation task, but FREDOMS contains other components like automatic 

modelling system and the ability of the integration into the development workflow. Therefore, the 

performance comparison has to be limited to the simulation component. We use the same evaluation 

matrix with the 6 benchmarks proposed in Section 3.7.1 to compare the performance between the 

two methods. The difference between FREDOMS and PBD are summarised in Table 6.4.1: 

 FREDOMS PBD 

Capability Only for plastic simulation but can 

simulate different material 

behaviours. With the potential to 

simulate fracture. 

With an automatic object mesh 

modelling method. 

Provide a complete framework. 

The general version can only simulate 

soft bodies. However, with 

modification which introduces extra 

calculation of oriented particles [103] it 

would be able to simulate plastic object 

but with a much slower speed. 

Does not introduce any mesh 
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modelling approach. 

Also provide a framework but covers 

less area than FREDOMS. 

Controllability Absolute control of the system as 

the method directly manipulate the 

position. 

Scale of the deformation can be 

controlled (within the same object). 

Good control of the system but the 

manipulation is via velocity, therefore 

has a delay in response. 

The scale of the deformation can be 

controlled but will lose realism. 

Stability Unconditionally stable. 

The system is able to recover to the 

original state. 

Unconditionally stable. 

The system is able to recover to the 

original state. 

Realism Plausible. Plausible. 

Speed Fast (for simulating plastic 

deformation only). 

Performance drops exponentially 

with the increased number of 

nodes. 

Good performance under low 

density. 

Fast in soft body simulation but slower 

than FRDOMS for plastic simulation. 

Performance drops linearly with the 

increased number of nodes. 

Usability The FREDOMS framework is 

designed to be used as a whole 

solution, therefore the simulation 

and the modelling should be used 

together to achieve the best results. 

With modification, the components 

in the framework can be separated 

to work independently. 

Has a better integration with other 

modelling methods as it is well 

developed and widely used.  

It follows the general mesh 

construction approaches and is 

adaptable to different mesh structures. 

Table 6.4.1 Comparison between PBD and FREDOMS 

When applying test cases to permanent plastic object simulation, our method shows advantages 

over PBD. However, PBD is designed and implemented to suit different cases of deformation and 

has proven stable and useful. FREDOMS at the current stage still limits its uses to plastic 

deformation only. Therefore the scope of use for the two methods is different. 
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6.4.3 Conclusion 

Based on the presented results and the evaluation against benchmarks, we can reach a conclusion 

that FREDOMS framework has fulfilled our research goal as discussed in Chapter 3. In addition, 

we have compared our solution with PBD and provide that FREDOMS can be a competitive 

candidate solution for plastic object simulation.  

However, the current framework still has its limitations and drawbacks, and potential improvements 

can be made. In the next chapter, we will summarise our achievements and discuss possible future 

works for our framework.    
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7 Discussion and Conclusion 

7.1  Summary of contribution 

In this thesis, we have looked into the problem of lacking real-time permanent deformable object 

in interactive applications. We proposed a set of solutions that contains our new modelling and 

simulation method for fast and realistic simulation of such objects. Moreover, we have integrated 

the solutions into a framework (FREDOMS) for fast and straightforward processing of physics 

model. Our contribution can be split into three main achievements: 

Firstly, in our solution, we proposed a Body-Face-Centred-Cubic (BFCC) unit for utilizing the 

particle-constraint system to model continuous volumetric objects. This approach provides adaptive 

modelling for any static 3D mesh with a closed geometry, regardless of their mesh qualities and 

shapes. It also greatly improves the structural stability of the particle system. In addition, we 

proposed a flexible constraint structure with changeable length instead of a fixed position. The new 

constraint gives our model the ability to perform a permanent deformation while holding structure 

integrity. This modelling approach can be generalised and used for the modelling process in 

different physics system. 

Secondly, based on our proposed modelling method, we developed a network-and-impulse-

distribution-based simulation method to simulate permanent deformation in real-time. The new 

method eliminated the heavy calculation for time integration in the elastic system, which occurs in 

force and velocity-based methods. Our simulation model is non-elastic, and the change of the 

system state is convergent; therefore, we also avoid numerical instability. Moreover, our simulation 

model offers a collection of control parameters that can directly modify the material behaviour of 

the object as well as the optimisation options in order to improve speed performance. 

Lastly, we have integrated the above two achievements (modelling and simulation) into a Real-time 

Deformable Object Modelling and Simulation framework (FREDOMS). The integration offers a 

solution for the user to quickly generate a physics model that is ready for permanent deformation 

simulation. We have developed a user interface flow to turn the framework into a useful tool for 

creating 3D physics content in the modern application development process. 

We have developed an APMI (Automatic Physics Modelling Interface) system integrated with our 
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real-time physics Simulator (PanGu) to demonstrate our contribution. By using this system, we 

have conducted a series of tests with different object cases. We have evaluated our solution in the 

aspects of modelling and simulation capability, controllability, stability, realism, speed and usability. 

Based on the outcome, FREDOMS is capable of delivering realistic permanent deformation results 

in real-time simulation, especially for metal-like objects, while meeting all the expectations from 

the above evaluation matrix.  

7.2  Applications 

FREDOMS is designed for delivering fast model processing. Therefore the framework can be 

embedded with any 3D modelling platform or game engine that requires physics simulation. The 

generated deformable object can be used in various real-time interactive application like video 

games, educational applications (that do not require accurate simulation results, like a driving 

simulator).  

With modification to the constraint properties, the BFCC-based modelling method itself can be used 

for generating other physics modelling structures like particle-spring system, PBD system and FEM 

tetrahedron mesh. 

Our simulation delivers results was very loosely based on physics behaviours rather than specific 

physics laws. Therefore, the results cannot be used for serious simulation purposes.   

7.3  Future works 

There is a lot of potential extension and improvement to our work. We have categorised them into 

three domains: 

Object Modelling 

Possible improvements and future works for our modelling method: 

1. Adaptive mesh size and refinement: BFCC grid-based modelling is proven to be a stable 

structure for volumetric modelling. However, its structure complexity is a concern. 

Therefore, it is helpful to reduce the constraints numbers by using adaptive mesh generation. 

Due to the nature of BFCC structure, it is difficult to subdivide the unit and use the mesh 

refinement approach to make a size-wise adaptive mesh system. Future work can look into 
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this issue and find a solution to make the mesh adaptable while maintaining the BFCC’s 

symmetric and stable structure. 

2. Surface mesh regeneration: Our approach uses a constraint-mesh intersection. The 

generated surface mesh gives a good approximation of the object; however, in some cases, 

a few triangles may be ill-conditioned. The impulse-based simulation in FREDOMS does 

not have requirement about the triangle’s direction or shape condition; therefore, this issue 

does not cause any problem to our method. However, if future work wants to employ this 

modelling approach into more generalised and universal cases, the triangle quality on the 

collision detection mesh should be considered, and a remeshing (switching edges or 

reconstruction of the surface based on the surface particle cloud) may be needed.  

3. Improvement of rendering mesh mapping (skinning): Our weighted mapping method 

delivered a good result. However, it is possible to improve the skinning further Possible 

approach can be using key particles combined with B-spline or NURBS to generate a 

smooth transition for the deformed parts. 

4. Non-uniform constraint configuration: In our prototype implementation, we applied the 

constraint properties as a universal configuration value to the whole structure; this leads to 

the object has the same material behaver throughout its entire structure. However, our 

system has the potential to perform a non-uniform deformation if the parameters of the 

constraints are set separately. This will require extra functions from the user interface. 

5. Real-time physics mesh generation: BFCC structure offers high tolerance to the rendering 

mesh quality. Therefore, it is possible to generate physics model in real-time instead of pre-

defined. This offers great flexibility to the interactive scene, as the framework can turn any 

closed static mesh into a deformable object dynamically.  

Real-time Simulation 

Possible improvements and future works for our real-time simulation method: 

1. Combine our simulation method with Multi-Body System (MBS) approach: MBS 

approach is reviewed in our literature survey, which was used for FEM. This approach 

combines deformable and non-deformable parts in the same object. Our method simulates 

realistic metal-like object, which is a useful aid as a part of a more complex object. 



276 

 

Therefore in future work, implementing our simulation with rigid body by using MBS 

approach is a potential direction. 

2. GPU powered simulation: It is a common approach to utilise GPU power to conduct float 

calculation. Our networking data structure is a suitable subject for GPU parallel computing. 

However, in order to do this, our algorithm design has to be adjusted accordingly. 

3. Multi-step impulse distribution: From the test results, our one-step impulse distribution 

can cause a sudden computation spike in one execution cycle. Therefore, it is reasonable to 

modify the method to divide the distribution process into several consecutive cycles to share 

the calculation. 

4. Real-time adjustment of structure mesh: Our constraint-based system limits the 

minimum/maximum distance between particles. Therefore, particle merging and splitting 

does are normally needed. However, in extreme cases with a very small/large constraint 

flexibility ratio, a real-time adjustment is helpful for maintaining the object’s stability.   

5. Fractural behaviour: The fractural behaviour of the plastic object is a missing feature in 

FREDOMS framework. However, by assigning constraint a breaking threshold, such 

behaviour can be achieved. The main concerns in this topic are that firstly, the surface mesh 

has to be regenerated to present the new faces from the fractural. Secondly, the object is 

split into two separate object; therefore, the rendering and the logic control has to be 

rearranged dynamically. 

FREDOMS framework 

1. Support more file formats: Our prototype only support .obj file, the future implementation 

should include different mainstream file formats. 

2. Integration with mainstream 3D tools and engines: The framework requires a complete 

rendering mesh as the initial input. Therefore, it is helpful to integrate FREDOMS 

framework with other modelling tools. For example, a plug-in for modelling software. In 

such case, the modelled object can be directly sent into FREDOMS workflow instead of 

export/import into another application. Moreover, modern modelling software often 

supports integration with other physics engines. Therefore, a standalone interface like 

APMI is no longer needed. 
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3. User interface design: In our implementation, we have given an interface presentation 

follows by our design ideology. Extensions can be made from our foundation to deliver 

more intuitive or more professional interfaces for different targeted users.  
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Appendix A. Collision Detection in FREDOMS  

A.1 A two-phase approach for collision detection 

Collision detection is a necessary but not a core component in FREDOMS framework; this function 

can be achieved in conjunction with other physics libraries. However, as our permanent deformable 

object model has its unique attributes and needs special treatment from collision detection, we will 

introduce our approach that is designed for FREDOMS. 

In run-time simulation, the initial interaction and the start point of any physics behaviour begin with 

a collision. Therefore, collision detection runs constantly in the background. In modern interactive 

applications, there are usually a large number of objects in the scene with complex geometry data. 

The objects in the scene can be categorised into five different types by collision behaviour. 

1. Non-collision objects. These are objects with no interaction to other objects and can be 

ignored when doing collision detection. 

2. Movement boundary objects. These objects act as a block and restricts any movement of 

other objects in a certain range. An example of such object is a flat floor. In such case, a 

complicated collision detection is not needed, only certain constraints need to be satisfied 

(e.g. cannot go below a certain height as it is the ground level). 

3. Static Rigid body. This type of object is the most common object in an interactive scene. 

It has basic a collider (collision detection mesh) element, often represented by primitive 

shapes (e.g. box, sphere, and cylinder) or basic geometry shape (like a convex hull) with as 

little triangles as possible. Such object will have collision with other objects, but it does not 

move and has no response. They only act as a decoration or obstacle. An example of such 

type of object can be a non-destructible wall or large piece of rock on the ground. 

4. Dynamic rigid body. Such object also uses basic collider as the static rigid body. However, 

it will interact with any external impulse and will perform displacement and rotation. The 

shape of such object does not change. Examples can be found as bullets and small rocks 

that can be kicked around. In some cases it may deform after collision but not based on 

real-time physics simulation but based on pre-set animation, and the fact is that the mesh 

of the object is simply replaced by another mesh or multiple other meshes. An example of 
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such object transaction can be an object exploded and split into multiple pre-defined parts. 

5. Deformable object. Such object is the most difficult and most complicated to simulate and 

needs finer detailed collider than any other type of object. The deformation requires the 

system to know where exactly the collision is taken place in order to perform a realistic 

simulation. Moreover, the collider mesh will constantly change because of the simulation 

of the object. 

Therefore, this raises two questions when carrying out the collision detection: 

1. Which two objects in the scene may be colliding? 

2. For these two objects, where are the colliding point on the surface mesh for each other? 

In computer graphics, these two questions are defined as Broad Phase and Narrow Phase of the 

collision detection. It is hard to find the original mentioning of the terms, but the concept can be 

found in [104, 105] and it has been widely accepted and used in the industry. In summary, Broad 

Phase is to determine which two objects are likely to collide from a collection of candidates, and 

the Narrow Phase is to give a specific test for these two selected objects to see if they are going to 

collide and where they are going to collide. In FREDOMS, PanGu simulator is responsible for 

executing real-time simulation including collision detection. In the design of the simulator, we 

follow this two-steps test to determine the collision against the physics object that needs to be 

simulated. 

A.2 Broad Phase Collision detection for multiple objects in the 

scene by using Dynamic Bounding Volume Tree (DBVT) 

For the broad phase of collision detection in a large scale scene in real-time, it is important to handle 

the detection for a large number of objects at the same time with minimum computational resources 

for constant collision detection. Therefore, optimisation method is needed for a large scale of 

triangle faces. There are two main approaches to reduce the number of objects (triangles) to be 

tested. The first approach is space-based, and the second approach is object (face) volume-based.  

Space-based method uses recursive space subdivision to divide the space volume into sub-space 

volume. Most popular example of space-based method is K-d trees, which is similar to Octree and 

initially proposed by Bentley [106]. K-d trees can have different ratio with its elementary sub-space 



286 

 

while octree has identical sub-space volume. K-d trees have flexible depth because of adaptive 

volume size while octree cannot share the flexibility as the sub-volume is fixed. 

Object (face) based method, on the other hand, uses elementary boundary volume (e.g. sphere or 

cuboid) around the object (faces) and defines its initial collision range. An example of such 

approach is Bounding Volume Hierarchies (BVHs), which creates a tree of boundary volumes. The 

difference between the two approaches can be seen in Figure A.2.1 Example of Space-based 

approach vs. Object (face) volume-based approach.  

 

Figure A.2.1 Example of Space-based approach vs. Object (face) volume-based approach 

As shown above, space-based approach is fast for simulating static objects because it only needs to 

reference to k-dimension axis. However, when the object or group of triangle faces are moving in 

between the cells, this approach can be hard to perform adjustment based on the change. Moreover, 

in deformable object simulation, the shape of the object (s) will change over time; therefore, it is 

costly to adjust the cell size and refit the geometry back.  

Object volume-based method, on the other hand, is more flexible, as the volume boundary can be 

re-calculated based on the change of individual nodes without affecting the global settings of the 

whole structure. The change of volume directly applies to the object without other processing, while 

in space-based approach, the changes of the cells means refilling operation of the affect elements. 

However, space-based approach in a small volume with small number of cells can be an efficient 

aid when applies to an object boundary volume box (AABB) in the narrow phase. However, it is 

not suitable for the broad phase of collision detection in FREDOMS. 
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In order to achieve fast speed collision detection, we choose the object volume-based approach. 

PanGu simulator employs Dynamic Bounding Volume Tree (DBVT), which also can be referred 

to as Dynamic Bounding Volume Hierarchies (DBVH), as the method for broad phase detection. 

DBVT is proposed by Wald et al. in [107] and was introduced initially for ray-tracking.  It is an 

inheritance and improvement of Bounding Volume Hierarchies (BVHs) and can be used for 

deformable objects. BVH or BVT was originally used for high-resolution meshes for ray-tracing, 

but the concept can be adopted and used in real-time fast collision detection with low-resolution 

colliders (collision mesh). Bounding Volume Tree is directly related to the generation of Axis-

Aligned Bounding Box (AABB), which we have already covered in Section 4.2.5.3 Define 

bounding volume by generating Axis-Aligned Bounding Box (AABB). BVHs generates a tree of 

AABBs where each AABB is grouped with other AABBs within a larger AABB (an AABB for a 

collection of smaller AABBs). Figure A.2.2 shows the structure of a BVH. Each higher-level AABB 

has a conclusive relationship with its child nodes (lower level AABBs in the hierarchy). Therefore, 

this approach divides the space into multiple large volumes, and only exam the children nodes when 

their parenting node is detected for collision. BVH and DBVT are popular solutions in solving real-

time physics collision detection problem.  

 

Figure A.2.2 A Bounding Volume Hierarchy 

Ray-tracing and collision detection 

It is worth to write a little note for non-professional readers to address that ray-tracing and 

collision detection shares similar algorithms. The ultimate goal for both techniques is to efficiently 

check if a ray will intersect with a particular triangle face. After the intersection, the two topics go 

separate ways, ray-tracing rendering will determine the light reflection, and the physics simulation 
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will decide the collision response. But before the intersection is detected, ray-tracing and collision 

detection basically has the same tasks.  

A.2.1 Construction of BVH 

In order to proceed fast collision Broad Phase checking, the BVH needs to be carefully structured. 

The hierarchy can have a significant impact on performance. The computation cost for BVH can be 

evaluated by using the equation [108] that were originally proposed by Goldsmith and Salmon [109] 

and MacDonald and Booth [110]. 

𝑇 = 𝐶𝑖 ∑
𝐴(𝑛)

𝐴(𝑟𝑜𝑜𝑡)
𝑛∈𝐼

+ 𝐶𝑙 ∑
𝐴(𝑙)

𝐴(𝑟𝑜𝑜𝑡)
𝑙∈𝐿

+ 𝐶𝑡 ∑
𝐴(𝑙)

𝐴(𝑟𝑜𝑜𝑡)
𝑖∈𝐿

𝑁(𝑙) 

where 𝐶𝑖 and 𝐶𝑙 represents the traversal costs for nodes set 𝐼 and 𝐿. 𝐶𝑡 represents the cost of 

ray-triangle intersection test. 𝐴(𝑛) denots the surface area of the bounding volume in node n. The 

equation was proposed to analysis Surface Area Heuristic (SAH) cost in ray-tracing. It was then 

reformed by Wald et al. [107] to fit DBVT for global cost estimate of a BVT, as follow: 

𝑇 = ∑ 2
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐼𝑁

𝑇𝐴𝐴𝐵𝐵 + ∑
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐿𝑁

𝑁(𝑏)𝑇𝑡𝑟𝑖 

where 𝐼𝑁 stands for Internal Nodes and 𝐿𝑁 stands for Leaf Nodes, and 𝑇𝐴𝐴𝐵𝐵 is the calculation 

time to test ray-AABB intersection. 𝑇𝑡𝑟𝑖 is calculation for testing ray-triangle intersection. 𝑁(𝑏) 

denotes the triangle number of within the boundary of node 𝑏.  

In order to improve the performance, we need to either decrease 𝑇𝐴𝐴𝐵𝐵 and 𝑇𝑡𝑟𝑖, or we have to 

decrease the triangle number in 𝑏. In FREDOMS, as discussed before in 4.2.5.3 Define bounding 

volume by generating Axis-Aligned Bounding Box (AABB) after the object deformation we need to 

regenerate AABB, which we believe should be included in the collision detection stage. Therefore 

in our case, the above equation should be modified as   

𝑇 = ∑ 2
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐼𝑁

𝑇𝐴𝐴𝐵𝐵 + ∑
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐿𝑁

𝑁(𝑏)𝑇𝑡𝑟𝑖 + 𝑀(𝑏)𝑅𝐴𝐴𝐵𝐵 

where 𝑅𝐴𝐴𝐵𝐵 stands for the regeneration time for the AABB, and 𝑀(𝑏) denotes the number of 

parents of the objects. 

The problem in with AABB regeneration with parenting nodes real-time dynamic simulation is that 



289 

 

if a child node gains velocity and moving further apart from other child nodes, the parenting AABB 

will need to be regenerated to cover this movement, and its size will increase. If the moving child 

nodes have a rather large displacement, the parenting AABB can become very large and overlap or 

include other AABBs. In this case, it may loses its function as a testing boundary. Such cases can 

happen if: 

1. There are a large number of objects (faces) are using BVT, which means a large number of 

leaves are in the system, and the tree has high complexity. 

2. One or multiple leaves of objects have large displacement. 

In order to eliminate the above problem, we use a double BVT approach in PanGu simulator. 

We define the first BVT as static BVT, which is constructed for all the static objects, both rigid and 

deformable. The reason for not using octree or k-d tree is because deformable objects require 

adaptive dynamic cell size, which these methods cannot offer efficiently. The second BVT is 

dynamic BVT where moveable deformable objects are placed as leaves. We do not prefer the 

moving rigid body within BVT as they often have primitive collider that is easy for collision 

detection. Therefore moveable rigid body are treated independently in our system. We define these 

objects as free objects. 

It is possible that in a real-world application that uses FREDOMS, PanGu simulator will be used 

in conjunction with other physics engines. Therefore, it is logical that the free objects and other 

static meshes can be simulated by other physics simulators (which maybe more efficient and ready 

to use) rather than implemented by using PanGu. In this case, the objects will not be included in 

the BVTs in PanGu simulator. To prepare for such situation, PanGu will provide application 

programming interfaces for key values and implementation bridging with other physics simulators 

in order to be used as input to other APIs in the process of development. 

By using double BVT approach, we limits the number of leaves and nodes in the hierarchy. However, 

we still define certain tolerance to the apart distance if one leaf is moved as proposed in [107]. 

Within this range, the hierarchy structure remains the same even if overlapping occurs. In cases 

where one leaf is very apart from its original position and exceeds the tolerance range simulators 

will have the following options: 

1. If the total moveable number of objects in the scene is below a certain amount, and the 

number of free object is below a certain amount, the moving deformable object will be 
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removed from the tree and will be set as a free object.  

2. If the scenario does not meet the above conditions, and restructure of the BVT is needed, 

we use sweep and prune algorithm [111] to quickly find the inclusion relationship to other 

parenting AABBs by using the centroid of AABB. An illustration of the algorithm is given 

below in Figure A.2.3. When combining Sweep and prune with BVT we do not need to list 

all the AABBs for sorting but only high-level parenting nodes (which are AABBs). By 

limiting the checking depth, we can improve the speed by reduce unnecessary calculations. 

 

Figure A.2.3 Sweep and prune method for quickly find AABB inclusion 

A.2.2 Generation of BVH 

For the generation of BVH, we adopted and modified the method that was proposed by Ganestam 

et al. in [112] for generating mini trees for triangles. We follow two procedures to generate BVH 

for the scene. The first one is the top-down procedure, which means we generate the top level of 

the tree first and then we gradually and recursively generate each lower level in high to low order. 

The second one is the centroid-based approach which we use the centroid as the representation of 

the AABB instead its boundary values. 

As shown in Figure A.2.4, firstly, we calculate and record centroid for each AABB. Then we 

generate a boundary volume box to include all centroid of the AABBs that are to be assigned into 

the BVH (Level 1). Then we use the long-edge-cutting rule that for the generated boundary volume 

box, we cut the cuboid by its longest ledge into two subdivided cuboids, and we reconstructed two 

boundary volume box that includes all the centroid of AABBs within the two cuboids. This 
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procedure will be recursively executed until all the leaves are reached. Then we use this hierarchy 

to generate AABB for each node through a bottom-up order, that is, to generate AABBs for the 

leaves and then their parent node, and so on.  

 

Figure A.2.4 The Generation of BVH 
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Figure A.2.5 shows the results from the previous figure. Figure A.2.6 shows the final hierarchy 

structure of the case in Figure A.2.4.   

 

Figure A.2.5 Final Generation of AABB tree 

 

Figure A.2.6 BVH structure 

In real-time simulation, when a still object gains initial velocity and starts moving, we will apply a 

constant AABB check between the moving object and the BVH. It is fast to check if the parenting 

AABB node in BVH is overlapping with the object’s own AABB, if yes, the check will continue 

until it reaches a specific leaf, which means a collision with this leaf is possible, or return an empty 

result, which means no collision is detected. 
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A.3 Narrow Phase collision detection by using octree and ray-

casting 

After finished broad phase detection, we have two objects that have their AABBs overlapped, which 

means they are likely to collide (but not guaranteed). Therefore, the narrow phase has two possible 

outcomes: 

1. The pair of objects do not collide with each other upon further exam.  

2. The pair of objects do collide, and we need to find out the contact position. 

There are many methods that can offer narrow phase collision detection. The most commonly used 

approach in real-time physics simulation is the Separating Axis Test (SAT). Related works of SAT 

can be found in [113, 114]. SAT can perform fast intersection check; however, it has three 

drawbacks that make it not suitable for our purpose: 

1. SAT is fast for detection the intersection, that is, to give feedback of whether two objects 

are colliding (true or false). However, it does not answer where the objects are collided, 

which is the essential information that we need in FREDOMS. 

2. SAT only works for convex hull, while FREDOMS can handle concave hull.  

3. Performance of SAT is dependent on surface complexity when finding the axis. Therefore 

it is more suitable for simple geometry like rigid body with primitive type collider. 

In FREDOMS, we need a narrow phase collision detection method that can offer information about 

the collision contact position as well as be able to handle irregular triangle surface. Therefore we 

employ ray-casting method which can solve the above problems #1 and #2. From performance-

wise, ray-casting is not the best solution; however, we have reduced the surface triangle count when 

constructing the physics model to speed up the triangle-ray intersection check.  

A.3.1 AABB subdivision by octree 

In order to speed up the collision detection further, we use octree to subdivide the AABB for the 

object. The generation of octree for surface triangles is very straightforward. Firstly, we recursively 

divide each edge of AABB of the physics mesh by their middle points and subdivide them into 

unique smaller uniform cuboids. It is worth mentioning that the BFCC grid is not suitable for such 
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subdivision as the cube density may not be an even number. Therefore, the BFCC grid does not 

always subdivide the AABB from its middle point. 

Secondly, we assign each surface triangles to corresponding cells (nodes) of the octree. The rule is 

that for one give triangle T, if one of the three vertices lies within the cell C, then we will assign T 

to C. Example of a fragment of the object can be found in Figure A.. It is evident that by doing such 

operation, one triangle can be assigned into multiple nodes. For example, C1 in figure contains 6 

triangles. This is an unavoidable problem when using octree; where the cells are in uniform. A BVH 

can be used to solve this problem; however, as discussed before we need to take the cost of AABB 

regeneration into consideration. AABB regeneration and the deformation on the surface will lead 

to complete regeneration of the tree, which for BVH can be very a costly task.  

 

Figure A.3.1 Assigning Triangles to octree nodes 

Therefore a solution is to subdivide the cell where the triangle density is much higher than the other 

cells. For example, the average triangles in each cell in Figure A. is 3.25 while C1 has 6 triangle. In 

this case, we will do a further step of space subdivision for C1 as shown in Figure A.3.2 Cell 

refinement. This refinement can be executed recursively and will be terminated when the following 

conditions are met: 1. The maximum allowed tree depth is reached. 2. The minimum cell size is 

reached. 3. The desired triangle number per cell is reached. 
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Figure A.3.2 Cell refinement 

The subdivision level is balanced by using the aforementioned equation with modification:    

𝑇 = ∑ 2
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐼𝑁

𝑇𝑂𝑐𝑡𝑟𝑒𝑒 + ∑
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐿𝑁

𝑁(𝑏)𝑇𝑡𝑟𝑖 + 𝑀(𝑏)𝑅𝑂𝑐𝑡𝑟𝑒𝑒 

where 𝑇𝐶𝑒𝑙𝑙 is the calculation time to test ray-cell intersection 𝑅𝑂𝑐𝑡𝑟𝑒𝑒 is the cost of regeneration 

of the octree. Therefore the point is the numbers of cells (depth of the tree) vs. number of triangles 

in cells. 

 

Figure A.3.3 AABB subdivision by octree 
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Figure A.3.3 shows an example of how an object is subdivided into smaller sections by generating 

octree based on its AABB. This generation process is done at the loading time of the physics mesh 

for each object. This subdivision will be repeated after each collision that causes the deformation 

of the object. 

A.3.2 Dynamic collision detection  

A collision event involves at least two objects. We define one object as the incoming object and 

the other one as the target object. An incoming object has an initial constant velocity, and it moves 

(takes displacement) in each time frame and follows a projectile until it collide with other objects. 

A target object, on the other hand, is a static object in our assumption that does not have initial 

velocity until been collided. The projectile of an incoming object without any additional forces but 

only gravity follows the curve of free fall problem with initial velocity. An example of such scenario 

is shown in Figure A.3.4. This is the most common case in an interactive application. 

 

Figure A.3.4 Collision event for two solid objects 

 

The prediction of the path D and the object position P and its velocity V at time T is an easy physics 

problem follows Newton’s law of motion. The position can be found by: 

𝑝𝑡 = ∫ (𝑣0

𝑡

0

+ 𝑎𝑡)𝑑𝑡 = 𝑝0 + 𝑣0𝑡 +
1

2
𝑎𝑡2 

where 𝑎 as acceleration is a constant that equals to gravity g. 

The velocity can be found by 

𝑣 = 𝑣0 +
𝑑𝑥

𝑑∆𝑡
= 𝑣0 + 𝑎∆𝑡 
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A.3.3 Ray-casting 

Before going into further discussion, we make an assumption of that both objects have their AABB 

generated, and the target object is a permanent deformable object (the incoming object can be any 

types of solid object). As we use ray-casting based approach for collision detection, it is important 

to cast the ray properly. To define the ray, we need to know its original point (end point) and its 

direction. The direction can be easily defined by using the unit vector of the incoming object’s 

instant velocity at the time 𝑡. However, our determination on the endpoint of the ray depends on the 

motion state of the incoming object. There are two motion states (rather than static) that we concern 

about: 

1. Moving with only displacement. 

2. Moving with displacement and rotation. 

For 1 we can use the AABB of the incoming object directly. We propose an octant-based analysis 

to check the velocity of the incoming object. The AABB of the incoming object is a cuboid with 8 

corner vertices. If we looking from the perspective of the centroid of AABB, each corner vertex 

represents one of the 8 octants (+++, +-+, --+, -++, -+-, ---, +--, ++-). We can simply check the 

positive-negative of each coordinate in velocity vector to determine which octant the velocity is 

moving to. Then we can use this to find the related corner vertex and use it as the original point of 

the ray. Figure A.3.5 shows a 2D example of determining the endpoint of the ray by using octant-

based approach. The reason we choose this approach is that it will guarantee to find the nearest 

corner vertex to the current destination, which means if the AABB is going to overlap with any 

other AABBs, this vertex will be the first to contact. Octant-based approach also implies a first-

level octree subdivision, therefore, it can be easier to find the actual contact vertex on the face mesh 

of the incoming object, because it will be located within the same octant of the endpoint of the ray.   
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Figure A.3.5 Octant-based ray casting 

Case in Moving with displacement and rotation. is usually simulated in conjunction with other 

physics libraries that are specialised in collision detection. Moving with rotation is more 

complicated as AABB does not rotate (otherwise it loses its purposes) and regenerating AABB in 

each frame can be costly. An example is presented in Figure A.3.6. For rotating objects, we propose 

a bounding sphere collider to cast the ray during its movement. We create a circumscribed sphere 

for AABB of the incoming object. The sphere centre will be the centroid of AABB. The object has 

its own defined geometry centre. The geometry centre of the object is the rotation centre and this 

point does not necessarily lie on the sphere centre and the rotation. An illusion of sphere collider 

can be found in Figure A.3.7. 

 

Figure A.3.6 Object rotation with AABB 

 

Figure A.3.7 Sphere collider for rotating object 
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In such case, we cast the ray by drawing a line through the centroid of the incoming object’s AABB 

(or the sphere centre of the collider, which lies on the same point with the centroid of the AABB) 

and follows the direction follows the instant velocity at the time. We then define the intersection of 

the line with the sphere collider as the endpoint of the ray. 

 

Figure A.3.8 AABB Bounding sphere collider based ray casting 

After a collision with other bounding volumes with the sphere collider is confirmed. We will 

dynamically generate AABB for the object based on its current rotation state and proceed further 

test.  

A.3.4 Find the ray-triangle intersection 

Once we have confirmed the endpoint, we are able to perform the ray-triangle check. We use octree 

to narrow down the scope of the test. We recall that BVH for objects is generated for narrowing 

down which object are going to be collided. While octree is generated for narrowing down which 

part of the object are going to be collided. We first subdivide the object’s AABB as mentioned in 

AABB subdivision by octree and find the cell of collision. A representation of this process is 

shown in Figure A.3.9. After this process, a limited number of triangles are left to be tested 

individually. We then use Möller-Trumbore intersection algorithm [115] to detect the ray-triangle 

intersection for each triangle, which is a straightforward operation.  
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Figure A.3.9 Ray-triangle intersection by using octree 

After a collision event is confirmed and the intersection is identified, we record information of the 

collided triangle and the intersecting point for further proceeding. We also record the current 

velocity and the mass information from the incoming object in order to proceed impulse-based 

deformation that happens on the target object. 

A.3.5 Collision response for the incoming object 

In FREDOMS, the PanGu simulator mainly concerns the simulation of the deformation of the object. 

Therefore, the kinematic problem for the incoming object is out of the scope. Moreover, the 

collision response for the incoming object is a well-studied topic and can be simply implemented 

in other physics engines or done by the developer. PanGu simulator will provide the key information 

from the collision detection: 
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Value  Form and notion Purpose 

Normal of the collided triangle �⃗⃗� = (𝑖, 𝑗, 𝑘) To calculate the direction of vector 

Position of the intersection point 𝑝 = (𝑥, 𝑦, 𝑧) To calculate torque if needed 

Mass of target object 𝑚 To calculate velocity after collision 

Energy lost factor 𝛾 ∈ {0~1} To calculate velocity after collision 

The above information is enough to process the collision response for the incoming object when it 

is a rigid body. If the incoming object is a deformable object then the deformation simulation will 

be proceed based on its local position matrix instead of the global matrix. The overall kinematic 

behaviour is still treated as a rigid body.  
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Appendix B  An alternative approach for physics mesh 

modelling 

B.1  Mesh quality expectation 

Once the raw mesh is loaded constructed, the system will go through each face and exam their 

quality. The loaded mesh is the only source of original input data of the system; therefore, it is 

important to check if the overall mesh meets our minimal standard. These standards act as a 

safeguard to ensure the framework can safely process the data and deliver expected results.  

The quality of the rendering mesh will directly affect the quality of the construction of physics mesh, 

which will directly affect the simulation performance and the computational consumption during 

the simulation. Though professional artists that follow general industry standards often produces 

high-quality mesh where the surfaces are represented in a preferred way and with suitable size and 

shaped triangles. However, there is no guarantee as our system have no control over the input data 

and in some cases, the input 3D mesh may even be generated by 3D scanning or automatically 

generated mesh which has a lot of bad-shaped faces. Therefore conducting quality analysis to the 

rendering mesh is very important before doing the physics modelling.  

If the mesh is not qualified, we can offer feedback to the user why the data is not suitable and what 

modifications need to be done to improve the mesh to the level that can be used in our system. The 

purpose of the quality check is to exam the loaded mesh for the following concerns: 

1. Mesh type. We only consider triangle mesh as our mesh type, therefore other mesh types 

like quadrangle or polygon mesh will be rejected by the system and requires new input. Our 

framework may support other mesh types in the future. Mesh type can be simply checked 

by the format of the mesh file. We will verify the format by checking if there are only three 

indices for vertices for each face.  

1. Any ill-conditioned triangle. Triangles define the surfaces of the mesh. The ideal triangle 

is an equilateral triangle; therefore, an isotropic triangle is more preferred than anisotropy, 

as shown in Figure B.1.1 Example of quality mesh. We use aspect ratio as the reference 

value to exam the quality of each triangle. Aspect ratio is the ratio of the length of the 

shortest edge to the longest edge. There are other methods to determine this value, e.g. by 
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using inscribed circle and circumscribed circle[116] ;however, we simplified this process. 

The value is from 0 to 1 where 0 is an invalid value and means the triangle has an area of 

zero (three vertices within the same straight line). The closer the value is to 0, the lower the 

quality is. The closer the value is to 1, the higher the quality is. Value equals to one means 

the triangle is perfectly equilateral, which is the ideal value for the subsequent simulation. 

2.  Therefore for each triangle with three edges e1, e2, e3 we have the aspect ratio 𝑇𝑎 that: 

𝑇𝑟 = 
min (𝑒1, 𝑒2, 𝑒3)

max (𝑒1, 𝑒2, 𝑒3)
 

Where min and max are the functions to determine the minimum and maximum value of 

three variables. We define a triangle is with satisfied quality if (0.25 ≤ 𝑇𝑎 ≤ 1). We also 

keep the record of the ratio of the number of the bad quality triangle (𝑇𝑎 < 0.25) to total 

number of triangles.  

 

Figure B.1.1 Example of quality mesh 

3. Smoothness of neighbouring triangles. In a common 3D rendering model, the size of each 

triangle face is not likely to be identical. To map different details on geometry, the size of 

the triangle will change. The smoothness of a mesh is defined by the size change from one 

triangle to its neighbouring triangle. A sudden change of size will leads to an ill-conditioned 

triangle or triangles shares vertices in the same straight line. An example can be seen in 

Figure B.1.2 Example of good and bad smoothness. We exam smoothness of the mesh by 

loop through all the triangles, and for each triangle we will calculate its value of area and 

check any triangle that shares two vertices with the current triangle and check their value 

area. Then we have: 

𝑆 =  
max(𝑎1, 𝑎2)

min(𝑎1, 𝑎2)
 

where 𝑎1, 𝑎2 are the areas of the two neighbouring triangles (orders doesn’t matter). We   
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define the triangle face has a smooth transaction to the other triangle if(𝑆 < 1.5).  

   

Figure B.1.2 Example of good and bad smoothness 

4. Manifold mesh. Non-manifold mesh is considered not a closed geometry, therefore does 

not existing in real-world. Non-manifold mesh cannot be physically modelled as a 

continuum object; therefore, our system does not accept manifold mesh as input.  

5. Triangle shape. Triangles define the surfaces of the mesh. The ideal triangle is equilateral 

triangle; therefore isotropic triangle is more preferred than anisotropy, as shown in Figure 

B.1.2. Isotropy also means equal length of the edge of the triangles. In reality it is difficult 

to have the exact same length for the edges of each triangle (equilateral triangle) but the 

closer the better. 

6. Vertex degree/Valence. Valence is one way of indicating the regulation of a mesh surface. 

We expect valence >≥4 for any surface vertex and ideally, valence should equal to 6. 

7. Vertex position and density. Sometimes the 3D mesh can be unnecessarily detailed or 

there can be redundant vertices on the mesh, or poorly aligned to a curvy surface. 

B.2  Overall mesh quality analysis 

With an initially generated mesh based on the raw input data. Firstly we will perform the following 

count for conducting the Euler-Poincaré Formula[117]: 

The total number of vertices (V). 

The total number of edges (E). 

The total number of faces (F). 
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Number of genus (G). 

Number of shells (S). 

Total number of loops (L). 

Then we have  

𝑅 = 𝑉 − 𝐸 + 𝐹 − (𝐿 − 𝐹) − 2(𝑆 − 𝐺) 

The expected value of R is 0. Otherwise, the geometry is deemed to be no solid, and the system will 

reject the input value. 

APMC system will loop through all the faces to check the mesh quality based on the above 

requirements. We introduced a mesh quality parameter Q to represent and give the user feedback to 

identify the quality of the mesh. Q is calculated by: 

𝑄 =
∑ 𝑓(𝑇𝑛)𝑖=1

𝑛

𝑁𝑡
 

Where 𝑓(𝑇𝑛) is the process we use to determine the quality of the n-th face (triangle) of the mesh. 

𝑁𝑡 is the total number of triangle faces in the mesh. To get the result from 𝑓(𝑇𝑛) we will exam 

each angle in the n-th triangle face: 

For a triangle T defined by three point P1, P2, P3 and 𝜃 is the angle between P1P2 and P1P3. We 

have u = P2 - P1 and v = P3 – P1. And 𝜃 can be calculated by 

cos𝜃 =
(

𝑢
→∙

𝑣
→)

(||
𝑢
→|| ∙ ||

𝑣
→||)

 

If 𝜃 < 𝐴𝑚𝑖𝑛  or 𝜃 > 𝐴𝑚𝑎𝑥  then 𝑓(𝑇𝑛)  returns 0. Otherwise 𝑓(𝑇𝑛)  returns 1. By this 

calculation we have Q equals to the percentage of well-shaped triangles in the total triangle faces. 

Q offers an initial, approximated reference for both user and the system to identify if the mesh is 

suitable for further process. Based on our testing, a well-defined mesh can have Q valued below 

0.005. For a computer generated 3D scanning mesh where a lot of noise and badly-shaped faces can 

be detected, Q can vary from 0.1 to 0.3. We choose 0.4 for the threshold for Q and if Q > 0.4. The 

mesh is considered to be in extreme condition and even invalid value (incomplete or open shape or 

noise data). 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 represents the minimum and maximum angle we can tolerate in the 

quality check. It can be difficult do determine the exact threshold for 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 as the closer 

one angle of the triangle are closer to 180 degrees or close to 0 degrees the worse the shape can be. 
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Bad shaped triangle with large angles can cause interpretation errors. Small angles are somewhat 

more tolerable in our case as we do not use stiffness matrices as in FEM. However, a very thin/skim 

triangle is still not ideal for our purpose as we prefer regulated vertices with similar edge length. 

Considering all the above issues, we decide to set 𝐴𝑚𝑖𝑛 = 10 and 𝐴𝑚𝑎𝑥 = 160 as a default value 

in our system. Therefore for any angle 𝜃 in any Triangle 𝑇 ∈ 𝑇𝐴 where TA is the set of all 

triangles on the surface S. We have  

10° < 𝜃 < 160° 

𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 are editable by domain expert with knowledge of mesh quality and understands 

the input data. 

The system will also do a valence check for each vertex to see if there are any poorly connected 

vertices. A vertex with valence = 2 indicates it is not forming a closed surface. In this case, we either 

delete 

A complete workflow of quality analysis is given in Figure B.3.1 Flowchart for mesh quality check. 

Once the system determine the input mesh is valid, it will proceed to the next step where 

modification to the mesh will be conducted based on how we want to generate the physics model. 

B.3  Data analysis and feedback  

The analysis result has two possible outcomes: 

1. The raw data does not meet the minimum system requirement and needs modification. This 

is due to either the file has invalid/different standard data format or the mesh quality 

assessment is failed. Failed assessment includes incomplete model and extreme triangles 

and vertices placement that excess the handling threshold, which means the system is 

unable to automatically proceed the second-degree modification. The message will show 

the specific problem (which case the issue belongs to) and advisory information on how to 

re-prepare the data before next import. 

2. The raw data meets the minimum. If the system decides the data does not need any 

modification, the data will proceed as is. If automatic modification is needed, the interface 

will show the message of the modification information. This includes how many triangles 

are involved, how many triangles and vertices are reduced/merged, and the final triangle 
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and vertex count.  

In both outcomes, the quality percentage (good triangle/bad triangle) will be given as a 

reference and indication of the quality of the data [84]. 

 

Figure B.3.1 Flowchart for mesh quality check 

B.4  A one-time particle structure generation and surface remeshing  

Physics modelling is not limited to surface meshing but also the meshing processing of the interior 

structures. As discussed in 4.2.1, we use a particle-based model which requires the distribution of 

the particle throughout the object volume. In physics model, each vertex on the surface mesh also 

represents the surface particle therefore they should follow the same role as the distribution of 
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particles for the whole model as well as marching the requirements from 4.2.4.3. Therefore we 

believe the best approach is to do the surface remeshing and particle structure construction in the 

same process because: 

1. Each vertex on the surface after the remeshing is a particle shares the same particle structure. 

2. Put these two tasks in one process can ensure they meet the same standard and the same 

mesh size. 

3. Save the intermedia step where after the remeshing the surface the system needs to 

distribute particles on the surface again. 

We employ a grid-based mesh generation method for surface and internal particles structure. Grid-

based remeshing approach has been employed by other research for mesh generation for FEM 

elements [95]. And we have adopted and modified this concept to do a similar element generation 

for particle system as well as the re-generation of geometry surface mesh. The benefit of grid-based 

is that it provides a uniform sampling of element group size. The size of the element and the 

structure of the element are highly adaptive based on the density and the form of the grid. To clarify 

any ambiguity, the term “element group” in this content (grid-based method specifically for particle 

system) refers to a particle group of one particle and its neighbouring particles that forms a basic 

unit of the grid (in our case, in 2D it is a triangle with three connected particles, in 3D it is a group 

of 4 particles and their connections that forms a tetrahedron). Therefore an element group defines 

the particles forms a close space (or area) and the volume they enclosed. This is different than grid 

base meshing in FEM where the tetrahedron itself is defined as an element. In particle-based system, 

the prime element unit is a single particle. 

The two fundamental approaches are parameterisation-based and surface-oriented. As we use grid-

based mesh generation it implies that we will use surface-oriented mesh regeneration. However our 

approach is different from a type remeshing operation like works from Botsch et al. [96] where the 

operation of existing and new inserted particles are based on geometry analysis of the current mesh. 

Our approach is to use both original surface mesh and the generated grid as references and 

manipulates and insert/delete vertices in order to make the surface mesh satisfy with the grid 

condition. Therefore, the surface vertices distribution cannot be manipulated by just satiations of 

edge lengths and valence (6) but has to be considered together with the inner grid structure. Each 

triangle on the mesh surface is also one of the four faces of an element group (tetrahedron) therefore 
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it has to maintain unity with other element groups, most of which are inside the enclosed geometry 

space. 

Therefore, the first step for our remeshing and structure generation is to generate the grid. In order 

to generate the grid, Axis-Aligned Bounding Box (AABB) is needed as the initial condition. 

B.5  Define bounding volume by generating Axis-Aligned Bounding Box 

(AABB) 

In order to determine the size of the grid, we need to calculate the maximum boundary volume of 

the object, which is an Axis-Aligned Bounding Box (AABB) of the initial raw rendering mesh. 

AABB is also the first layer of the collision detection mesh and a commonly used optimisation 

solution for real-time collision detection.  

AABB is a fast and simple way to define a box boundary of the object. For a given closed mesh M, 

in order to find its AABB the system needs to loop through each vertex and find the maximum and 

minimum value for x, y, z of all vertices. The AABB of the mesh M can then be defined by 8 vertices, 

and it is in the shape of a 3D box: 

(XMax, YMax, ZMax) 

(XMax, YMax, ZMin) 

(XMax, YMin, ZMin) 

(XMax, YMin, ZMax) 

(XMin, YMax, ZMax) 

(XMin, YMin, ZMax) 

(XMin, YMax, ZMin) 

(XMin, YMin, ZMax) 

AABB is widely used in rigid body collision detection. In such cases, AABB can be rotated with 

the object by linking the rotation matrix of the AABB box to the object rotation matrix. However, 

we only concerns permanent deformable object, which means the physics mesh and rendering mesh 

will keep changing as the physics simulation proceeds and deformation occurs. Therefore in the 

run-time simulation, after a collision has happened, we will re-calculate and update the AABB 

information to make sure that it still captures the maximum bounded volume of the object. The grid, 

on the other hand, only needs to be generated once. 
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B.6  Grid generation 

Once the AABB is generated, we can start generate grid, we use equilateral triangle as the mesh 

standard; therefore in volume grid we use tetrahedron as the basic element. To generate the grid, 

firstly, the system will need the AABB information. Secondly, the system will require user input for 

the grid size (density) parameter. The parameter comes in two forms (only one is needed): 

1. Grid Density on one edge of AABB. User can define the density of the grid however they 

can only use one of the three values from the AABB as the reference: Width, Height or 

Depth of the AABB, which are defined by(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛),(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛),(𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛). 

And the picked value also represents the Primary Direction of the particle distribution in 

the later stage. The density 𝑑 is an integer to define how many particles will be distributed 

evenly along this axis. For each element group the three edges have the same length 

therefore by a given AABB we can only ensure axis (the one defines the Primary Direction) 

is fully filled with particles and edges from end to end. The other two edges will not be 

perfectly fitted with particles; however that is not a concern as the grid is only one of the 

two references for mesh generation. 

2. Absolute length size of the element group. This will define the absolute value of the edge 

length. The system will then automatically generate elements based on this value. Similar 

to point 1 there is no guarantee each edge of the AABB will be fully filled with particles 

from end to end. therefore the system will pick an original start point   

The value does not only defines the density of the grid but also decides the fineness of the re-

generated mesh because the grid is the main remeshing reference of the surface mesh. Therefore 

when deciding the fineness of the object, the efficiency of collision detection should also be taken 

into consideration. This may not be in the awareness of the users as they are not experts in physics 

simulation and system optimisation. Therefore recommendation information and comments will be 

offered in an understandable way to remind them certain values may affect the performance of the 

simulation. This can prevent unusually detailed mesh that slows down the calculation. 

Once the input value of grid density is acquired, we will start to generate the Reference Grid. 

Reference Grid will be generated from a Start Point that we defined as (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛) by 

default (top-down and front-back order). From x, y and z-axis we will pick one axis as the Primary 
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Grid Generation Direction base on the user input, and then the system will pick one of the other 

two axis as the Second Primary Grid generation Direction, and the last one will be the Third 

Primary Grid Generation Direction. The distributed particles on these three directions will be 

referred as Row (in Primary Direction, indexed by i), Column (Second Primary, indexed by j) and 

Layer (Third Primary, indexed by k) when we need to describe the related index of the particles. 

By default we use Top-Down and Front-Back order as the principal order for the reference grid 

generation. Therefore the direction and the index increment order along x-axis is from 0 to infinite. 

The index increment order direction along y-axis is downwards which is from 0 to negative infinite. 

The index increment order direction along z-axis is from 0 to infinity. And we use (𝑖, 𝑗, 𝑘) for the 

index of a particular particle. Figure B.6.1 Example of grid generation order based on AABB shows 

a visual representation of how we define the three primary directions in a specific case where the 

dot represents the start point of the potential particle distribution. In this example we made the 

assumption that the x-axis is the primary direction, z-axis is the second primary direction and y-

axis is the third primary direction. The increment order direction of row, column and layer is shown 

in Figure B.6.1. 

 

Figure B.6.1 Example of grid generation order based on AABB 

We generate the grid not by drawing lines and exam their interactions but instead by distributing 

potential particle positions along the three axis. And connect them by edges to form the grid and 

element groups within the grid. Each element group is based on the shape of tetrahedron which has 

4 vertices and 6 edges where the edges are identical in length. Figure B.6.2 Example of element group 

shows an individual “cell” (element group) of the 3D grid. It is in the form of a tetrahedron but does 

not contain the enclosed volume space, only the edges and vertices. 
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Figure B.6.2 Example of element group 

We use the term Potential Particle because the distributed “particles” are not in their final position 

and some of them will be deleted as they may be outside the object. Some particles will be merged 

into one particle and some new particles may be added into the system. Therefore to generate the 

final mesh, the workflow contents the following steps: 

1. Generate AABB of the rendering mesh. 

2. Get user input value for density and primary direction. 

3. Potential particle distribution through 1st, 2nd and 3rd primary direction. 

4. Exam vertices of rendering mesh and conduct operation like repositioning, merging, 

inserting to remesh the surface. 

5. Surface triangle mesh regeneration. 

6. Connect particles by using Delaunary Triangulation to form the reference grid.  

7. Weighted mapping from regenerated mesh to the original rendering mesh.  

Because a regular tetrahedron cannot fully fit and tile a close space without gaps, even the ideal 

solution for the grid is to have uniform edge length, compromise has to be made. And to make the 

model simpler for generation we uses layer scheme as the approach to generate the grid. This means 

we define the plane defined by Primary Grid Generation Direction and Second Primary Grid 

Generation Direction as a layer and the third primary direction as the depth of layer. Our method is 

to generate one layer at a time and then the next layer. Figure B.6.3 Illustration of layer from a 

front-back view shows an example of layer based grid generation. The blue line represents each 

layer plane and the dash line shows the structure behind. Please note that the triangles in the figure 

are not equilateral triangles as in this front-back view it has an angle from this perspective therefore 
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this view looks different than Figure B.6.6 A 2D example of grid generated based on AABB Box. 

Calculate to decide the height of each layer is discussed later in this chapter.  

 

Figure B.6.3 Illustration of layer from a front-back view 

 

As shown below in Figure B.6.4 Illustration of unequal edge length in tetrahedron based grid the 

length of edge between P1 and P2 will be connected however this length is different than the 

standard length edge length L. P1 and P2 are the centroids of the triangle. The dash line represents 

the projection on the surface therefore the fourth particles’ projection on the plane are positioned at 

P1 and P2. As we know the centroid formula indicates the centroid separates the medians in a 2:1 

ratio therefore we know that the length of P1P2 is  
2

3
cos 30° 𝐿 ≈ 0.58𝐿 . Therefore with our 

distribution method, not every edge have the same length. In every second layer there will be 

tetrahedron structure that are not a regular tetrahedron. And only one edge in these structures will 

be different, which has a length of approximate 0.58𝐿. 
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Figure B.6.4 Illustration of unequal edge length in tetrahedron based grid 

To start the distribution, firstly we have the edge length for AABB on the primary direction as 𝐿𝑝, 

and the user input value of grid density d. We can calculate the edge length for each parameter group 

by 𝑙𝑒 =
𝐿𝑝

𝑑
. Then based on the location of start point (𝑥0, 𝑦0, 𝑧0) we have each particle’s position 

for the first row. For example if the primary direction is x-axis, the second primary direction is y 

and the third primary direction is z, then the position for each potential particle starting from the 

start point along with x-axis on the first row is 𝑝𝑖 = (𝑥0 + 𝑙𝑒 × 𝑖, 𝑦0, 𝑧0) where 𝑖 ≤ 𝑑. 

As the grid is in a tetrahedron form, only the primary grid generation direction can use the length 𝑙𝑒 

as the distribution distance step. The second row along with the second primary direction should be 

distributed a way that three particles can form an equilateral triangle therefore its y position will be 

shifted by 𝑙𝑒 × cos(30°) and x position should be shifted by 
1

2
𝑙𝑒. To ensure all the volumes of 

AABB are covered, the grid has to go over the AABB (which implies the original rendering mesh 

is fully covered within the grid). Therefore for the second row, the initial distribution start point of 

x should be 𝑥0 − 
1

2
𝑙𝑒. Therefore for each potential particle on the second row, the position are: 

 𝑝𝑖 = ((𝑥0 −
1

2
𝑙𝑒 + 𝑙𝑒 × 𝑖), (𝑦0 − 𝑙𝑒 × cos(30°)) , 𝑧0). 

On the direction of the third primary direction, we use “column” to describe each layer. An example 

is given in Figure B.6.3 Illustration of layer from a front-back view. The distribution of this direction 

will affect by the slant height of the tetrahedron, which has a sample representation in Figure B.6.5 

Height for tetrahedron. 



315 

 

 

Figure B.6.5 Height for tetrahedron 

As shown, we know that 𝑃𝑎𝑃𝑏 = cos 30° 𝐿 and 𝑃𝑏𝑃𝑐 =
1

3
cos 30° 𝐿. 

Therefore we use (𝑃𝑎𝑃𝑐)
2 + (𝑃𝑏𝑃𝑐)

2 = (𝑃𝑎𝑃𝑏)
2 to calculate h, which is 𝑃𝑎𝑃𝑐: 

ℎ =  √(cos 30° 𝐿)2 − (
1

3
𝐿)2 

Therefore for each potential particle for each layer raw the position are: 

𝑝𝑖 = ((𝑥0 + 𝑙𝑒 × 𝑖), (𝑦0 − 𝑙𝑒 × cos(30°) × 𝑗) , (𝑧0 + ℎ × 𝑘)) In the odd row 

And  

 𝑝𝑖 = ((𝑥0 −
1

2
𝑙𝑒 + 𝑙𝑒 × 𝑖), (𝑦0 − 𝑙𝑒 × cos(30°) × 𝑗) , (𝑧0 + ℎ × 𝑘)) In the even row. 

In the assumption of Figure B.6.1 Example of grid generation order based on AABB we also assume 

the AABB size (absolute edge lengths) along x-axis (width), y-axis (height) and z-axis (depth) as 𝐿𝑤, 

𝐿ℎ and 𝐿𝑑. Which are already know as: 

𝐿𝑤 = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) 

 𝐿ℎ = (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) 

𝐿𝑑 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛) 

And the particle separation of each row, column and layer as 𝑙𝑤, 𝑙ℎ and 𝑙𝑑. The density (how many 

particles on each edge) of each axis as 𝑑𝑤, 𝑑ℎ and 𝑑𝑑. we already know 𝑑𝑤 = 𝑑 as the user input 
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value. Therefore we know that 𝑙𝑤 =
𝐿𝑤

𝑑
⁄ . We define 𝑙𝑤 as the standard edge length 𝑙. Then as 

explained before in the distribution phase we have already calculated that  𝑙𝑑 = 𝑙 × cos(30°) 

and 𝑙ℎ = √(cos 30° 𝑙)2 − (
1

3
cos 30° 𝑙)2. Therefore we have 

𝑑ℎ =
𝐿ℎ

√(cos 30° 𝑙)2 − (
1
3
cos 30° 𝑙)2

 

And 

𝑑𝑑 =
𝐿𝑑

𝑙 × cos(30°)
 

We also know that in order to full cover the space of AABB, for every second row and column for 

each layer an additional particle need to be inserted (examples in the figures of 2D view). Therefore 

we can calculate the approximated total number of potential particles in the grid by a given AABB 

with 𝐿𝑤, 𝐿ℎ and 𝐿𝑑 and a starting point with defined primary direction with the density 𝑑𝑤. The 

number of particles 𝑛 will be    

𝑛 = 𝑑𝑤 × 𝑑ℎ × (
1

2
𝑑𝑑 +

1

2
(𝑑𝑑 + 1)) 

The reason for doing this calculation is that it gives a rough indication of the particle number size. 

Before proceeding to the next step, the system should be able to verify the data to see if the input 

value (particle density associate with the AABB size) is reasonable, otherwise, the system will be 

stuck at a large amount of unnecessary calculation and results in a model that cannot be used in the 

simulation. Moreover it will introduce unpredictable delay to the interface and will affect user 

experience (slow or nonresponsive application).   

Figure B.6.6 A 2D example of grid generated based on AABB Box shows the example of the grid 

from top-down view (x-z plane). The blue bounded box represents the AABB box and the black 

lines defines the grid. The Start point in this example is picked as (𝑥𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛) in this 2D plane 

and in 3D as this is the first layer as the default top-down rule and the 3D position of start point will 

be (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛). Each interstation of black lines indict a potential particle distribution 

position.   
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Figure B.6.6 A 2D example of grid generated based on AABB Box 

In the above discussion, we have used many terms to describe similar geometry concepts, in order 

to clarify the uses and meanings of each term we made a Table B.6.1 Coordinate terms in grid 

referencing and sampling for all the terms with their purpose to avoid any ambiguity. 

Terms Form Purpose 

Width, Height and 

Depth 

𝐿𝑤, 𝐿ℎ and 𝐿𝑑 To define and indicate the three edges of 

AABB. 

x, y, z axis (𝑥 , 𝑦 , 𝑧) To define the global coordinates and axis 

direction. 

Row, Column and 

Layer 

(𝑖 , 𝑗 , 𝑘) To indicate particle’s reference related to the 

generated grid 

1st ,2nd and 3rd 

primary direction 

1st ,2nd and 3rd primary 

direction 

To indicate user-defined primary distribution 

direction along with x, y, z axis. 

Table B.6.1 Coordinate terms in grid referencing and sampling 

In Figure B.6.7 Top-down view (x-z plane) of the grid, Figure B.6.8 Front-back view (x-y plane) of 

the grid and Figure B.6.9 Side view (left-right, z-y plane) of the grid we use plane view from different 

perspectives of the same object to show the structure of the grid and the relative terms and values 

are shown in the figures. The coloured dot represents start point (in second layer the dashed blue 
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cycle represents the start point which is not located in this layer, the coloured dots represents 

potential particles). The dash line represents the structure that is blocked behind the shown plane. 

Figure B.6.10 Example of grid goes over AABB shows the same grid structure as in Figure B.6.6 A 

2D example of grid generated based on AABB Box but in the case that the column (z-axis) size 

cannot perfectly fill the edge length of AABB therefore the mesh goes over AABB to ensure it has 

been fully covered. 

 

Figure B.6.7 Top-down view (x-z plane) of the grid 
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Figure B.6.8 Front-back view (x-y plane) of the grid 

 

Figure B.6.9 Side view (left-right, z-y plane) of the grid 

 

Figure B.6.10 Example of grid goes over AABB 
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B.7  Surface vertex re-distribution 

In our approach, the volume space of rendering mesh is a subset of AABB, and the volume of 

AABB is a subset of the grid enclosed space. Therefore, after generating the mesh, we can ensure 

that the original object rendering mesh is fully contained within the space that are enclosed by the 

boundary of the grid. And we can use the grid as a reference to check and manipulate the surface 

vertices of the rendering mesh. The remeshing process has several targets: 

1. Make the surface more uniform. 

2. Link surface structure with the internal particle structure. 

Therefore the main issue needs to be solved are: 

1. Solve small triangles and close particles. 

2. Solve large triangles and faraway particles. 

3. Disconnection with the inner particle structure (grid). 

We perform an initial vertex reduction to solve the first issue and uses the grid referenced sampling 

to solve the second and third issue. 

 

Figure B.7.1 Grid overlays with surface mesh 

The distribution of potential particles are already finished when constructing the grid (as the process 

of constructing the grid is the process of distributing potential particles). Therefore the first step to 
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remesh the surface is to overlay the grid to the rendering mesh. The potential particles will be 

divided into 3 groups, which has been shown in Figure B.7.1 Grid overlays with surface mesh: 

1. The particles that are already deep inside the geometry boundary of the closed rendering 

mesh. These particles will reserved and remain unchanged as they will form the interior 

structure of the physics mesh. An example is P3 in the figure. 

2. The particles that are far outside of the object. This group is excluded from the surface 

range and can be ignored and later be deleted. An example is P2 in the figure.  

3. Small part of particles that are close to the surface mesh (distance to any vertices particles 

on rendering mesh is less than the grid edge length according to the input density). This 

group will be checked for further proceeding and the particles of this group act as important 

remeshing reference for the surface mesh. Examples can be found as P3 and P4 in the figure. 

Vertex reduction  

Before using the grid to sample the rendering mesh the system will perform an initial mesh 

complexity reduction for small-sized triangles. For doing this, we use the standard mesh element of 

the grid which is the tetrahedron as reference to find the distance range. We define the standard 

edge length of a grid element as 𝐿. Then we define two conceptual spheres centred at vertex V. The 

first one is the circumscribed sphere of the regular tetrahedron element of the grid with the uniform 

edge length  𝐿. The second one is the inscribed sphere of the same tetrahedron. If we define the 

radius of the circumscribed sphere as 𝑅 and the radius of inscribed sphere as 𝑟, then we know 

that 𝑅 = 2𝑟. And 𝑅 =
√3

3
𝐿 ≈ 0.58𝐿, then 𝑟 =

√3

6
𝐿 ≈ 0.29𝐿. The task is to find the particle that is 

suitable for 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃, 𝑉) ≤ 𝑅. A 2D diagram is shown below in Figure B.7.2 Two cycles of 

manipulation range. Please note that this is a 2D demonstration for the concept and not a 3D 

tetrahedron-sphere projection on 2D (it will look differently). 

 

Figure B.7.2 Two cycles of manipulation range. 
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The inscribed sphere radius r defines the minimum tolerance for two particles in the final physics. 

We then search for {𝑣𝑎, 𝑣𝑏} ∈ 𝑉 where 𝑉 = {𝑣1, 𝑣2, 𝑣3 …𝑣𝑛} which are the set for all the vertices 

in the rendering mesh. Vertices 𝑣𝑎 , 𝑣𝑏 should be the minimum-distance-neighbouring particles to 

each other which means they are the closest particle to each other. Then we exam 

if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑣𝑎, 𝑣𝑏) ≤ 𝑟. If so, it indicates that the distance between the two particles are too close 

and should be repositioned. We use a merge operation to manipulate these two vertices. We use 

their averaged position ((
𝑥𝑎+𝑥𝑏

2
) , (

𝑦𝑎+𝑦𝑏

2
) , (

𝑧𝑎+𝑧𝑏

2
)) as the new position and we replace these two 

vertices with one new vertex. Figure B.7.3 Vertex merge operation shows an example of how we 

replace two vertices with a new one. 

 

Figure B.7.3 Vertex merge operation 

Merge operation will be conduct recursively until there are no distance between two vertices are 

smaller than the minimum value. The new merged particle will be reserved and excluded from the 

current check loop to avoid repeat merge for the same area that will cause inaccuracy of the 
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approximated mesh. Merge also involves restricting the triangle edges. If we have two sets of 

triangles edges defines all edges attach to 𝑣𝑎 , 𝑎𝑛𝑑 𝑣𝑏, which is 𝑆𝑎 → 𝑣𝑎 and 𝑆𝑏 → 𝑣𝑏. We have: 

 𝑆𝑎 ∪ 𝑆𝑏 − {𝑙𝑎𝑏} = 𝑆𝑓 → 𝑣𝑓 

Where 𝑆𝑓 is the final edge set that all attach to 𝑣𝑓, which is the final merged vertex that replaced 

 𝑣𝑎 and 𝑣𝑏. And 𝑙𝑎𝑏 is the edge connects the vertices 𝑣𝑎 and 𝑣𝑏. 

 

Vertices alignment with the grid 

After the vertices reduction, the (minimum) density of the mesh should be close to the density of 

generated grid. The second step to remesh the surface is to go through each remaining vertex on the 

rendering mesh and exam its position with potential particles in the generated grid. And apply 

manipulating actions to the vertices of the rendering mesh includes repositioning, deleting and 

adding. FREDOM will loop through each vertex to check its condition. We define the current vertex 

being examined is V and we perform tests for V to each potential particle in the grid. And we find 

the particle P or a set of particles {𝑃𝑖} within a certain position range to V.  

The manipulation follows two rules: 

1. In any surface triangles T, the length of any edge shouldn’t exceed a maximum length 𝐿𝑚𝑎𝑥 

that is related to the circumscribed sphere radius 𝑅. We define the relation as: 

𝐿𝑚𝑎𝑥 = 2𝑅 × 𝜑 

where 𝜑 is the parameter to define the maximum edge length that is related to 𝑅. This 

value can be defined by user with a recommended range between 1~2. The default value 

in our system is 1.2. 

2. Distance between any two vertices or/and particles should not be smaller than 𝑟, which is 

the inscribed sphere radius. 

Therefore we use a two-step method to remesh the surface vertices. The first step is to test 

if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃, 𝑉) ≤ 𝑅. If yes, this P and V are relevant. Further processing will be conducted. 

There will be several cases for distance between P and V related to R and r, as shown in Figure 

B.7.4 Cases of distance (d) between V and P. Please note again this is a 2D presentation, and in 3D 

case it will look different, but the concept is universal. 
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Figure B.7.4 Cases of distance (d) between V and P 

In the first case (𝑟 < 𝑑 < 𝑅), the operation we conduct is to do position shifting for V towards P. 

We have proposed a formula for calculating the new position for V by averaging the position of V 

and P:  

𝑃𝑣 = 𝑝0 +
𝐷(𝑉, 𝑃)𝛾

2
 

where 𝛾 is the unit vector of (𝑣, 𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

In the second case (0 < 𝑑 < 𝑟) the operation is to reposition V to the location of P. 
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In the Third case where more than one particles are within the range of (𝑟 < 𝑑 < 𝑅). V will remain 

at its current location and no operation is needed. Figure B.7.5 Mesh after vertex manipulation 

shows the current mesh been modified from Figure B.7.1 Grid overlays with surface mesh. 

 

Figure B.7.5 Mesh after vertex manipulation 

It is important to not break the integrity of the mesh and connection between the surface mesh 

and the grid mesh as they will be merged into one mesh. Therefore for any (𝑉, 𝑃) after the vertices 

is repositioned based on P by any of the case 1 and 2, the particle P will be deleted from the grid 

and replaced by V.  

 

Handling large edges and triangles 

The next step of surface remeshing is to eliminate large edges (which results in large triangles). A 

large edge is defined as in the surface mesh there is an edge of a triangle whose length is larger 

than 𝐿𝑚𝑎𝑥 = 2𝑅 × 𝜑. For a giving triangle T with large edge(s) L, firstly its three vertices should 

be sampled and aligned with the grid when conducting Vertices alignment with the grid. Then we 

will exam L with each potential particles P by finding the distance from P to L ( 𝐷(𝑃, 𝐿)). We define 

another value 𝑑𝑚𝑎𝑥  for the distance range of 𝐷(𝑃, 𝐿). Then for any 𝐷(𝑃, 𝐿) <  𝑑𝑚𝑎𝑥  we will 

insert this D into the edge L by shifting P onto L using the projection mapping. In this process, the 

edge L will not be broken into a sequence of line segments. The reason of shifting P to L instead 

of using the direction of P directly is because we would like to keep the inserted particle within the 

same plane for applying triangulation method later on.  
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After conducting the above operation, we then again exam the length for each new edge (line 

segments). The check is to find if there’s any new edge whose distance is larger than 2R, which was 

previously defined as the radius of circumscribed sphere of a tetrahedron element. If such new edge 

is found we insert a new vertex in the middle between the two vertices. The whole process will be 

recursively executed until all the edges are met with the condition. A 2D illustration is given below 

as Figure B.7.6 Steps to handle large edges and triangles. 

 

Figure B.7.6 Steps to handle large edges and triangles 
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Final surface regeneration and the mesh construction 

In the whole process of surface remeshing, we mark all the vertices on the surface mesh as a 

reference that will be distinguished from a grid particle. Also, the edge information is kept for the 

surface mesh. However, in the operation of handling large edges, some unconnected vertices are 

created without been assigned to triangles. Therefore, after all the vertices are successfully sampled 

and operated, the system will then perform a triangulation to construct triangle structure for the 

missing surface area.  

Large triangles are the only surface needs to be constructed with newly added vertices and as 

explained in Handling large edges and triangles. Therefore the triangulation can be considered as 

2D problem. Therefore the commonly used Delaunary triangulation[118, 119] is deemed to be a 

good solution to this situation. Therefore we uses a modified triangulation on the surface for new 

particles and their surrounding surface vertices. In the proposed triangulation method, firstly we 

define all the vertices that are waiting to be triangulated as a set V. We select a vertex 𝑣 ∈ 𝑉 for 

sampling. Then we search for 𝑣1 ∈ 𝑉 that satisfied with that it has minimum distance to v than 

any other vertex in V. We connect these two vertices and draw circumscribed cycle of the triangle 

that defines with this two vertices and any other arbitrary vertex in V. And then by checking the 

particle inclusive and exclusive of the particles as the standard Delaunary approach we can construct 

triangle subsets for the original triangle T. In the triangulation progress we assign edges in an 

arbitrary order and not consider the order of the vertices at the moment. 

After the triangulation, the system will determine the face normal direction for each triangle by 

doing normal direction check. We use the position of all particles to calculate the geometry centre 

C of the object and we draw perpendicular line to the triangle plane T to compare the direction of 

C→ 𝑇 is in the same direction with the triangle plane. Based on the result, the system will either 

flip the order or keep the order same as before. This is the last step for mesh regeneration. 

B.8  A weighted vertex mapping method form physics mesh to raw mesh  

In the remeshing process, we flag the surface particle information as well as keeping the rendering 

mesh. In order to visually present the deformation of the object, we have to map any changes of the 

physics mesh back to rendering mesh. We use a weight based mapping method to create link 

between original mesh and physics mesh. After loading the original raw mesh M, we have a set of 
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vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛}  where n is the total number of vertices. Then after 

remeshing/regeneration we have a new surface mesh 𝑀𝑛𝑒𝑤 which has a new set of vertices P =

 {𝑝1, 𝑝2, 𝑝3 … 𝑝𝑢} where u is the total number of vertices in P. As discussed the new mesh is a 

much coarser approximation of the original mesh therefore we can expect u in P is smaller than n 

in V. The physics mesh is considered as the “skeleton” of the rendering mesh. Any deformation 

occurs to the physics mesh from the simulation will be transferred to the original rendering mesh. 

Therefore a mapping rule R = 𝑃 → 𝑉 is employed to map each p to v. The mapping of P to V is 

not one to one relationship but one to many. Each vertex p in P act as a control point to the related 

v(s) in V. As each p controls multiple v we employed weighted mapping rule.  

The determination of mapping relationship: 

We use position-based method to determine which v will be mapped from a certain p. The mapping 

order should be 𝑣 → 𝑝, and for each 𝑣 ∈ 𝑉 the mapping is unique which means one vertex can 

only be mapped to one particle (but one particle can have multiple vertices mapped to it). The 

method is to iterate through each 𝑣 ∈ 𝑉 and perform a distance check with each 𝑝 ∈ 𝑃 . If the 

distance from a certain 𝑣𝑖 ∈ 𝑉 to a certain 𝑝𝑗 ∈ 𝑃 is smaller than any other p then we will assign 

𝑣𝑖 to 𝑝𝑗. For each 𝑝𝑗 the system creates a mapping pool for recording all the surface vertices that 

are mapped to it. The pool contains one surface particle from physics mesh  𝑝, and a set of n number 

of (can be one or multiple) vertices from the rendering mesh 𝑉. We define this structure as a 

mapping group (𝑉 → 𝑝), or in a set form 𝑉 ∪ 𝑃, where 𝑉 = {𝑣1, 𝑣2 …𝑣𝑛} and 𝑃 = {𝑝}; n is the 

number of vertices that are mapped to particle p. Figure B.8.1 Vertices mapping to particle shows 

a 2D example of the mapping result from a fragment of the whole object, where {𝑣1, 𝑣2 …𝑣5} → 𝑝 

and 𝑣6 → 𝑝. 

 

Figure B.8.1 Vertices mapping to particle 
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The determination of weight distribution: 

For a given mapping group, we apply a distance-based method to assign a sort of weight value w 

to all elements (vertices) in the mapping group (𝑉 → 𝑝). Each individual vertex has a specific 

weight value that is not necessarily same to the value of other vertices. To determine w the weight 

value w of each vertex v to particle p. Firstly we will have to calculate all distances for each 𝑣 → 𝑝, 

therefore we have 

𝐷 = {𝑑(𝑣1, 𝑝), 𝑑(𝑣2, 𝑝) …𝑑(𝑣𝑛, 𝑝)} = {𝑑1, 𝑑2 …𝑑𝑛}, 

where 𝑑(𝑣, 𝑝) is the distance calculation denotation between v and p, and n is the total vertices in 

the mapping group. We then find the minimum  𝑑𝑖  in D. Then we set this   𝑑𝑖  as the unit 

displacement factor 𝛾. Then we have another set (R) of the ratio between each 𝑑𝑖 with 𝛾:  

𝑅 = {
𝑑1

𝛾⁄ ,
𝑑1

𝛾⁄ …
𝑑𝑛

𝛾⁄ } = {𝑟1, 𝑟2 …𝑟𝑛} 

As 𝛾 represents the minimum 𝑑 ∈ 𝐷 we know that for any 𝑟 ∈ 𝑅 we have 𝑟 ≥ 1 and there must 

be at least one 𝑟 = 1. We then need to apply a value we define as weight factor (k) to R to determine 

the degree of influence for each v. The weight factor k is a universal constant parameter throughout 

the whole process. It defines how much influence that related to the distance between vertex and 

particle will apply to the displacement of the vertex when a displacement of the particle is happened. 

The weight factor k has a value range of (0 ≤ 𝑘 ≤ 1) where 0 means fast influence (but not zero) 

change related to the distance change and 1 means no influence change related to the distance 

change. To ensure the surface is always properly attached to the physics mesh, the vertex with the 

minimum distance will always gain full influence from the particle displacement, which means that 

it will follow the particle to move in full distance and in same direction. Therefore the weight factor 

k will only apply to the rest of the vertices with an inverse ratio with each d, and should describe a 

displacement influence equal or less than the displacement of the vertices with the minimum 

distance. Therefore we have the equation to apply k to calculate weight influence w: 

𝑤 = −
(𝑟 − 1)

𝑟 + 1
(1 − 𝑘) + 1 

 Therefore, following the equation we can determine each weight influence w by: 

𝑊 = {−
(𝑟1 − 1)

𝑟1 + 1
(1 − 𝑘) + 1,−

(𝑟2 − 1)

𝑟2 + 1
(1 − 𝑘) + 1…−

(𝑟3 − 1)

𝑟3 + 1
(1 − 𝑘) + 1}

= {𝑤1, 𝑤2 …𝑤𝑛} 
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For example, on the action of a collision on the object that causes surface particle p to have a 

displacement ∆𝑙 , then the displacement L for each vertex will be: 

𝐿 = 𝑊 ∆𝑙⃗⃗  ⃗ = {𝑤1∆𝑙 ,𝑤2∆𝑙 …𝑤𝑛∆𝑙 } = {𝑙1, 𝑙2 … 𝑙𝑛} 

Therefore, for each vertex, its weight factor is different and related to the distance to the particle 

that it is mapped to. The longer the distance is, the less influence will occur when displacement 

happens to the particle. The formula uses vector with the same unit vector, which implies the 

movements for all the vertices are in the same as the movement of the particle. Figure B.8.2 

Example of vertex displacement based on weighted mapping method shows how the deformation of 

the mapped vertices v1 to v5 looks when displacement occurs to the particle p. By applying a 

weighted mapping method we can ensure the deformation of the surface is not too “stiff” but has a 

natural appearance. However, the vertices can form an unwanted pattern after a certain time of 

deformation. 

 

Figure B.8.2 Example of vertex displacement based on weighted mapping method 

 


