
A Framework for Automatic Physics Model

Generation and Real-time Simulation of

Permanent Deformable Objects

Nan Wei BCS. (Hons)

A thesis submitted in total fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Engineering and Mathematical sciences

College of Science, Health and Engineering

La Trobe University

Victoria, Australia

October 2020

I

Acknowledgements

I would like to acknowledgement La Trobe University and the Department of Computer Science

and Information Technology for offering me such a fantastic opportunity to conduct my study and

research.

I would like to acknowledgement other postgraduate students from La Trobe University and the

RED (Research Education and Development) team. They all offer excellent communication and

cutting-edge information in a broad range of fields which gives me inspiration for my research.

When I was under great stress, they also offered help.

I would like to thank the Dean and Staff from GRS who offers me extra time and resources and

the continuing support to my research when my life circumstance changed dramatically.

I would like to give special thanks to my supervisor Dr. Torab Torabi who is very knowledgeable,

supportive and kind, and willing to supervise me when my study was meeting an unforeseen. He

brought me great insight into thinking scientifically and guided me through my research with proper

methodology.

I would also like to acknowledge my first supervisor, Dr. Join Rankin, though has no longer a

member of the university and left unnoticed. He offers me a lot of technical help for finding my

research topic in the first place.

Last but not least, I would like to thank my parents, my dear Helen and Victoria who always

encourage and support me during this very long journey and thanks for them never lose faith on me,

this thesis is a gift to all of you.

This thesis is finished during a very difficult time when the whole world is facing the most critical

challenge in recent history: the coronavirus (COVID-19). The future is a huge unknown to us. I am

grateful for all the people that are doing hard work to keep us safe and can still conduct everyday

activity like writing my thesis. I thank for all the support, and I wish everyone all the best.

II

Statement of Authorship

Except where reference is made in the text of the thesis, this thesis contains no material published

elsewhere or extracted in whole or in part from a thesis accepted for the award of any other degree

or diploma. No other person's work has been used without due acknowledgment in the main text of

the thesis. This thesis has not been submitted for the award of any degree or diploma in any other

tertiary institution.

Nan Wei

15th October 2020

III

Publication

Wei, N., and Torabi, T., “A particle-Constraint based method for permanent deformable object

simulation in real-time.” Submitted for review to The Journal of Computer Graphics Techniques on

15/10/2020.

IV

This work was supported by an Australian Government Research Training Program Scholarship

V

Abstract

Physics simulation of deformable objects in real-time plays a very important role in computer

graphics. It has been widely used in interactive applications, and the demand for faster and more

realistic solution is increasing. Moreover, the development process of such applications and the

creation of 3D content with physics properties has been industrialised. Such process involves a

development team with multiple roles of domain experts from different disciplines. In this thesis,

we have proposed a new particle-constraint based model and an impulse-based method for

modelling and simulating permanent deformable object in real-time. The new method focuses on

simulating the behaviour of the object rather than accurately following physics law. In addition, the

method offers a non-elastic model. Therefore, it eliminates numerical instability, which is a main

issue in force-based method. It also maintains full degree of freedom compared to other behaviour-

based simulation methods. The simulation has low computational cost and is numerically stable.

The solution is adaptive to different forms of material and can be used in different scenarios in

different scales. We have also designed a new framework with a simplified workflow based on our

method. The framework aims to assist domain experts to develop interactive applications by using

our modelling and simulation method with minimum effort. The framework offers a complete and

automatic solution for modelling and simulation. It reduces unnecessary workloads and

communication for domain experts. We conducted a sequence of tests for evaluation by using

different types of data set in different scales. The evaluation has demonstrated that the proposed

framework and the outcomes of the simulation meet the expectation.

VI

Table of Content

Acknowledgements ... I

Statement of Authorship... II

Abstract .. V

List of figures .. XII

1. Introduction ...1

1.1 A brief glance into physics simulation of deformable objects3

1.2 Research scope ...4

1.3 Aim and Contribution ..10

1.4 Thesis Structure .. 11

2 Background and Literature Review ...12

2.1 Introduction of physics simulation in computer graphics ..13

2.1.1 Early days of deformable object physics simulation in computer graphics14

2.2 Key concepts ..15

2.2.1 Overall workflow of Physics simulation ..15

2.2.2 Object modelling and its mathematical explanation ...17

2.2.2.1 Object geometry modelling and rendering Mesh18

2.2.2.2 Physics modelling and Physics mesh ..19

2.2.2.3 The Collision detection mesh ..21

2.2.2.4 Mesh relationship ..21

2.2.2.5 Physics mesh generation and surface mesh manipulation22

2.2.3 Time, forces and external disturbance analysis ..24

2.2.4 Collision detection and collision response ...25

2.2.5 Rigid body vs. Soft body, Temporary and Permanent deformation, Elastic and

Plastic deformation. ..26

Elastic deformation vs. Plastic deformation, stress and strain27

Metal-like object and permanent deformation ..28

2.2.6 Solving the deformation of continuum objects: The continuous partial

differential equation and its discretization approaches ...29

2.2.7 Time integration..30

2.2.7.1 The use of time integration method in physics simulation30

2.2.7.2 Time integration in real-time application ..33

2.2.7.3 Numerical stability ..34

2.2.7.4 Implicit and Explicit methods for time integration36

2.2.8 Real-time physics simulation in application development41

2.3 Introduction and literature survey to existing methods ..42

2.3.1 Particle Spring System..43

2.3.1.1 Key Concepts ..43

2.3.1.2 Related early works ...44

2.3.1.3 Improvements of Particle-Spring System ..45

2.3.1.4 Other applications of Particle-Spring System47

2.3.2 Position-Based Dynamics ...48

2.3.2.1 Related works ..48

2.3.2.2 Difference between force-based and position-based simulation49

VII

2.3.3 Finite Element Method ...50

2.3.3.1 Related works ..51

2.3.3.2 FEM in real-time physics simulation ..53

2.3.4 Other methods for real-time deformable object simulation54

2.3.5 Computational complexity analysis for main simulation methods55

2.3.5.1 The number of elements in the system ..55

2.3.5.2 The Connection/Node pattern between elements56

2.3.5.3 The calculation involved in solving one element and one

node/connection ..57

2.3.5.4 Time complexity analysis for parallel computing58

2.3.5.5 Memory usage ...59

2.4 Discussion and Summary of Gap Analysis ..59

2.4.1 Current stage of deformable object simulation ...59

2.4.2 Our concerns regarding the deformable object simulation60

2.4.3 Comparison and discussion of key methods ...61

2.4.4 Summary of Gap Analysis and drawbacks ...64

3 Research Problem and Thesis Proposal ...66

3.1 Research problem overview ...67

3.1.1 The demands for deformable objects simulation in real-time67

3.1.2 Current process for creating 3D objects with physics proprieties68

3.2 Research Scope ..70

3.3 Overview of the Gaps and Short Comings ...70

3.3.1 The issue with real-time deformable object simulation70

3.3.2 The problem of the pipeline of creating and simulating deformable objects ...72

3.3.3 Lack of permanent deformation simulation in real-time application73

3.3.4 Research Target ..74

3.4 A new solution for modelling and simulating permanent deformable objects in real-

time ..75

3.4.1 A particle-constraint based modelling ..75

3.4.2 A physics structure based on Body-Face-Centred Cubic (BFCC)76

3.4.3 An Impulse-based Real-time Permanent deformable simulation76

3.4.3.1 Difference between Impulse-based and Position-based77

3.4.3.2 Difference between our Impulse-Based Real-time Permanent

deformable simulation model and the Impulse-Based Dynamic.............................77

3.5 A Framework for Permanent Deformable Object Modelling and Simulation78

3.5.1 Purpose ...78

3.5.2 Target Users (Framework involved professional stakeholders)79

3.5.3 Framework Functions and Architecture..79

3.6 Implementation Plan ..80

3.6.1 Automatic Physics Modelling Interface (APMI) ..80

3.6.2 The PanGu Physics Simulator ..81

3.7 Plan for Evaluation ...82

3.7.1 Evaluation Matrix ...82

3.7.2 Design of the Test Cases ...82

3.8 Proposal Summary ...83

4 A Framework for REal-time Deformable Object Modelling and Simulation (FREDOMS) ...85

VIII

4.1 An overview of FREDOMS workflow ..86

A note on Pre-calculation for Real-Time Simulation ..89

4.2 Automatic modelling method for particle-based physics model89

4.2.1 A Particle-Based Modelling ..91

4.2.2 Constraint ...94

4.2.3 Reverse-data interpretation ...95

4.2.4 Rendering mesh proceeding ...95

4.2.4.1 Triangle-based mesh ..95

4.2.4.2 Loading the geometry (rendering mesh) ...96

4.2.4.3 Mesh condition expectation ...97

4.2.5 Particle-Constraint Structure Generation Based on BFCC Unit97

4.2.5.1 Physics mesh structure requirements for FREDOMS97

4.2.5.2 Determine the structure generation method99

4.2.5.3 Define bounding volume by generating Axis-Aligned Bounding Box

(AABB) ...103

4.2.6 Physics structure and surface mesh generation ..104

4.2.6.1 Particle distribution by AABB subdivision104

4.2.6.2 BFCC Grid-based surface mapping ..107

4.2.6.3 Constraint-mesh intersection sampling ...108

4.2.6.4 Final surface regeneration and the mesh construction 113

4.2.6.5 Advantage of using BFCC-based grid mapping 114

4.2.7 A Weighted deformation mapping method for rendering mesh 115

4.2.8 Particle proprieties and Mass assignment ... 117

4.2.9 Constraints, parameters and material properties ... 119

4.2.9.1 Constraints behaviour .. 119

4.2.9.2 FREDOMS Constraint Parameters ..121

4.2.9.3 Purpose and advantage of the FREDOMS constraint122

4.2.9.4 Discussion of simulating elastic-plastic behaviour for metal-like

objects ...123

4.2.10 Global parameters for FREDOMS physics mesh ...124

4.2.11 AABB frame referencing..125

4.3 Fast simulation of permanent deformable material for solid objects in real-time ..126

4.3.1 Overview of the physics simulation in FREDOMS126

4.3.2 Collision detection ..127

4.3.3 Collision response of the deformable object ..128

4.3.4 Performing object deformation ...133

4.3.4.1 A network structure for connecting particles by constraints134

4.3.4.2 Impulse distribution ...135

4.3.4.3 Constraint satisfaction ...137

4.3.5 Finishing the deformation for the current cycle ...139

4.4 User input data and User Interface (UI) design ..140

4.4.1 Common workflow ...140

4.4.2 End-user definition ...142

4.4.3 The scope of user input ...143

4.4.4 The scope of system output ..144

4.4.5 Framework/ APMI User Workflow ..145

IX

4.5 Summary ..145

5 Implementation of FREDOMS framework ...147

5.1 An overview of the implementation of FREDOMS ...148

5.1.1 Functionality components of FREDOMS ..148

5.1.2 Review of FREDOMS workflow in relation to functionalities149

5.1.3 Functional modules for APMFC...150

5.1.4 Functional modules for DOSFC ...151

5.1.5 Functional modules for User interface and feedback151

5.1.6 Summary of functional components in FREDOMS152

5.2 Physics data types and structures in FREDOMS ...154

5.2.1 Defining elementary physical primitive types ..154

5.2.1.1 Particle ...154

5.2.1.2 Constraint ..155

5.2.1.3 Triangle ...156

5.2.1.4 BFCC Cube ...156

5.2.1.5 Rendering mesh- Physics mesh Mapping (RPM) pair157

5.2.2 Data structures ..158

5.2.3 Object and scene level structures ..158

5.2.3.1 The Axis-Aligned Bounding Box (AABB)159

5.2.3.2 Physics mesh ...159

5.2.3.3 Physics mesh manager...159

5.2.4 The data type hierarchy summary ..160

5.3 Implementation of Physics Modelling Phase (APMFC) ..161

5.3.1 Generating BFCC structure ..161

5.3.1.1 Generating AABB ...161

5.3.1.2 Generating BFCC structure for cube units164

5.3.1.3 Generating constraints ...165

5.3.2 Generating Surface Mesh ...166

5.3.2.1 Identifying inside/outside particles ...166

5.3.2.2 Identifying intersected constraints ...167

5.3.2.3 Adjusting particle positions ...168

5.3.2.4 Generating surface triangles ..170

5.3.3 Mapping from rendering mesh to physics mesh ...171

5.3.4 Assigning constraint and global attribute values ..172

5.4 Implementation of Real-time deformable object simulation (DOSFC)173

5.4.1 Collision detection ..173

5.4.1.1 Broad phase collision detection ...173

5.4.1.2 Narrow phase collision detection ..175

5.4.2 Impulse distribution ..176

5.4.2.1 Dynamic generation of distribution network structure176

5.4.2.2 Dynamic impulse distribution through the network177

5.4.2.3 Constraint condition satisfaction ...179

5.5 Physics data I/O Procedure ..181

5.5.1 Input file format and data presentation ...181

5.5.2 Output data structure and file format for the physics model182

5.6 APMI User Interfaces ..184

X

5.6.1 Overview of User Interface Design ..184

5.6.2 Data import and export ...184

5.6.3 Rendering mesh view window ...185

5.6.4 Attribute information display panel ..186

5.6.5 Parameter input and review panels ...186

5.6.6 Model view options toggle ...188

5.6.7 Real-time simulation test scene ..189

5.7 Summary ..189

6 Test Cases and Results Analysis ..191

6.1 Material deformation behaviour testing ...192

6.1.1 The Metal bar Case ...192

6.1.1.1 Modelling ..193

6.1.1.2 Case discussion for metal bar modelling ...198

6.1.1.3 Real-time material behaviour testing for metal bar199

6.1.1.4 Case Summary ... 211

6.1.2 The Metal Plate Case .. 211

6.1.2.1 Metal Plate Modelling ...212

6.1.2.2 Testing sequence introduction ...214

6.1.2.3 First round test with default constraint parameters215

6.1.2.4 Second-round testing with low velocity distribution ratio217

6.1.2.5 Third and fourth-round testing for material rigidity testing219

6.1.2.6 Material properties and constraint parameters221

6.1.2.7 The “bullet hole” effect – Handling large impact226

6.1.2.8 Metal plate Case summary ..227

6.1.3 The Torus case ..228

6.1.3.1 Torus Modelling ..229

6.1.3.2 Testing with different parameter settings ..231

6.1.3.3 Torus test case summary ..242

6.2 FREDOMS workflow case study: Alex’s Car modelling task243

6.2.1 Scenario overview ..243

6.2.2 Breaking down the tasks ...244

6.2.3 Physics modelling phase ...244

6.2.4 Real-time testing phase ...250

6.2.5 Case Summary ..257

6.3 Simulation Speed Test and Evaluation ...258

6.3.1 FREDOMS system speed-wise performance factors258

6.3.2 Speed Test Case Design ..259

6.3.3 Speed Test Results ..260

6.3.4 Speed performance Evaluation ...262

6.4 Summary ..266

6.4.1 Simulation performance ...267

6.4.2 Comparison with Position-Based Dynamics (PBD)268

6.4.2.1 Computational complexity comparison ...268

6.4.2.2 Performance comparison ...270

6.4.3 Conclusion ..272

7 Discussion and Conclusion ...273

XI

7.1 Summary of contribution ...273

7.2 Applications ...274

7.3 Future works...274

References ...278

Appendix A. Collision Detection in FREDOMS ..284

A.1 A two-phase approach for collision detection ..284

A.2 Broad Phase Collision detection for multiple objects in the scene by using Dynamic

Bounding Volume Tree (DBVT) ...285

Ray-tracing and collision detection ..287

A.2.1 Construction of BVH ..288

A.2.2 Generation of BVH ...290

A.3 Narrow Phase collision detection by using octree and ray-casting293

A.3.1 AABB subdivision by octree ..293

A.3.2 Dynamic collision detection ...296

A.3.3 Ray-casting ...297

A.3.4 Find the ray-triangle intersection ..299

A.3.5 Collision response for the incoming object ..300

Appendix B An alternative approach for physics mesh modelling ..302

B.1 Mesh quality expectation ...302

B.2 Overall mesh quality analysis ..304

B.3 Data analysis and feedback ..306

B.4 A one-time particle structure generation and surface remeshing307

B.5 Define bounding volume by generating Axis-Aligned Bounding Box (AABB) ...309

B.6 Grid generation...310

B.7 Surface vertex re-distribution ...320

B.8 A weighted vertex mapping method form physics mesh to raw mesh327

XII

List of figures

Figure 1.2.1 Relationship among different simulation types ..6

Figure 1.2.2 The hierarchy of the topics in computer graphics and our research scope selection8

Figure 2.2.1 Workflow of a standard physics simulation for deformable object16

Figure 2.2.2 an example of a 3D rendering mesh of a cube ..18

Figure 2.2.3. A 2D example of a space approximation and discretisation20

Figure 2.2.4. Different modelling for the same object ..20

Figure 2.2.5 Mesh type relationship ..21

Figure 2.2.6 Example of vertices re-mapping ...23

Figure 2.2.7 Metal-like object behaviour related to stress and strain level28

Figure 2.2.8 Execution pipeline in interactive applications with physics simulation34

Figure 2.3.1 Comparison of element manipulation process between PSS and PBD50

Figure 3.1.1 General workflow to create an object with physics properties68

Figure 4.1.1. The FREDOMS workflow ...88

Figure 4.2.1 Modelling workflow ...90

Figure 4.2.2 Priority for modelling condition ...91

Figure 4.2.3 A triangle face ...95

Figure 4.2.4 A quadrangle face ...96

Figure 4.2.5 A polygon face ..96

Figure 4.2.6 Symmetric and asymmetric particle-constraint structures ..98

Figure 4.2.7 Symmetric and asymmetric structure unit in a mesh ..99

Figure 4.2.8 Illustration of BCC and FCC ..100

Figure 4.2.9 BCC-based particle-constraint structure ...101

Figure 4.2.10 BFCC structure ...102

Figure 4.2.11 BFCC-based particle-constraint structure ...102

Figure 4.2.12 Particle-Constraint connection types ..103

Figure 4.2.13 An example of AABB box ..104

Figure 4.2.14 AABB subdivision by using BFCC at density = 2 ...105

Figure 4.2.15 Rendering mesh overlay with the grid ..109

Figure 4.2.16 Identify inner particles ..109

Figure 4.2.17 Constraint-mesh intersection .. 110

Figure 4.2.18 Surface particle position adjustment ... 111

Figure 4.2.19 BFCC structure change after the particle mapping ... 111

Figure 4.2.20 Example of single particle to multiple v weighted mapping 116

Figure 4.2.21 Vertices mapping to particle ... 116

Figure 4.2.22 Single level and multi-level mesh construction .. 119

Figure 4.2.23 Stress-strain curve for metal-like material ..120

Figure 4.2.24 Constraints behaviour in FREDOMS ...120

Figure 4.3.1 Physics simulation workflow for FREDOMS ..127

Figure 4.3.2 Global and Local coordinate system of the object ..128

Figure 4.3.3 Object collision and the exchange of momentum between two objects129

Figure 4.3.4 Contact triangle...131

Figure 4.3.5 Finding the distance-based weight for each particle ...131

Figure 4.3.6 Object's moving direction after collision ..132

XIII

Figure 4.3.7 Incoming velocity perpendicular to the contact triangle ..133

Figure 4.3.8 Incoming velocity angled to the contact triangle ..133

Figure 4.3.9 Distribution tree construction based on network structure134

Figure 4.3.10 Top-down view of the distribution tree ...135

Figure 4.3.11 Particle displacement projection with satisfying constraint condition137

Figure 4.3.12 Particle displacement projection dissatisfying the constraint condition (distance too

close) ...138

Figure 4.3.13 Particle displacement projection dissatisfying the constraint condition (distance too

large) ...138

Figure 4.3.14 A step by step illustration of repositioning the particles based on constraint conditions

 ..139

Figure 4.4.1 A general workflow for creating a graphical interactive application142

Figure 4.4.2 The flow of using the APMI user interface ...145

Figure 5.1.1. Component relationship ...149

Figure 5.1.2 Overview of functional components in FREDOMS ...153

Figure 5.2.1 Physics model data type hierarchy ...160

Figure 5.3.1 AABB Generation...162

Figure 5.3.2 Corner particle distribution ...163

Figure 5.3.3 Cube unit generation ...163

Figure 5.3.4 Centre particle generation ...164

Figure 5.3.5 Face particle generation ..164

Figure 5.3.6 Particle cloud ..165

Figure 5.3.7 Particle and constraint structure of a complete BFCC formation166

Figure 5.3.8 Result of particle inclusion check ...167

Figure 5.3.9 Inside particle with rendering mesh ..167

Figure 5.3.10 Intersected constraint check ..168

Figure 5.3.11 Result of particle position adjustment based on constraint-mesh intersection169

Figure 5.3.12 Physics surface mesh with d = 2 ...171

Figure 5.6.1 3D model view..185

Figure 5.6.2 Wireframe view ..185

Figure 5.6.3 Assembly popup input panels ...188

Figure 6.1.1 Metal bar Raw mesh with vertices and triangles ..194

Figure 6.1.2 AABB generation for the metal bar ..194

Figure 6.1.3 Particle distribution for the bar with cube density = 1 ..195

Figure 6.1.4 Particle distribution for the bar with cube density = 2 ..195

Figure 6.1.5 Surface mesh when density = 1 ..196

Figure 6.1.6 Surface mesh when density = 2 ..197

Figure 6.1.7 Bending deformation after 1st strike by using default configuration - rendering mesh

 ..200

Figure 6.1.8 Bending deformation after 1st strike by using default configuration - physics mesh

 ..200

Figure 6.1.9 Bending deformation after 2nd strike by using default configuration - rendering mesh

 ..201

Figure 6.1.10 Bending deformation after 2nd strike by using default configuration - physics mesh

 ..202

Figure 6.1.11 Compressing test initial state ..202

XIV

Figure 6.1.12 Compressing test 1st strike ...203

Figure 6.1.13 Compressing test 2nd strike ..203

Figure 6.1.14 Close view of compressing part - rendering mesh ..204

Figure 6.1.15 Close view of compressing part - physics mesh ...205

Figure 6.1.16 Close view of second round compressing testing – Rendering mesh205

Figure 6.1.17 Close view of second round compressing test - Physics mesh206

Figure 6.1.18 Twisting test preparation ...207

Figure 6.1.19 Twisting simulation with density = 2 ..208

Figure 6.1.20 Twisting test in progress - Physics mesh view..209

Figure 6.1.21 Twisting test in progress - Rendering mesh view ...209

Figure 6.1.22 Final permanent twisting result ..210

Figure 6.1.23 Twisted structure with collision deformation ...210

Figure 6.1.24 Rendering mesh visual presentation of Metal Plate ..213

Figure 6.1.25 Metal Plate Physics mesh at rest state ..214

Figure 6.1.26 Testing sequence illustration for Metal Plate Case ...215

Figure 6.1.27 First round metal plate testing sequence 1-4: Front View216

Figure 6.1.28 First round metal plate testing sequence 1-4: Back View217

Figure 6.1.29 Second round metal plate testing sequence 1-4: Front View218

Figure 6.1.30 Second round metal plate testing sequence 1-4: Back View219

Figure 6.1.31 Third-round metal plate testing front and back view after 10 impacts220

Figure 6.1.32 Fourth round metal plate testing front and back view after 10 impacts221

Figure 6.1.33 Material simulation - Iron ...223

Figure 6.1.34 Material simulation - Steel..223

Figure 6.1.35 Material simulation - Aluminium ...224

Figure 6.1.36 Material simulation - Copper ..224

Figure 6.1.37Material simulation - Titanium ..225

Figure 6.1.38 Metal Plate Bullet Hole test result ..227

Figure 6.1.39 The torus object ..228

Figure 6.1.40 Physics modelling visualisation for torus object ..230

Figure 6.1.41 Torus dropping ball test with default parameter settings ..232

Figure 6.1.42 Sideway shooting test by using default parameter settings233

Figure 6.1.43 Torus dropping ball test by using iron parameter ...234

Figure 6.1.44 Torus ball dropping test with default parameter and impact factor = 0.5236

Figure 6.1.45 Torus sideway shooting test with default parameter and impact factor = 0.5237

Figure 6.1.46 Iron configuration test - ball dropping ..238

Figure 6.1.47 Iron configuration test - sideway shooting ...238

Figure 6.1.48 Steel configuration test - ball dropping ..239

Figure 6.1.49 Steel configuration test – sideway shooting ...239

Figure 6.1.50 Copper configuration test - ball dropping ...240

Figure 6.1.51 Copper configuration test – sideway shooting ..240

Figure 6.1.52 Titanium configuration test - ball dropping ..241

Figure 6.1.53 Titanium configuration test – sideway shooting ...241

Figure 6.2.1 File explorer interface ...245

Figure 6.2.2 Car model - Rendering mesh view ...245

Figure 6.2.3 Display options for rendering mesh ..246

Figure 6.2.4 Modelling initial conditions input ..246

XV

Figure 6.2.5 Physics material attribute configuration interface ..247

Figure 6.2.6 Preset interface ...248

Figure 6.2.7 Fragment of a sample preset configuration file ..248

Figure 6.2.8 Advanced physics attribute setting interface ..249

Figure 6.2.9 Commencing real-time testing ..250

Figure 6.2.10 Car body section for physics attribute testing ...251

Figure 6.2.11 Model display options ...251

Figure 6.2.12 Physics collision mesh ..252

Figure 6.2.13 Physics mesh with AABB and particles ...252

Figure 6.2.14 Physics surface mesh wireframe triangle disabled ...253

Figure 6.2.15 Cube unit and constraints structure...253

Figure 6.2.16 Ball-dropping test for car model ...254

Figure 6.2.17 Car deformation: left side and top collision ...254

Figure 6.2.18 Car deformation: left side and top collision, rear view...255

Figure 6.2.19 Car deformation: front and top collision ..255

Figure 6.2.20 Car deformation: front and top collision, side view ...256

Figure 6.2.21 Physics Model Export interface ..256

Figure 6.3.1 Constraint number and constraint update speed relationship262

Figure 6.3.2 Cube density and constraint update speed relationship ..262

Figure 6.3.3 Relation between constraint number and deformation simulation speed263

Figure 6.3.4 Relation between cube density and deformation simulation speed264

Figure 6.3.5 Relation between cube number and constraint update speed264

Figure 6.3.6 Relation between cube number and deformation simulation speed..........................265

Figure A.2.1 Example of Space-based approach vs. Object (face) volume-based approach286

Figure A.2.2 A Bounding Volume Hierarchy ..287

Figure A.2.3 Sweep and prune method for quickly find AABB inclusion290

Figure A.2.4 The Generation of BVH ...291

Figure A.2.5 Final Generation of AABB tree ...292

Figure A.2.6 BVH structure ..292

Figure A.3.1 Assigning Triangles to octree nodes ...294

Figure A.3.2 Cell refinement ...295

Figure A.3.3 AABB subdivision by octree ...295

Figure A.3.4 Collision event for two solid objects..296

Figure A.3.5 Octant-based ray casting ..298

Figure A.3.6 Object rotation with AABB..298

Figure A.3.7 Sphere collider for rotating object ...298

Figure A.3.8 AABB Bounding sphere collider based ray casting ...299

Figure A.3.9 Ray-triangle intersection by using octree ...300

Figure B.1.1 Example of quality mesh ...303

Figure B.1.2 Example of good and bad smoothness ...304

Figure B.3.1 Flowchart for mesh quality check ..307

Figure B.6.1 Example of grid generation order based on AABB ... 311

Figure B.6.2 Example of element group ...312

Figure B.6.3 Illustration of layer from a front-back view ...313

Figure B.6.4 Illustration of unequal edge length in tetrahedron based grid314

Figure B.6.5 Height for tetrahedron ..315

XVI

Figure B.6.6 A 2D example of grid generated based on AABB Box ..317

Figure B.6.7 Top-down view (x-z plane) of the grid ..318

Figure B.6.8 Front-back view (x-y plane) of the grid ...319

Figure B.6.9 Side view (left-right, z-y plane) of the grid ...319

Figure B.6.10 Example of grid goes over AABB ...319

Figure B.7.1 Grid overlays with surface mesh ..320

Figure B.7.2 Two cycles of manipulation range. ..321

Figure B.7.3 Vertex merge operation ..322

Figure B.7.4 Cases of distance (d) between V and P ..324

Figure B.7.5 Mesh after vertex manipulation ...325

Figure B.7.6 Steps to handle large edges and triangles ...326

Figure B.8.1 Vertices mapping to particle ...328

Figure B.8.2 Example of vertex displacement based on weighted mapping method330

XVII

List of tables

Table 1.2.1 Differences between offline simulation and real-time simulation in short5

Table 1.2.2 Attributes and differences between Rigid Body Simulation and Deformable Object

Simulation ...5

Table 1.2.3 A list of different type of objects in deformation simulation and their attributes7

Table 2.2.1 Comparison of explicit and implicit integration method ..41

Table 2.4.1 Comparison of PSS, FEM and PBD ...62

Table 3.7.1 Test case summary in relation to the evaluation matrix ...83

Table 4.2.1 Comparison of Particle based modelling and FEM based modelling93

Table 4.2.2 Constraint length and number for a single BFCC unit ...103

Table 4.2.3 Constraint parameters ...122

Table 4.2.4 Constraint behaviour and conditions ..122

Table 4.4.1 User Input Overview ..143

Table 4.4.2 System output overview ...144

Table 5.2.1 Particle primitive type attributes ..154

Table 5.2.2 Constraint Type Attributes..155

Table 5.2.3 Triangle Attributes ..156

Table 5.2.4 Cube Primitive Attributes ...157

Table 5.2.5 RPM pair attributes ..157

Table 5.2.6 A list of important data structures ..158

Table 5.2.7 Physics mesh attributes list ..159

Table 5.2.8 Physics mesh manager attributes list ..160

Table 5.4.1 AABB data type attributes in DOSFC ..174

Table 5.5.1 Data information of physics model in FREDOMS ..182

Table 5.6.1 Display data list for rendering mesh panel ...186

Table 5.6.2 Display data list for physics mesh panel ..186

Table 5.6.3 Model display options for APMI ..189

Table 6.1.1 Scenario summary for Metal Bar Case...193

Table 6.1.2 Default parameter setting for metal bar case ..197

Table 6.1.3 Summary of structure data with different density values ...198

Table 6.1.4 Scenario summary for Metal Plate Case ..212

Table 6.1.5 Rendering mesh information for Metal Plate Object ...213

Table 6.1.6 Metal Plate Physics model information with density = 1 ...213

Table 6.1.7 Parameter setting for denting test ...218

Table 6.1.8 Third round testing parameter ..220

Table 6.1.9 Fourth round testing parameter ..221

Table 6.1.10 Parameters for different materials ..222

Table 6.1.11 Bullet Hole test parameter configuration ...226

Table 6.1.12 Scenario summary for Tours Case ..229

Table 6.1.13 Rendering mesh information for Tours Object ...229

Table 6.1.14 Torus object rendering mesh information overview with comparison to the metal plate

 ..230

Table 6.1.15 AABB size for different objects in modelling unit ...235

Table 6.3.1 Simulation speed test with distribution factor = 0.5 ...261

XVIII

Table 6.3.2 Simulation speed test with distribution factor = 0.8 ...261

Table 6.4.1 Comparison between PBD and FREDOMS ...271

Table B.6.1 Coordinate terms in grid referencing and sampling ..317

1

1. Introduction

Physics simulation is an important topic in computer graphics. It creates visual effects based on

real-world physics laws and uses computational power to calculate and predict an object’s behaviour

over time. The result is presented visually to the audience as a sequence of animation with advanced

rendering techniques. Physics simulation combined with computer graphics can deliver a vivid and

realistic virtual experience to the audience while sets the artist free from manually creating all the

animated visual effects. Nowadays, physics simulation has become a standard solution in real-time

graphical applications for creating interactive experiences. Physics simulation offers an instant,

real-time feedback to the user interaction and delivers convincing visual outcomes.

However, the three biggest challenges for real-time physics simulation are the performance speed

issue, the simulation stability, and the realism of the result. Similar to detail rendering, the finer and

more accurate the simulation is, the slower it runs, and the more computational power is needed to

process the simulation. Employing accurate simulation method will achieve high stability of the

system and more realistic results, but in the meanwhile, the computational workload becomes heavy

which results in slow performance. Therefore, it is essential to perform a fast simulation while

keeping other features of the application behind the scene (e.g. logic function, user interaction,

graphics rendering) running smoothly. In other words, the trade-off between speed and accuracy

needs to be carefully balanced. Therefore, simulation methods need to be modified for real-time

environment in order to deliver faster calculation without losing too much accuracy. A typical

physics simulation process from implementation to execution involves physics modelling, collision

detection, force/impact analysis and response, and time integration.

In addition, the development of interactive applications are currently highly standardised and are in

large-scale production, which means that a large team of developers with different roles and

different expertise is required to develop a modern interactive application (e.g. training programs,

video games, educational applications). The workflow of such development is very sophisticated

and often over-complicated. The solution to this issue is to use more agile design-implementation

workflow or to employ more efficient communication approach.

2

In this thesis, we will look into a specific type of physics simulation, which is the simulation of

real-time permanent deformable objects. Such simulation shares the common issues with the

general deformable object simulation, such as speed-accuracy balance and system stability. It also

has its unique challenges like complex structure modelling and expensive computation, as

permanent deformable objects are often volumetric (solid). All the above issues bring concerns

regarding the real-time performance of the simulation. Therefore, such type of simulation is rarely

seen in real-time applications. We will also look into the working process for creating such objects

for application development, which involves separate yet connected tasks and different domain

experts.

We will review the above challenges and existing solutions and present our proposed approach to

address some of the current shortcomings. We will test and evaluate our solution to demonstrate if

our methods can deliver expected results, and the possible use of our solution in the field of

computer graphics.

This is the first Chapter and the introduction of the thesis. In Section 1.1, we will give a general

background introduction from a broader scope to introduce deformable object simulation. We will

define the purpose and the scope of our research topic in Section 1.2. In Section 1.3, we will

introduce our research target and give a brief presentation of our contribution to the research field.

Lastly, in Section 1.4, we will give an overview of the structure of this thesis.

3

1.1 A brief glance into physics simulation of deformable objects

Today, deformable object simulation has become a standard solution for creating artificial and

fictional scenes. Pioneered by Terzopoulos et al. [1] and Weil [2], deformable object simulation

quickly became a popular topic in the field of computer graphics. It delivers realistic results based

on physics laws and offers a powerful tool that can generate different visual effects. Below are some

applications of deformable object simulation in computer graphics:

1. Movies and animations: Nowadays, the demands of large-scale epic scenes regarding battle,

massive building/structure destruction and fantasy/science fiction visualisation are greatly

increased. The expectations of more realistic visual experiences are getting higher. In the old

days, these special effects are usually achieved by filming and editing techniques, props and

miniatures. These methods are time-consuming and costly and deliver results that can be easily

identified as artificial. Today, with the development of computer graphics and physics

simulations, most of these effects are done by computer simulation. This approach saves time

and budget and can deliver natural and realistic results.

2. Training programs: An example of such application is medical training. By employing

deformable object simulation in real-time combined with visual presentation, a program can be

developed to train surgeons to do operations, e.g. cutting through veins or muscles or skins.

This solution can provide a realistic and immersive experience and real-time feedback to the

trainee. It can replace real field training to some degree.

3. Engineering and material study: Deformation simulation in computer science was originally

developed because of this reason. It provides great support to the huge amount of calculations

in the engineering field and greatly reduced error made by human calculation. It has a very long

history of implementation and application in the engineering and material industry. Examples

could be engineers use the Finite Element Method (FEM) to analysis the force load for certain

parts of the building to determine the safety of the structure and their deformation. With

computer graphics, the simulation can also be visualised and presented as animation to give the

end-user a more intuitive perspective of the results.

4. Video games and other entertaining applications: Today, video game is a multi-billion

industry with around 2.69 billion active players around the world [3]. With the user demand

4

drives and the vast investment into the industry and the intense competition, the visual effects

in 3D video games are developing and improving at a fast pace. Destructible environments and

deformable objects in real-time video games are long-desired. It now becomes possible with

advanced physics simulation and rendering technique, and the development of powerful

modern hardware. Physics simulation in real-time is one of the key elements to deliver a

realistic and immersive visual experience to the players.

The application of deformable object simulation does not limit to the above area. With higher

computation power and new technology such as Virtual Reality (VR) and Augmented Reality (AR),

such simulation is not just a computation tool for experts and scientists anymore. It also offers

limitless potential for everyday use applications.

However, even with its promising results, today, the application of deformable object simulation in

real-time still faces a dilemma: On the one hand, it introduces realistic visual feedback that follows

the user’s interaction. On the other hand, it takes an extensive amount of computational power and

sometimes can compromise the stability of the whole system. Therefore, the use of deformable

object simulation is limited in real-time applications. And a lot of work has been putting in to find

better solutions to utilise deformable object simulation in real-time.

1.2 Research scope

Within the field of physics simulation in computer graphics, there are many sub-areas which serves

different aspects and different purposes and can fulfil one of many demands in computer graphics.

These sub-areas can be defined and separated into different branches from different applicable

perspective.

From the performance-realism point of view, the two main branches of physics simulation are

offline simulation and real-time simulation. From the physics material point of view, the two main

branches in the physics simulation are pure rigid body (object) simulation and deformable object

simulation.

Below, we have briefly introduced the differences and the attributes of these branches in Table 1.2.1

and Table 1.2.2.

5

 Offline simulation Real-time simulation

Main features and

concerns

Realistic and detailed graphics. Fast speed with low computational

resource consumption.

General use case Movies, animation. Large

scale simulation. Material and

structure analysis.

Real-time interactive application.

Video games.

Method example Finite Element Method (FEM) Particle-Spring System (PSS)

Technical

tendency

Detailed modelling and

accurate integration method.

Simplified modelling and fast time

integration method. Low numerical

error tolerance. Good system stability

and controllability.

Table 1.2.1 Differences between offline simulation and real-time simulation in short

 Rigid body simulation Deformable object simulation

Main features and

concerns

Large scale simulation. Fast

response. Only concerns

rotation and displacement of

the object.

Simulates deformation of soft object

and plastic object. Model and analysis

the structure and interaction of interior

materials and how it affects the exterior

appearance of the whole object.

General use case Large number of small objects.

Real-time interactive

applications. Video games.

Real-time interactive application.

Video games. Mostly in offline

simulation when a large scale scene is

needed.

Method example Collision detection and

collision response based on

displacement and rotation.

Finite Element Method (FEM), Particle

Spring System (PSS), Position-Based

Dynamics (PBD).

Technical

tendency

Fast collision detection and

response. Large-scale scene

performance. Also been used

in particle simulation.

Interior structure modelling and time

integration to determine the interaction

and displacement between discretised

parts. Numerical stability.

Table 1.2.2 Attributes and differences between Rigid Body Simulation and Deformable Object Simulation

6

The relationships of these four different types of simulation are not exclusive to each other but

overlapped. They can be combined together to form more specific sub-areas. The relationships and

the combination of the physics simulation types are presented in Figure 1.2.1:

Figure 1.2.1 Relationship among different simulation types

As shown in the figure, the four type of simulation overlaps into four more specific sub-domain of

the physics simulation. Our research that will be introduced in this thesis falls into a further sub-

domain of Real-time Simulation for Deformable Object. Real-time deformable object simulation

is mainly used in interactive applications such as video games and training program. It concerns

about delivering fast yet realistic deformation for objects in 3D scene. Unlike in engineering and

scientific simulation, where the results are taking very seriously and the outcome needs to be as

accurate as possible. Real-time deformable simulation only aims to deliver realism as a visual effect

instead of a precise prediction to the real-world physics. Therefore, certain modification and

simplification can be made to the method. The modelling is also much less detailed than in the

simulation that requires accuracy. In summary, real-time simulation of deformable objects offers an

approximated result. The degree of the approximation is based on the application requirement and

the controlling attributes.

Moreover, within the sub-area of real-time deformable object simulation, there are more specific

types of simulation, which are listed below in Table 1.2.1.

7

Object type Object main physics

attribute

Main simulation

behaviour

General approach

Cloth-like

Object

Object without thickness. A

2D sheet that can be

deformed in 3D space.

Bending, wrinkling,

cover on surface.

Particle-Spring

system

Shell-like

Object

Object without thickness. A

2D rigid body with bending

shapes in 3D space.

Fracture, breaking,

cracking pattern.

Pattern generation

algorithm. Particle

with constraint

system

Soft Body

(Elastic)

Elastically body with soft

material, the interior

structure tends to restore

itself to initial state.

Deformation after

external force or

collision and the

recovering process to

initial state.

FEM. Position Based

Dynamics. Particle-

Spring System

(occasionally)

Metal-like

Object

(Elastic-

Plastic)

Semi-rigid body with a

deformation threshold and a

deformation limitation.

Interior structure tends to

keep the deformation results.

Reshaping of the

object (deformation).

FEM. Particle-

Constraint method.

Table 1.2.3 A list of different type of objects in deformation simulation and their attributes

It is noticeable that Cloth-like Object is a special case of 2D Soft Body deforming in 3D space.

Based on our analysis (which will be introduced in the later chapters), we have found out that there

are gaps in the simulation for metal-like objects in real-time. We have taken special interests of our

research in this particular area. Metal-like object simulation, also often referred to as plastic

deformation simulation, is a small branch of the whole physics simulation. It includes the change

of the object’s shape based on its material property but still maintaining the structure integrity. And

it will eventually break when the force load exceeds its breaking point. We take our special interest

into the stage of deformation that we define as ‘permanent deformation’ when the changes occur to

the structure of the object will not be recovered. Permanent deformation can be used in destructible

scenes and terrains when non-recoverable deformation is needed. It does not have a high level of

interactive sensitivity as a soft body, which has a low threshold to the external influence. In summary,

Metal-like object has different physics material behaviours under different level of stress. The

8

behaviour of such object includes elastic, plastic and fracture. Our research focuses on the solution

for permanent deformation of the object. A hierarchy of the topics and the path to our topic is shown

in Figure 1.2.2 below.

Figure 1.2.2 The hierarchy of the topics in computer graphics and our research scope selection

It is worth mentioning that the above hierarchy does not fully capture all the sub-areas of computer

graphics and physic simulation. For example, the topic of computer graphics also includes

modelling, image processing, geometry analysis and manipulation, animation techniques and so on.

Physics simulation also involves water simulation, hair simulation, terrain simulation, particle

simulation, and other topics. We have only listed topics that are relative and have overlaps with our

9

research scope. The purpose of this hierarchy is to clarify and identify the boundary of our research

with similar topics, and a clear path for the analysis of the topic.

It is also important to note that in material study, the concept that refers to the opposite of elastic

deformation of soft body is called “plastic deformation” or “plastic object”. By definition, plastic

deformation is a permanent deformation when the stress applies to the object (or structure) exceeds

a certain degree and causes a none-recoverable change of the structure after the external force is

removed. Regular metal-like material has both elastic and plastic properties under different stress

level.

The study of the elastic material behaviour of continuum solid is the study of stress-strain

constitutive relation between the external force/impulse and its internal response to the external

disturbance. In computer graphics (and our research scope), the problem is simplified into linear

elastic deformation with the combination of Hooke’s law[4] (for analysing the force) and Newton’s

second law of motion (to determine the internal displacement of each element). The elastic-plastic

deformation falls into the same domain. The study of solid objects is often solved based on a pure-

rigid physics material assumption and uses the law of momentum from Newtonian mechanics. The

study of pure plastic object deformation, on the other hand, is the combination of stress-strain

based analysis and material hardness. However, when only deformation is considered and the later

recovery (elasticity) behaviour is ignored, the force analysis based on the constitutive law can be

largely simplified and even omitted. Only a one-time displacement of the object’s interior structure

needs to be considered, as the deformation is permanent from one single input.

In this thesis, we consider the term of Permanent Deformation and Plastic Deformation are

interchangeable. Some researchers also refer it as “elastic-plastic deformation” when describing a

metal-like object. We believe this definition indicates that the study of such deformation follows

the real-world law of physics. While our research only concentrates on the actual behaviour

simulation of the subject. Therefore the term “plastic deformation” can be misleading and

ambiguous in our case. Because it may (sometimes) imply that our method is to construct models

like Finite Element Method and expects the results to be accurate. Therefore, to distinguish the

difference, we have decided to use the term “Metal-like Object” and “Permanent Deformation”

in our research because the name defines the behaviour of the object rather than the material

property of the object.

10

1.3 Aim and Contribution

Today, permanent deformation based on real-time physics simulation is not commonly used in

interactive applications. Such effects are often carried out as fixed and pre-defined animation. There

are certain limitations like large-scale performance issue, complex modelling, special requirement

for the design, and heavy computation. The creation of a deformable object and its simulation is a

specific research topic, but application-wise it is a component of the whole development and

implementation process. It involves the knowledge and contribution from different types of experts.

In this thesis, we will propose an automatic modelling algorithm that can transfer a pre-created 3D

model into a physics model that is ready for particle-constraint based simulation. We will also

introduce a new simulation method with stable and fast time integration that uses our modelling as

input. To integrate and streamline these solutions, we have designed a framework to offer a

complete workflow with supporting application. It will help the experts from different domain

backgrounds to work seamlessly to create physics model and conduct real-time simulation.

Deformable object simulation in real-time has a major concern about the computation time and

numerical stability. Accuracy is not on the top priority (but still need to be reasonable). The

underlining rendering and modelling process is completely different from static mesh or rigid body

as the model (mesh) of deformable object is constantly changing. We are aiming to find an adaptive

solution by using our proposed particle-constraint based modelling method and impulse-based

distribution to determine and display the behaviour of the object.

Therefore, in summary, our research goal is to find a solution for adaptive modelling and fast

simulation of permanent deformation behaviour of metal-like objects in real-time scenarios,

and to find a complete set of solution from physics modelling of the object to a fast real-time

simulation that delivers the final visual effect with a high level of interactive experience. We

then integrate the above solutions into a framework that contains a set of tools to enable the

domain expert using our modelling and simulation method in an easy manner. Moreover, we

hope this thesis can become a useful review of the field of deformable object and will help

researchers from relative fields in the future.

11

1.4 Thesis Structure

We will present Chapter 2 as our introduction chapter of the topic with more detailed background

introduction. We will introduce basic concepts including general modelling, time integration and

the workflow of physics simulation. And we will introduce some most popular methods that are

currently used in deformable object simulation. In this chapter, we will also give a detailed review

of related literature and important previous works. At the end of this chapter, we will present a gap

analysis which leads to the research questions and specific drawbacks that we aim to address.

We will then cover a proposal to these research questions in Chapter 3. In this chapter, we will

present an in-depth discussion about the research questions and continue to narrow down our

direction for the topic; and we will then discuss possible approaches to solve the problem. The new

proposed method and framework will be discussed and justified.

In Chapter 4, we will give a detailed explanation of the proposed methods and the framework. It

involves three main topics: The automatic modelling method for our particle-constraint based

physics structure, the impulse-based permanent deformation simulation method, and the workflow

and interface design of our FREDOMS framework.

After the presentation of the proposed methodology, we will discuss the implementation details in

Chapter 5. Information will be given including solution components, key individual functionality

and interfaces, system design and workflow, data structure and underlying simulation mechanism.

The design of the whole system and the presentation of the user interface, the input/output flow will

also be explained.

In chapter 6, we will introduce our evaluation target and use five different test cases to evaluate

different aspects of our method and framework. The test cases will examine from simple geometry

to complex objects. The results will be presented in different forms and will be analysed to

determine how our method successfully offers a solution to the research question that we raised and

if the expected results are met.

Lastly, we will give conclusion of our work in Chapter 7. This will be a summary and discussion of

the outcome of the thesis and our contribution. In conclusion, we will discuss other possible

applications of our solution and potential research and advancement of our work in the future.

12

2 Background and Literature Review

We have given a general introduction to the research problem in deformable object simulation and

our research goals in the last chapter. In this chapter, we are going to give a more detailed

background introduction of real-time deformable object simulation in computer graphics and key

methods and their development. We will begin by giving a general introduction of the physics

simulation followed by a brief history of the field in Section 2.1.

In Section 2.2, we will cover the key concepts in physics simulation that are important to our

particular research topic, including modelling, force analysis, collision detection, time integration

and different types of deformable objects.

We will then present our literature survey of the important and relevant works in the deformable

object simulation field in Section 2.3. We will cover the works in three main approaches: The

particle spring system, the position-based dynamics, and the finite element method (FEM). A

summary of other methods in the field is also given at the end of the section.

In Section 0, we will summarise our findings from the literature survey, and give an evaluation and

analysis of the current solutions. We will then identify the key issues and shortcomings that can

specifically apply to our research target. And we will propose our solutions to these issues in the

next chapter.

13

2.1 Introduction of physics simulation in computer graphics

By definition, computer graphics in computer science is to use calculation power provided by

modern computer hardware (CPU, GPU) to render static and animated images on display equipment.

The origin of this technology can be dated back to 1950s [5]. The applications of computer graphics

has been widely used in the areas of entertaining, modelling, designing, human-machine interaction,

training, and data visualisation. With the recent rapid growth of computational power that is

benefited by the development of more capable hardware with advanced rendering technology,

computer graphics can now deliver very realistic visual effects to the audience. Computer graphics

nowadays has become one of the primary host and creation platform in the world of art.

Like any other forms of artwork, the display content in computer graphics needs to be created. In

the old days, all the contents within the animation are manually drawn (in 2D) or modelled (in 3D)

by the artists, which are very time consuming, as each frame (static image) of the animation were

done manually and separately. Later on, the developers were able to employ physics simulation

solutions into the animation creation with new computer-aid tools. Physics simulation, which uses

force-based analysis to calculate and approximate object behaviours based on physics law, has

become a great aid in computer graphics for creating visual effects of deformation and interaction

between particular objects.

It is worth mentioning that the first computer that ever made (or to be more specific as someone

may argue, the first “general purpose” digital electronic computer), ENIAC, was designed for

performing physics simulation [6]. Physics simulation in common sense is to give a mathematical

description and interpretation of the physical state of an object either imaginary or in the real world

(which are called modelling), and then predict its change of the state by any influence overtime

following the rule of the physics law. The purpose is to get an accurate prediction of what would

happen if the same case happens in the real world. Application of physics simulation can be

extended from general objects of the macro world to micro particles, atoms, fluids, and quantum

mechanics and so on.

In general, a physics simulation involves the following key steps: Physics modelling of the object(s),

time integration of the change of object states (shape, position, rotation, etc.), and responses to any

external interaction. Application of physics simulation is highly demanded as it is required in many

important domains like civil engineering, structure and material study, weapon development,

14

weather forecasting, and entertainment industry. It was then introduced into computer graphics to

deliver more realistic visual effects and better interactive experience in real-time application.

2.1.1 Early days of deformable object physics simulation in computer

graphics

The origin of the physics simulation in modern personal computer is dated back to 1980s, where

the early ideas and methods were introduced by Weil’s work [2] and Terzopoulos’ works [1, 7, 8].

At the time, the hardware could not offer sufficient computational power that is capable of

simulating and rendering large complex objects in real-time. Therefore, cloth-like objects, which is

considered to be the simplest case of an elastically deformable object, was chosen to be the research

topic in the early stage of the field.

Particle-spring system (PSS) was firstly introduced with explicit time integration method for

simulating cloth object. The method was computationally efficient, and modelling was simple due

to the object’s 2D nature. The result was also realistic at the time considering the limited hardware

capability. However, the initial particle-spring system has its drawbacks. The bottleneck of the

simulation (other than hardware) was the time integration method that limits the size of the time

step and leads to performance speed issue (small time steps leads to heavy computational workloads)

and stability issue (calculation error accumulation introduces numerical instability such as over-

elasticity).

In the late 1990s, Baraff et al. [9] proposed a method that can adapt large time steps for cloth

simulation. This breakthrough greatly improved the simulation performance in elastic system as

well as the system stability. Fast time integration with modified spring constraints and other new

modelling arrangements transformed the Particle-Spring System to the first practical method for

real-time deformable object simulation.

Meanwhile, with the development of new rendering technology and hardware improvements,

physics simulation becomes more and more popular in real-time applications in computer graphics.

Many other methods such as Finite Element Method [10] and Particle Based Method [11], which

were already popular in other areas, was then introduced to simulate various types of deformable

objects. The purpose of computer graphics is to generate visual effects rather than deliver accurate

simulation results, therefore new method such as Position-Based Dynamics[12] and shape matching

15

method [13] which concentrate on the appearance of realism were developed.

2.2 Key concepts

Deformable object simulation in general is a complex task. It involves physics modelling of the

object, physics (material) property attribute setting, external force analysis and response, and time

integration for the change of the structure state. These key concepts are essential components for

all different simulation types and methods.

It is also important to highlight the differences between different types of objects and different types

of simulations. We have presented a general introduction of these topics in Chapter 1. In this section,

we will give a more detailed explanation for each concept in this section.

2.2.1 Overall workflow of Physics simulation

The working process of creating a physics model and conducting simulation accordingly is highly

standardised today. The workflow takes several steps and follows a similar process regardless of

the simulation object and the simulation method. An overall representation of this process is shown

below in Figure 2.2.1.

The diagram presents a summary of the working process for a standard physics object simulation.

At this level, the process of offline simulation and real-time simulation are considerably similar.

The only differences are the choice of the type of physics mesh, collision mesh, and the fineness

(degree of detail) regarding these meshes.

The diagram shows that there are two main conceptual phases in a complete physics simulation: the

modelling phase and the simulation phase. The modelling phase is the creation of a mathematical

model with all the physics structure and geometry attributes of the object, and the configuration of

a set of parameters (material properties) that will determine how the object behaves in the simulation

phase. The simulation phase is the process to take the model into the program environment with

possible interaction with other objects and external forces, and to calculate the object’s behaviour

and response to external factors. The simulation results will be presented visually.

16

Figure 2.2.1 Workflow of a standard physics simulation for deformable object

The solid arrow defines the processing direction for each task. The first step is to create or import a

rendering mesh as the reference. The rendering mesh defines the finest geometry detail of the

object. Then the physics mesh will be created manually or automatically based on the rendering

mesh and the pre-defined physical material properties. An additional mesh for collision detection

17

will be created following the creation of physics mesh. These three meshes get coarser from one to

the other to reduce unnecessary detail in order to reduce calculation and improve simulation speed.

By this stage, the modelling phase is finished.

Then the complete model with both rendering and physics information will be brought into the

implementation phase. The first step is to maintain the initial (rest) state of the object and wait for

any external impact. The simulation will conduct collision detection constantly to monitor if the

object’s surface has been struck by any other object(s), or any sudden displacement occurred to any

of its surface vertices (mainly due to user input). If a collision is detected or external impulse is

applied, the system will analyse the incoming object or applied impulse and determine to what

degree the change affects the current state of the object, both internally and externally. After that,

the initial change occurs at the beginning of the time step will be passed to the time integration

process in order to calculate the actual change that should be made to the internal structure and the

external appearance of the object at the end of the same time step. This process will be executed

recursively until the object reaches the next rest state. The system will make changes to the physics

model of the object accordingly and maps the change back to the rendering mesh, this is defined as

the collision response process.

The dash arrow represents the relationship between different stages. Collision mesh is made

specifically for the purpose of collision detection. The time integration is fully dependent on the

structure and the modelling method of the physics mesh. Collision response will make changes to

the physics mesh; the change will then be transferred to rendering mesh. This marks the final result

of the simulation in this specific cycle.

2.2.2 Object modelling and its mathematical explanation

The word “modelling” can be referred to two concepts in our context. One is from the 3D object

geometry rendering perspective, and one is from physics simulation point of view. Both modelling

approaches are required in order to process the simulation. Modelling, in general, is to create an

abstract interpretation that can describe one or more aspect of an object. Different objectives require

different attributes in the modelling, which will be explained below. In this thesis, physics modelling

is our main concern.

18

2.2.2.1 Object geometry modelling and rendering Mesh

From the art point of view, object modelling means to create a pre-designed 3D geometry by using

a set of polygon-based faces (mostly triangle) as boundaries. These faces are defined by a set of

vertices that contains x, y, z coordinates. The faces share their vertices with the neighbouring faces

and connect to each other, and thus they can form a closed surface that defines the outer boundary

and the geometric shape of the object. The finished geometry can be recognised as a designed item.

Usually, such items are created by artists called the modelling artists who use computer-aid tools

to finish the task. This process is called 3D modelling.

By applying texture material properties, the object then can be rendered by graphics engine and can

be observed by the end-user. The final product of the 3D modelling process is called a static mesh.

When combining computer graphics with physics simulation, in order to separate different types of

meshes, the static meshes are also defined as rendering mesh. In this thesis, we also refer to

rendering mesh as raw mesh because it serves as the initial reference data for the construction of

physics mesh and collision detection mesh.

A typical rendering mesh is a set of data arranged in a certain format that contains basic information

of the geometry property for an object. This includes the location of all vertices, the order and the

grouping information of the vertices that define the faces. In addition, a rendering mesh can also

store attributes for advanced rendering purposes such as the normal for each face, reflection material

properties and colour for each face, the texture for the mesh, and the UV coordinates for mapping

the texture onto the geometric surface of the object. An example of a rendering mesh with vertices

and faces is given below in Figure 2.2.2, which is a simple cube. A rendering mesh for a cube

contains 8 vertices and 12 triangle faces. Each vertex is marked by a number as shown:

Figure 2.2.2 an example of a 3D rendering mesh of a cube

19

In this example, the cube has 8 vertices (0, 1, 2, 3, 4, 5, 6, 7) and contains 6 plain faces that are

defined by 12 triangles (145, 152, 041, 074, etc.). It is important to notice that the order of vertices

(winding order) for each triangle (e.g. 145 or 154) will affect the front-back direction of the mesh

and should be remain the same to keep surface normal consistent. Different graphics API has

different standard of the face direction for face culling. For example, OpenGL accepts vertex in

counter-clockwise order to define a triangle by default.

2.2.2.2 Physics modelling and Physics mesh

In deformable object simulation, we need to model the object into a mathematical interpretation of

its geometry, material, and interior structure. Similar to a 3D static mesh model created by the artist,

a physics model discretises a certain object into small pieces, but without all the unnecessary

information such as texture and surface normalisation information. Moreover, rather than just

concern about its geometry surface, physics modelling needs to capture the whole volume of the

object, both interior and exterior. Physics modelling process is often carried out automatically by a

program executing pre-developed algorithm with some initial input; it is the starting point and the

foundation of the whole simulation process. It provides mathematical approximated representation

of the following information:

1. The space/geometry property of the object. The physics model of a certain object needs to

represent and capture its entire internal space. In the case of real-time simulation where only the

visual effect is expected, the geometry representation does not need to be at the same fineness level

as the rendering mesh, but only a coarser and more approximated representation of rendering mesh

will suffice. This is because a low-quality mesh will perform better in simulation with respect to

speed.

The general approach of modelling the internal space and structure of a volumetric object is to

discretise the space volume that is captured by the object into a finite number of small parts. To

represent the continuum of the matter the small parts are either volumetric element (e.g. tetrahedron

in Finite Element Method) that are next to each other to fill the space, or distributed particles

throughout the space and each particle captures its surrounding space and connected by different

types of constraints (e.g. particle-based structure in Position-based Dynamics). An example of a

coarse approximation of a cycle and the discretisation of its inner space is shown in Figure 2.2.3.

20

Figure 2.2.3. A 2D example of a space approximation and discretisation

2. The physics material property of the object. Physics model needs to contain the data to define

the material property of the object, for example, hardness, rigidness, and degree of elasticity or

plasticity. All these material properties depend on how the internal sub-spaces interact with each

other. Different modelling methods have different ways of defining such properties. For example in

Particle-Spring system it is defined by a set of factors that determines the strength and the elastic

properties of the spring, in Finite Element Method, it is defined by young’s modular of the material

and the stress and strain factor for each tetrahedron (or other types of basic discrete elements).

Figure 2.2.4 is an example from Wieding et al. [14] of how the same 3D object (bone structure) can

be modelled differently to march the needs of the application.

Figure 2.2.4. Different modelling for the same object

21

2.2.2.3 The Collision detection mesh

Collision detection mesh is constructed solely based on the physics mesh and generally in a coarser

manner. In some occasion, the collision mesh can be the same as the physicist mesh; however, this

case is not common in modelling for real-time simulation. In real-time simulation, a good collision

mesh has to be optimised to meet the balance between capture the most geometry information of

the object and maintain as few faces as possible to reduce the calculation for collision. The collision

detection process is one of the heaviest computational tasks for any physics simulation. Therefore,

optimisation methods like Axis-Aligned Bounding Boxes (AABB) are introduced into the collision

detection to reduce the calculation. Further details regarding this topic will be discussed in later

chapters.

2.2.2.4 Mesh relationship

In earlier sections, we have introduced three mesh types: Rendering mesh (or static mesh, raw mesh),

Physics mesh and Collision detection mesh. They are the different modelling forms for the same

object. Each mesh type captures certain aspects of the object property of its natural existence.

Rendering mesh describes the object’s geometry appearance. Physics mesh represents its physical

material state both internally and externally. Collision detection mesh represents its physical surface

boundary (different than rendering boundary) when interacting with other objects or external

impulse during the simulation. Each mesh type represents a different approximation of the object,

and they have a dependence hierarchy. Rendering mesh is created firstly, and it is a detailed

approximation of the geometry of the object (from the reference of a real-world object or a concept

design). The physics mesh is created secondly; its geometry data is based on the rendering mesh,

and it is a less detailed approximation of the rendering mesh. Collision detection mesh is created as

an even less detailed approximation of the Physics Mesh. In some cases, collision detection can

share the same surface mesh as the physics mesh if more precise detection is needed. Figure 2.2.5

gives a visualised hierarchy of the three mesh types and their differences.

Figure 2.2.5 Mesh type relationship

22

2.2.2.5 Physics mesh generation and surface mesh manipulation

Unlike the rendering mesh modelling, which is done manually by the artist (today when modelling

objects based on the real-world items/people the rendering mesh can also be automatically

generated based on scanning however manual editing to remove noise and error and to improve the

quality is still needed), physics mesh is generated automatically following certain configuration.

The generation process requires taking rendering mesh as the reference and then modify and

simplify the geometry into a solid object model. The process has two main tasks:

1. Make modification to the original rendering mesh so that it will fit the purpose of physics

modelling. This includes simplifying unnecessary details, re-arranging the surface structure

(remeshing) and construct different versions of rendering mesh with different fineness level

(e.g. collision mesh, Bounding volume). In many cases, the surface mesh is completely

regenerated as it has to march the standards from the interior structure mesh.

2. To construct the physics model for the interior structure of the object. This process takes a

discretisation approach to interpret the continuous volume structure of the object into a

finite number of basic elements. An example can be tetrahedron elements in FEM and

particles in all the particle-based methods. The connectivity and interaction between

elements are also defined in this process.

In object modelling field (computer graphics), automatic mesh generation and remeshing (mesh

regeneration or adaptive mesh) are popular topics more towards the mathematics field (geometry

and topology). From the two main tasks listed above, mesh generation can be referred to as surface

mesh generation and volume mesh generation.

Surface mesh generation exams the object’s geometry property and distribute (or re-distribute)

vertices followed by certain standards to form a mathematically model of the surface of the object;

this process requires a reference model of the object. In the process of creating the 3D model there

maybe ill-shaped triangles or unnecessarily detailed area that will affect the rendering or the

simulation of the object. Using surface mesh generation and regeneration method the user can

automatically generate a better mesh for a specific purpose of use. An example of vertices

remapping (mesh regeneration) process from Vorsatz et al. [15] is shown below.

23

Figure 2.2.6 Example of vertices re-mapping

A remeshing of the surface is to re-arrange the vertices on the surface mesh to be more regulated

but still maintain the geometry details as much as possible. The purpose of remeshing is usually to

treat ill-conditioned faces or to generate a higher/lower resolution approximation of the surface

mesh. Mesh generation often involves creating connectivity for a given set of vertices. It does not

necessarily needs an existing mesh, and it often also involves re-arranging vertex to meet the mesh

requirements.

Model remeshing is an important topic in computer graphics and an important step in the physics

modelling processing pipeline for creating surface mesh for the physics model. There are two main

approaches for remeshing. The first one is parameterisation-based remeshing, and the second one

is surface-oriented remeshing. Parameterisation-based method involves mapping the vertices onto

a different coordinate system in order to exam and manipulate vertices; therefore, it requires more

computation. However it is capable of delivering fine-to-coarse resolution remeshing. Surface-

oriented remeshing, oh the other hand, manipulate the vertices directly; therefore, it is faster in

performance-wise.

Volume mesh generation involves using basic element to fill and capture the entire space that is

occupied by the object. The main concern is how to use a finite amount of element to model the

interior space and the structure and their interactivity. For 3D volumetric object, the volume mesh

generation is the key process for physics modelling. The generation of the surface mesh is also a

result of volume mesh generation as the outer layer (surface) automatically represents the geometry

surface of the object.

24

2.2.3 Time, forces and external disturbance analysis

In any physics problem, one of the most important variables is time. The concept of time can be

divided into two topics: time duration and time step. The purpose of physics simulation is to

determine the object’s internal and external state at a particular time, and the changes over a period

of time. In order to do this, we need to understand the initial status of the object and its reaction to

external conditions. In most of the cases, at the beginning of the simulation, the object will be at the

state of equilibrium (the rest state). It will retain the rest state until external force applies to it. An

example can be that if we suddenly apply gravity to a still and unsupported object O, it will start

falling from 0 velocity at the acceleration of 𝐺 = 9.8𝑚/𝑠, and at the speed of 𝑣 = 𝐺 × 𝑡 at time

t. By knowing these conditions, we can simulate the movement of this object by calculating its

position at each specific time 𝑡′.

Therefore, force analysis and how the object reacts to specific forces are very important. The above

example is the simplest case as we consider the object as a pure rigid body, and the gravity is applied

to all the part of the object simultaneously. In deformable object simulation, external impulse often

applies to a small area on the surface. In such a case, the force analysis is more difficult.

Usually, force is represented by a 3D vector (x, y, z) which defines its magnitude and direction.

Some forces will apply equally to all parts of the object (e.g. gravity). And some forces will only

apply to certain parts of the object, e.g. stress from a needle to the skin.

The common external disturbance is listed below:

1. External Impulse. This kind of disturbance does not naturally exist in the real world. But

in a virtual world, the system can accept and simulate all kinds of inputs. An external

impulse is a sudden movement state change applies to a certain area of the object. It can

occur either inside of the object or on the surface. It has two different forms: Sudden

displacement of surface vertices without collision and sudden initial velocity gained

without collision. External impulse is normally triggered by the system for testing purpose

or special event/effect at run time.

2. Collision force. The most common cause of the disturbance. This type of force often

applies to the object surface in a very short period of time. In most cases, it happens within

one time step. Collision force will transfer energy (momentum) from one object to another.

25

If the force exceeds a certain threshold, it will cause the object to change its movement state

and in some case, will lead to the deformation of the object(s).

3. Aerodynamic and gravity. Some realistic application will offer aerodynamic for the effect

of wind or even water. The effect from aerodynamics is depends on surface area of the

object that is facing the affected direction. Gravity on the other hand in most of the cases

are employed by simulation by default. Both aerodynamic and gravity share the common

attribute of that they apply to the object evenly and constantly (certain exception can be

applied to aerodynamic when changed airflow is defined).

4. Constraints. Sometimes the system will define certain constraints to manage the

movements and behaviour of the object. This is an approach to improve stability and

controllability. These constraints will interfere with the movement and the deformation

trends of the object.

Despite there are many different types of external disturbance, all of them have the common effect:

Bringing changes to the movement state of the object, or a part of the object. Change of movement

state can be defined in two forms:

1. Change of location: Gives an instant (reasonably large) displacement to the object or part

of the object.

2. Change of velocity: Apply an initial velocity to the object or a part of the object.

Therefore when we are handling the external disturbance, the results we expect are the change of

location and/or velocity, in addition to where and when it happened (or will happen). With these

two variables, we can perform the response accordingly.

2.2.4 Collision detection and collision response

In physics simulation, collision detection is one of the most important key concepts. It is the pre-

condition of the force analysis in most of the real-time simulation. In a typical simulation process,

when two separated objects are in contact with each other, the system needs to be able to solve and

determine:

1. The exact time and location that these two objects are in contact with each other.

2. The subsequent response behaviour of each object in the following time steps.

26

Collision detection involves examining and solving overlapping problems for multiple objects in

the simulation scene. A general approach is to use geometry testing algorithms to constantly check

and determine if an object is in contact (in geometry terms, if two objects are partially overlapped)

with another object in a given period of time. An object OA can be either moving or at stationary

when it has contact with another object OB, which can also be either moving or at stationary. Based

on their masses, velocity and material property, the objects will react to this collision, and this is

called collision response.

The modern 3D interactive application often involves large-scale scenes with large amount of 3D

objects. Therefore collision detection is an expensive task. How to perform quick collision detection

is a whole research area with different proposed methods. The general approaches are:

1. Group the objects based on their location to eliminate unnecessary detection.

2. Make a different level of approximation of a particular object to narrow down the collision

contact point.

The above approaches are summarised as broad phase and narrow phase of the collision detection,

more detailed discussion regarding these concepts and how it applies to our research will be

introduced in chapter 4.

2.2.5 Rigid body vs. Soft body, Temporary and Permanent deformation,

Elastic and Plastic deformation.

In the real world, there are different types of matter materials, some objects like rocks and crystals

have very tough property when it comes to material hardness. Such objects are very difficult to

reshape under reasonable forces and are hard to break its integrity. In common sense, people would

consider simplifying such objects as ideally rigid. This means they will not be able to conduct any

deformation, or their deformation is so small that is unnoticeable and can be ignored. Its shape will

always be the same as origin. In addition, it cannot be broken by any form and any amount of force.

The only two behaviours they have are moving and rotating. The knowledge from modern physics

and material studies shows that the so-called “rigid object” still have internal deformations.

However, the change is so insignificant that it is unnoticeable and can generally be ignored. In real-

time physics simulation for visual effects, each object is modelled as an abstract mathematical

27

concept that eliminates unnecessary properties. Therefore, such objects can be approximated as

‘purely and ideally’ rigid. For example, a piece of rock on the side of the road in a video game can

be hit or moved, and it will either rotate or move (most of the time both). But its shape will always

remain the same and does not crack or break. This conceptual approximation is for avoiding

computation and modelling tasks that will not benefit the purpose of this object in the design. In the

final product, the broken or cracking of the rock does not make too much difference to the player

but the recourse to calculate and represent this behaviour and the development to make this happen

is very heavy and not worth doing.

On the other hand, some objects have the material property that they can be easily reshaped and

deformed. In physics, this type of object is commonly referred to as Soft body. The study of such

type of object is called Soft body dynamics. Soft body has a rest state where every internal part

has reached a balance from the internal and external forces. Soft body has the ability and tendency

to recover and retain their internal structure and external appearance to the rest state over a period

of time if the external influence is removed. Therefore, soft body deformation is generally

temporary. For example, a cloth (fabric sheet) covered over the table is differently shaped

compares to being hung on the robe. But the object will return to the same state when it is removed

from any supporting object. Another example is squeezing a rubber ball. When the force is removed,

the ball will relax and return to its original sphere shape.

There is another type of object that can be deformed when the external force exceeds a certain

threshold, and the deformation does not break their internal structure integrity. However, it does not

have the ability to restore its shape like the soft body. Therefore their deformation is permanent. We

define such deformation as permanent deformation and such object as permanent deformable

object. In material study, such behaviour is also referred to as plastic deformation. Permanent

deformable object is our main research topic in this thesis.

Elastic deformation vs. Plastic deformation, stress and strain

In physics and material study, the term elastic deformation describes a physics phenomenon that

an object under external force will change its shape temporarily, and its internal material structure

has the tendency to (always) retain its original shape and reverse the change when the external force

is removed. Such force load that applies to the object and causes the change of shape is called stress.

The internal structure’s reaction to retain its current shape and to resist such change is called strain.

28

An object that always behaves as elastic deformation under external force is called an elastic object.

In other cases, some object is made of the material that has a different property. When stress exceeds

a certain high level, the strain will fail to support the object to maintain its interior structure integrity

and will make a permanent change to its internal state, in appearance the object’s shape will change

permanently and no longer trying to recover itself to the original state. Such physics phenomenon

is called plastic deformation. Such object is defined as a plastic (deformable) object.

It is evident that the concept of elastic deformation vs. plastic deformation is very close to the

concept of temporary deformation (soft body deformation) and permanent deformation. In

computer graphics these two sets of definition are commonly mixed as the assumption that they

refer to the same thing. We believe that plastic deformation and permanent deformation captures

more to the material property of the object. And permanent deformation describes the behaviour of

the object. Therefore, in our thesis we will use the term “permanent deformation” to refer such

physics phenomenon as our research focus on simulating the behaviour without modelling the

internal material structure that strictly based on the stress-strain system.

Metal-like object and permanent deformation

The typical behaviour of a Metal-like object deformation is that it will behave like an elastic

object when under low stress, and will behave plastically when the stress exceed a certain level.

Figure 2.2.7 shows the deformation of a metal-like object related to stress and strain level.

Figure 2.2.7 Metal-like object behaviour related to stress and strain level

As shown in the above figure, permanent deformation is one of the three deformation stages of

metal-like material after the stress level exceeds the resisting action from the structure (strain) and

29

before the breaking point. It is the stage between elastic deformation and complete fracture of the

object.

2.2.6 Solving the deformation of continuum objects: The continuous

partial differential equation and its discretization approaches

In physics simulation, the existence of deformable objects, regardless if they are in two-dimensional

form (cloth objects) or three-dimensional form (solid objects), are continuous throughout the space.

The deformation process of such objects is also continuous throughout time. In addition, the

deformation behaviour involves different partial derivatives like elasticity, force, damping, existing

energy and other forms of disturbance introduced into the system. Therefore, the mathematical

description of the deformation of continuum objects over time is a partial differential equation

(PDE). To solve such a PDE, the general approach is to use discretisation to transform partial

differential equations (PDEs) into simpler and approximated equations with finite number of

unknowns[16], which is much easier to solve but introduces certain errors into the system. The

aforementioned three main methods for deformable object simulation: Finite Element Method

(FEM), Particle-Spring System (PSS) and Position-Based Dynamics (PBD) all fall into this

approach and share the same principle. The differences are that FEM subdivides the object into

solid, volumetric elements with a complete reservation of volume-mass correspondence, while PSS

and PBD use a mass-constraint model where the volume information is partially lost. In addition,

the stress-strain analysis based on the external force and the material properties is approximated

differently in each of the three methods. FEM uses a tensor-based solver to analyse the force and

the displacement of the nodes, where PSS uses a linear two-dimensional Hooke’s law, and PBD

completely eliminates the force-and-change-of-length relation but uses constraint satisfaction

condition to reflect the stress-strain model.

This discretisation difference results in different level of complexity and difficulty in the simulation

process, especially for the calculation of each individual subdivided element. FEM preserves more

information and produces more accurate results however requires the calculation of its deformation

towards all directions and it is the slowest approach (when using the same degree of discretisation).

PSS only concerns the particles’ displacement along one axis therefore it is much faster. However,

PSS still uses the continuums law therefore the differential equation still has to be solved for

30

simulating its behaviour. PBD, on the other hand, is a force-analysis-free approach, where no

continuums law is employed but only uses a simplified displacement-response operation between

particles that are connected by the constraints. Different approaches also result in different levels

of accuracy and realism, which also partially relates to the time integration calculation involved.

2.2.7 Time integration

In mathematics (calculus), integral means the calculation and integration of infinitesimal data in

order to solve numerical problems like the quantities of area, volume, and displacement. Integration

in physics simulation commonly involves motion changes of an object over a certain time period

that are accumulated by the small segment in each time step. A simple example could be to calculate

a particle’s displacement in a certain period of time under certain force. In some cases, the external

force is zero and the changing rate (first-order derivative) of displacement, known as velocity, is

constant, the accumulation of the displacement throughout time is linear (object is moving in a

constant speed). In such cases, a simple formula 𝑆 = 𝑣 × 𝑡 can be applied to calculate the total

displacement S during time period t when an object is moving at a constant velocity v. The entire

process can be considered as a whole and for any given instant the formula is universal and the only

variable changed is the time t. However, in real-world cases, the movement state of an object is

often intervened by a certain amount of force and its course will change. When the sum of external

force is constant (e.g. the object is only affected by gravity without any supporting) the change of

its moving state will constantly change (velocity increase at a certain rate, in the gravity case, free

fall). A more often case that happens in the physics simulation is that the sum of external force

applied to the object is not constant but changes from time to time, instantly or gradually.

2.2.7.1 The use of time integration method in physics simulation

When multiple sources of (potential) force are involved, the physics behaviour of the object

becomes complicated and difficult to predict. For example, in a particle-spring system, the change

of position (displacement) of a particle is affected by different forces and the magnitude of force(s)

is depending on other conditions (e.g. lengthen/shorten of one or multiple springs) and is (are)

constantly changing. In such case, the changing rate of the displacement (velocity) and the changing

rate of the velocity (acceleration, which is directly related to the force) are no longer a linear

dependency related to time.

31

From a mathematical perspective, we consider velocity is the first derivative of the displacement

(the result we want to know), acceleration is the second derivative. In addition, the acceleration is

related (linearly) to force. The change of force depends on the change of the length of spring;

therefore, it can be the third derivate (called jerk in mathematics) of the displacement. And the

length of the spring is related to the displacement of the particle (from the beginning of the time

step period). This forms a typical ordinary differential equation (ODE) where the unknown variable

is a function with its derivative. Therefore, the system is far more complicated than a linear system.

The calculation of the displacement and summarise the moving tracks of this particle and all other

particles in the system over a long period of time can be difficult. For example, in a regular particle-

spring system, the equation for the movement of the particle related to the applied force and the

spring strength can be described as follow:

𝐹(𝑡) = 𝑘𝑥 + 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑘𝑑

𝑑𝑥(𝑡)

𝑑𝑡

Where k is the spring constant and x is the length change of the spring, and 𝑘𝑑 is the damping

factor. The time 𝑡 represents the “length” of the small time segment (time step).

To solve the above problem as accurately as possible, we need to divide the movement of the object

and the force analysis into small time fragments, which we define as a time step. From result

numerical point of view, the principle of choosing the size of each fragment is that it has to be small

enough (ideally close to infinite small). The reason is that we have to make the assumption that

during this tiny segment the higher-order derivate is constant (but it is not), otherwise, the

calculation cannot be conducted as all the variables are unsure. This assumption will introduce

errors into the calculation. Therefore, the common solutions to eliminate (in very rare cases) or

decrease such errors are:

1. Pick the time step small as possible, so the difference of the change of higher order derivate

is not significate enough to introduce much error into the system. Time step is the

elementary unit of the calculation, the sum of the results from each time step that forms the

positional path of the particle is called time integration.

2. Make assumption to the change of the higher derivatives and calculate an averaged or

balanced value that can best capture its change. And then introduce this value into the

calculation. This comes to implicate and explicate method, which predicts the value in

32

different ways (forwards or backwards).

3. Introduce conditions and constraints to the change of the higher order derivate or make

adjustments to the motion formula. Or make direct manipulation to the results to limit its

outcomes in order to maintain system stability (error preventing).

The problem with solution number 1 is that within a fixed period of time, each time step represents

one computation cycle. The smaller each individual time step is, the more cycles of calculation are

needed. Therefore when the computational power is limited, and the simulation speed is a major

concern, small time step becomes a significant drawback of the simulation. With the decrease of

time step size, the computation consumption is increased. Small time step brings more accurate

results; however, it is unrealistic to divide the time segment as small as desired.

The problem with solution number 2 is that even with the most complicated prediction method,

there are is situation where the higher order derivative have a significant change in a very small

period of time. In some cases, an instant change of the force or direct manipulation of velocity can

also happen. Such cases usually occur in real-time interactive application where user input can be

unpredictable and unreasonable (where robustness is needed). In addition, sometimes the program

will introduce unexpected calculation errors from bugs that could distribute the system. Moreover,

the more complicated the prediction method is, the more computational tasks will be for each

individual calculation cycle (time step), and this will significantly affect the speed performance of

the simulation.

The problem with solution number 3 is that this will significantly interfere with the accuracy of the

outcome results and limits the objects freedom of motion. It can also bring false initial values to the

next time step and causing the inaccuracy to be accumulated. This can lead to unrealistic behaviour

of the simulated object in case of the condition, and the constraints are not carefully configured.

This solution cannot be used in any application that requires accuracy as it introduces artificial

manipulation to the simulation outcome.

Therefore, a general approach is to combine these three solutions and balance them into a combined

method that suits the specific needs of the simulation. The choosing of time integration is important

because we are not possible to have a 100% accurate result of the simulation, but we can have a

close approximation. The chosen of the reasonable time step, the method of integrating the

displacement based on the ODE and the use of conditions and constraints in order to achieve balance

33

among accuracy, performance and stability are the main research goals for this topic.

2.2.7.2 Time integration in real-time application

In the implementation of real-time physics simulation, there are several time integration related

issues that developers concern:

1. Frame rate. In computer graphics rendering, each (consecutive) image is rendered on the

display equipment for a short period of time before the next image is rendered. The frequent

of each frame is rendered is called frame rate. When it comes to the interactive application,

the frame rate defines the maximum time period for the program to execute each logic loop.

This period of time is called frame time. In modern 3D application, the general requirement

is that the frame rate should be constant. Rendering hardware speed (GPU) is the biggest

factor for frame rate. In addition, frame rate can be affected by the complexity, the scale,

lighting attributes and the data size of the rendering content. Frame rate has been

standardised and 60fps (frames per second) is a common requirement in the industry.

2. Elapsed time in execution loop. In a real-time application, in order to perform on-time

interaction, the system generally creates a logic loop, which is the same sequence of

execution of logic checking, input monitoring and output operation including sound, image

rendering and so on. The same sequence will be executed repeatedly, and the new sequence

will be executed right after the previous one is completed. Each execution can take different

time period from one to the other because of the available resource from the hardware, or

the increase/decrease computational tasks happen in that cycle. All the physics simulation

happens in the execution cycle.

3. Time steps for time integration in physics simulation.

To deliver a smooth visual outcome, the elapsed time should not be larger than the ideal frame time

(1/60 seconds). All the calculation in logic execution in the current cycle should be completed

before the next frame of the image starts to render. This is because in interactive application the

outcome of the logic execution (including physics simulation) will decide what to render for the

next frame, a delay of the calculation outcome will delay the rendering action for the next frame,

and will leads to inconstant user experiences. An example flow of how a rendering content is

calculated and transferred throughout application pipeline is shown in Figure 2.2.8.

34

Figure 2.2.8 Execution pipeline in interactive applications with physics simulation

The above figure shows one execution cycle of the application. Physics simulation is included in

the logic cycle, therefore the execution cycle cannot be completed until the time integration is

finished. It is worth mentioning that each logic execution cycle may contain more than one time

step. Therefore, the time step for the integration should be equal or smaller than the elapsed time in

this cycle. Therefore we have the following (ideal) conclusion:

𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 ≤ 𝐸𝑙𝑎𝑠𝑝𝑒𝑑 𝑡𝑖𝑚𝑒 ≤ 𝐹𝑟𝑎𝑚𝑒 𝑡𝑖𝑚𝑒

It is possible that the elapsed time is used as the time step. However, as discussed before the elapsed

time can be highly unstable as there will be constant interruptions to the logic execution of the

application; therefore, the size of the time step can be largely different. An example can be an

unexpected pause to the application which stops the loop for a long period of time, and the elapsed

time for that cycle can be very long and will cause the simulation to use a very large time step.

Inconstant time steps can lead to uncontrolled error being introduced to the simulation results as the

integration method is specifically chosen to handle certain size of the time step. Unstable and

constantly changing time step can also affect the simulation in unexpected ways. Therefore a fixed

time step or a limit range for controlling the size of the time step is commonly used.

2.2.7.3 Numerical stability

As discussed in the last section, time integration is the accumulation of the approximation of the

35

object movement in each time step. Within each time step, the results are not 100% accurate as we

need to make assumptions to turn variables into constants. This inaccuracy is defined as errors in

the simulation process. One of the most concerning issues of integration is the inevitable errors.

Errors from each time step will be accumulated as the initial state of a step is based on the inaccurate

result from the last step. After a period of time the error may become significant enough to cause

potential problems to the simulation. For example, two particles on each end of the spring gain huge

velocity and go apart; the spring will then apply adequate equal amount of huge force to these

springs following Hooke’s law to prevent them from separating. This can cause the particle-spring

system to “explode”. It is identified as the case of the over-elastic or super-elastic problem [17]

when a simple modelling system and forward integration is chosen. The degree of the errors

influences the simulation result is called numerical stability.

Numerical stability is one of the key valuations of a given integration method. It represents how

stable the system stays over time. The instability can cause the following problems:

1. Strange and unrealistic behaviour of the simulated object.

2. Large amount of unnecessary and heavy computational tasks that caused by inadequate

results/inputs from the last steps.

3. Results in large number which leads to bug or crash of the application.

4. Fail to maintain the integrity of the object interior structure (exploding).

In offline simulation, if a particular simulation occurs problem caused by numerical errors, the

creator/developer has the opportunity to re-configure the inputs or the parameters and do it again.

This can be time-consuming, but the final result remains safe and unaffected by a single time of

failure. However, in real-time simulation, the developer has no control over the system once the

application starts to execute, what is generated by the simulation is what will be presented to the

end-user. Therefore, stability is vital for delivering a smooth experience. The cause of instability

can be:

1. Large time step. A large time step or a not-small-enough step can cause system instability

as the error introduced can be relatively large.

2. Inadequate integration method.

3. Invalid and unexpected initial input. Sudden and unreasonable input, e.g. a large

36

displacement of one particle in the system or an extreme force input can cause the variable

to be very large in a small period of time (similar to a large time step). This can cause

instability or broken of the system.

4. Geometry structure of the simulated array of element. The structure of how the element is

arranged (e.g. how particles are distributed and connected in particle-spring system) can

affect the stability as this can affect the interaction between elements (e.g. springs with

different length but same parameters can behave differently under the same external force).

General solutions to limit the instability are:

1. Add constraints to the system. Constraints will work directly to the targeted elements to

apply limits to their maximum change; this will prevent unwanted behaviour of the object.

2. Modify the formula. Introduce extra factors (e.g. damping) that related to the change of one

or multiple conditions and reduce the energy within the system can also prevent instability.

The modelling and simulation of a deformable object is considered as a numerical problem and the

solution to solve the behaviour of the object is numerical method. Therefore the system stability

can be predicted and evaluated by numerical analysis.

2.2.7.4 Implicit and Explicit methods for time integration

The two main categories representing two branches of integration method are implicit integration

method and explicit integration method. When solving ODE (ordinary differential equations) for

the motion of an element (e.g. particles), the explicit method means to use the known element state

at the beginning of the time step as the initial value to conduct the calculation. Implicit method, on

the other hand, uses the element state at the end of this time step as the initial state for the calculation.

As the state at the end of time is unknown, more computation is needed to done to find the initial

value for the function in implicit method. Therefore, implicit method is generally more complicated

than explicit method.

An explicit method can be shown as the following function:

𝑥𝑡+∆𝑡 = 𝑥𝑡 + 𝑓(𝑥𝑡)

where for the same problem, the implicit method can be shown as:

𝑥𝑡+∆𝑡 = 𝑥𝑡 + 𝑓(𝑥(𝑡+∆𝑡))

37

Explicit methods use the known parameters at time 𝑡, which is independent to the other variables.

All parameters are from the instant moment of the end of the previous time step 𝑡 (which can also

be considered as the initial state of the current step). Explicit methods assume that the initial values

of the parameters are constant throughout the time step. In reality, the values are not constant (but

depend variables) and governed by different physics laws that are subject to the changes of other

values. Therefore, this assumption that is implied in the explicit methods can introduce errors into

the system and subsequently results in instability. In order to improve the results. Small time steps

need to be used so the change of the value does not affect the result as much as in large time steps.

Explicit methods are simple and easy to solve; they are often referred to as forward methods

because they use the current state to predict into future.

The simplest explicit integration is the Forward Euler Method [18], which is a one-step straight

calculation to the future state of the system with an estimation of a constant k-order derivative. This

approach is simple and easy to employ and can be fast with large time steps. Therefore, explicit

methods are widely used in the simulation of movements with constant acceleration (e.g. pure rigid

object simulations at free fall or moving on a supporting surface). Because the displacement model

of a singular unattached object moving without any external interference can be simplified as a first-

order differential equation (Newton’s first law); therefore, a singular unattached object moving

under nearly constant force can be simplified as a second-order differential equation (Newton’s

second law).

The simulation of deformable objects based on constitutive laws requires solving PDEs. The

drawback of the simple first-order, one-step explicit method is that it only takes the instant value of

the derivative at the time 𝑡 as a constant and use it to predict the slope in the future time (step) ∆𝑡.

The issue is that during the period ∆𝑡 the derivative will change and hence introduces an inaccurate

result at 𝑡 + ∆𝑡. The calculation will enter the next time step with an already false initial condition

and will introduce more errors with the same issue. The errors will accumulate over time and will

soon be accumulated to a degree that the system quickly becomes unstable.

The forces applied to each discretized element constantly change depending on a range of factors.

Therefore, it produces a stiff equation that is unstable for first-order integration methods, as all the

changes to the system variables during the time step are omitted. The first-order explicit method

can only be used in certain conditions (ideal cases) to limit the error:

38

1. We assume that the change of force (if any) over time is gradual. Therefore, each time step

doesn’t introduce much error into the system. However, this case is only ideal and does not

suit the scenario of real-time interactive applications, where the user input can be sudden

and unpredictable.

2. We use extremely small time steps to give a more precise approximation. However, small

time steps lead to additional calculation. As the increment of the number of the time steps

has a linear relation with the increment of the amount of required simulation, to achieve

reasonable stability, the amount of calculation will still be considerably large.

3. We modify the first-order method and make multiple predictions to the future derivative in

a few instants within the future time step.

In order to achieve more accurate results and reduce numerical error, the third approach above is

used to transfer first-order explicit methods into multi-step or high-order methods. One of the most

popular explicit methods of such approach is the Runge-Kutta Method(s), which nowadays has

become a collection of integration solutions, its explicit form is often in either 2nd order form or 4th

order form (also referred to as RK4)[19]. The 4th order Runge-Kutta Method is shown below:

𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛)

𝑘2 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘1)

𝑘3 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘2)

𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3)

𝑦𝑛+1 = 𝑦𝑛 +
1

6
𝑘1 +

1

3
𝑘2 +

1

3
𝑘3 +

1

6
𝑘4 + 𝑂(ℎ5)

where ℎ is the time step, 𝑘1 is the slope at the beginning of the time step (𝑡0), 𝑘2 is the slope at

(𝑡0 + ℎ)
2⁄ based on 𝑦 +

ℎ𝑘1
2⁄ , 𝑘3 is the slope at

(𝑡0 + ℎ)
2⁄ again but based on 𝑦 +

ℎ𝑘2
2⁄ ,

and 𝑘4 is the slope at 𝑡0 + ℎ based on 𝑦 + ℎ𝑘3.

The 2nd order form takes a similar approach, but with fewer steps. The principle of such approaches

is that a single time step is divided into k number of steps, which are used as reference points to

calculate a better approximation (but still based on the initial condition at the time 𝑡).

The simplest form of forward Euler method can also be converted into a second-order from (mid-

39

point method[20]) where the conditions are re-calculated in the middle point of the time step.

Another popular and fast explicit integration method is the Verlet integration [21], which can be

written in the following form[22]:

𝑥𝑛+1 = 2𝑥𝑛 − 𝑥𝑛−1 + 𝑎(∆𝑡)

𝑥𝑛−1 = 𝑥𝑛

where ∆𝑡 is the time step and 𝑎 is the acceleration obtained from external forces at the beginning

of the time step. Verlet integration obtains the first derivative (velocity) from the last time step and

applies it to the current step. Therefore, it is numerically stable. However, an assumption is made

that the force or the impulse is constantly applied and gradually changed. Therefore it is difficult

for the results to maintain accuracy during dramatically changes of external condition [22].

Implicit methods, as shown, update the system from 𝑡 to the same level (𝑡 + ∆𝑡) by using backward

operator and then achieve equilibrium at time 𝑡 + ∆𝑡[23]. Extra steps with additional calculation

need to be taken to determine the initial values. However, implicit methods make a more precise

prediction to the end of the time step and then gives a more accurate assumption of the value. It is

more accurate and stable, and can use a large time step. Implicit method is often referred to as

backward method because it uses the future state to project the current state and determine the

initial value for the simulation. In order to achieve this backward and then forward prediction,

iterations of calculations need to be done and have to pass mechanical evaluation until the result is

satisfied. It is often used in conjunction with conjugate gradient algorithms[18].

The simplest version of implicit integration, the backward Euler method, can be written in the

following form [24]:

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓(𝑡𝑘+1, 𝑦𝑘+1)

where ℎ is the time step. We can observe that when using 𝑓(𝑡𝑘+1, 𝑦𝑘+1) instead of 𝑓(𝑡𝑘 , 𝑦𝑘), the

potential change that occurs in the system is reduced. Therefore, stiffness is introduced into the

system. This increases the stability but can result in a different type of error (instead of super-elastic

problem from explicit methods), which causes the simulation to have stiff appearances and get to

equilibrium state early. In order to overcome this problem, other variations of implicit methods are

used to generate better results. Similar to explicit methods, high-order methods are implemented to

take several steps of evaluation in order to produce more accurate results [18].

40

A popular example of high-order implicit methods is the Rosenbrock method [25]. It is an variation

of implicit 4th order Runge-Kutta methods and can be written in the following form[26]:

𝑦𝑛+1 = 𝑦𝑛 + ℎ ∑𝑏𝑖

𝑠

𝑖=1

𝑘𝑖

where

𝑘𝑖 = 𝑓 (𝑡𝑛 + 𝑐𝑖ℎ, 𝑦𝑛 + ℎ ∑𝑎𝑖𝑗

𝑠

𝑗=1

𝑘𝑗) , 𝑖 = 1,… . , 𝑠.

In order to achieve more accurate approximation, linear multistep methods are also introduced for

solving differential equations. Multistep methods keep the results from the past time steps and use

them as references to predict the future steps. This approach is different from high-order methods,

as the solution from high-order methods only concerns the initial states of the specific current time

step, but not the previous steps. An example of a two-steps method (Adams-Bashforth) is shown

below:

𝑦𝑛+2 = 𝑦𝑛+1 +
3

2
ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1) −

1

2
ℎ𝑓(𝑡𝑛, 𝑦𝑛)

where ℎ is the time step.

We can observe that unlike one-step methods, multistep methods have multiple dependencies to the

previous steps, therefore it is important to examine their stability over time. Linear multistep

methods can achieve “zero-stability” when a variable change occurs at the beginning of the

multistep period does not cause the change of other values in the system to exceed a certain

threshold [27]. Dahlquist [28] proved that the second-order accurate methods can achieve

unconditional stability if the following condition is satisfied:

𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 =
1

4
ℎ2(𝑓(𝑦𝑛+2) + 2𝑓(𝑦𝑛+1) + 𝑓(𝑦𝑛))

where ℎ is the time step.

Choosing the integration method is important for physics simulation, and the type of integration

method can have a direct influence on the construction of the physics model. In summary, the

integration method can be categorised into the following groups:

1. Implicit and explicit methods.

41

2. Low order and high order methods.

3. Single-step and multistep methods.

The (2) and (3) are generally used in conjunction with (1) to give a more specific description of the

different approaches to the same method. Therefore, our categorisation will only consider the

implicit and explicit method.

Below is a summary of the explicit and implicit method (Table 2.2.1).

Integration method Explicit method Implicit method

Parameter type Value from the previous level Value from the current level

Computational cost Low High

Implementation complexity Low High

Time step required Small time step (Relatively) Large time step

Stability Low High

Table 2.2.1 Comparison of explicit and implicit integration method

In this thesis, our research goal is to simulate plastic deformation in real-time simulation. Therefore,

high accuracy is not required for the simulation results. The system stability, as well as the speed

performance, are going to be achieved by physics modelling. Such approach requires a different set

of rules for the calculation instead of complicated time integration to solve differential equations.

Therefore, in this thesis, we only concern with the simplest version of explicit integration methods.

2.2.8 Real-time physics simulation in application development

The purpose of physics simulation in computer graphics is to create physics behaviour in animation

that looks realistic. In offline simulation, all the external disturbance are pre-designed and fixed.

When doing repeating tests, the results of the simulation (visual effect in the animation) are always

the same as the configuration and initial state are pre-defined and unchanged. Real-time physics

simulation, on the other hand, is often used in real-time interactive applications where instant

feedback from random input is demanded. The results of the simulation need to be stable and

convincing as they will be visually presented to the user directly. Therefore the scenario becomes

42

more complicated than in the offline simulation, and as the input from the user can be unpredicted.

The subsequently effect to the physics structure is unknown. Control constraints can be applied to

limit the user’s choice of input, but a certain degree of freedom is still needed to deliver a realistic

and immersive experience.

Due to the above nature, physics simulation in real-time interactive applications involves experts

from different domains. The purpose of the physics simulation happens within the application has

to be introduced by content designer. For example, in a video game certain structures are designed

to be destructible so that the player can gain path to the next level or retrieve certain items. The

scale of the destructible environment and the physics property of the objects (e.g. an iron door or a

wooden door) has to be carefully decided as the part of the storyline and game experience design.

With the design been finalised the artist will firstly create concept art of the objects and then model

them into 3D meshes. After that, a computer-aid tool and programmers who are experts in physics

simulation and modelling will come to help transfer the original 3D rendering mesh into physics

mesh. Then in the implementation phase, programmers need to employ physics engines designed

to handle the desired simulation outcome to program the behaviour and the logic trigger of the

physics simulation. Today, with high-level game engines, this task can be done by experienced level

designers using premade functions that are configured by script languages.

Therefore, implementation of physics simulation in real-time application, regardless of the type of

the simulation, is a task beyond just a technical problem but also a chain of communication and

decision-making process through the entire development team.

2.3 Introduction and literature survey to existing methods

In the development history of the physics simulation in computer graphics, we have seen increasing

popularity and demands of deformable object simulation. Lately, with the development of hardware

that offers sufficient computational power to conduct such simulation and present them visually,

real-time deformable object simulation is widely used in a wide range of interactive applications.

There are many methods regarding object modelling, simulation, time integration and collision

detection etc. that has been introduced into this field. Some of the works brought significant

contribution to the field and has become the foundation and inspiration of the new methods. Some

43

methods become industrial standard when solving certain problems. Some methods are greatly

related to our research field and become important reference to our research.

In this section, we will review a selection of previous works done by other researchers in the area

of deformable object simulation. The topic involves important methods including Particle Spring

System, Positional Based Dynamics, Finite Element Method (FEM) and an overall review of

many Other Simulation Methods that are less popular or less relevant. In addition, the topic of

Time Integration and Mesh generation is also included in a separate sub-section as they are also

related topics to our research.

2.3.1 Particle Spring System

Particle-Spring System is the simplest and most popular method for simulating elastic deformable

objects. It is also the first method that was proposed to simulate physics behaviour in real-time in

the history of computer graphics. It has now become the standard solution for cloth object

simulation. It brings the concept of particle-constraint system into real-time physics simulation.

With the modification of the mesh structuring and configuration of the springs, the particle-spring

system has been derived into many different methods for simulating different types of objects.

Particle-Spring System (PSS) can also be referred to as Mass-Spring System (MSS).

2.3.1.1 Key Concepts

Particle-Spring System, as the name indicates, is formed with particles and springs (or dampers).

It is a specific case of particle-constraint method. Particle is an infinitely small point in the space

with mass property. Particle in such system does not (in general cases) have rotation state nor

direction, but only has location and velocity information in the N-dimensional coordinate system.

A spring can be considered as an elastic constraint that connects two particles, it has one particle

on each end and a rest length, its behaviour is governed by Hooke’s law.

An object that is modelled as Particle-Spring System is formed by an array of particles disturbed

(normally evenly) in space. And all the neighbouring particles are connected by springs. When an

initial impulse happens the spring will distribute the energy to both end and in the meanwhile limits

the movement of the connected particles. If the distance of two particles is larger than the rest length,

the spring will tend to pull two particles together. If the distance of two particles is smaller than the

44

rest length, the spring will push two particles apart from each other. Together with other parameters

like damping force, particles connected with springs can form an elastic simulation system.

2.3.1.2 Related early works

According to review [29, 30], the first time of introducing “particle system” for object modelling

in computer graphics was dated back in 1983 by W.T. Reeves [31]. At the time particles were

introduced not to model solid object but “fuzzy” objects like clouds, smoke and water. The

connectivity and interaction between particles are controlled by stochastic modelling where

randomness is introduced, and no “real” physics law is employed. The result is for visual effect

only (was used in sci-fi movie). This was the starting point the physics concept being introduced in

computer graphics for generating visual effects. Moreover, it was used for simulating deformable

objects (though the “fuzzy” objects are different from solid deformable objects). Today, particle

system is still the standard way of simulating fire, smoke and cloud etc.

Followed by Reeves’ work, the concept of connected particle system was employed in Reynolds’

work in 1987[32], in which he modelled object as a set of interacted and connected nodes with mass,

aka “particles”. Reynolds’ work is still not regarding simulation of solid deformable objects but

herd behaviour of birds. Each bird is modelled as an individual particle; and the difference is that

instead of stochastic modelling like Reeves’ work, Reynolds uses a certain formula to control the

interaction and relationship between particle elements (simplified model of birds). Therefore the

behaviour follows configured rules and the outcomes of the simulation is controlled and predictable.

The advantage of connected-particles model is that it uses the simplest type of basic element (a dot

with mesh) to represent a part of the whole deformable objects and build connection, interaction

and dependency rules to form back the whole object. It is a special case of the discretisation

approach from applied mathematics. The model was quickly adopted to simulate simple deformable

object forms. Terzopoulos et al. were pioneers to create elastic particle system by using constraints.

They have published a series of works [1, 7, 8] to testify the approach. They have then discovered

the ill-conditioned construction of the model, and the elasticity nature of the model can introduce

numerical stability to the system [8]. Their solution to the problem was to decompose the object

with rigid and elastic parts in order to reduce the simulation scale. This solution is still used today

in some complicated physics model which is referred to as MBS (Multi-Body System).

In 1994, Breen et al.[29] employed the particle system for the modelling of cloth object. They

45

described the woven cloth object as a set of particles with mass and tend to fall under the effect of

gravity, which was the first attempt to depart completely from continuum formulations of the energy

function. In 1995, Provot’s et al. [17, 33] built a new model based on Breen’s foundation. In his

theory, he employed the term called “spring damper”, which was the connection of the particle

network with a “rest length” property. When the distance of two particles connected by a spring

equals to the rest length, the spring applies no effect. When the distance is larger than the rest length,

the spring will perform constraint force, when the distance is smaller than the rest length, the spring

will generate bending force. At this point, the concept of Particle-Spring System is fully developed,

and the model became popular very soon due to its simplicity and realistic result.

2.3.1.3 Improvements of Particle-Spring System

Soon after the particle-spring system is introduced into the field, some drawbacks had been

discovered. The original model has the following issues:

1. It had a fixed, single-layer mesh structure and limited constraint choice. This limits the

simulation outcomes. Bending, wrinkling and folding behaviours are difficult to achieve by

using simple mesh construction.

2. The original method uses the time integration method either with implicit method that is

not suitable for real-time simulation [1], or explicit approach with little control factor,

therefore the system was not stable [17].

In order to improve the particle spring system to a more efficient model for simulation, researchers

had made improvements based on the above analysis and took different approaches to deliver better

results. The approaches have two main branches: To modify the modelling method (visual outcome

and optimisation-wise) or to increase the simulation speed (performance-wise).

The first approach is to introduce more modelling option (particle and spring arrangement within

the mesh) for the object. The concept of mesh refinement can be traced back to as early as 1996 by

Hutchinson et al. [34], who used physics simulation to replace keyframing method from free-form

deformation[35]. They subdivided the mesh grid to achieve cloth-hanging-over-object effect. Soon

the concept becomes popular. Example of this approach is Zhang and Yuen[36] employed the

concept of mesh refinement (adaptive mesh generation) based on Provot’s model[17]. In their work,

the particles can be generated dynamically depends on the deformable rate of a certain area. The

46

model starts with the first level, where only a coarse mesh is generated. With the level increases,

the selected part of the mesh is refined to a more detailed mesh section and can be used to represent

accurate, realistic appearances such as wrinkles or folds. A hierarchy tree structure was employed

to detect the collision along with the adaptive mesh approach.

Villard and Borouchaki[37] proposed an efficient method by refining the uniform mesh. They try

to find a balance between fast simulation with low-quality mesh and slow simulation with high

quality. Similar to Zhang and Yuen, they take the approach to reduce the number of the particle in

the system without losing the details to speed up the simulation of the mechanical behaviour. The

method is to set up a coarse uniform quad mesh at the very beginning of the simulation, then refine

the mesh based on the movement state of the cloth – if the area is flat, then no refinement will be

needed, otherwise, if folds or deformations occur, the meshes at that area will be refined to represent

a realistic appearance of the cloth. By using this method, many particles generation can be avoided

and computational costs will be saved to achieve the balance between the simulation speed and the

realistic representation. The outcome of the visual and the comparable statistic demonstrated that

the new method was faster compared to the previous approaches, and is specifically efficient when

rendering collision detection with hanging. Other works done in mesh refinement includes Birra

and Santos[38], who did the meshes refinement for triangle meshes instead of in uniformed

rectangle grid. Mesh refinement with more constraint configuration can deliver more realistic soft

body object such as human tissues [39]. It is worth mentioning that the concept of dynamic mesh

refinement also applies to other mesh forms like FEM method. An example can be found in recent

works like [40].

The second approach for improving the original Particle-Spring System is to improve its

computational performance. The most popular approach is to offer solution from the mathematical

point of view to find a fast time integration method. Baraff et al. proposed a method [9] which

became a key contribution to the field. They uses implicit time integration combined with control

constraint to maintain the stability of the system. The method also offers adaptive size for the time

step to give more flexibility and stability to the simulation. Later on, with the increasing

computational power from the development of hardware. Researchers has the tendency to use

implicit solver more often when solving ordinary differential equation for the motion of particles

within the particle-spring system. Other methods are introduced to speed up the implicit method

such as pre-calculated conditions [41].

47

In addition, new technologies such as GPU-boosted calculation and multi-thread parallel

programming were introduced to the field. By using the specifically designed data structure,

researchers are able to improve the simulation speed by using new hardware offerings[42]. With

the additional computational power, the previously costly calculation such as cloth-to-object

collision response can achieve fast speed [43].

Besides the above approaches, an improvement to the particle-spring system can be adapt the

advantage of the method (fast speed, simple model structure and easy implementation) and

eliminate the drawbacks (numerical complexity, time integration trade-offs). Such approach can be

particle-constraints approach without Hooke’s law based elasticity. However, such methods can no

longer be identified particle-spring system. One successful example is Position-Based Dynamics

(PBD), which will be introduced separately in later sections.

2.3.1.4 Other applications of Particle-Spring System

Other than simulating cloth object, Particle Spring System has many other applications. Although

the particle system is not the ideal solution for volumetric object modelling, it is still a popular

method for simulating volumetric soft body by applying multi-layer modelling. The approach is

used to simulate human skin and tissue simulation [39, 44-46] and in hair simulation[47]. Moreover,

particle-spring system with modified spring constraint can simulate cutting and splitting in real-

time. Combined with other simulation method like position-based dynamics and hardwire like

haptic devices, this technology can be employed in medical research and developing surgery

simulation and training application [44, 45, 48]. Even with the great limitation of capturing volume.

Particle Spring system is an excellent interpretation of 1D and 2D elastic model, therefore, it can

also be used in other fields like structure analysis for engineering [49]. The property of the spring

constraints tends to retain the system equilibrium also offers a solution for surface remeshing and

regeneration[15] when finding a balanced point on triangle vertex mapping.

Today Particle Spring system is a very well developed method. Its advantages and drawbacks are

caused by its own nature; therefore, the use of the method is popular but also limited within certain

areas. Based on our review, the theoretical research in this area has dropped dramatically in recent

years (2020). However increasing applications have employed Particle Spring System for simple,

volume-less object simulation in real-time.

48

2.3.2 Position-Based Dynamics

Another particle-based method that has been proof to be successful is Position-Based Dynamics,

often referred to as its abbreviation PBD. It was firstly proposed by Muller et al. [12]. It quickly

became popular for its stability and capability, along with its simplicity (relatively). It is a particle-

based system like particle-spring system. But instead of elastic springs, it uses constraints that are

not bounded by Hooke’s law (elasticity). Instead of testing the change of length and calculate the

relative damping and elastic force to determine the displacement of each particle in the particle-

spring system, PBD only consider the relative position (constraint’s rest length) of connected

particles. Therefore the constraint acts as a distance holder to retain the system’s equilibrium. The

satisfaction of the condition requires the integration process using constraints length as a reference

to determine the displacement of each particle in each length. As the constraint applies to only

displacement but no force (additional velocity) to the particles, the opposite movement tendency

applies to the particle from the constraint will never exceed or less than the rest distance (length) of

the constraint. This brings two advantage of PBD over the Particle-Spring System:

1. It avoids the calculation for time integration in elastic system. Solving of ODE of the

displacement related to force and time is no longer needed.

2. It brings better stability to the simulation yet maintains the agile behaviour of the

deformation. Particle-Spring System uses implicit method with large time steps tends to be

too “damping” and stiff and sometimes not look nature.

Similar to Particle-Spring system, Position-Based Dynamics can be used in cloth simulation

but has more potential of use. It’s most successful contribution is to be able to capture

reasonably large scale volumetric, continuum object[50] with good stability. Therefore, it can

be used to simulate volumetric soft bodies with similar or even less calculation than Particle-

Spring System.

2.3.2.1 Related works

Position-Based Dynamics (PBD) is a relatively young method compares to particle-spring system

and Finite Element Method. The fundamental theory of PBD is initially proposed and mainly been

developed and improved by Muller and Bender and their colleges over the year [12, 51, 52]. PBD

is used to simulate both infinite thin cloth-like object[53] [54] and continuum solid objects [55].

49

Hair simulation and other 3D character behaviour are also possible with PBD [54]. Though PBD is

developed mainly by a research team supported by NVIDIA PhysX lab, the application of PBD is

wildly used by other researchers combine with other simulation methods [46, 53, 54, 56]. PBD is

capable of performing different types of object deformation that can be difficult to achieve by

previous methods or can only be done by complicated solutions like FEM. Kelarger et al. [57]

proposed a different model based on PBD to simulate bending behaviour of the object. Umetani et

al. [56] also employed PBD for simulating elastic rods with bending and twisting and in relatively

large scale in real-time. In addition, combining with the shape-matching method [13], PBD is able

to simulate elasto-plastic deformation on a large scale in fast speed[58].

The concept of Position-Based Dynamics and its uses also have evolved over time, the constraints

it uses to manipulate the particle displacements can be in different forms, and the simulation object

can be extended to fluids[59] and smoke[60]. A more detailed survey, along with the discussion and

introduction of the algorithm, implementation and the application of PBD can be found in [51].

2.3.2.2 Difference between force-based and position-based simulation

Both Particle-Spring System (PSS) and Position-Based Dynamics (PBD) can both be categorised

as particle-constraint system. The main difference between the two methods is the constraint’s

property. PSS connects particles by springs that follow the real physics law (Hooke’s law), which

is force-based. In contrast, PBD uses dependent position sampling to control the displacement of

the particles, which, within its name, is position-based, or behaviour-based.

The difference between force-based and position-based approach is how they pass the external

impulse into the structure and how to manipulate displacement for each element (in this case,

particle). Force-based constraint does not manipulate the position of connected particles directly

but applies certain force to it. The force will then transfer to energy (by applying acceleration to the

element) which causes the change of velocity and brings displacement to the individual element,

the process goes over and over until the whole system achieves equilibrium. The whole process is

governed by elastic spring from physics law. For each time step, the applied force will be calculated

based on the constraints states. Position-based method, on the other hand, directly apply position

adjustment to the element. Instead of calculating force and velocity it exam the particle’s current

position and the satisfaction with its constraints condition, and adjust the position of the element

accordingly and gradually based on the desired effect. Figure 2.3.1 below uses PSS and PBD as an

50

example to demonstrate the difference of impulse processing. As shown, the PBD has fewer steps

for processing the impulse influence on individual element (particle) than PSS.

Figure 2.3.1 Comparison of element manipulation process between PSS and PBD

Force-based simulation is governed by the real physics law and uses the selected time integration

method to solve the ODE to determine the structure deformation. This approach is more accurate,

and can deliver more detailed and diverse outcome if small time step is used. Position-based

Dynamics delivers reasonably realistic results in fast and stable performance, and it is generally

faster than force-based when the meshes’ complexity level are the same. However, the mechanism

does not follow any particular physics law but only an approximation of the elasticity material

behaviour. Therefore, its result can only be used to deliver visual effect and interactive experience

mainly for entertainment purposes, and cannot be used as a reference for a real-world case

simulation (e.g. for structure analysis in engineering, and accurate medical research and training).

2.3.3 Finite Element Method

Finite Element Method (FEM) is a big topic in applied physics, mathematics and engineering area.

The principal of the concept “Finite Element” is to divide one complex problem that needs to be

solved into a large collection of smaller problems, and then solve the smaller problems individually

and integrate each solution back to solve the original problem. In the case of force analysis and

deformable simulation in continuum mechanics, this means to divide the original solid objects into

a large number of smaller solid elements; and then solve the stress-strain problem for each

individual element. There are also similar methods to Finite Element Method like Finite Difference

Method (less accurate but simpler)[61] and Finite Volume Method (geometry-based) [62].

51

Compares to Particle-Spring System and Position-Based Dynamics, the system of FEM is much

more complicated from modelling to solve the equation. Particle method uses one-dimensional

element (particle) and-two dimensional connections (constraint, spring) to form the structure, while

finite Element Method in continuum solids normally uses three-dimensional tetrahedron as the basic

element for modelling (compares to particles in particle-based methods). As tetrahedron is a 3D

basic element with direction, the system has to use tensor instead of vector (in particle-constraint

methods) to describe stress-strain from neighbouring elements. The simulation method and time

integration are similar but requires more calculation and analysis compare to particle-spring system,

because FEM is still an elastic system that follows the principle of Hooke’s Law. FEM commonly

uses Young’s modulus for the stiffness of the material to identify different material types.

2.3.3.1 Related works

Finite Element Method was initially introduced in 1940’s for engineers and mathematicians to

perform force (load) analysis for elastic problems by Hrennikoff [63] and Courant [64]. And then

it had been widely used in structure analysis and material study. It was then introduced to computer

graphics for simulating volumetric solid objects [10]. In its development, Finite Element Method is

mainly used to simulate and model continuum volumetric models for serious scientific research and

engineering simulation. It models a given object into a collection of discrete small mesh grid (or

lattice, in 3D) that fills the inner structure of solid objects. Therefore, the way it models and

interprets the discretisation of geometry is one of the key topics in FEM. Depending on the

simulation purpose, different modelling approach has been developed to reduce the complexity and

improve the quality of the mesh structure, for example, Cutler’s work in [65].

In real-time simulation area, FEM was also used by researchers to develop applications that require

volume deformation. FEM is proved to be a useful tool by combining with the Augmented Reality

(AR) to deliver realistic and reasonably accurate interaction between human and the virtual object.

Compare to the particle-based system, FEM delivers more accurate and stable result. Therefore, it

is ideal for training purposes if the speed performance meets the requirement. For example, Beikley

et.al[66] uses FEM with adaptive boundary conditions and constraints, and detailed model with low

pre-processing time to model and simulate suturing operation for surgical procedure. It combines

the results with haptic technology for training purpose. However, at the time (2004) the computer

power was not significant enough; therefore, the simulation scale is relatively small (small part of

52

human body) and the rendering performance was limited compares to modern application. AR with

FEM can also be used in structure analysis [67] to enhance the visualisation of the structural data.

Similarly, Fiorentino et al. [68] also introduced FEM simulated stress/strain distribution of the

material structure that combined with AR technology for engineering education purpose.

The complexity and heavy computation of FEM cause it to be inefficient to simulate full-scale,

complicated object(s) in real-time. Therefore, researchers developed workaround solutions for this

issue. One approach is to use Multi-Body System (MBS) modelling with FEM parts. MBS models

a selection of parts of the object with FEM, which is a sub-domain of the whole body, then during

the simulation only the FEM parts will be simulated as deformable volumes, the rest of the object

will be considered as rigid body or other less complex structures. Examples of such combination

can be found in [69, 70]and [71]. The problem with MBS/FEM is that there will be extra calculation

for inter-body interactions. It also limits the scale of the simulation. Another workaround, which is

also an improvements of MBS, is made by doing pre-calculation to limit and reduce the Degree of

Freedom of the sub-domain in order to reduce the run-time calculation[72].

Similarly to Particle systems, FEM can also be powered by GPU and parallel computing to speed

up the simulation. NVIDIA’s GPU parallel acceleration framework CUDA (Compute Unified

Device Architecture) became a significant aid in this area. For example, Liu et al. [73] decomposed

the computation for solving FEM into independent tasks and uses CUDA to solve the velocity by

using modified Conjugate Gradient Method. The solution can be directly used in 3D simulation

system. Other CUDA-powered examples are Kiss et al. [74] with a similar conjugate gradient solver,

and Allard et al. [75] who used GPU based computing to simulate interaction and collision between

objects/materials with different physics properties (fluid/solid combination).

It is worth of mentioning at the time of the writing of this thesis (2019-2020), two major graphics

hardware manufacturer and supplier, AMD and Nvidia, both announced the support for FEM

analysis in their upcoming physics simulation framework (FEMFX physics library [76] from AMD

and PhysX 5.0 [77] from Nvidia). This may bring new impacts to the deformation simulation

research area.

A more detailed and up-to-date survey of Finite Element Method in Real-time simulation can be

referred to Marinkovic and Zehn’s review[72].

53

2.3.3.2 FEM in real-time physics simulation

FEM is by far the most accurate solution available in solid object simulation. It can be used in

serious topics such as structure analysis, material study, civic engineering and parts design etc.

However, the above areas often involve offline simulation, and the visualisation of the results are

not the first priority. In computer graphics, FEM is also used for offline simulation as a standard

solution for visual effect in animation and filming industry. Because of its complication, FEM is

mot popularly used in real-time physics simulation, especially for interactive applications with

complex 3D scenes. The limitations that prevent FEM being widely used in such applications are:

1. Discrete scale: Compare to particle system, physics modelling of Finite Element Method

is more complicated as it needs to discretise the continuous internal space. The ideal

solution is to make the discrete elements (usually tetrahedrons) more or less unified in order

of an efficient analysis. For a relatively complex object, the elements have to be small

enough to march the geometry in order to maintain unity, which results in an increasing of

numbers of the elements and introduces more computation into the later analysis and time

integration. On the other hand, real-time simulation requires fast calculation and reduce the

system complexity as much as possible. This makes the dilemma that large discrete scale

cannot capture the geometry well, and a coarse mesh cannot perform realistic result. At the

same time, small scale can deliver accurate results but introduced to much computation

loads that not suitable for real-time simulation.

2. Modelling difficulty. Turning a 3D static mesh into a FEM model requires certain deep

knowledge of applied mathematics. The modelling quality directly affects the simulation

efficiency and results, especially in real-time simulation where stability and controllability

are at a high priority. FEM is known for its difficulty and complexity when it comes to

modelling and implementation.

3. Computational complexity. Solving FEM stress-strain problem is a heavy computation

task. In real-time application physics simulation can only acquire a small percentage of the

total computational resources; therefore, the simulation method cannot consume a large

amount of hardware resources. It will become the bottleneck of the execution cycle and

affects the performance of the application.

In general, when considering the “simulation speed - result realism” trade-off, simulation result

54

from FEM is unnecessarily accurate for real-time interactive application, where the requirement of

realism is “visually convincing” rather than “mathematically precision”. FEM offers better stability

than particle-based system when simulating elastic system. However, by using implicit or non-

elastic constraints, the stability issue can be greatly improved. In conclusion, there are other

methods that are simpler and faster, and can deliver less accuracy but still acceptable degree of

realism for deformable object simulation in real-time.

There are other cases that some real-time application with special serious purposes (e.g. surgery

training) requires realistic simulation results. In such case, simple method like particle-based

approach can fail to deliver the desired accurate results. FEM can be employed in developing these

applications. However, our research scope is in visual effect domain, where the simulation is only

for entertaining purposes and accuracy is at low priority. Several research uses FEM for real-time

simulation [78], however the implementation of FEM in such applications is only in small scale.

Therefore, from our opinion, FEM is deemed not the first prioritised option for real-time simulation

in large-scale interactive 3D scenes for visual effect purposes, especially when elastic deformation

is not involved.

2.3.4 Other methods for real-time deformable object simulation

Apart from Particle-Spring system, Position-Based Dynamics and Finite Element Method, there are

other methods that has been introduced to simulate deformable objects in real-time. Jones et al. [79]

employed Example-Based Method to simulate permanent deformation of metal-like object. The

simulation was based on the income impose and the fundamental of the method is rigid body

simulation. Therefore it is a behaviour simulation or mock-up rather than a physics simulation. The

method achieves fast performance and reasonable realism. The drawback is that the model needs

extra preparation before use which introduced extra workloads to the artists. And the realism of the

result was limited as the conditions are pre-set.

Another approach to simulate deformation is Meshless deformation introduced by Muller et al.

[13] where instead of connected particles, the object is represented by a loose group of particles.

Meshless deformation uses a shape matching approach, instead of simulating the deformation

progress in order to determine the final deformation of the object. It defines the initial state and the

goal state and simulating the transition process in between the states. Therefore it can achieve

55

unconditional stability as the object’s behaviour only based on the geometry transition. As reviewed

in PBD section, shape matching is also used for simulating behaviour-based plastic deformation

[58]. However, the deformation is mainly achieved by using geometry sampling rather than physics-

based simulation. Therefore, meshless deformation loses more physics accuracy than behaviour-

based method like PBD, and its results variation is limited due to its shape matching nature.

2.3.5 Computational complexity analysis for main simulation methods

One of the most important concerns with real-time physics simulation is its speed performance.

Therefore, it is important to understand the computational complexity behind each simulation

approach. To give an evaluation of the computational cost for a given method, four major factors

that will affect the computation cost has to be considered:

1. The number of elements in relation to the fineness (degree) of the discrete model.

2. The connection/node pattern between different elements.

3. The calculation involved in solving an individual node satisfaction.

4. Memory usage.

In the next few sections, we will discuss the above factors in detail.

2.3.5.1 The number of elements in the system

In three-dimensional cases, the element number for any given model will increase exponentially.

This is to assume that the density is unified, which means the elements and nodes are evenly

distributed throughout the interior volume of the object. In order to compare the differences among

different methods, we use the same object: A perfect 3D cube, as an example for the analysis. In

such a case, the exponent for any particle-based model (PSS, PBD) is a constant 3. Therefore, the

relation of the fineness and the node number can be written as:

N = 𝑛3

where N is the total number of elements, and 𝑛 is is the element density.

The FEM model follows a similar pattern. However, the number of the elements may vary and can

increase in a different pattern, which has the dependency on how the model is discretised. For

example, in a Body-Centered-Cubic (BCC) scheme proposed in [80], each cuboid can be divided

56

into 12 tetrahedrons. Other schemes can result in different numbers of tetrahedron elements been

generated. Therefore, if we use the number of cuboids to identify the density of the model, we have:

𝑁 = (𝑛3)𝑠

where N is the total number of cuboids, 𝑛 is the density of the cuboids, and 𝑠 is the number of

tetrahedrons generated from a cuboid (or any elementary tetrahedron-generation unit).

Based on the above formulas, we can conclude that in the case of a cube with a unified even density

of elements, the FEM model will require more element than particle-based models. However, in

real-world practice, FEM model requires less element density than the particle-based models in

three-dimension volumetric objects, as it captures material volume much better than the particle-

based models. It is also important to mention that nowadays a general approach for deformable

object modelling is using adaptive meshes, in which the distribution of elements in the system is

not unified, and the density is not even. The distribution of elements can also be affected by the

geometry of the object. Therefore, it is difficult to provide an absolute comparison for the number

of elements in different models.

2.3.5.2 The Connection/Node pattern between elements

The node number for FE elements is certain, as the element is defined by basic geometry with

certain faces and vertices. For example, in the case of tetrahedron elements, each element has four

vertices, therefore it has four contacting points (nodes) with neighbouring elements. This case

excludes the elements on the surface of the model, which have fewer neighbouring elements.

The connection pattern for particle systems, including PSS and PBD, on the other hand, can vary.

Particle-based models often employ a constraint system that connects the particles with 2D

constraints. As reviewed before in section 2.3.1.3, there are many different connection schemes and

even multiple layers of connections. The particles do not necessarily only connect to neighbouring

particles, but can also connect to farther particles based on the structure design and intention.

However, a basic single layer triangle mesh, which is the simplest form of the connection scheme,

will require at least 10 connections to the neighbouring particles for an inner particle. Corner

particles, edge particles and face particles can have less connection than an inner particle.

Therefore, in general cases, the particle-based model requires more connections between elements

than FE model with the same number of particles.

57

2.3.5.3 The calculation involved in solving one element and one node/connection

A detailed computational complexity evaluation for FE model is given in [81]. The researcher gives

the computational complexity in asymptotic notation 𝑂(𝑓(𝑁)) as the following equation:

𝐶 = 𝑂(𝐸) + 𝑂(𝑁𝑊) + 𝑂(𝑁𝑊2) + 𝑂(𝑁𝑊) = 𝑂(𝑁𝑊2) (1)

Where 𝐶 is the computational cost, 𝑊 is the bandwidth for the stiffness matrix, 𝐸 is the number

of elements in the system, and N is the number of nodes (connections). From the equation, we can

conclude that with the increasing number of W, the left side function will converge to 𝑂(𝑁𝑊2).

Considering that the above equation is for 𝑁 number of nodes, by not considering 𝑂(𝐸) which

represents the calculation for boundary conditions, we will have the computational complexity for

a single node:

𝑂(𝑁) + 𝑂(𝑊) + 𝑂(𝑊2) + 𝑂(𝑊)

If we apply the same evaluation to particle-constraint based models, we will have the following

equation for a single node (two particles connected by one constraint):

𝐶 = 𝑂(2) + 𝑂(1)

where 𝐶 is the computational cost, 𝑂(2) represents the calculation to solve the displacement

function 𝑓(𝑣) for the two connected particles, and 𝑂(1) represents the calculation to satisfy the

condition of the constraint.

If we apply the total number of particles E and total connection number N to the formula, we will

have the formula for the whole system:

𝐶 = 𝑂(𝐸) + 𝑂(𝑁) (2)

Comparing (1) with (2), we can conclude that with the same number of nodes/connections (𝑁), the

particle-based model has much less complexity than the FE model. The other important conclusion

is that the number of nodes is the key factor for the computational complexity for both approaches.

A similar conclusion is also given in [81].

The above analysis is conducted by using asymptotic notion. Therefore, the detailed computational

cost for the individual algorithm is omitted and the result only shows the value of computational

complexity in regards to the input data size (in this case, the number of nodes and the number of

elements). We use this evaluation approach because it is very difficult to compare the accurate

58

computational cost in each individual calculation task as they use different approaches and solutions

(e.g. different integration methods, different force analysis models). Therefore, a more generic

evaluation is given.

2.3.5.4 Time complexity analysis for parallel computing

In the previous section 2.3.1.3, we have discussed the implementation of multi-thread parallel

computing in deformable objects physics simulation, which can greatly increase the speed

performance of the simulation. All the physics models follow the same discretisation scheme,

therefore, each element and node can be processed and calculated independently.

We already have the equation (1) and (2) from the last section for computational complexity of FE

model and particle-based model. To analyse the computational speed with parallel computing, we

firstly view the computational complexity as the time complexity, then we need to determine which

part of the calculation tasks can be distributed into independent computation process. For both FE

based model and particle-based model, the calculation regarding the condition satisfaction of each

node 𝑁 can be distributed into separate computation tasks. The calculation to determine the

displacement of each element 𝐸 can also be treated the same way.

In order to perform parallel computing, an extra step of operation needs to be taken, which is the

data preparation for grouping the computational tasks. Therefore, if we assume there are number of

𝑇 threads in the parallel computing process, we will have the following formula for FE based model:

𝐶 = 𝑂 (
𝑁

𝑇
) + 𝑂 (

𝐸

𝑇
) + 𝑂 (

𝑁

𝑇
𝑊) + 𝑂 (

𝑁

𝑇
𝑊2) + 𝑂 (

𝑁

𝑇
𝑊) (3)

where 𝑂 (
𝑁

𝑇
) represents the computational cost for data processing.

Similarly, the time complexity for the particle-based model can be summarized into the following

formula:

𝐶 = 𝑂 (
𝑁

𝑇
) + 𝑂 (

𝐸

𝑇
) + 𝑂 (

𝑁

𝑇
) (4)

In (3) and (4), it is important that the condition 𝑁 ≥ 𝑇 and 𝐸 ≥ 𝑇 is met. The number of threads

in use cannot exceed the number of nodes or the number of elements. From the formula, we can

conclude that parallel computing in multi-threads can greatly reduce the computational time cost

for both models. It is worth mentioning that computational complexity is not reduced in parallel

computing; on contrary, the parallel computing increase computational complexity as an extra step

59

is introduced for data processing. However, the time cost is dramatically reduced in proportion to

the number of threads that are available.

2.3.5.5 Memory usage

In the real-time simulation, memory usage is a less concerning factor, as the simulated object

generally does not have a complex model. As disused previously, the total number of elements plays

a vital role in the computational cost; therefore, to optimise the system to be ready for real-time

simulation, the number of elements are generally reduced to the minimum degree. In addition, with

the advancement of hardware development, computers nowadays have significantly larger memory

space, and it is more than enough to store simplified physics model data and intermediate

calculation data. Therefore, memory usage is not our main concern.

By comparison, a single element in FE models requires memory space to store its stiffness matrix,

along with the force and position information. On the other hand, the data structure for the particle-

based model is much simpler as they only require a position vector and a force vector.

2.4 Discussion and Summary of Gap Analysis

As reviewed in earlier sections, there are many available methods to simulate deformable object.

Each method can best capture a certain aspect of the simulation and has its advantages and

disadvantages. However, there are still some simulation demands that cannot be fully covered; and

some application requirements are not met by using the available methods. In this section, we will

discuss modern real-time physics simulation for real-time application and the existing issues.

2.4.1 Current stage of deformable object simulation

Rapid development of hardware and parallel computing enables developer and researcher to

conduct faster computation to solve the physics problem. Many simulations that were not possible

to run in real-time are now possible. By the time this paper is written the new generation of GPU is

just released (GTX 3080). Today the demands on the software and visual effects also increase

dramatically. More and more physics simulations are used in interactive. Physics-based video

games where the game’s mechanism are driven purely by physics simulations are developed and

becomes popular. In visual-aid simulations like surgery simulation and human body simulation,

60

more accurate and more detailed simulations are needed in a real-time based. The development of

VR and AR technology also requires physics simulation as the interaction with virtual environment

can bring more immersions to user experience. Instead of pre-defined animations and deco-textures

which was the normal approach for deformable/destructible objects one decade ago, today’s real-

time physics simulation can offer more possibilities for visual effect yet still maintain fast speed

and stable behaviour.

Today, the simulation of rigid body is well developed and are widely used. However, such

simulation is limited to the interactions between non-deformable objects and focuses on large scale

collision detection, motion projections etc. There are increasing yet still a small number of general

application using the deformation of plastic solid body itself, like bending, folding, denting and

cracking. The material proprieties are represented only by its texture materials but not the way it

behaves. On the other hand, deformable object simulation is very well developed for elastic objects.

However such simulation and the methods being employed fail to capture another group of

deformation: plastic deformation.

2.4.2 Our concerns regarding the deformable object simulation

In this thesis, our research goal and focus is the simulation method for plastic behaviour of solid

objects in real-time interactive applications. Other than elastic objects, we concern about the

deformation of solid, volumetric objects with permanent deformable material properties, like metal.

Such method requires the following properties in order to function:

1. Captures the demanded material property. The model does not require any elasticity, and it

should follow the metallic material deformation that we have discussed in Figure 2.2.7 Metal-

like object behaviour related to stress and strain level, in which we replace the elastic phase

with rigid phase and ignore the fracturing phase.

2. Fast and simple. Our intention is to develop a method that can be used in real-time applications

with high-grade 3D graphics and large scale scenes. Therefore, only a limited amount of

computational resources can be allocated to do the physics simulation. The simulation needs to

be fast to catch up with the update of each frame (preferably 60 frames per second, and in future

cases with higher refresh rates of modern displays, up to 144 frames per second). To achieve

that the calculation needs to be kept minimum, and the subsequent related physics calculation

61

(e.g. collision detection) also needs to be simple. The method will also require to be adaptive

in different scales to suit different situation.

3. Controllability. Real-time interactive application offers experience that is free yet pre-designed,

and the content in the application (scenes, interactive-able objects in the scenes) are all built in

the purpose of helping users to experience the virtual scene in the way it is designed. Therefore

the behaviour and the final outcome of the simulation should have the possibility to be restricted

within some degree by the designer.

4. Easy to implement/apply. Our other intention of this research is to deliver a tool (framework)

for an easy creation and implementation workflow. Therefore, the simplicity of the method is

important, as it should be easily adopted by other developers.

5. Unification. The method should be able to cover a large selection of material based on similar

modelling and simulation process. Different behaviours of the material should not require

individual implementation but only a pre-configured parameters. The targeting effects are hard

metal like behaviour such as denting and bending. Moreover, the method should be able to

apply to different shapes and scales. Based on unification attributes, a framework can be applied

to generalize the modelling and simulation process.

2.4.3 Comparison and discussion of key methods

In the literature review, we have mainly focused on the three most relevant simulation methods:

Particle Spring system, Position-Based Dynamics and Finite Element Method. Each method can be

used to simulate certain types of deformable objects. In Table 2.4.1 below, we have listed the three

methods together with respect to parameters from different aspects for comparison.

Method Particle

Spring

System (PSS)

Finite Element

Method (FEM)

Position-based

dynamics (PBD)

Foundation Hooke’s Law Young’s Modula Position-based

constraint

Time integration Euler vector

based

Implicit tensor

based

Constraint-condition

satisfaction based

62

System stability Medium High High

Most usage (simulation) Infinite thin

objects

Solid Infinite thin objects

and Solid

Physics accuracy Medium High Low

Visual realism Acceptable Very good Good

Implementation difficulty Low High Low

Performance High speed Slow speed High speed

Able to capture cloth-like

objects

Yes Not

recommended

Yes

Able to capture shell objects Yes Not

recommended

Not recommended

Able to capture volumetric

objects

Not

recommended

Yes with high

accuracy

Yes with low to

medium accuracy

Table 2.4.1 Comparison of PSS, FEM and PBD

As shown above, Particle-Spring System (PSS) and Finite Element Method (FEM) are both based

on elastic physics models. PSS, in a way, is a special case of FEM which offers simpler modelling

and calculation and faster performance; hence it was also the first method being employed for real-

time deformable object simulation. It is mainly used for Cloth Simulation.

When simulating impulse transition, PSS uses the spring as the intermedia, therefore the integration

of internal structure change is interpreted as a 2D elastic problem for an element pair component

(particle-spring-particle), which can be calculated by using Hooke’s law. Due to PSS’ modelling

nature, the behaviour of the object fully depends on the structure arrangement of the particle-spring

mesh. When a certain behaviour is expected, it could be difficult to tune the mesh structure and the

parameters to match the requirement. In other words, the change of material property cannot be

achieved simply by applying new parameters but often require restructuring the whole mesh (adding

more springs, re-arrange the spring connection between particles, etc.). Particle-Spring system also

suffers from over elastic problem when using explicit integration and over damping problem when

using implicit integration with large time steps.

63

Finite Element Method, on the other hand, is a generalised method to deal with objects that have

stress-strain related elasticity. By using 3D elements, it captures volumetric space much better for

solid objects, and produces better stability as its stress-strain analysis is in 3D (by using tensor).

The core of PSS and FEM is to calculate the position displacement of each sub-domain of an object

and work out how its displacement will affect its relationship with its neighbouring sub-domains in

a stress-strain relationship. The degree of fineness and the internal structure will largely affect the

behaviour of the object and the numerical errors that brought into the system. In this case Finite

Element Method is more accurate and stable than Particle-Spring system. However, increasing the

fineness of the subdivision of the object will also bring extra computation to the simulation.

Due to its modelling nature, PSS is more suitable for simulating cloth-like object, where the

simulation only focuses on the 2D surface rather than volume space. Though researchers did

conduct research in doing cloth simulation by using adaptive FEM method[82]. Muller et.al [83]

also wrote a thorough review of real-time physics simulation to introduce and summarise the

development in real-time physics. Including Mass Spring System (or Particle-Spring System, PSS),

the Finite Element Method (FEM), Position-Based Dynamics (PBD), Rigid Body simulation and

Fluids simulation.

Topics from Muller’s review covers from physics modelling, meshes construction, integration

method to collision detection and response. In this paper, the authors pointed out that the interaction

between user and physics-based simulation in real-time is very important and challenging, and the

keys to the simulation are fast computational speed and unconditionally stable, also known as

numerical stability. Muller et al. stated that Particle-Spring system is simple to use but has major

limitations: 1. The Internal spring structure determines the behaviour of the object. 2. Parameters

are hard to tune for specific behaviour. 3 PSS is not able to capture the volumetric property of the

object. Therefore they suggested to use FEM for a more complex structured object.

On the other hand, Position-Based Dynamics (PBD) also in some way follows the basic concept of

Newton’s third law (action-reaction), but its constraints are no longer governed strictly by physics

rules; and instead of as an intermedia to pass on the energy, the constraint will direction manipulate

element’s position. By using this approach, PBD gains speed and stability in exchange of simulation

accuracy.

As a particle-based method, PSS’s instability will increase as the structure becomes more

64

complicated, especially when being implemented into a higher dimension (3D volumetric objects

instead of 2D infinite thin objects). PBD, on the other hand, can still maintain good stability as it

does not have over-elastic problem and the numerical errors from time integration. Therefore, PBD

is suitable for 3D soft body simulation.

2.4.4 Summary of Gap Analysis and drawbacks

Before real-time simulation was brought into computer graphics for visual effects, the solution of

deformable object effect was pre-defined animations created by artists. The object can only interact

with the users in the exact way it was designed but not have flexible responses from different input.

This causes the user to lose the sense of plausibility. With physics simulation, users can observe

realistic reaction with randomness from the scene to experience immersion. However, there are

common problems with elastic physics models that will break the immersive experience:

1. In elastic system, time integration always brings errors to the system. As the error

accumulate, the system can become unstable, and the outcome will become unexpected.

Such unstable behaviour can be identified immediately by the user.

2. Damping and other constraints can be introduced into the system to deal with the instability

of the system, but it also introduces more errors. Therefore, such constraints cannot

guarantee the system to be stable. In addition, damping problem can cause the deformation

to act “stiffly” which is also not realistic to user.

3. The behaviour of the system largely depends on how the constraints are constructed. In the

case of solid deformable objects, it is difficult for particle system to capture the volumetrics

and simulate the internal displacement of the object. FEM is a better choice; however, it is

slow for real-time simulation. Therefore certain demands from the interactive application

are not met.

In summary, physics simulation based on force and time integration can bring many uncertainties

to the system, and those uncertainties can become a key negative factor to the user experiences. In

real-time application, controllability and stability is the key to the visual experience of the

simulation, where the randomness and (considerably) realistic physical behaviour still exists but the

behaviour of the object is controlled by given conditions and should not exceed the desired degree.

Moreover, from the developer’s perspective, implementing physics model and rea-time physics

65

simulation is a multi-disciplinary task. The creation of the model and the implementation of the

actual simulation requires a lot of external supporting tools. Currently, there are many tools/plug-

ins and game engine/physics engine supports for the artists to create artworks (3D static meshes)

with physics properties and for programmers to implement the simulation. However, the majority

of such tools only offer simple physics simulation like solid rigid body simulation and collision

detection, and simplified case of cloth simulation. The deformation of a solid object itself is still a

missing feature in the mainstream, high-level engines, and requires case-by-case implementation.

The most popular way of doing the large-scale deformation simulation, such as destruction of the

scene/visual environment, is still premade animations and uses multiple static meshes to present

destructed scenes.

The reason with this issue is not because the lack of motivation of developing such tool, but lack of

a standard solution for solving solid deformable object. The solution should involve modelling, data

interface, a fast and stable simulation method that uses the model structure, and a set of tools for

different domain experts to work seamlessly.

Thus a simple way to assist the creation of 3D solid object assets with deformable properties is

needed. The ideal approach is to take an arbitrary 3D geometry mesh and auto-generate physics

mesh and its internal structures based on the chosen simulation method, along with a set of

parameters that can be modified such as the material property factors, surface property, mass etc.

Then in the real-time simulation, the physics engine will automatically take the physics meshes and

the parameters and do the simulation in the real-time. The simulation should be fast and stable in

order to match the key requirement of real-time interactive application.

Based on the above analysis, we have proposed a new behaviour-based method specifically for

simulating permanent deformable object in real-time. We have also designed a matching framework

to give a standard solution to model and simulate such object from a static mesh. In the next chapter,

we will discuss in detail the purpose and the aim of our method, and give a brief introduction of the

proposed method.

66

3 Research Problem and Thesis Proposal

In this chapter, we continue with the analysis from the last chapter, and we are going to discuss the

current status of real-time deformable object modelling and simulation; and a review of the

workflow for creating and implementation of such simulation. An overview of the current state for

deformable object modelling and simulation and the current development workflow will be given

in Section 3.1. Before conducting the problem analysis, we will give a brief summary of our

research scope in Section 3.2. Then in Section 3.3, we will give the gap analysis and address the

current drawbacks in both research and application area. In Section 3.4, we will make a proposal to

address the problems that we have identified from the previous section. The proposal includes a

new particle-constraint-based modelling method, an impulse-based real-time simulation method. In

Section 3.5, we will propose a framework that integrates the two methods with a specific workflow

to offer fast physics model processing. For demonstrating our methods, we propose to implement a

prototype application, and we will introduce the implementation plan in Section 3.6. We will then

discuss our evaluation plan and test cases in Section 3.7. At the end, we will give a summary of the

whole chapter in Section 3.8.

67

3.1 Research problem overview

3.1.1 The demands for deformable objects simulation in real-time

In interactive applications such as video games, education and training applications, visual realism

is one of the critical factors. A realistic virtual world offers the user an immersive experience that

the designer wants to express. One part of realism is achieved by cutting-edge graphics rendering

technology and accurate artwork (models and textures). The other part of realism is determined by

how the objects in the scene react to user inputs. If the objects give the response that can be related

to everyday experience, users will have a realistic feel. Such feel will greatly enhance the sense of

immersion. In order to achieve this effect, realistic physics simulation is needed to model and

calculate the behaviour of the objects. Modern physics simulation has developed a long way since

its first establishment in computer graphics. Today, real-time simulation has become a reality and

has already been used in many areas for interactive applications.

Physics simulation gives an approximation of how an affected object will develop its behaviour

governed by physics laws and its physics attributes. Rather than hand-drawn by artists, physics

simulation can provide a more efficient workflow and more realistic results. Combine these

advantages with state-of-the-art rendering technology; physics simulation has become popular for

fiction and destruction scenes.

However, realistic and accurate physics simulation is mostly done by off-line simulation, which

means hours of calculation and rendering are spent for just one frame. It is enough for making films

or animations or even for structure analysis in engineering. However, due to the limitation of

computational power, such realistic and complicated simulation cannot be achieved in real-time for

general-purpose interactive graphic applications.

Currently, a lot of progress has been made to simulate rigid body. Bullets and PhysX are the two

main physics engines in the industry to perform these simulations. The simulation mainly focuses

on collision detection and rigid body rotation and displacement. The object itself does not break nor

deform. The deformable object simulation, on the other hand, is still a difficult task for real-time

application. Much progress is made for simple structures such as cloth simulation, but for 3D solid

deformable object, real-time force-based simulation still has performance and stability problem.

Therefore, researchers were seeking alternative solutions. PBD (Position-based dynamics) [12]

68

offers a fast way to simulate elastic 3D object on a behaviour basis and delivers good results. Shape

matching method [13] was also proposed for simulating deformable objects from mesh reformation

perspective.

3.1.2 Current process for creating 3D objects with physics proprieties

Nowadays, the production of interactive applications such as games and training system has become

a well-established industry with a huge market. As the development of hardware computation power,

3D interactive applications has become very common. The graphics quality and realism have

achieved a very high level. The development of such applications is very mature. Advanced

modelling and designing tools and software engineering approaches are widely used in this area.

In the real-time interactive software industry, workloads for creating an immersive virtual world are

generally cross-disciplinary. For example, the following working steps and domain experts are

involved in creating a 3D object with physics behaviour:

Figure 3.1.1 General workflow to create an object with physics properties

Artists create 3D static mesh with rendering properties (for example, textures and materials). This

creation process often involves more than one type of artist. The roles include concept artist, texture

artist, and modelling artist.

Scene designers are experts in designing the scene with the available objects. They construct the

scene based on project requirements, and the placement of each object needs to fulfil a particular

purpose. Not all the object in the scene needs to have physics properties. Some objects are rigid,

some objects are deformable (soft body, plastic body), and some objects are only decorations that

have no interaction with users. Scene designers have the responsibility to define physics properties

69

for objects to serve certain purposes that are written in the design document. In industrial production,

it is important that the simulation behaviour is under control and does not produce any unexpected

results. Thus the physics behaviour of the object itself needs both flexibility and stability. All these

are tuned carefully with a set of parameters by the designer with the assistant from programmers.

Programmers are the creators of the physics simulator and graphics engine or the developer who

utilise such tool to program game logic and visuals. Programmers have the control of how each

object actual behaves in real-time. Programmers often work with the guidance of the requirements

from designers to setup the physics simulation as needed.

The three above roles have to work together in order to create all 3D objects in the application as a

standard workflow in the industry. However, each role does not necessarily have the knowledge and

skill for the other roles. For example, the artist and scene designer often do not know how to

program physics rules and calculation details for the simulation. The programmer does not know

modelling techniques and does not have control over how the object is modelled.

These three steps happen in three different stages. Artist creates the 3D model in computer-aid

modelling software like Maya, 3Ds Max, Blender, etc. Then the model will be exported and handed

to the scene designer. The scene designer will then load the model into scene editor, and set the

physics attributes accordingly (assuming the scene editor supports this function).

The programming requires specific skills and knowledge. For physics simulation in real-time

application, the programmer does not only need to handle the programming but also have to acquire

solid knowledge in mathematics (geometry, surface analysis, time integration) and physics (motion,

force/structural analysis). Moreover, 3D modelling and rendering related knowledge are needed to

evaluate the simulation result.

As shown above, the process of creating a deformable 3D object in real-time involves a very

complicated workflow and many different roles. In order to finish creating the physics model, all

three parties needs to work together and get feedback from each other, and constantly make

modifications until all three parties are satisfied. This process is time-consuming and creates extra

workload for all parties.

70

3.2 Research Scope

Our research scope restricts the problem analysis perspectives and defines our research direction. It

can be concluded in the following conditions:

1. Simulation type: Our research only concerns real-time deformable object simulation, with least

60FPS frame rate.

2. Deformation behaviour types: Our research topic is limited to permanent deformation of 3D

objects, including but not limited to bending, denting, twisting and general structural

deformation.

3. Modelling method: Our proposed method will be based on the particle system.

4. Realism degree: The result is only for visual effects. It is governed by modified physics law

with enough realism level for animation and interaction, but not accurate for simulating

structure and material properties that for use in engineering or material studies.

5. Development solution: We concern the development tasks and domain experts that are

involved in the physics modelling and simulation process.

3.3 Overview of the Gaps and Short Comings

From the literature survey and the above overview, we have identified the current gap in

implementing deformable objects simulation in real-time applications. Moreover, the modelling and

programming process for objects with physics property is too time-consuming for different domain

experts that are involved in this task. In this section we will discuss the short comings in current

state.

3.3.1 The issue with real-time deformable object simulation

In modern time, the majority of the real-time physics simulation in interactive applications are rigid

body simulation and cloth-like objects. These two types of simulation are widely used due to their

simplicity and efficiency. With careful scene design, physics attribute configuration and other

premade animations, it is enough to deliver realism at an acceptable level. However, in more

complicated situations, users expect volumetric objects can be interacted with and perform

71

deformation effect. There are many works that look into the problem of simulating deformable

object based on our literature review. However, at the moment, the majority of these works still

focus on offline simulation. The solution cannot be directly used for real-time simulation.

On the other hand, current real-time simulation is mainly for soft and elastic object. Not much

research looks into the problem of plastic object and permanent deformation or even fracture effects.

Permanent deformable object simulations are rarely seen in interactive applications. The visual

effects of such deformation are often made up by pre-set animations instead of real-time calculated

simulations. Small to medium scale of cloth simulation and small scale FEM solid simulation is

achieved in real-time and had already been used in real-time applications (games, training).

However, in interactive applications (mostly games), static meshes are still the standard approach.

Below is a summary of the objects in real-time environment in current interactive applications:

1. Most of the objects in the scene are static. They cannot be moved and have no reaction to

user input.

2. Most of the objects with physics simulation capacity in the scene are absolutely rigid. The

objects that can be simulated are often rigid body, which means they do not deform.

3. Deformation/Destruction are often done by premade animation and a replaced static mesh.

4. Deformable object simulation is used in a very small scale with simple object structures.

The current situation has the following drawbacks:

1. For the static object, the interaction with these object are limited to none. They only serve

as a decoration and obstacle in the scene with a coarse collision mesh.

2. Rigid body object limits the variety of interaction.

3. Premade animation and destructed mesh replacement always produce the same result

regardless of the input differences.

4. Lack of realism.

These drawbacks limit the user’s experience and can break the sense of immersion. In order to

improve realism, objects in the scene should have a natural reaction from the user’s action. User

interaction with the objects should not be limited to just get simple feedback but also can cause

changes to the surrounding environment. This change requires a new modelling system that can

72

quickly convert the object between static mesh and physics model. In addition, the application has

to be able to perform such simulation in a fast and stable manner with an acceptable degree of

realism.

3.3.2 The problem of the pipeline of creating and simulating deformable

objects

As presented in Section 3.1.2, it takes multiple roles of experts to collaborate by using different

platforms to create an object with physics behaviour. The workflow crosses at least three different

stages and requires a lot of feedback for any justification in order to meet project requirements. The

disadvantages of such workflow are:

1. The process cannot be done by one person. The task requires multiple to work together.

2. The work has to be done in a specific order; each step has a dependency relationship to the

previous step(s).

3. Different parties do not have the required knowledge and skills for other parties. They need

to rely on other parties to make modifications.

4. The workflow requires extensive communication.

The disadvantages can cause further problems:

1. Each party lacks control over the tasks they do not understand. For example, an artist does

not have control over the physics properties; therefore, it is difficult to preview the object’s

deformation behaviour. This can cause potential problems later, as the mesh created does

not meet the deformation requirement according to the design. Lack of knowledge can also

cause miscommunication between different parties hence reduce the quality of the work.

2. As each party relies on other parties, unnecessary overlapped workloads can be created due

to the collaboration. Result testing and modification require all three parties to work

together.

The above problems are very common in the developing process of the interactive applications.

73

3.3.3 Lack of permanent deformation simulation in real-time application

Based on our literature review, we did not find many works that relate to permanent deformable

simulation. Most of the research in the simulation domain concerns elastic objects. The simulation

for permanent deformable objects, especially the particle-based modelling of such objects, are

overlooked. However, we believe that permanent deformable object is an important topic in real-

time simulation. It has more potential useability than elastic objects. While elastic objects are often

used for character and key items, permanent deformable objects can be used in a larger scale for

constructing the environment components. We have summarised some reasons that prevent

permanent deformation from being used in real-time interactive applications:

1. Most permanent deformable objects are volumetric objects. The modelling for such objects

often requires complex structures. FEM is the best solution for such objects. However,

complex modelling leads to expensive computation for solving the system. For real-time

simulation, this is a big drawback.

2. Simple modelling methods like particle-based approaches are difficult to capture the

volumetric structure.

3. Most of the simulation methods are force-based (particle-spring system, FEM), which

brings stability problem to the simulation. Deformable objects are often on a larger scale

than elastic objects. Therefore, it brings more difficulty to maintain the stability. In addition,

force-based methods usually bring heavy computation.

4. From the comparison, behaviour-based approaches (PBD, face matching) can deliver a

faster solution. However, as they do not strictly follow the physics law, the real-time result

presentation may not be as realistic as the physics-based methods.

From our evaluation, with modification, the behaviour-based approach can be a better solution than

the force-based method for generating real-time interactive deformation effects. In addition, despite

the fact that FEM is the best solution for modelling volumetric objects, it introduces an extensive

amount of calculation and potential numerical stability issue to the system. Therefore, we believe

the particle-based method can still be used for such task, especially in behaviour-based approach

with non-elastic model.

74

3.3.4 Research Target

Based on the previous analysis and our research scope, we have setup our research goals to target

some of the existing issues in the real-time physics simulation and modelling process.

Firstly, we believe a new method for modelling and simulating permanent deformable object in

real-time is needed. The new method should have the following key attributes:

1. It should use simple physics modelling system to reduce the computational demands and

the usage of memory, which are very important in large-scale real-time simulation.

2. It should simulate permanent deformation of an object. This means we have to eliminate

the elastic property from the object. This is very different from PSS, FEM and PBD.

3. It should be numerically stable and can be controlled by a set of parameters. In addition,

the physics property should be represented by parameters that can be easily modified.

4. It should have the controllability to handle any unexpected input and maintain stability.

5. The result does not need to be as accurate as high-precision simulations (like FEM used in

structure analysis and force analysis), but it has to have visual realism that can offer real-

world-like experiences to the end-user.

Secondly, we believe that a complete solution for modelling a static mesh into a physics model is

useful for interactive application development. This can be particularly helpful for permanent

deformable object modelling; because the structure of such object are often more complicated than

simple objects that are currently used for interactive application (like cloth objects).

The proposed solution should have the following key attributes:

1. It should be able to directly take standard raw data (3D static mesh) format as input.

2. It should be able to process the raw data automatically generates physics mesh structure

without human intervention.

3. It should have the interface to allow non-expert users to have control over the physical

structure and material properties of the object.

4. It should have a physics simulator for simulating real-time deformable object simulation.

5. The whole solution should be designed to reduce unnecessary workload between different

75

groups of domain experts. Therefore, the user interface should be intuitive to offer a tool

for non-expert users to complete technical tasks that can only be done by experts.

In order to tackle the discussed drawbacks and achieve our target, we will propose a solution

including a modelling method for permanent deformable objects; and a simulation approach for

such objects in real-time. Also, we will propose a framework that utilizes our solution and integrate

the methods into a seamless workflow for physics model generation and simulation.

3.4 A new solution for modelling and simulating permanent

deformable objects in real-time

Based on the current shortcomings we have discussed in Section 3.3.1 and Section 3.3.3, there is a

demand for a fast, stable and reasonably realistic solution for deformable object simulation in real-

time environment. Such solution requires special physics modelling method to the object, and a

corresponding simulation method that can take the benefit of such modelling approach and bring it

into real-time simulation.

In order to achieve this, we would like to propose our new solution, including a particle-constraint-

based modelling system with a face-body-centred cubic mesh structure. And an impulse-

distribution-based real-time simulation method.

3.4.1 A particle-constraint based modelling

Our proposed modelling method is particle-based; each particle represents its mass and the

surrounding spaces. The benefit of particle-based modelling is its simplicity. Compare to FEM

modelling, the particle system is much easier to calculate and model. Moreover, it has a simple

structure. For the connectivity between particles, we propose to use a distance-based constraint. But

unlike from PBD, the constraint has little to none elasticity as its length is flexible.

With a flexible constraint length, our Particle-Constraint based system is able to simulate object

deformation, while in PSS and PBD the system will always tend to recover to its initial state. With

correct distribution of the particle and constraints, particle system is capable of simulating

volumetric object and perform deformation under external force or collision. With the similar

modelling elements to PBD and PSS, it is also very easy to convert the object to use another particle-

76

based simulation algorithm. Therefore, particle-based modelling also has a good comparability. The

constraint in our method is also a path representation for a network structure, which we will be

using for impulse distribution in the simulation phase.

The advantage of a Particle-Constraint-based system is its simplicity. It is easy for modelling and

calculation. Particle-based system has its drawback when representing a continuum material object.

This case usually happens in soft-bodies which has elastic property. However, in non-elastic

systems with distance constraints, this drawback becomes less problematic as the movement of each

particle is limited.

3.4.2 A physics structure based on Body-Face-Centred Cubic (BFCC)

The interior particle structure is expected to be generated in a fast and simple manner with good

stability. Our framework concerns about plastic deformation, which normally occurs in metal

material, therefore, it is reasonable to consider the real-world crystal structures in Metals. We have

considered the Body-Centred cubic (BCC) [84] and the Face-Centred Cubic (FCC) [85]. By

analysing both approaches, we have found that BCC does not offer a structure symmetry, and FCC

has a large empty space in the centre. Therefore, we combine the two structure together and propose

a Body-Face-Centred Cubic (BFCC) pattern as a unit element to generate the structure grid.

BFCC is not only responsible for generating the internal structure of the object but is also

responsible for constructing the surface mesh of the physics model. By using BFCC approach, we

can automatically generate approximated surface based on the rendering mesh in fast speed with

reasonable triangle quality.

3.4.3 An Impulse-based Real-time Permanent deformable simulation

We propose an impulse-distribution-based simulation for simulating the deformation of the

structure. An impulse represents a one-time displacement of a particular particle. Our idea is to

distribute such impulse throughout the entire structure.

The initial term proposed for our method was Velocity-Based Dynamics (VBD, in the spirit of

distinguishing our method from Position-Based Dynamics, PBD). However, the term was already

occupied in other fields [86, 87]. Therefore we use the term “Impulse-based” to name our method.

77

In the simulation, the physics material behaviour of the object depends on the property of the

constraint. The constraint act as a connection and transfer intermedia of the impulse. We define the

collision or any other external applied disturbance to the object structure as an initial impulse. Once

the initial impulse is detected, the affected outer particles will automatically gain initial

displacement. Then the impulse will be distributed throughout a network structure. The

displacement of each particle can be determined after solving the satisfaction with all the constraints

that connects to it (Similar to PBD). The advantage of this solution is that the constraints do not

apply velocity to particles, therefore, calculating particle’s displacement can be much simpler as

there is no differential equation to solve. The displacement has only two steps (initial displacement

and constraint condition adjustment).

3.4.3.1 Difference between Impulse-based and Position-based

From a broader view, PBD can still be considered as an elastic system, though it does not follow

the Hooke’s law and with less numerical issues. The constraint itself is commonly in a fixed state

(always follows the same constraints parameter, same rest length and same stiffness). Impulse-based

method, on the other hand, is proposed to solve permanent deformable (elastic) object specifically.

Therefore elastic solution does not apply to our method. In our proposed method, constraints will

still apply adjustment to particle’s position however the trigger for the constraint condition to take

effect is much flexible than a fixed-length constraint.

Moreover, in force-based methods like PSS, the displacement of particle is determined by force,

which is its second derivative. In PBD, the particle still has velocity. Therefore, the displacement is

determined by its first-order derivative. In the impulse-based method, we manipulate the particle’s

position directly without calculating its change over time. Therefore time integration process based

on particle’s velocity is eliminated from our system.

3.4.3.2 Difference between our Impulse-Based Real-time Permanent deformable

simulation model and the Impulse-Based Dynamic

In 1995-1996, Mirtich, B published his work named impulse-based dynamic simulation [88] [89],

which has a similar name to our proposed system. This coincidence may cause potential confusion

to the reader. However, the two concepts behind similar names are different. Mirtich’s work

proposed a constraint-less solution to handle object contact and its response for rigid objects. It

78

belongs to the rigid-body simulation domain, which was categorised in Figure 1.2.2.

Our proposed method, on the other hand, is a solution for simulating the permanent deformation for

plastic objects, which belongs to a different research field. We use the term “Impulse-based”

because the method does not analyse any form of force and material strain-stress problem. Therefore,

the term is used to distinguish our method from the “Force-based” methods, such as Particle-Spring

System (PSS). Moreover, a counterpart and the original base of our method is “Position-Based

Dynamics”, also known as PBD. Therefore we named our method as such in order to emphasise the

physics foundation that the method is based on. An analysis of the difference between the Force-

based Method and Position-Based Method is given in Section 2.3.2.2.

Therefore, our method relates to a different research area to Mirtich’s Impulse-Based Dynamics,

which focuses on rigid body. The two methods do not share many similarities with regards to the

simulation process. In addition, our simulation model is a component of the proposed “FREDOMS”

framework, which will be introduced in the next section. It is a standalone concept, but its

implementation also relies on specific physics modelling methods.

3.5 A Framework for Permanent Deformable Object Modelling

and Simulation

3.5.1 Purpose

We have discussed the drawbacks of current workflow for creating physics objects in Section 3.3.2,

and we have listed our requirement for such workflow in Section 3.3.4 . To address these problems,

we propose an all-in-one solution to simplify the working process. The proposed framework

provides a tool for different domain experts to easily process an initial data (raw rendering mesh)

to meet their requirements. Most of the work that previously needed to be done manually can now

be handled automatically by our system. Communication and collaboration between different

parties can be reduced to minimum. By employing the proposed framework, the development team

should significantly reduce time consumption when creating 3D deformable objects and the

implementation of simulation for such objects. In addition, our framework offers direct access to

some technical and professional tasks that can only be done by specialists to other non-expert users.

79

3.5.2 Target Users (Framework involved professional stakeholders)

Our framework is designed to offer assistance to different professional stakeholders involved in the

creation process and give each user access to other users’ tasks in the same platform. Our framework

has the following targeting users:

1. Artist (3D Modelling specialist). The creator of the raw 3D rendering mesh.

2. Scene designer. The domain expert to determine which object(s) in the scene should be

involved in physics simulation. Scene design is responsible for deciding and configuring

the type of material property of the object, the purpose and the degree of the object

deformation and the control factors that need to be applied.

3. Programmer (Interactive logic programming and Physics simulation specialist). The

developer who programs the designed and required activity and input/output logic into the

application and uses the applied API (Application Programming Interface) to integrate our

simulator into the game system for permanent deformable object simulation.

3.5.3 Framework Functions and Architecture

We call our proposed framework “A Framework for REal-time Deformable Object Modelling

and Simulation”, known as FREDOMS. We propose this framework as a complete solution to the

creation process. Therefore it should offer a full set of function to satisfy the purpose and target

users from the beginning to the end of the workflow. The framework is a one-step integration of our

proposed modelling and simulation method combined with an intermedia interface.

The framework should offer the following core functions:

1. Automatic geometry analysis and physics modelling from an existing 3D rendering mesh.

2. Direct editing and manipulation to physics material properties to the object.

3. Real-time demonstration and feedback for reviewing the visual effect.

4. Real-time simulation from a simulator that can be integrated into other applications.

In order to achieve the above functions, we proposed to have two main components in functional-

wise prospective in our system:

1. The Automatic Physics Modelling Functionality Component (APMFC).

80

2. The Deformable Object Simulation Functionality Component (DOSFC).

APMFC will offer the solution for functions #1 and #2. The system will require parameters from

user input to define the desired physics property. It will then automatically analyse the object’s

geometry and conduct physics modelling based on the input parameters.

DOSFC is responsible for functions #3 and #4. In words, DOSFC is a physics engine we designed

to specifically simulate 3D deformable object by using our proposed simulation method. To achieve

function #3, DOSFC will work with an additional user interface to offer instant simulation feedback

to the user.

FREDOMS also provides an interface for artists and level designers to view, model and test the

object. The interface is called Automatic Physics Modelling Interface (APMI). APMI is a CAD-

like application that gives users access to all the configurations that we used in FREDOMS. It also

uses a reverse-data interpretation to hide technical details for non-expert users. Therefore the skill

requirement for using the interface is low.

3.6 Implementation Plan

In order to test and demonstrate our proposed methods and the framework, we will implement a

prototype based on the functionality of APMFC and DOSFC. In Addition, we will implement an

interface with the integration of APMFC and DOSFC that follows the ideology of FREDOMS

framework. The final implementation will have two products: A fully functional application

combined with APMFC and DOSFC with an editor interface. And a standalone physics simulator.

3.6.1 Automatic Physics Modelling Interface (APMI)

Our first system is Automatic Physics Modelling Interface (APMI). APMI system is an application

with a 3D model editor interface. It is a toolset for artists and scene designers to create 3D physics

objects. It has the following functions:

1. File input/output. It should be able to input rendering mesh file (in .obj format) and export

the same object with additional information (physics mesh and mapping information).

2. Object mesh viewing interface. This includes the review of rendering mesh and physics

81

mesh with different display options. It gives a visual aid to the user to identify its geometry

and physical structure.

3. Parameter toolsets. It allows users to input material parameters to adjust the desired physics

property that can determine the object’s behaviour when doing the simulation. The input

interface should be intuitive and with a reasonable number of pre-defined configuration, so

users do not have to have physics or programming knowledge to create the physics model.

4. Automatic generation of physics model. This includes surface mesh generation, weighted

mapping, distribution of particles and the final generation of the physics mesh. The

generation process and key information should be displayed.

5. Real-time testing review. User should be able to conduct tests and initiate interaction with

the object and observe its deformation behaviour in real-time.

3.6.2 The PanGu Physics Simulator

The functionality for standalone Physics simulator is already implemented in APMI. However, it is

important to implement a separate simulator that can be embedded into other platforms. Therefore,

the simulator is the implementation of DOSFC functionality and is already integrated in APMI. We

call this simulator as PanGu Simulator (PG simulator, or PGS).

We name this physics simulator as “PanGu” which in ancient Chinese mythology is the first being

in the universe, and its dying body creates everything in the world. We choose this name as we

would like to create a virtual and realism world for real-time interactive applications in computer

graphics.

The simulator should have the following functionalities:

1. Load data that are exported from APMI (APMFC) and construct the object accordingly.

2. Collision detection.

3. Force analysis and impulse distribution to the internal structure.

4. Real-time simulation of the physics mesh. Calculate displacement for each particle and the

total structure deformation of the object.

5. Map the deformation of the physics object back to original raw rendering mesh.

82

3.7 Plan for Evaluation

3.7.1 Evaluation Matrix

After finishing the implementation, we will test the framework as a whole workflow, as well as its

individual functionalities. Based on the aspects we have discussed in gap analysis (Section 0), we

will evaluate our framework by testing the implementation result in the following areas:

1. Modelling and simulation capability: The most important task for our proposed methods

and FREDOMS framework is to deliver modelling and real-time simulation for permanent

deformable objects. Therefore, we will test how the automatic modelling function can

handle different types of mesh geometries. And if the system is able to carry out real-time

simulation for such model and deliver different effects.

2. Behaviour Controllability: We will test how the different parameter settings can affect the

behaviour of the object’s physics material during the simulation.

3. Structure Stability: We will test if the object is numerically stable and how it reacts to

external impulse and how it achieves structure balance.

4. Result Realism: We will observe the visual result from the tests and evaluate the realism

degree.

5. Speed Performance: We will conduct speed test in different conditions to evaluate if our

simulation achieves real-time requirement.

6. Usability: We will conduct a test for our APMI interface by using a specific use case, and

evaluate its usability for our desired tasks (modelling and real-time simulation testing).

3.7.2 Design of the Test Cases

In order to conduct the above evaluation, we will design five testing cases:

1. The Metal Bar Case: We will use a simple rectangle metal bar object for simulating different

deformation types, including bending, compressing, and twisting.

2. The Metal Plate Case: We will use a flat metal plate to simulate denting effect. Moreover,

we will use this case to test different configurations of parameters and their effects on the

83

material property.

3. The Torus Case: We will use a torus object to test how our framework can handle more

complex geometry. We will also continue to test the torus object with the same parameters

configurations in the Metal Plate Case to measure the material behaviour in different scales.

4. The Alex’s Car Case: We will give a case study of a video level designer named Alex who

uses APMI to generate physics model for a car mesh. By using this case study, we can

demonstrate how our framework can assist user to perform quick and easy physics

modelling and simulation.

5. The Speed Testing Case: We will conduct test specifically for speed test in different particle

and spring density.

In correspondence to our evaluation matrix, we have summarised the testing aspects for each case

in the following table:

 Capability Controllability Stability Realism Speed Usability

Metal Bar ✓ ✓ ✓

Metal Plate ✓ ✓ ✓ ✓

Torus ✓ ✓ ✓ ✓

Alex’s Car ✓ ✓ ✓ ✓

Speed Test ✓ ✓

Table 3.7.1 Test case summary in relation to the evaluation matrix

From Table 3.7.1, we can see that the five test cases have covered all the aspects from the evaluation

matrix.

3.8 Proposal Summary

In this chapter, we have reviewed the current stage and drawbacks of real-time physics simulation.

We have identified that currently, most of the popular methods are for elastic systems, and there is

no efficient method for simulating permanent deformation (metal-like rigid body) in real-time

interactive applications. In order to address this gap, we proposed a new solution for modelling and

84

simulation method that uses a particle-based system and non-elastic constraints instead of springs

to model and calculate internal structure and deformation of the object. The proposed model is

expected to significantly improve the stability and the performance (speed) of the simulation and

also provide reasonable realism in visual effect.

We also reviewed the current states of the workflow for creating and simulating 3D objects in

industry. We believe there are cumbersome steps and workloads existing in the current workflow,

and some of the workload can be avoided. We then proposed a Framework for REal-time

Deformable Object Modelling and Simulation, known as FREDOMS. This framework offers

permanent deformable object modelling and simulation solutions for artists, scene designers and

programmers to share the same platform. The platform provides an intuitive environment to enable

domain experts from one discipline to collaborate on tasks in other disciplines.

For demonstrating our proposed methods, we introduced the implementation plan for APMI and

PanGu system and their functionality requirements. We then present an evaluation matrix for

measuring the key aspect of our contributions. We designed 5 cases based on the evaluation matrix

and the results are expected to cover all the research goals and can demonstrate the validity of our

proposed methods.

In the next chapter, we will give a detailed introduction and discussion of our proposed methods

and the FREDOMS framework.

85

4 A Framework for REal-time Deformable Object

Modelling and Simulation (FREDOMS)

In the last chapter, we have introduced a new method for modelling permanent deformation of solid

objects and a new method for simulation such objects. We have integrated our solutions into a

framework with a complete workflow for automatically processing a static rendering mesh into a

physics mesh. The framework will provide an intuitive and fast solution to the domain experts for

quickly creating physics mesh with desired material properties. Then the framework will conduct

simulation of the created object in real-time interactive applications.

We structured the FREDOMS framework into two major functional components and an interface

design. The two components are responsible for the physics modelling and the physics simulation.

In this chapter, we will give a detailed introduction to these components and the solutions that we

employ to address the issues in each tasks in order to present a complete view of the framework.

In Section 4.1, we will give an overview of the tasks in FREDOMS workflow, and a review of the

current physics object content creation process for application development. In Section 4.2, we are

going to introduce the first component, which is an automatic modelling solution by using a BFCC

(Body-Face-Centred Cubic) unit-based structure and a grid-based surface generation method. In

Section 4.3, we are going to introduce our impulse-based method for simulating permanent

deformation objects in real-time, and the solution to handle collision detection, impulse distribution

and structure maintenance. In Section 4.4, we will present our user interface design based on the

principle of FREDOMS. At the end of the chapter, we will give a summary in Section 4.5.

86

4.1 An overview of FREDOMS workflow

By definition, a framework is a collection and integration of solutions that are arranged to a certain

workflow for a given problem. In our context, a framework for real-time permanent deformation

simulation requires multi-step processing of a static rendering mesh.

We have proposed FREDOMS (“the system”) to target the complicated developing process for

physics modelling and simulation. The proposed framework should only require a minimum

amount of input and user intervention yet can still provide desired results. To achieve this, we have

to make standard procedures for solving each task in the process, and employ methods that are

adaptive for different inputs and scenarios.

In an ideal case, the beginning of the workflow starts with an artist creating a detailed 3D model,

also known as rendering mesh, or raw mesh. Commonly, the creation of a 3D model includes

defining all the vertices, faces, shading material properties, textures and UV mapping, and possibly

other information, e.g. bone structure and skinning. Our physics modelling method only concerns

geometry information; therefore, the only required information is vertex and face data. Once the

system gets the information of the mesh, the first step is to test if the information is valid and the

mesh is ready for physics modelling.

After the valuation check, the system proceed to the automatic modelling phase. By using the

rendering mesh as a reference, FREDOMS first generate a boundary box for the mesh. Then,

FREDOMS construct the particle-constraint structure within the boundary box. Based on the

physics structure and the rendering mesh, FREDOMS generate the surface mesh for the physics

model. At last, the system set the constraint parameters and perform a reverse weighted mapping to

attach the physics mesh back to rendering mesh.

In the next stage, the physics model is exported and then imported into the simulation phase. The

first step in the simulation phase is to reconstruct the physics model by a set of proper data structures.

The data types and structures are already defined in modelling phase and the standard is universal.

Then the model is loaded into the interactive scene along with other deformable or non-deformable

objects. It is worth mention that the simulation itself is just a part of the user-experience therefore

a concern is that it should only take a limited amount of system resource to compute. In the real-

time interactive environment, FREDOMS performs constant collision detection and impulse

87

analysis (with optimisation conditioning to avoid unnecessary computation). Once a collision or

other form of external impulse is detected, the system starts to respond. It first determine the

collision or impulse effect to the object and start to exam the affected surface particles, and then it

applies initial impulse to collided particles and distribute the impulse throughout the structure. The

system solves individual particle’s displacement base on their position in the network structure.

Then the constraints are checked to identify if their conditions are satisfied, if not, the system adjusts

the particle’s position accordingly. After determining all the particles current position, the system

remaps the displacements (deformations) back to the rendering mesh and then a physics simulation

for a given execution cycle is completed. This process, along with all other logic executions, will

be executing constantly as the application is running.

This proposed framework contains two core parts: The first part, as proposed in Chapter 3, is called

Automatic Physics Modelling Functionality Interface (APMFC). APMFC contains all the

functions that are required for object modelling. The second part is The Deformable Object

Simulation Functionality Component (DOSFC) which is the physics simulation component for

real-time deformable object simulation. Our proposal also includes interface design; however, the

interface design can be subject to change to suit different scenarios, but APMFC and DOSFC are

fixed standards with specific methods. Therefore, the interface design is not listed as the essential

part of FREDOMS.

Below is a summarised illusion of the FREDOMS workflow (Figure 4.1.1):

88

Figure 4.1.1. The FREDOMS workflow

89

In the following sections, we will discuss each task in the workflow in detail and we will introduce

the methodology for addressing and solving problems that are related to each individual task.

A note on Pre-calculation for Real-Time Simulation

Functionally, our framework as two main components: APMFC for physics modelling and DOSFC

for real-time simulation. It is worth pointing out that all the modelling operation and computation

that happen in APMFC are offline computation, which means it happens in a separate stage that

before the real-time simulation started. In application development case, this happens before the

application is fully developed. Therefore, speed-wise performance is not concerned for APMFC.

This approach is in the similar principle to optimisation in FEM where the Degree of Freedom of

each element is limited (as review in literature survey and [72]). The spirit of such process is to

prepare the data quality and reduce the data size to minimal in order to boost real-time simulation

by saving unnecessary calculation. This approach is different from the principal of another

optimisation concept like Multi-Body System (MBS) where the preparation of the model is to reduce

the model simulation complexity from modifying the simulation mechanism itself.

Therefore, aside from simply converting rendering mesh to physics mesh, one of the purposes of

APMI is to construct and prepare a better physics mesh that is specifically optimised for our

simulation method that are employed in PanGu Simulator and make it more efficient. The

optimisation method of the mesh is also suitable for other similar simulation methods with a little

modification as the mesh quality standard is universal in computer graphics. Moreover, this process

will be done automatically therefore the standard can be executed in good consistency and no

human effort is involved (except doing initial configuration) to save the workload from the artist

(unlike some methods that need extra preparation from artist [79]). Therefore, we believe the pre-

calculation process in preparing the model is necessary.

4.2 Automatic modelling method for particle-based physics

model

The first step of physics simulation is to perform physics modelling to a given object. Physics model

defines the object’s geometry information, internal structure and physical material properties. The

selection of modelling approach will directly define and limit the possible simulation method(s)

90

that can be employed.

Current industry solutions for physics modelling for real-time simulation purpose is limited with

little freedom and require extra training, the Bullet Physics Engine in Blender[90] and the PhysX

in Unity [91] are examples of modern physics libraries that are integrated with modelling and scene

designing platforms for physic simulation. In most of such platforms, the direct physics modelling

or physics properties configuration process is limited to simple physics problems like rigid body,

basic character animation and cloth simulation.

An ideal workflow for domain experts to create objects with physics properties is that an artist

creates a detailed rendering mesh (static mesh) for the object. Then the artist can select and define

the physics properties of the object (e.g. rigid body, absolute static object, soft object, permanent or

elastic deformation etc.) from a set of options and can modify the properties by parameters/factors

based on common sense (rather than knowledge in mathematics and physics and material studies).

Then the computer-aid creation tools automatically does the physics modelling and creates a

mathematical description of the physics property of the object based on the rendering mesh. Then

it should be able to export the object into files just like any other standard 3D models but also attach

its physics information with the file.

The simulator should be able to load such file and understands its physics interpretation and execute

the physics simulation accordingly. The workflow of automatic generation of physics model can be

summarised as below:

Figure 4.2.1 Modelling workflow

Rendering mesh
modelling

•Artist creates
the 3D object
by using
computer-aid
tools

Assign physics
properties

•Artist select
material
properties and
set parameters

Automatic
modelling

•Automatically
create physics
model based on
the rendering
mesh and input
physics
properties

91

4.2.1 A Particle-Based Modelling

In the literature review, we have discussed different types of simulation method, which includes

particle-spring system, FEM, position-based dynamics and other particle-based methods. Each

method prefers the simulated object to be modelling in a specific way. In Chapter 3, we have

analysed these methods based on our research purpose, and we have chosen particle-based

modelling method for our simulation method.

There are two most popular model approaches for deformable objects. One is particle-constraint

based modelling, which is widely used in particle spring system and position-based dynamics. The

other one is volume-based space discretization, which uses small solid elements to fit the interior

space of a continuum object. An example of such method is tetrahedron groups in Finite Element

Method (FEM). A good modelling method will provide fast proceeding speed and structure stability.

And the selection of the modelling method is highly related to the simulation approach. For example,

a particle system is not suitable for FEM method because it cannot fully occupy the whole internal

space of the object. Therefore the simulation is not able to apply tensor analysis to stress/strain to

each element. In APMFC, we only concern speed in real-time and simple interface for non-domain

experts (in physics and programming term). Therefore the chosen modelling method should satisfy

the following conditions that are listed from high to low priorities:

Figure 4.2.2 Priority for modelling condition

1. Good performance: Model should be prepared and optimised to perform fast speed calculation.

Good performance also implies the possibility to employ the modelling method in large scale.

2. Ability to capture volume space. Our research goal is to simulate 3D volumetric objects,

92

therefore, the method should be able to capture internal space of the with good structure stability.

3. Numerical stability. The model should consider the stability problem as the deformable object

is often affected by constant change of external force. The force applies to the object is the

second derivatives of the displacement/deformation of a sub-space part. Therefore when

calculating the total displacement in a given interval (time step) there are usually errors

introduced to the system based on the integration method and the time step we chose.

4. Adaptivity: FREDOMS is expected to take a large range of input data from large scale of

simple simulation or small scale of complicate and detailed simulation, and with different

geometry features. The modelling should be adaptive to fit the purpose of the model while

maintaining optimisation to boost the performance in the simulation stage.

5. Realism: The purpose of physics simulation is to deliver an immersive experience to the end

user; therefore, the visual effect should be realistic enough to convenience people. Because we

have limited our application scope to entertaining/non-crucial training purposes, there is no

requirement for physics accuracy.

6. Method complexity, Difficulty for implementation and manipulation: APMFC is designed

for users that are not an expert in physics and mathematics field, and the system is expected to

deliver an easy and intuitive interface to the user. Therefore, it is important that the method

behind the automatic modelling is not over complicated and the interpretation of input data

needs to be understandable by such users. This factor will also affect the implementation stage

where the programmer needs to integrate the simulator into the application.

7. Data size: As we are going to pack the physics data into the model file, therefore the size of the

file should be considered and kept as minimal. Also, minimum data is preferred when it comes

to memory consumption in real-time execution of the simulation.

In the literature review, we have already compared some popular modelling methods, as discussed,

the discretisation in FEM has a great advantage in result accuracy; but as it requires heavy

calculation and complicated analysis. Particle system, on the other hand is fast and straightforward.

Below is a comparison of the two approaches based on our modelling method evaluation matrix:

93

 Particle system FEM discretization

Fast simulation Yes No

Capture 3D volume Yes (conditionally and have

limits)

Yes

Numerical stability Yes (conditionally) Yes (conditionally)

Adaptivity High Low

Method complexity Low High

Result of Realism Medium High

Degree of freedom Yes Yes

Table 4.2.1 Comparison of Particle based modelling and FEM based modelling

As listed in Table 4.2.1, particle-based modelling meet all requirements (with some condition). In

comparison, FEM has some major drawbacks in meeting some of the conditions. In elastic particle-

based system, numerical stability is always an issue when extreme condition is applied. However,

some particle-based system does not follow the elastic law (e.g. PBD), therefore, numerical stability

is improved. FEM suffers the same problem, but because of higher accuracy of the modelling, it

produced less error in the system than particle-spring system.

The biggest problem with FEM for real-time simulation is its complicated and heavy computation.

And the trade-offs between the realism and the simulation speed seems not worthy for real-time

interactive application. The accurate result that produced from the heavy computation is not needed

for real-time, effect-wise simulation. It is still possible to implement FEM in real-time, however the

scale of the simulation is restricted. FREDOMS targets to a larger scope of use rather than small

scale simulation; therefore, we find FEM and solid element based modelling is not suitable for our

research purpose. Particle-based method still has certain problems with numerical stability and

limitations for modelling space volume, but it can be solved by using alternative solutions.

Moreover, by using a particle-constraints based method, the model can be used not only by our

proposed method but also other similar particle-constraints based method like particle-spring

94

system and Position-Based Dynamics. The object structure generated by FREDOMS is still valid

for other particles. With a little modification of the input parameters and a different physics

simulator, APMFC can be applied to many other methods as a modelling tool.

Therefore, in our system, we have decided to use a particle-based system for physics model. The

object will contain a finite number of particles. Each particle is the representation of its surrounding

space and mass. There are three groups: The first group is the surface particles which defines the

outer boundary of the physics mesh. They also act as vertices of the collision mesh. The second

group is the inner particles group which captures the inner volume of the object. The third group is

the outside particles which are within the object’s boundary box but outside the object’s geometry

mesh. This group is reserved for AABB frame referencing, which will be introduced in later sections.

4.2.2 Constraint

In FREDOMS, particles are connected by distance-based constraints. Constraints in particle-spring

system apply force to the particle. While in PBD, constraints limit the position of the particle. In

FREDOMS, constraints is a connection between two particles with length limit and length

flexibility ratio value; it serves two purposes:

1. To pass impulse to the particles at each end.

2. To limit the movement of particles by checking if the distance condition is satisfied.

We use a network-based data structure and a one-way impulse passage algorithm (will be discussed

later) to distribute the impulse gained from external disturbance. Constraint structure is a reference

to the system for determining the path for impulse distribution. Only the connected particles will

have direct interaction. The constraints contain the parameter that can decide how much impulse

will be passed from one particle to another. In addition, constraints have direct manipulation to the

displacement of the particles. Compares to Particle-Spring System, the constraints itself does not

offer extra force or impulse (elasticity) to the particles. And compares to PBD, constraints do not

give a fixed rest length to be satisfied but have a minimum and maximum range.

95

4.2.3 Reverse-data interpretation

One of the purposes of FREDOMS is to provide a tool for “amateurs” of physics modelling.

Therefore, the terminologies we used in the framework, even has been greatly simplified, is still

complicated to the targeted user. Therefore, when designing the interface and defining the

terminology of the system, the expression of physics and mathematical descriptions will be

transferred into a more understandable context for average users to understand. We require input in

the same form, and then we interpolate the data back to the form that the system can understand,

we define this process as reverse-data interpretation.

4.2.4 Rendering mesh proceeding

The entry point of FREDOMS is the creation of a 3D rendering mesh and the import into APMFC.

Once loaded, APMFC will perform an initial mesh condition check. FREDOMS uses BFCC

approach, which is very adaptive to the input mesh quality. However, there are still certain

requirements for the mesh conditions. If the mesh doesn’t meet the conditions, the system will

Reject the input data and give feedback to domain expert who is responsible for the task. If the mesh

meets the condition, it will proceed to the next modelling step.

4.2.4.1 Triangle-based mesh

In 3D modelling, the surface mesh is defined by face elements. Each face is defined by a number

of vertices (usually from 3 to 5) within the same 2D plane, and their connections form a closed 2D

shape. In computer graphics, there are three types of elements: Triangle, Quadrangle and Polygon.

Figure 4.2.3 A triangle face

96

Figure 4.2.4 A quadrangle face

Figure 4.2.5 A polygon face

In modern modelling software, triangle and quadrangle mesh are the most used types. Quadrangle

performances better for editing operations like surface subdivision and loop cutting. Therefore, it is

a popular solution in filmmaking where great details are needed. Triangle mesh, on the other hand,

does not work perfectly with these algorithms; but its simplicity provides great performance-wise

advantage in real-time graphics like video games and other real-time simulations. In standard

industrial procedure, most of the models can be exported as triangle mesh. Therefore. FREDOMS

framework uses triangle type as the default mesh type.

4.2.4.2 Loading the geometry (rendering mesh)

The geometry that is loaded into the memory will be stored in our system following the pre-defined

data structures (for more introduction regarding data types and data structures, please refer to

Section 5.2.1 and Section 5.2.2). As introduced before, vertex and face data will be the only loaded

information for further process. Once the data is loaded, APMFC will exam the data contents to see

if it contains required information in correct format. After verifying the data, the system will

construct the original geometry based on the data. The original geometry (also referred to as “raw

mesh”) will be permanently reserved throughout the entire APMFC workflow as this mesh is

directly linked to rendering information. At the end of the modelling phase, the system will map the

physics mesh back to the raw mesh. Any modification we made to the raw mesh will be stored

separately.

97

4.2.4.3 Mesh condition expectation

FREDOMS requires the imported rendering mesh to meet the following requirement:

1. It has to be a manifold mesh.

2. It has to be a triangle-based mesh.

3. It should not have a large triangle difference ratio. In other words, it should not have a large

flat surface that only contains a small number of triangles.

The last requirement is not because FREDOMS cannot handle large triangles, but only because

during the simulation, DOSFC will map the change of physics mesh to rendering mesh after each

deformation. Therefore the rendering mesh should have sufficient vertices and faces to present the

deformation.

4.2.5 Particle-Constraint Structure Generation Based on BFCC Unit

A unique issue of volumetric object modelling by particle-based system is that a particle element

does not capture any volume. Furthermore, there are only a limited number of constraints to prevent

particles from moving freely throughout space. For example, a particle that is connected by n

number of constraints only has displacement limitation in these n directions. However, there are

still infinite directions that it can move. The constraints from other directions can apply indirect

restrictions to the particle’s movement; however, the restrictions are based on the structure of the

particle-constraint mesh. In many cases, the restrictions are insufficient and the particle can move

across other particle’s domain (if we define a domain as the particle’s surrounding space within a

certain range at the system rest state). This is a common problem in cloth simulation. But a cloth

object is a 2D structure; therefore, the issue is less problematic than 3D volumetric solid objects. In

3D object, the particle-constraint structure can quickly become unstable during the deformation

because of crossover particles, especially in non-elastic systems, where the system has little to none

tendency to restore its structure to the original state and maintain the structural integrity.

4.2.5.1 Physics mesh structure requirements for FREDOMS

Based on the previous discussion, the structure of how the particles are distributed throughout the

space and how the constructs are constructed to offer the structure support to particles are very

important for permanent deformable physics model. When choosing the particle-spring structure

98

for FREDOMS, we have the following requirements:

Uniformity: The structure should be uniformed throughout its entire boundary. A uniformed

structure provides a stable and predictable deformation pattern. In addition, it is easy for

implementation and analysis. A uniformed structure can also share universal constraint parameter

configurations.

Supporting and restriction equity (structure symmetry): It is important for a particle to receive

an equal amount of supporting and restriction through the constraint. This requires the distribution

and the constraint connection formation to be symmetric from all directions in relation to the

particle itself. For a better understanding, Figure 4.2.6 gives an example of symmetric and

asymmetric structures.

Figure 4.2.6 Symmetric and asymmetric particle-constraint structures

In REDOMS, we require structure symmetry because we also use the constraint as a path reference

to define the impulse distribution network. Therefore, it is important to ensure the neighbouring

particles within the same distance range are all connected. However, in the asymmetric structure,

as shown in the above example, there is one pair of corner particles (P2, P4) that are not connected.

This result in a problem that when P2 is distrusting impulse, based on the constraint connection, P1

and P3 will be affected. When P1 is distributing impulse, P2, P3 and P4 are all affected. Therefore,

the impulse from different direction will result in different distribution pattern, and the deformation

behaver will be different. The symmetric structure, on the other hand, as shown in the figure, has

the same distribution pattern regardless of which particle is distributing.

Someone may argue that the structure P1, P2 and P3 in symmetric structure example are the same

as P2, Pc and P1 in asymmetric structure example. However, if we put a single structure unit into a

mesh, a difference in pattern can be easily identified, as shown below in Figure 4.2.7.

99

Figure 4.2.7 Symmetric and asymmetric structure unit in a mesh

This 2D example shows that in the asymmetric structure, the impulse translation from the starting

point (the red point) to the entire mesh structure are different based on the direction of the blue

constraints, the mesh structure in Case 1 will be more engaged to external impulse than Case 2. This

asymmetric distribution can cause the mesh to deform in a strange pattern along the blue line.

The asymmetric mesh structure is often used in cloth object simulation because it is simple and

adaptive. Moreover, cloth objects are 2D elastic objects that often uses a loop-through-all particles-

and-springs approach rather than a distribution operation; therefore, the short appearance of the

unnatural pattern can be adjusted quickly. However, such structure can still suffer a non-recoverable

deformable like cloth-over object deformation. Therefore, in order to achieve a smooth deformation,

it also has to employ other solution like adaptive mesh [92] to generate uniform mesh for the

deformation section. However, dynamic generation of structure mesh is costly in real-time

simulation, especially for 3D structures. In addition, a dynamic regeneration of structure mesh

requires much more complicated algorithm in 3D; therefore, it is not suitable for FREDOMS

framework.

Evenness in distribution pattern: The particles should be evenly distributed into the boundary

space of the object. We define each particle captures a certain space domain, and all the domain size

is related to the particle’s mass. Therefore, for particles with the same mass, they will capture the

same size of the space domain. Based on this principle, the particle distribution pattern should be

as even as possible.

4.2.5.2 Determine the structure generation method

Based on the discussion from the last chapter, we have looked into different structure generation

approaches to match the requirements. As our research target concentrates on volumetric solid

100

objects, we consider the tetrahedron structure form is the simplest and most stable structure in three-

dimensional space. Therefore, we have looked into tetrahedron methods that are commonly used in

FEM methods. After allocating particles on each vertex of the tetrahedron and replace the edges

with constraints, we will have a stable particle-constraint structure based on tetrahedron form.

Using tetrahedron to fill the space – problems and compromises

An important note before further introduction of our structure generation is that research shows a

group of regular/unformed tetrahedrons (with four edges are all equal) cannot fully fit and tile

a close space without gaps[93]. Tetrahedron packing is the research field in geometry to

specifically study how to capture maximum volume using regular tetrahedral with minimal gaps,

more details is out of our research scope therefore further discussion and explanation is not offered

in this thesis. Because of this problem, even though the ideal solution for the mesh structure is

to have uniform edge length, compromise has to be made.

Real-world metallic crystalline structures

Our main goal is to simulate objects with plasticity property, which normally are metal. Therefore

it is reasonable for us to look into real-world metallic crystalline structures to see how the atoms in

metal are connected and interact. This path has already been employed in the past for physics

modelling in computer graphics [84]. The three common metallic crystal structures are Body-

centred cubic (BCC), Face-Centred Cubic (FCC), and Hexagonal Close-Packed (HCP). An

illustration of BCC and FCC structure is shown below in Figure 4.2.8. A Hexagonal Close-Packed

structure is too complicated to be used for modelling in such case.

Figure 4.2.8 Illustration of BCC and FCC

BCC structure is already used to generate adaptive tetrahedron mesh (Teran et al. in [80] and

Drakopoulosa et al. in [94]). The advantage of BCC is that it can generate unformed tetrahedrons

from a simple and fast manner with good space occupation and almost equal distribution of the

101

particles (atoms). This offers a great degree of freedom of movement of each particle, and it will

benefit the later deformation. However, when constructing connections for the nodes in, BCC

cannot offer a symmetric solution without constructing cross constraint between nodes, which is to

be avoided for any mesh construction. The BCC lattice proposed by Teran et al. [80] can deliver a

symmetric and uniformed tetrahedron mesh by constructing overlapping structures between

neighbouring cube units. However, the same solution does not apply to a particle-based system as

each corner node on the same square face has to form connections. In tetrahedron form this

connection is implied as the square face is subdivided by four tetrahedrons volume that contains

four corner nodes. However, in a particle-based system, such implication does not exist. The nodes

have to be actually connected. Therefore, a BCC-based particle-constraint mesh looks like this

(Figure 4.2.9):

Figure 4.2.9 BCC-based particle-constraint structure

From the illusion, we can see that the side faces of BCC form an asymmetric structure that we have

described in Section 4.2.5.1. Therefore, the BCC structure does not match our requirement without

further modification.

In comparison with BCC, FCC structure was also used for tetrahedron mesh generation [85]. FCC

does offer a symmetric particle distribution on the side face; however, it has a much weaker structure

for particle-constraint based system. The centre space is missing from the occupation of particles.

This violates our requirement for particle distribution evenness. Therefore, FCC also has its

drawback to be used in FREDOMS.

Combining BCC and FCC

To utilise the advantages from BCC and FCC, and to eliminate the limitations, we have combined

the structure characteristic from both BCC and FCC, and developed a new structure.

The new structure has a centre node as well as six nodes on the centre of each face. Therefore we

102

name the new structure Body-Face-Centred-Cubic (BFCC). An illustration of the BFCC structure

is shown below in Figure 4.2.10:

Figure 4.2.10 BFCC structure

The new BFCC structure is able to generate a mesh that meets all our requirements. By replacing

the nodes with particles, and connect them with constraints in a certain arrangement, we can form

a mesh structure. An illustration of BFCC-based particle-constraint structure is shown below in

Figure 4.2.11.

Figure 4.2.11 BFCC-based particle-constraint structure

From the illustration, we can see the connections we have made are:

1. The eight corner particles are connected in order to form a cube structure.

2. The eight corner particles are connected to the centre particle of the cube.

3. The four corner particles on each face are connected to the centre particle of the face.

4. The six face centre particles are connected to the centre particle of the cube.

For a clearer illustration, the three connection types (2, 3, and 4) are presented separately in Figure

4.2.12. The cube structure is implied and can be viewed in Figure 4.2.10.

103

Figure 4.2.12 Particle-Constraint connection types

By using this arrangement, we have a cube unit that can represent the space structure of our physics

model in FREDOMS. BFCC unit is a very important concept in FREDOMS; it acts as an element

to subdivide the space. For each BFCC, it has its internal structure, which is defined by particle-

constraint connections that we have described above.

The edge length and number for each length is given below in Table 4.2.2 with the assumption that

the cube edge length is 𝑙.

 Cube edge Corner to Cube

Centre

Corner to Face

Centre

Face Centre to

Cube Centre

Length 𝑙 √3

2
𝑙 ≈ 0.87𝑙

√2

2
𝑙 ≈ 0.71𝑙

0.5𝑙

Number 12 8 24 6

Table 4.2.2 Constraint length and number for a single BFCC unit

By using BFCC to subdivide the object’s boundary, we will have a FEM-like discretisation process,

and we are able to use particle-constraint to capture volume. Therefore, the first step of the

modelling process is to generate the boundary of the rendering mesh for subdivision.

4.2.5.3 Define bounding volume by generating Axis-Aligned Bounding Box (AABB)

In order to determine the boundary volume of the given object, FREDOMS will generate the Axis-

Aligned Bounding Box (AABB) of the rendering mesh. AABB aligns with the x, y, and z-axis and

defines the minimum and maximum x, y and z value for all the particles in the mesh. Therefore, the

generation of AABB is straightforward. An example of AABB is shown below in Figure 4.2.13:

104

Figure 4.2.13 An example of AABB box

AABB is widely used in rigid body collision detection. In such cases AABB can be rotated with the

object by linking the rotation matrix of the AABB box to the object rotation matrix. However,

FREDOMS only concerns permanent deformable object, which means the physics mesh and

rendering mesh will keep changing as the physics simulation proceeds and deformation occurs.

Therefore in the run-time simulation, when a collision happens, FREDOMS will re-calculate and

update the AABB information to make sure that it still captures the maximum bounded volume of

the object.

In APMFC, the purpose of AABB is for modelling referencing, therefore; the AABB generated is

based on the rendering mesh. However, in DOSFC, the purpose of AABB is for collision detection.

The AABB is updated with the physics mesh instead of rendering mesh.

4.2.6 Physics structure and surface mesh generation

4.2.6.1 Particle distribution by AABB subdivision

To generate the physics structure for our particle-based method, we have to confirm the pattern of

the distribution of the particles. In Section 4.2.5.2, we have defined the BFCC unit as our physics

structure element. BFCC unit is a combination of a group of particles and their connected

constraints. BFCC as a solid cube is much easier to fill the space than particles. Therefore, to

distribute particles, we use the BFCC unit to subdivide the boundary space of the object.

AABB provides a good reference for the object’s boundary. Moreover, it is axis-aligned and in 3D

rectangle form. Therefore, it is prefect for BFCC subdivision. However, the AABB is generated

105

based on the rendering mesh, which can have any possible size. The AABB of an arbitrary 3D

model is not necessary a cube, nor can be perfectly and equally divided along x, y and z-axis by the

same unit length. Therefore, in order to fit BFCC unit perfectly into AABB box without any gaps

or overlaps, the size and edge length of BFCC unit have to be adjusted in regards to the edges’

length of AABB.

AABB subdivision

In Section 4.2.5.1, one of the structure requirement for the structure mesh is that the particle should

be distributed as evenly as possible. Therefore, we use an AABB minimum length referencing and

size matching method to adjust the BFCC edge length and size properties.

At this stage, APMFC needs a user input parameter in order to proceed to the next task. The user

has to define the “density” value for the particle distribution. From the system point of view, the

density applies to the cube density in relation to the shortest edge length of the AABB.

Once APMFC acquires the density value, it will start doing the subdivision of the AABB. The

subdivision is summarised into an example shown in Figure 4.2.14 at density = 2.

Figure 4.2.14 AABB subdivision by using BFCC at density = 2

From the example, we can see the system uses the shortest edge of the AABB as the reference. By

106

knowing density = 2, the system divides the shortest edge by 2 to get a unit length 𝑙, and uses 𝑙 as

the edge length to generate a group of BFCC in cube unit to fill out the space of AABB until all the

AABB volume is covered by the BFCC cubes.

In most cases, the cube structure does not perfectly match the volume of AABB; there is a gap

between the BFCC group structure and the AABB. The system will then analysis the gap and uses

a rounding method to determine the adjustment to the BFCC unit: In a certain direction (x, y, or z),

if there is a gap with the length of 𝑔, and 𝑔 < 0.5𝑙, then the total number of BFCC in this direction

will be rounded up (from 3 to 4). If 𝑔 ≥ 0.5𝑙, then the number of BFCC will be rounded down

(from 4 to 3). At 𝑔 = 0.5𝑙 we always prefer to round down the number of cubes, as this will

generate a less complex structure. The rounding operation will result in the change of edge length

of the BFCC. Now, BFCC is not a cube but a cuboid, as it has different edge lengths.

By rounding up and down the BFCC size, the system does not just adjust the size for an individual

BFCC but all the BFCCs in the system. Each BFCC will be stretched or squeezed to fill in the

AABB’s volume to create a perfect match. At this stage, we have an AABB boundary that filled

with BFCC units. In 3D cases, there is an extra axis for the AABB and the BFCC; we apply the

same procedure to the new axis to generate a 3D match of the two structures (AABB and BFCC

group). More detailed processing steps with visual demonstrations can be referred to our

implementation of the AABB subdivision in Section 5.3.1.1.

Particle distribution and constraints connection generation

BFCC unit has already defined its particle and constraint components and their relative position in

the cube unit. Therefore, after the AABB is properly subdivided, we distribute particles based on

the BFCC structure, and connect the particle based on the constraint arrangement that we have

introduced in Section 4.2.5.2. There will be overlapping structures on each contact face of the

neighbouring AABB unit. APMFC will identify the duplicate generated/distributed particles and

constraints and remove them from the system accordingly.

At this stage, the physics structure is distributed throughout the entire space that is occupied by

AABB; the object to be modelled is included within this volume. The next modelling step is to use

the physics structure and the rendering mesh as references to generate the surface mesh for the

physics model.

107

4.2.6.2 BFCC Grid-based surface mapping

The result from AABB subdivision gives a particle cloud with a set of constraint connections. For

generating the surface mesh over a particle cloud, we employed the grid-based meshing approach.

Grid-based meshing approach has been employed by other research for mesh generation for FEM

elements [95]. BFCC structure can be considered as grid-based. The benefit of grid-based is that it

provides a uniform sampling of element group size. The size and the structure of the element are

highly adaptive based on the density and the form of the grid. In BFCC, an element (unit) is defined

by a group of particles and constraints. This is different from grid-based meshing in FEM, where

the tetrahedron itself is defined as an element.

The two fundamental approaches for generating a mesh surface over a particle cloud are

parameterisation-based and surface-oriented. As we use grid-based mesh generation, it implies that

we will use surface-oriented mesh regeneration. However, our approach is different from a typical

remeshing operation like works from Botsch et al. [96] where the operation of existing and new

inserted particles are based on geometry analysis of the current mesh. Our approach is to use both

original surface mesh and the BFCC as references and manipulates and insert/delete vertices in

order to make the surface mesh satisfy with the grid condition. Therefore, the surface vertices

distribution cannot be manipulated by just satiations of edge lengths and valence (6) but has to be

considered together with the BFCC structure. We have the following requirements for the physics

surface mesh:

1. Each vertex on the mesh has to be an existing particle in the system. No new vertex or

particle is added into the system.

2. Surface triangles are defined by vertices that are connected by constraints. No new triangle

edge or constraint is added into the system.

We set these requirements because the physics surface mesh should be generated by the physics

structure elements instead of a conceptual mathematical model. The surface mesh will be later used

to test the collision and identify the affected particles and conduct the impulse distribution

simulation phase. Direct use of the structure elements (particles, constraints) can offer a direct link

to the internal structure of the object, and direct interaction with the physics model; rather than

mapping the impact or the change from another mesh into the physics structure.

108

Mapping between two systems

Therefore, we will need a mapping system:

𝑓: 𝑣 → 𝑅

𝑓: 𝑐 → 𝑅

with 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶

where 𝑣 and 𝑐 are the sets for surface particles and constraints. 𝑉 and 𝐶 are the sets for all

particles and constraints in the system, 𝑅 is the rendering mesh. A satisfied constraint 𝑐 does not

necessarily lay perfectly on the rendering mesh, but the mapping indicates that the two ending

particles of the constraint should both be mapped on to the rendering surface mesh.

There are two mapping options: we can either do 𝑓: 𝑣𝑟 → 𝑃, where 𝑣𝑟 ∈ 𝑉𝑟, to map a selective of

vertices (𝑣𝑟 ∈ 𝑉𝑟) from the rendering mesh to the particle cloud 𝑃 of the physics mesh. This

approach adjusts the rendering mesh to match the particle-constraint structure. The 𝑓

operator will need to find a suitable mapping from the vertex to the particle, e.g. find the nearest

particle.

The other approach is the opposite from the first one: we do 𝑓: 𝑝 → 𝑡, where 𝑡 ∈ 𝑇 represent a

triangle on the rendering mesh, 𝑝 is the suitable particle from the physics determined by 𝑓. By

using this approach, we adjust the particle-constraint structure to match the rendering mesh.

Due to the nature of the real-time physics simulation, the physics structure should only maintain a

minimal fineness. In most cases, the BFCC grid is much coarser than the rendering mesh. Therefore,

adjusting the rendering mesh to match the physics structure can generate an inaccurate geometry

approximation of the original object. Therefore, in FREDOMS we use the latter approach, which is

to adjust the particle-constraint structure to match the rendering mesh. In order to conduct such

mapping, we have proposed a constraint-mesh intersection sampling method.

4.2.6.3 Constraint-mesh intersection sampling

In FREDOMS, the volume space of rendering mesh is a subset of AABB, and the volume of AABB

overlaps the volume space that is captured by the BFCC grid. Therefore, the object rendering mesh

is fully contained within the boundary of the BFCC grid. We can use the grid as a reference to check

and manipulate the particles’ position based on the rendering mesh.

The distribution of particles is already finished when constructing the BFCC grid (as the process of

109

constructing the grid is the process of distributing potential particles). Therefore, the first step is to

overlay the grid with the rendering mesh, as shown in Figure 4.2.15.

Figure 4.2.15 Rendering mesh overlay with the grid

By using an inclusion test, APMFC will determine the particles that are located inside the rendering

mesh (represented by the enclosed blue line range), as shown in Figure 4.2.16, the inner particles

are marked in red.

Figure 4.2.16 Identify inner particles

At this stage, the particles are sorted into two groups: Inner particles and outer particles, which are

defined based on their position in relation to the rendering mesh. By exam the two ending particles

of each constraint, we can identify the constraints that have intersections with the rendering mesh:

If the two ending particles contains one inner particle and one outer particle, the constraint crosses

the rendering mesh.

110

This process is illustrated in Figure 4.2.17 where crossing constraints are marked in bold red lines.

Figure 4.2.17 Constraint-mesh intersection

Now we have a set of constraint 𝐶 that satisfies the condition that each 𝑐 ∈ 𝐶 is intersected with

a triangle 𝑡 ∈ 𝑇 from the rendering mesh. Each pair of (𝑐, 𝑡) will be examined to determine three

values: 𝑝1, 𝑝2, 𝑝𝑡, where 𝑝1, 𝑝2 are the ending particles of 𝑐, and 𝑝𝑡 is the intersecting point of

𝑐 and 𝑡. Then we have a mapping operation 𝑓: ({𝑝1, 𝑝2}) → 𝑝𝑡, where

𝑓: ({𝑝1, 𝑝2}) → 𝑝𝑡 = {
𝑝1 → 𝑝𝑡 |𝑝1 − 𝑝𝑡| ≤ |𝑝2 − 𝑝𝑡|

𝑝2 → 𝑝𝑡 |𝑝1 − 𝑝𝑡| > |𝑝2 − 𝑝𝑡|

The → operator in the above expression does not only define a mapping relationship but also

define a mapping operation to move the particles’ position to the intersection point. It is important

to mention that a particle is possible to have more than one mapping operation, as this particle

can be connected with multiple constraints that have multiple intersection points for each constraint.

Therefore the final position adjustment made to the particle has to be averaged from all the

adjustment suggestions.

After all the particle’s position are confirmed, the structure of the constraints will be adjusted

accordingly based on the particle’s position. Each moved particle will be identified and flagged as

a surface particle in the system. The operation is illustrated in Figure 4.2.18. The surface particles

are marked in yellow.

111

Figure 4.2.18 Surface particle position adjustment

With the particle cloud is adjusted to match the surface of the object, the BFCC structure is also

changed; this change was not shown in Figure 4.2.18, but is illustrated in Figure 4.2.19.

Figure 4.2.19 BFCC structure change after the particle mapping

To this point, the particles do not form cuboid structures anymore, especially in 3D cases where the

face centre particles may also be moved. Therefore, the concept of the BFCC unit and the grouping

of its related particles and constraints are no longer needed. Now we only concern the structure that

is made of a particle cloud and its constraints connectivity. As we have already identified the face

particles for the physics surface mesh, the BFCC functioning as a grid reference for mesh generation

is also no longer needed. After each surface particle is confirmed and adjusted to the correct position,

we have finished the physics structure generation. The next step is to generate the surface mesh

based on the surface particles.

Constraint length analysis

It is important to know the possible constraint length arrange in the physics structure, as the

112

constraint length represents the distance between particles, constraint length can be calculated using

the following formula:

𝑙𝑐 = 𝜑(𝑙) ∙ 𝜎(𝐴𝐴𝐵𝐵, 𝑑) ∙ 𝜏(𝑐, 𝑡)

 (1) (2) (3)

where 𝜑(𝑙) (1) is the constraint length in relation to its position in the original BFCC structure.

𝜎(𝐴𝐴𝐵𝐵, 𝑑) (2) is the rounding result of the edges other than the shortest length from the BFCC

adjustment in regards to the density value. 𝜏(𝑐, 𝑡) (3) is the constraint length after the surface

particle justification.

In Table 4.2.2, we have listed the constraints length in BFCC unit, therefore if we assume the edge

length of the initial BFCC is 𝑙, then we have:

𝜑(𝑙) = {

𝑙 𝐶𝑢𝑏𝑒 𝑒𝑔𝑒
0.87𝑙 𝐶𝑜𝑟𝑛𝑒𝑟 𝑡𝑜 𝑐𝑢𝑏𝑒 𝑐𝑒𝑛𝑡𝑟𝑒
0.71𝑙 𝐶𝑜𝑟𝑛𝑒𝑟 𝑡𝑜 𝑓𝑎𝑐𝑒 𝑐𝑒𝑛𝑡𝑟𝑒
0.5𝑙 𝑓𝑎𝑐𝑒 𝑐𝑒𝑛𝑡𝑟𝑒 𝑡𝑜 𝑐𝑢𝑏𝑒 𝑐𝑒𝑛𝑡𝑟𝑒

For AABB rounding, we have:

𝜎(𝐴𝐴𝐵𝐵, 𝑑) = 𝜎(𝐿, 𝐿𝑚𝑖𝑛, 𝑑) = (𝐿 /𝑅 (
𝐿

𝐿𝑚𝑖𝑛
𝑑⁄
))/𝐿𝑚𝑖𝑛

where 𝑅(𝑥) is the rounding function.

For constraint length, we have:

𝜏(𝑐, 𝑡) = 𝜏(𝑝1, 𝑝2, 𝑡) =
|𝑝1 − 𝑝𝑡|

|𝑝2 − 𝑝1|

We then exam the minimum and maximum limits for (1), (2) and (3). We have

𝜑𝑚𝑎𝑥 = 𝑙, when the constraint is on the edge of BFCC.

𝜑𝑚𝑖𝑛 = 0.5𝑙, when the constraint connects the particles from the face centre to cube centre.

𝜎𝑚𝑖𝑛 = 0.75, when 𝑑 = 1 and 𝐿 𝐿𝑚𝑖𝑛⁄ = 1.5.

𝜎𝑚𝑎𝑥 = 1.25, when 𝑑 = 1 and 𝐿 𝐿𝑚𝑖𝑛⁄ = 2.5.

𝜏𝑚𝑎𝑥 = 1, where one particle lies perfectly on the interacting triangle with no position adjustment.

𝜏𝑚𝑎𝑥 = 0.5, where the intersection point is in the middle of the constraint.

Therefore, by combining the limits, we can calculate the maximum possible length for the constraint

113

is1.25𝑙 , and the minimum possible length for the constraint is 0.1875𝑙 . This indicates the

minimum/maximum distance between any pair of particles.

The result from the analysis shows that the constraint difference is relatively large (666.7%)

and can be a drawback in our approach. However, it is not large enough to produce a vertex

(particle) reduction and merging. This is because:

1. The BFCC unit length 𝑙 is often large because we only generate coarse grid for the physics

structure. In the demonstration sections, we will show that often we only use density value

at 2 and 3 to simulate a whole object. Therefore, even the length difference exists, in

absolute value, the shortest length still has a long distance.

2. The shortest case and the longest case will not happen in the same triangle nor the same

tetrahedron structure. As presented from Figure 4.2.11 and Figure 4.2.12, the longest

constraint and the shortest constraint does not share any particle endings.

3. Unlike in an elastic system, where the stress/strain is based on the absolute change value of

the constraints, our constraint provides a proportional factor for condition satisfaction check.

This can omit the problem from having different sized constraints for structure maintenance.

4.2.6.4 Final surface regeneration and the mesh construction

From the requirement we have discussed in Section 4.2.6.2, the surface mesh is based on a particle-

constraint connection with no additional triangle vertices and edges. From the previous sections,

we have already mapped the particles as well as the constraint structure by applying BFCC grid

sampling to the rendering mesh. Therefore, the generation of the surface mesh is straightforward.

APMFC will exam the surface particle’s connectivity and form triangles based on the nature of the

triangle: Find two constraints that share the same surface particle, and if the other ending particles

for the two constraints are also surface particles, and also form a constraint, a surface triangle is

identified.

Triangle duplication and face order

During this process, it is possible to form duplicated triangles and back-faced triangles. APMFC

will perform a check and remove these triangles. In FREDOMS, we define the triangle winding

order as the clockwise. This is applied to our implementation. However, when designing and

developing application based on the FREDOMS framework, this arrangement can be changed.

114

Mesh quality requirement

BFCC grid-based mapping generates an approximated surface structure to the original rendering

mesh by using particles and constraints that already exist in the physics structure. Based on the

constraint analysis, the surface structure will have triangles with large edge differences in some

case, but not large enough to produce very ill-conditioned triangles. However, we do not have a

high expectation for the quality of the surface mesh because:

1. The only purpose for the physics surface mesh is for collision detection. As long as the

collision point is identified, the quality of the mesh is not concerned.

2. The mesh is carefully arranged with minimum modification from the original BFCC based

physics structure and has mostly captured the object’s surface geometry. Therefore, a

remeshing may lose the geometry detail and is not recommended.

It is possible to propose a method to conduct vertex relaxation process while still keep the particles

on the rendering mesh. However, such methods are beyond our research scope and can be an

extension to FREDOMS in future works.

4.2.6.5 Advantage of using BFCC-based grid mapping

From the generation process, we can see that BFCC-based grid has the following advantages:

1. It gives a one-step mapping solution for both internal and surface structure of the physics

mesh.

2. It is simple to configure by using just one parameter (density). This gives an easy and fast

solution for physics model generation from both users and developers perspective.

3. It provides a stable structure for modelling volumetric objects.

4. The generated surface mesh uses particles and constraints as the triangle components;

therefore it can be directly used for impulse distribution.

5. It is specifically designed for FREDOMS system for permanent deformable object

simulation. But it can also be adapted to other particle-based systems without any structural

modification.

In Appendix A, we introduced a possible alternative and more complicated approach of a grid-based

physics mesh and surface mesh generation method that could be used in FREDOMS.

115

4.2.7 A Weighted deformation mapping method for rendering mesh

In the mesh generation process, FREDOMS flags the surface particle as well as keeping the original

rendering mesh. In order to visually present the deformation of the object, we have to map any

changes in the physics mesh back to the rendering mesh. This process can also be referred to as

skinning.

We use a weight-based mapping to create a mapping between the original mesh and the physics

mesh. After loading the original raw mesh M, we have a set of vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛}

where n is the total number of vertices. Then after the surface mesh generation, we have a new

surface mesh 𝑀𝑛𝑒𝑤 which has a new set of vertices 𝑃 = {𝑝1, 𝑝2, 𝑝3 … 𝑝𝑢} where u is the total

number of vertices in P. The new mesh is a coarse approximation of the original mesh; therefore

we can expect that 𝑢 ≪ 𝑛. The physics surface mesh, especially the surface particles, are considered

as the “skeleton” of the rendering mesh. Therefore, a mapping operation 𝑃 → 𝑉 is employed to

transfer the change of each p to a set of v. In this operation, each particle acts as a control point to

the mapped vertices.

Determine the mapping relationship

Our principal for deformation mapping is that each vertices should be influenced by its nearest

particle. However, as 𝑢 ≪ 𝑛, there is a high possibility of multiple vertices being mapped to one

particle. When deformation occurs, if we transfer the full particle displacement value to all the

particles, the final deformation result on rendering mesh can present unrealistic sharp patterns,

which was confirmed in our testing. On the other hand, if we create a weighted mapping based on

vertex-particle distance, it can produce a smoother result. However, the vertices displacement are

unbalanced because of the different weight value, and cannot best capture the actual deformation

pattern. As shown in Figure 4.2.20, 𝑣1 and 𝑣5 have the least influence from the particle

displacement based on the distance weight. This uneven distribution can cause a wave structure

when combing other particle’s mapped vertices. In addition, with the particle moving further, 𝑣1

and 𝑣5 will generate more distance from their neighbouring vertices as well as the particle itself.

116

Figure 4.2.20 Example of single particle to multiple v weighted mapping

In order to generate a smooth mapping result as well as keeping the vertices to the accurate position,

we propose a reversed approach. Instead of mapping multiple vertices to one particle, we map one

vertex to multiple particles.

The proposed method uses a 𝑣 → 𝑞 mapping where 𝑞 ∈ 𝑃 and 𝑞 = {𝑝1, 𝑝2 …𝑝𝑛} , 𝑃 is the

particle set and 𝑝1, 𝑝2 …𝑝𝑛 are the 𝑛 nearest particles to the vertex 𝑣.

By applying this mapping, each 𝑣 will be influenced by the change of the 𝑛 nearest surrounding

particles. A mapping relationship is illustrated in Figure 4.2.21.

Figure 4.2.21 Vertices mapping to particle

From the example we can see that 𝑣1 is mapped to 𝑝1, 𝑝2 and 𝑝4, and 𝑣2 is mapped to 𝑝1, 𝑝2

and 𝑝3. In the example, we didn’t specify the physics surface mesh because in our new mapping

117

method, a vertex is not necessary to be mapped to a surface particle, but can be mapped to

any particle in the structure, as long as the particle is within its 𝒏 nearest range set. Moreover,

it can be mapped to a particle outside the physics surface mesh but within the AABB boundary.

This approach is called AABB frame referencing, which will be introduced later.

Determine the weight value:

For a given vertex that is mapped to 𝑛 particles, we apply a distance-based calculation to assign a

weight value w to all the particles in the mapping group (𝑣 → 𝑞). To determine w the weight value

w of each vertex v to particle p. Firstly, we calculate distances for each 𝑣 → 𝑝𝑛, therefore we have

𝐷 = {𝑑(𝑝1, 𝑣), 𝑑(𝑝2, 𝑣)…𝑑(𝑝𝑛, 𝑣)} = {𝑑1, 𝑑2 …𝑑𝑛},

where 𝑑(𝑝, 𝑣) is the distance between 𝑣 and 𝑝 , and 𝑛 is the total particle number in the

mapping group.

We define that for each vertex, it has a total weight value of 1, which will be distributed to the 𝑛

particles that it is mapped to. By doing a distance-based calculation, we can have the weight 𝑤𝑖

value for each particle 𝑝𝑖:

𝑤𝑖 =
𝑑𝑖

∑ 𝑑𝑚
𝑛
𝑚=0

and

∑𝑤𝑖 = 1

𝑛

𝑖=0

To implementation such structure, a new paring data relation has to be made to describe the one-to-

multiple relationship of the vertex mapping. More detailed discussion and explain can be referred

to Section 5.2.1.5 and Section 5.3.3. In our implementation, we use the value 𝑛 = 3 to define the

number of particles a vertex is mapped to.

4.2.8 Particle proprieties and Mass assignment

In FREDOMS framework, each particle 𝑷 has its mass 𝒎 and position 𝒑 , in most of other

particle-based methods (PSS, PBD, etc.), a particle also has a velocity value �⃗⃗� . However,

FREDOMS simulates permanent deformation on an impulse-based approach. We assume the

displacement is instant. Therefore, we do not calculate the particle’s position over time by using

118

velocity. Instead, we consider the term impulse is an instant velocity. The difference is that instead

of causing an incremented displacement ∆�⃗⃗� , the impulse will cause a one-time displacement to the

affected particle.

FREDOMS follows the same approach as Particle-Spring System and Position Based Dynamics,

which is to discrete a three-dimensional volumetric object with a set of particles that are distributed

throughout the space. Therefore the particles will share the total mass of the object. Assume the

object has a total mass M. For each particle 𝑝𝑖we have an individual mass 𝑚𝑖, so we will have:

∑𝑚𝑖

𝑛

𝑖=1

= 𝑀

and we have centre position of the mass:

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 =
∑ (𝑚𝑖𝑥𝑖)

𝑛
𝑖=1

∑ 𝑚𝑖
𝑛
𝑖=1

where 𝑥𝑖 denotes the position of a given particle 𝑝𝑖.

In majority cases, the object being simulating does not have uniformed particle density. In addition,

during the deformation, the mesh density and the structure of the internal particles will continue to

change. In some cases, particle merge or split operation will be conducted to adjust the inner

structure after it breaks certain conditions. Moreover, certain behaviour and material property can

be achieved by assigning different mass to the particles in different areas.

Therefore each particle does not need to have the same mass value. The mass for each individual

particle can be pre-defined in the physics model before the simulation start, or been merged or split

or distributed during the simulation.

For simplicity in our prototype, we have assumed the mass for each particle to be all equal at the

very beginning when the physics mesh is initially constructed. Therefore, for each 𝑚𝑖 we have:

𝑚𝑖 =
1

𝑛
𝑀

And we have the centre of the mass:

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 =
∑ 𝑥𝑖𝑛

𝑖=1

𝑛

119

In our current implementation, we used a uniformed mass for the system. Future implementation

should be able to assign different mass value to the particles and affects its impulse distribution

attributes.

4.2.9 Constraints, parameters and material properties

FREDOMS uses a single-level connection structure rather than a multi-level structure that is used

in cloth simulation, for example, works done by Zhang and Yuen in [97]. Single level means the

constraints will only connect particles that are neighbouring to each other and not connects particles

that are far away and with other particles in between.

Multi-level structure can improve structure integrity; however, it introduces unnecessary position

influence from an area that is not affected by the deformation. Therefore it is useful for generating

certain patterns (e.g. bending), but in overall it can add unnecessary “stiffness” to the whole

structure. An illustration of single level and multi-level structure is given in Figure 4.2.22.

Figure 4.2.22 Single level and multi-level mesh construction

4.2.9.1 Constraints behaviour

Constraints are important intermedia for simulating the interaction between two connected particles

by applying conditions and restrictions to the movement of each particle. The properties of the

constraint need to be defined based on the requirement from different cases. FREDOMS is

specialised in creating and simulating permanent deformable behaviour. Therefore, regardless of

the property setting, the FREDOMS constraints should follow the basic rules of material behaviour

in the real world. Based on the research of material study[98], soft metal material under stress will

undergo elastic stage, yield point, plastic stage, necking point and fracture point. An example can

be found in Figure 4.2.23.

Our focus is in the middle stage of plastic (permanent deformation) behaviour. Therefore, we only

120

concern the stage between the elastic and fracture stage. Also, in the material study, the temperature

of the material is also taken into account as an important condition of the object behaviour but we

do not consider temperature as a parameter in our simulation as it is irrelevant to visual effect.

Figure 4.2.23 Stress-strain curve for metal-like material

In FREDOMS, we have simplified this process and only apply the plastic behaviour to the object,

we have taken out the elastic phase and the fracture point (which is still possible to be implemented

within our framework). The behaviour of a constraint related to the particles’ impulse (displacement)

in FREDOMS is shown in Figure 4.2.24.

Figure 4.2.24 Constraints behaviour in FREDOMS

121

In the figure, “Sum of Particles Momentum” is a broad definition that refers to the constraint

operation that tends to keep two particles together. This is a similar definition to strain, and we use

a different term as the method is nor force-based. Similarly “Change of length” refers to the initial

change that applies to the constraint and can be related to the term stress in material study. In most

cases in permanent deformation, the change of length refer to both shorten and lengthen. There will

be occasions that two particles will be pulled further apart however in most of the cases the action

is pushing, or compressing because the initial external influence is most likely to be an impulse that

causes the object to perform a denting-like deformation.

4.2.9.2 FREDOMS Constraint Parameters

Constraints in FREDOMS have the following four parameters:

1. Rest length: This is the nature and initial state of the constraint without any displacement

of the two connected particles. Rest length is defined at the time when the physics structure

is completely generated. The rest length is also an important reference for defining the

minimum and maximum length of the constraint.

2. Minimum length ratio (coefficient): The minimum length of the constraint defines the

minimum distance between two particles. The two connected particles cannot move closer

than the minimum length without violating constraints condition. This defines the

maximum compression degree of the material. The purpose of this value is to maintain

minimum structure integrity of the object. We use the rest length as the constant reference,

and the minimum length ratio is the ratio of minimum length to the rest length.

3. Maximum length ratio (coefficient): As opposite to minimum length. This defines the

maximum distance that two particles can be pulled further apart. Same as minimum length,

we use the rest length as the constant reference and define the ratio of minimum length to

the rest length.

4. Impulse distribution factor (Stiffness): The definition of stiffness under permanent

deformation is different than in the elastic deformation. In this context, it means the

resistance from the material to undergo deformation. In case of a constraints, stiffness

means the absorption degree of the external impulse. From the implementation point of

view, this stiffness determines how much impulse value will be transferred from one

122

particle to the other particle.

A summary of the parameters is given below in Table 4.2.3

Parameter Denoting Value range Value type

Rest length 𝑙0 𝑙0 Distance

Minimum length coefficient 𝜀𝑚𝑖𝑛 0~1 Ratio (∆𝑙
𝑙0

⁄)

Maximum length coefficient 𝜀𝑚𝑎𝑥 0~∞ Ratio(∆𝑙
𝑙0

⁄)

Impulse distribution factor µ 0~1 Percentage (ratio)

Table 4.2.3 Constraint parameters

When a stress s is applied to one of the two ending particles and cause the particle to move, the

constraint will start to deform (change its length). The deformation will be intervened when the

minimum length or the maximum length is reached. Table 4.2.4 gives a summary of the constraint

simulation phases and their conditions.

Stage Condition

Deformation phase |𝑙0 − ∆𝑙| > 𝑙𝑚𝑖𝑛 or | 𝑙0 + ∆𝑙 < 𝑙𝑚𝑎𝑥|

Deformation intervention phase | 𝑙0 − ∆𝑙| < 𝑙𝑚𝑖𝑛 or | 𝑙0 + ∆𝑙 > 𝑙𝑚𝑎𝑥|

Table 4.2.4 Constraint behaviour and conditions

4.2.9.3 Purpose and advantage of the FREDOMS constraint

The advantages of our constraint compare to a regular spring constraint that are used in PSS and

other systems are:

1. The FREDOMS constraint decreases computational tasks dramatically compares to a

regular spring. Spring (or damper) in PSS follows Hooke’s law. The instant force applies

to the connected particles are related to its change of the length. Therefore the instant

velocity V of the particle at time t is the second derivative. To calculate the displacement

of the particles that are connected by spring, a time integration is needed. The computation

123

can be a heavy task depends on the chosen of time steps.

2. The FREDOMS constraint is numerically stable compares to any other elastic method.

Time integration from elastic constraints can introduce numerical errors that can be

accumulated and bring unstable simulation if not carefully handled. While FREDOMS

constraint only applies predictable manipulation to the connected particles.

3. The FREDOMS constraint captures the property of continuum object better, especially for

hard solid body like metal. Elastic spring makes object act like rubber and takes time to

achieve equilibrium. The particle-spring structure will also create unstable displacements

that pass down to the whole internal structure and consumes unnecessary computation

power to resolve (e.g. adding extra damping force to balance the system and make particles

stop oscillation). FREDOMS particle-constraint system will always consume the energy of

each particle, and the system will become stable quickly after a certain deformation action.

4. The FREDOMS constraint is designed to simulate non-recoverable deformation like

denting and compression reshaping. Springs has the property to always recover to its initial

state (rest length), all the deformation that is done in elastic spring system is temporary and

will be soon to recover in the rest state. Our constraint only has a minimum length and

maximum length to define the material limits, and there is only limited ability to recover.

This means the particles that are linked by the same constraint can be pushed closer or

pulled further permanently.

4.2.9.4 Discussion of simulating elastic-plastic behaviour for metal-like objects

FREDOMS uses particle-constraint based modelling method that has the potential to simulate

elastic and plastic behaviour and object fractural, which requires a more complicated setup to the

constraint. As discussed before, we simplified the constraints property by ignoring its behaviour

when the stress is below the hardness threshold or the minimum/ maximum length is reached. To

simulate elastic property, we could simply replace (or temporally switch) the constraint’s property

to elastic.

In the case of elasticity simulation in FREDOMS we would prefer position-based dynamics (PBD)

rather than Particle-Spring system as PBD has more stability and requires less constraint setup. The

fracture can happen after the maximum length is reached; however, it will not happen instantly at

124

the necking point. In order to give realistic simulation and follows the rule from material study,

another parameter is needed to define the facture threshold for the material. In the case of fracture

simulation, a mesh split algorithm and real-time robust surface regeneration method are needed to

restructure one object into two separate ones. This requires further study and is not included in this

thesis.

4.2.10 Global parameters for FREDOMS physics mesh

Besides the parameters for FREDOMS constraints, there are a set of global parameters in

FREDOMS framework that has to be configured for physics modelling and simulation, some of

which has been discussed before. Below is a list of the global parameters for the physics mesh:

1. Density: The density value was discussed in Section 4.2.6.1. It defines the BFCC unit’s

density in relation to the shortest length of the AABB. Density defines the fineness of the

physics mesh.

2. Hardness. Hardness describes a threshold for the material to perform deformation. Each

incoming impulse are checked against this threshold. If the impulse is smaller than the

hardness threshold, it is deemed that the impulse is completed absorbed by the material

without causing any change of the shape. Therefore hardness defines the minimum

condition that will cause a deformation of the object. Otherwise, the object will behave like

a rigid body. Hardness setting also offers an optimisation solution to ignore any

insignificant impact on the object.

3. Energy lost factor. In Newton’s experimental law, energy lost factor it is referred to as the

coefficient of restitution [99]. This value applies to the whole object instead of each

individual particles or strains. It defines the ratio of the velocity change for the same object

before and after the collision. It indicates how much energy (impulse) is lost during the

collision and implies how much impulse will be applied to the object (the surface particles)

that has been collided on. This value can also act as a control factor to increase the stability

of the simulation (preventing instant massive displacement of some of the particles).

4. Impulse maximum distribution level: This parameter offers a hard control to the degree

of distribution during the simulation phase. It is useful for optimisation (control the

distribution calculation) as well as creating some special effects (a sharp deformation).

125

4.2.11 AABB frame referencing

During the BFCC-based structure generation phase (Section 4.2.6.1), the BFCC structure is

distributed throughout the entire AABB space. After the physics structure is completely generated,

there are still particle-constraint structures in the space inside the AABB boundary but outside the

object surface mesh.

There are two approaches to deal with these structures: Remove them from the system, or reserve

them for future reference. In FREDOMS, we have chosen the latter solution. We keep the whole

structure that was originally generated and apply the same rule to the whole structure during the

simulation phase. We name this approach as AABB frame referencing.

The purposes of employing AABB frame referencing are:

1. To improve structure stability. Unlike elastic deformation, the permanent deformable

objects are easier to lose their structure ability as the structure has much less tendency to

recover the change. In other words, physics elements (particles) has more freedom to move

through space than in an elastic system. Therefore, additional constraints are always helpful.

2. To give a reference to its original shape: Some objects like the Torus case (Section 6.1.3)

has a thin and hollow structure. If we remove the structures outside the surface mesh, only

a small number of physics elements are kept. In this case, the structure integrity is difficult

to maintain. With the additional constraints, the structure will have more structural

reference to maintain its shape.

3. To offer an adaptive solution: this is a result from purpose #2. By having the full structure,

the geometry shape of the object does not play any part in the physics simulation. The

system will simulate the full structure instead of the structure inside the object, this will

give a predictable uniformed results. By using such approach, we do not concern about the

quality of the input data or any unique and unusual shape. It can also simulate deformation

for very thin and long structures.

4. To offer smoother skinning: This was discussed in Section 4.2.7. More surrounding particle

reference options can offer a better rendering mesh mapping arrangement.

The result of AABB frame referencing is demonstrated in the test Chapter. However, as FREDOMS

is an open framework with a lot of flexibilities, it is always possible for developers to use the first

126

approach to remove the outer structures based on their particular requirements.

4.3 Fast simulation of permanent deformable material for solid

objects in real-time

4.3.1 Overview of the physics simulation in FREDOMS

In FREDOMS, we proposed a new impulse-based method with non-elastic constraint to handle

the simulation phase. The impulse-based method eliminates the calculation of ordinary differential

equations and the subsequent complicated time integration. Therefore, the simulation can achieve

fast simulation speed with high stability. The simulation is also controllable by adjusting simulation

parameters and material properties (which are provided in APMI).

The method does not follow a stress-strain analysis. Therefore, the simulation is phenomenological

rather than accurate. The value of the phenomenologically-based (or behaviour-based) method is

evaluated by how well it represents the visual results of the deformation in real-time while

maintaining fast speed.

The real-time simulation of FREDOMS includes collision detection (broad phase and narrow

phase), impact analysis from external impulse which is gained from collision, collision response (to

the other collide object), determining displacement for affected surface particles, impulse

distribution, constraint conditions satisfaction, and optimisation. These functionalities are

implemented into PanGu simulator for conducting the simulation task. An illustration of the

workflow for the simulation phase is shown below in Figure 4.3.1.

127

Figure 4.3.1 Physics simulation workflow for FREDOMS

4.3.2 Collision detection

The starting point of the simulation in FREDOMS is when a collision is detected. Collision

detection is a necessary but not a core component in FREDOMS framework; this functionality can

be achieved in conjunction with other physics libraries. Therefore collision detection is not our

research focus. However, as our permanent deformable object model has its unique attributes and

needs special treatment from collision detection. In FREDOMS we uses a two-phase approach for

collision detection. A detailed introduced of our approach can be found in Appendix A. Collision

Detection in FREDOMS.

128

4.3.3 Collision response of the deformable object

In FREDOMS we separate the simulation of the kinematic movement of the object and the structure

deformation of the object into two separate processes. We have defined two coordinate systems for

the object. The first one is Global Coordinate System (GCS) that reference to the global system

of the whole scene. All kinematic movement, including object displacement and rotation, are

simulated based on the global coordinate system. In this progress, the object is considered as a rigid

body. We define it by using the position transmission matrix 𝑀𝑝 and the rotation quaternion 𝑄 to

represent the object’s state within the global coordinate system. The second coordinate system is

the Local Coordinate System (LCS), which is originated at the object’s geometry centre and is

used for recording positions for local structural elements (particles, constraints). We use GCS for

object’s kinematic movement, including displacement and rotation. We use LCS for deformation

simulation by defining the position of each particle on LCS and perform calculation to determine

each particle’s displacement. We conduct the simulation individually and in parallel and map them

together at the end of each frame to show the final results. An illustration of LCS and GCS is shown

in Figure 4.3.2 Global and Local coordinate system of the object.

Figure 4.3.2 Global and Local coordinate system of the object

Simulation of rigid body behaviour is not within the scope of our research. It is a well-studied area

with many established approaches. Therefore this topic will not be included in the later discussion.

Using quaternions to represent rotation in 3D

Mathematically speaking, there are three main approaches to describe an object’s rotation. The first

one is Rotation Matrix in linear algebra. The second one is Euler Angles and the third one is

Quaternions. Rotation matrix is widely used as a standard solution in mathematics and physics

129

when numerical analysis required. Euler angle is an easy and quick solution with the least memory

usage (with only 3 numbers) but suffers gimbal lock problem. Quaternion is less analytical but has

a better memory usage (4 scalars) than rotation matrix (3x3=9 values) and the operation of

quaternion is faster. Therefore quaternion is widely used in real-time application for object rotations

in computer graphics. It has become a standard in many popular game engines e.g. Unity. The

simulation of deformation within LCS in FREDOMS does not involve rotation, and we simulate the

movement of the whole object as a rigid body in a separate process. Therefore quaternion is an

excellent option to be used for representing object rotation and the calculation. It is also easy to

use quaternions to map the change of the rotation state to each particle. PanGu simulator will

provide the rotation information in quaternion form for comparability.

Weighted distribution for gained impulse on intersection triangle

The collision will happen on a specific triangle on the target object (unless there are multiple

contacts simultaneously). At the time of a collision, part of the impulse from the incoming object is

instantly transferred to the target object. According to the formula of momentum for perfect elastic

collision, we know that:

𝑃0 = 𝑀𝐼𝑛𝑐𝑣0𝑖𝑛𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑀𝑡𝑎𝑟𝑣0𝑡𝑎𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑀𝐼𝑛𝑐𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑀𝑡𝑎𝑟𝑣𝑓𝑡𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

where 𝑃0 is the total initial momentum, 𝑀𝐼𝑛𝑐 and 𝑀𝑡𝑎𝑟 represents the mass of the incoming

object and the target object. 𝑣0𝑖𝑛𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑣0𝑡𝑎𝑟

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and 𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑣𝑓𝑡𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ represents the initial momentum (𝑣0)

and the momentum after the collision (𝑣𝑓) for the incoming and the target object. The illustration

of the momentum exchange process is shown in Figure 4.3.3.

Figure 4.3.3 Object collision and the exchange of momentum between two objects

130

In this case, we use ∆𝒕 notion to indicate “after collision” instead of a specific time step. In

FREDOMS, we make the assumption that the collision and separation of two objects happen

instantly with no time delay (which is different in real-world physics, where for a minimal time

window the two object attach to each other for energy exchange etc. and then separate).

We know that the initial velocity of the target object 𝑣0𝑡𝑎𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is zero (based on our assumption and

the definition of target object that were discussed in the subsection Dynamic collision detection).

We have also introduced energy lost factor 𝛾 to indicate the total energy (momentum in our case)

change in collision process. Then (1 − 𝛾) represents the coefficient of restitution of the collision.

In real world phenomena, the lost kinetic energy has turned into heat because of the collision.

Therefore, the change in total momentum is 𝛾𝑃0. The remaining total momentum is (1 − 𝛾)𝑃0.

According to the above discussion, we now have:

𝑃∆𝑡 = (1 − 𝛾)𝑃0 = (1 − 𝛾)𝑀𝐼𝑛𝑐𝑣0𝑖𝑛𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑀𝐼𝑛𝑐𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑀𝑡𝑎𝑟𝑣𝑓𝑡𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (1)

Finding the momentum distribution for two objects after the collision means finding the exact value

of 𝑃∆𝑡𝑖𝑛𝑐 and 𝑃∆𝑡𝑡𝑎𝑟(the sum equals (1 − 𝛾)𝑃0) and how the total momentum is distributed in

such way, can be solved by using the conservation of kinetic energy. We have a momentum loss

of 𝛾 therefore the initial kinetic energy after the collision but before the distribution is:

𝐸𝑖 =
1

2
𝑀𝑖𝑛𝑐((1 − 𝛾)𝑣0𝑖𝑛𝑐)

2

Therefore we have:

1

2
𝑀𝐼𝑛𝑐𝑣𝑓𝑖𝑛𝑐

2 +
1

2
𝑀𝑡𝑎𝑟𝑣𝑓𝑡𝑎𝑟

2 =
1

2
𝑀𝑖𝑛𝑐((1 − 𝛾)𝑣0𝑖𝑛𝑐)

2
 (2)

We combine equation (1) and (2) then we can find the equation to describe the relationship between

𝑣𝑓𝑖𝑛𝑐 and 𝑣𝑓𝑡𝑎𝑟:

𝑣𝑓𝑖𝑛𝑐 =
(𝑀𝑖𝑛𝑐 − 𝑀𝑡𝑎𝑟)

(𝑀𝑖𝑛𝑐 + 𝑀𝑡𝑎𝑟)
(1 − 𝛾)𝑣0𝑖𝑛𝑐

𝑣𝑓𝑡𝑎𝑟 =
2𝑀𝑖𝑛𝑐

(𝑀𝑖𝑛𝑐 + 𝑀𝑡𝑎𝑟)
(1 − 𝛾)𝑣0𝑖𝑛𝑐

The momentum will be conserved on all x, y and z-axis. Based on the above calculation, we are

able to find the impulse that are passed on to the target object. The impulse will be passed on to the

contact triangle T on the physics mesh of the target object, which is shown in Figure 4.3.4.

131

Figure 4.3.4 Contact triangle

Once the contact triangle and the intersection point on the triangle are confirmed, we will perform

a distance-based weight assignment for each particle. The simple approach is to calculate the

distance between the intersection point and each particle of the triangle. An illustration of this

operation can be found in Figure 4.3.5.

Figure 4.3.5 Finding the distance-based weight for each particle

As shown in the figure, we have:

𝑤1: 𝑤2:𝑤3 = 𝐿1: 𝐿2: 𝐿3

and:

𝑤1 + 𝑤2 + 𝑤3 = 1

Therefore we can calculate 𝑤1, 𝑤2, 𝑤3 for 𝑝1, 𝑝2, 𝑝3:

𝑤𝑛 =
|𝑃𝑖 − 𝑃𝑛|

∑ |𝑃𝑖 − 𝑃𝑛|3

where 𝑛 ∈ {1, 2, 3}, 𝑃𝑖 is the intersection point of the triangle that is defined by three particles

𝑝1, 𝑝2, 𝑝3. Now by combining the equations we know that for an incoming 𝑃0 we can calculate the

momentum that are distribute to one of the three particles to the intersecting triangle is:

𝑝𝑛 =
|𝑃𝑖 − 𝑃𝑛|

∑ |𝑃𝑖 − 𝑃𝑛|3
× 𝑀𝑡𝑎𝑟𝑣𝑓𝑡𝑎𝑟

132

We already know the mass for each particle, therefore, by using 𝑣𝑛 =
𝑃𝑛

𝑚𝑛
, we have the velocity for

each particle on the triangle. The value of this velocity will be transferred into impulse, which is a

one-time displacement applies to the particle.

Determine the direction of movement for the objects

Collision in FREDOMS is elastic. The incoming object will “bounce” from the contact surface.

Therefore it follows the reflection rule. The bounce-back direction (represent by vector 𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) can

be found by firstly calculate the normal (represent by vector 𝑣𝑛⃗⃗⃗⃗) for the contact surface, and the

path of 𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is symmetrical to the incoming direction (represent by vector 𝑣0𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) in relation to n.

The direction can be calculated by:

 𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑣0𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ −
2𝑣𝑓𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∙ 𝑣𝑛⃗⃗⃗⃗

‖𝑣𝑛⃗⃗⃗⃗ ‖
2

𝑣𝑛⃗⃗⃗⃗

The target object, on the other hand, will be moving towards the opposite direction of the normal 𝑣𝑛⃗⃗⃗⃗ .

Therefore 𝑣𝑓𝑡𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (−1) ∙ 𝑣𝑛⃗⃗⃗⃗ . An illustration is shown below in Figure 4.3.6 where angle (a) equals

angle (b).

Figure 4.3.6 Object's moving direction after collision

Determine the direction of movement (tendency) for particles on the contact triangle

Once the impulse is passed on to the contact triangle and the weight factors of the three particles

are confirmed, we apply the impulse to the particles. The particles will instantly gain displacement

with the same direction of the total velocity. Therefore, the three particles will have the tendency to

move in the same direction but in different amount of distance. The difference depends on the

distribution weight of the particle. Two cases are shown in Figure 4.3.7 Incoming velocity

perpendicular to the contact triangle and Figure 4.3.8 Incoming velocity angled to the contact

133

triangle. The displacement happened in the figures are the projected tendency without any

constraints. In real cases, the particle’s movement will need to satisfy other conditions.

Figure 4.3.7 Incoming velocity perpendicular to the contact triangle

Figure 4.3.8 Incoming velocity angled to the contact triangle

4.3.4 Performing object deformation

After the initial velocity for the particles on the contact triangle is calculated. FREDOMS will start

the impulse distribution process throughout the. Our method takes the simulation in the following

steps:

1. The distribution of the impulse.

2. Particle displacement projection.

3. Constraint satisfaction.

4. A one-step integration for the final deformation.

Before these four steps, the system will check if the incoming impulse exceeds the hardness factor

of the constraint. The hardness factor 𝜏 was defined in Section 4.2.10. If 𝜏 < 𝑝0𝑖𝑛𝑐 it means the

impact is not strong enough to break the internal structure integrity and the object will remain as a

rigid body. The system will stop the rest of the simulation process and waiting for the next collision

event.

134

4.3.4.1 A network structure for connecting particles by constraints

FREDOMS distributes the impulse by using a network structure. A network structure will record

every node (particle) to the current node (particle). Therefore it is easy to index all the particles that

have direct connections (via constraints) to the selected particle. The benefit of using such structure

is that it can generate a distribution tree structure quickly with level of depth from any arbitrary

particle as a starting point.

Figure 4.3.9 Distribution tree construction based on network structure

In Figure 4.3.9, we give an example of a fragment of object structure been affected by an external

impulse. The blue and red line represents the surface of the physics mesh. The two L0 (level 0)

particles are the particles on the contact triangle and been directly distributed with the impulse. The

L1 particles are the first level tree nodes that will get the impulse distribution from L0. L2 particles

are the second-level nodes, and L3 are the third-level nodes, the depth will extend until:

1. All the particles in the structures are reached.

2. During the distribution, the impulse is below a certain threshold that is insignificant to cause

noticeable displacements of the particles in the next level.

3. It has reached the maximum depth level that is defined by the user.

135

4.3.4.2 Impulse distribution

The impulse distribution is based on the following rule:

𝑝𝑛 = 𝑃0 ∙ µ𝑛

where n is the depth of the distribution of the tree, 𝑃0 is the impulse of level 0, and µ is the general

impulse distribution factor. We also proposed a first-level impulse factor that only applies to level

1 particles. However, in the following introduction, we will assume the two factors share the same

value (which is a common case).

We achieve the distribution by using a distribution-and-finish approach one layer at a time in a top-

down level. Before proceeding into the next level, the impulse distribution for all the particles in

the current level is finished. A top-down view of the structure is shown in Figure 4.3.10.

Figure 4.3.10 Top-down view of the distribution tree

From the above example, it is noticeable that two L0 particles share the same L1 child node (the

red node). This is allowed in our method, and the L1 particle (red node) will receive two distributed

impulses from each L0 node. If we define L0 is the highest level, L1 is the lower level and L2 is a

further lower level, In FREDOMS, one lower child node can be shared by multiple higher parent

nodes. However, a child node cannot be shared by nodes from different levels. It is always assigned

to the highest possible parent node. For example, if an unsigned particle node has a L3 node and a

L4 node connect to it, it will become a child node to the L3 node instead of L4 node. A node also

cannot be a child node to a same level node or a lower level node.

By doing the above structure generation, we have a hierarchy of particles. This structure will be

dynamically generated once the collision is detected, and the initial contact particles are confirmed.

As it benefits from the network structure, such a tree can be generated quickly based on any input.

Once the structure is generated, we flag each particle with the level number for future reference.

136

At the impulse distribution stage, the particle will gain displacement from the impulse, this

displacement is temporary and can be adjusted later by constraint’s condition satisfaction check.

Therefore, we refer the temporary displacement as “proposed displacement”.

We conduct impulse distribution one level at a time. For example, we do the distribution from L0

nodes to L1 nodes first. Once complete, the L1 impulses are fixed and unchanged. The particle’s

proposed displacements are recorded, and the distribution will proceed to the next level (2). The

proposed displacement for L2 nodes will be fixed after distribution from L1 to L2 is finished. The

process will go on until the exit condition we have introduced in Section 4.3.4.1 is met.

After the distribution is finished, all the particles will have an impulse value as a vector that indicates

its projection to the new position. The particle as the joint nodes that received multiple impulses

will use an average value of all the received impulses for projection. Once all the particles have

their new projected positions, the next step is to perform constraint condition check. It is worth

mentioning that with AABB frame referencing, the structure elements outside the physics

surface mesh are also affected and are distributed with impulse and take displacements.

The nature of permanent deformation in FREDOMS

A difference between elastic deformation and permanent (elastic) deformation in computer graphics

is the time taken to perform the deformation. In elastic object deformation like cloth and soft body,

the observer can always see the deformation process happens gradually with an animated visual

effect. The presentation takes a period of time until the internal structure achieves static equilibrium.

Permanent deformation, on the other hand, does not present the deformation process gradually.

Instead, it happens and finishes instantly. The exception is when the object is under constant stress.

Therefore, instead of simulating the change by each time step and displace them frame by frame,

FREDOMS calculates the object’s potential final state without satisfying the constraints within a

fixed time step. Then FREDOMS makes adjustments to the particle’s displacement based on the

constraint condition.

The whole process happens within one application execution cycle, which means within this cycle,

we calculate and predict the whole physics behaviour and give the result. The result is a final output

for the simulation without any further processing (except for further constraint condition check).

Therefore, the deformation of the object is instant.

137

4.3.4.3 Constraint satisfaction

In Section 4.2.9 Constraints, parameters and material properties, we have introduced the properties

and the definition of our constraint. In the run-time simulation, the constraint act as a distance-based

operator to the position of the connected particles. The constraint also acts as a network relationship

flag to define the tree structure. Therefore, in FREDOMS, the influence from the neighbouring

particles is in a one-direction form. In the process of impulse distribution and particle projection,

the influence is not mutual. Therefore, the constraint satisfaction process is the only stage where

the interaction of two neighbouring particles is considered.

In last section, we have introduced the operation for particle displacement projection. An example

of the result of the projection is shown below:

Figure 4.3.11 Particle displacement projection with satisfying constraint condition

Figure 4.3.11 shows a scenario of the particle displacement projection, where after the projection the

minimum length of constraint is satisfied. From the example, the length of the constraint between

two particles is changed. We define the change of constraint length during as ∆𝑑 , the initial

constraint length at the beginning as 𝑙0. Then the satisfaction condition is:

𝑙𝑚𝑖𝑛 ≤ 𝑙0 + ∆𝑑 ≤ 𝑙𝑚𝑎𝑥

where a negative value of ∆𝑑 represents shorten and a positive value represents lengthen.

When the change of length for the constraints does not meet with the satisfaction condition,

FREDOMS will need to adjust two particles projected position. There are two cases:

1. Distance between two particles is less than the minimum length (example is shown in

Figure 4.3.12). The particles’ position will be adjusted. The adjustment operation is to

lengthen the distance between the two particles P1 and P2. If we define the distance D

between P1 and P2 as 𝐷 = 𝑋1 − 𝑋2 then D is the distance between P1 and P2 with the

direction from P1 pointing to P2. And we have d as the unit vector of D. Then we use the

138

following equations to determine the degree of lengthening of the constraint, and the

adjustment to the position for two connected particles:

𝑃1𝑓 = 𝑃10 −
𝑚1

𝑚1 + 𝑚2

|𝑙0 − 𝑙𝑚𝑖𝑛|𝑑

𝑃2𝑓 = 𝑃20 +
𝑚2

𝑚1 + 𝑚2

|𝑙0 − 𝑙𝑚𝑖𝑛|𝑑

2. Distance between two particles is larger than the maximum length (example is shown in

Figure 4.3.13). In this case, we use the similar approach as in the first case. We shorten the

distance by using:

𝑃1𝑓 = 𝑃10 +
𝑚1

𝑚1 + 𝑚2

|𝑙0 − 𝑙𝑚𝑎𝑥|𝑑

𝑃2𝑓 = 𝑃20 −
𝑚2

𝑚1 + 𝑚2

|𝑙0 − 𝑙𝑚𝑎𝑥|𝑑

Figure 4.3.12 Particle displacement projection dissatisfying the constraint condition (distance too close)

Figure 4.3.13 Particle displacement projection dissatisfying the constraint condition (distance too large)

As shown in the equations, the adjustment to the particles follows the rule to divide the total

adjustment amount proportionally to the connected particles based on the ratio of their mass. If they

have the same mass value (which is the case in our implementation), then the adjustment to both

particles are equal. An illustration of the summary of the whole adjustment process for the particles’

positions are shown in Figure 4.3.14 in below:

139

Figure 4.3.14 A step by step illustration of repositioning the particles based on constraint conditions

In this process, one particle can be adjusted multiple times if it has multiple connected constraints

that has a dissatisfied condition.

4.3.5 Finishing the deformation for the current cycle

At the end of the impulse distribution, we will have a physics mesh that reaches static state and

(temporarily) meets all the constraint satisfaction. At this stage, the simulation of the object

deformation is completed for the current execution cycle. As the FREDOMS permanent

deformation simulation happens instantly within one cycle, we can also state that the permanent

deformation is finished. The constraint satisfaction will still be executed in the following cycles

until all the conditions are met. But the object’s structure is mostly fixed and the impulse distribution

is finished. Then we map the change of the physics mesh back to the rendering mesh as discussed

in Section 4.2.7 A Weighted deformation mapping method . This is a process for distributing the

vertex displacements based on the weight value. It is worth mentioning that after this process, the

140

surface normal for each triangle needs to be recalculated for the rendering mesh. The surface normal

for physics surface mesh also needs to be recalculated for collision detection preparation. The Axis-

Aligned Bounding Box (AABB) of the physics model will be regenerated as well.

4.4 User input data and User Interface (UI) design

As a complete workflow, the FREDOM framework is made to deliver a solution to certain targeted

users to complete a set of tasks seamlessly without extra effort to communicate and clarify

information from other parties. The user interface will guide the user to input their requirement in

order to generate physics mesh that meets their requirements. Our approach for the solution is to

provide an editor user interface that can associated with the commonly used modelling software to

provide a platform for the end-user to input their data. The interface should be able to offer an

intuitive experience and requires minimal inputs, and should not require users to have extensive

knowledge that beyond their field. It should also be able to give instant visual feedback (real-time

simulation demonstration) and let the user to adjust the parameters accordingly.

4.4.1 Common workflow

The creation of a visualised interactive application involves a team of domain experts and a well

prepared and planned workflow. A standard workflow in nowadays to process the complete tasks

in our framework is separated into several steps.

For example, to create a video game. Firstly, the story designer will establish the initial background

storyline and the interaction details. Then the designer will separate the whole story into one or

multiple scenes with different tasks and events to serve the purpose of delivering the story and the

game experience. Based on the design requirements, many 3D objects (models) needs to be created

and placed in order to construct the scene. Some of these objects will be backgrounds and decoration

for constructing the environment, and some of the objects are the key elements or specially designed

items (can be part of the environment) that are expected to be able to interact with the user in order

to proceed the story. For example, in a puzzle game, some objects can be picked up by the player

or can be pushed/moved to a different location to resolve a quiz. Or in an RPG (Role-Playing Game)

game the player may need to break a particular wall or clear some obstacles in order to move

forward.

141

The designer will then pass these ideals and detailed specification to the concept artist to create

conceptual arts for every aspect in the game. This task will give initial feedback to the designer

Once the conceptual design is confirmed, the 3D modelling artists will start to create 3D models

(mesh) based on the design description and the concept art. The artists will first create a detailed

3D modelling with all the rendering properties (vertices, faces, material and textures, animation

skeleton and joints, etc.). At this stage, some physics simulation settings can be configured if the

modelling tool supports such function.

After the 3D model are complete they will be passed on to two different parties: the scene designer

and the programmer. The job for scene designer is to take all the 3D model that is created by the

artist and use them to construct the scene as required by the design document. They need constant

and direct visual feedback for their creation, and the tool they are using is CAD-like scene editors

which serves as an intermedia between 3D modelling and the programming. The programmer will

write the function to import 3D models into the programming and conduct rendering and basic

physics simulation, e.g. collision detection. They have the direct power to manipulate the

appearance (rendering) and behaviour (physics simulation) of the model, and they will also create

the logic behind the scene.

In Figure 4.4.1 below, we show the workflow for creating physics objects in general approach and

involved parties for each step. Designer and concept artist’s work is the design phase where all the

initial ideas and implementation specifications are formed. 3D modelling artist, scene designer and

programmer are in the development phase, where the actual content and the final product are created.

Our FREDOMS framework is designed to assist the domain experts in the development phase.

We offer new features to this phase by applying FREDOMS framework for modelling and

simulating permanent deformable object. We also create a set of interfaces to simplify and speed up

the workflow in the development phase by introducing automatic modelling and easy physics

property configuration to avoid unnecessary communication between different parties.

142

Figure 4.4.1 A general workflow for creating a graphical interactive application

4.4.2 End-user definition

One of the purposes of FREDOMS framework is to assist the domain expert to do their tasks easily

in development phase. Another purpose of the framework is to deliver a reasonably realistic and

accurate simulation result. Therefore, for evaluating the FREDOMS, we need to consider user

experiences from both perspectives. In order to create a realistic experience, the application user’s

experience important to our simulation results. Based on the above conclusion, we have separated

the targeted end-users into two groups:

1. Domain expert. The domain expert is the party that creates the content. A domain expert

in this context is normally a 3D modelling artist or a scene designer. This type of end-user

will be dealing with creating and importing raw 3D model into the system and setup the

required or demanded physics attributes to define the physical properties of the object.

Domain experts are the users of APMI.

2. Application user/player. This group of end-user is the direct user of the final interactive

application. The FREDOMS framework is proposed to assist the domain expert to create

interactive content easily. The final content will be directly delivered to application user

143

and game players who will be using and experiencing the product. Therefore we consider

the application user/player as the end-user of the framework.

It is worth mentioning and clarifying that our framework involves another type of end-user, which

is the programmer who will be using PG simulator as a developing (programming) tool. The

simulator will provide a set of Application Programming Interface (API) for the programmer to

integrate our physics engine (for real-time permanent deformation simulation) into their

application. In this case, the API is also an “interface” to the programmer. However, in this section,

we define the User Interface as a visualised graphical interface that can instantly handle user input

and give real-time feedback. Therefore, the discussion of the Programming Interface is out of our

topic.

4.4.3 The scope of user input

For proceeding the modelling and testing, FREDOMS requires user input and provides the interface

for such input accordingly. A summary of the user input is listed below in Table 4.4.1.

Input type Input value

Data import and export File name and format

Configuration for physics structure

generation

Physics structure density

Object size

Configuration for physics material

property

Minimum and maximum length ratio

Impulse distribution factor

Configuration for optimisation Maximum distribution depth

Minimum distribution threshold

Input for testing Interaction trigger

Table 4.4.1 User Input Overview

The above user input is handled by Automatic Physics Modelling Interface (APMI).

144

4.4.4 The scope of system output

As an assisting tool provided to the domain expert, the FREDOMS framework needs to give instant

feedback to the user in order to let them review and modify their creation accordingly. A list of all

the output types are listed below:

Input type Input value

Rendering model review Rendering mesh display

Grid mode

Mesh mode

Physics model review Mesh mode

Exterior display

Interior display

Particle-only mode

Rendering mesh information Vertices counts

Edge counts

AABB information

Physics model property information Particle counts (inner, outer and total)

Constraint counts

Surface particle and face display

Collision detection mesh display

Inner/surface/outer particle display

Particle information Particle position (in drawing)

Particle type (in drawing with colour-coded)

Constraint information Constraint position (in drawing)

Constraint type (in drawing with colour-coded)

Real-time simulation feedback Real-time deformation simulation with interaction

Table 4.4.2 System output overview

145

4.4.5 Framework/ APMI User Workflow

The user flow of using the interfaces that are provided by APMI (and PanGu simulator for the test

simulation). A working process for generating a physics with feedback is presented in the below

illusion (Figure 4.4.2):

Figure 4.4.2 The flow of using the APMI user interface

A detailed interface design presentation can be seen in Section 5.6.

4.5 Summary

Following the proposal we gave from Chapter 3, in this chapter, we presented the mythology behind

our proposed FREDOMS framework in details. The presentation is divided into two primary

components of the framework: The Automatic Physics Modelling Functionality Interface

(APMFC), and the Deformable Object Simulation Functionality Component (DOSFC). In addition,

the interface design is also introduced.

We structured the presentation following the workflow of the FREDOMS. Firstly, we gave a more

detailed discussion regarding our selection of the physics modelling approach. Then, we introduced

our Particle-Constraint based model. The model includes a BFCC (Body-Face-Centred-Cubic) unit

based physics structure generation, a BFCC-grid based space subdivision and surface mesh

generation, and a weighted mapping method for rendering mesh. We also discussed the physics

mesh parameters and their purposes. We also proposed an AABB frame referencing approach for

delivering a more stable structure.

Then we looked into the real-time physics phase and discussed each topic followed by the

146

processing order. We introduced the two-phase collision detection that is specifically modified to

suit FREDOMS; we discussed the collision response and the determining of the impulse; we then

introduced our proposed impulse-based network distribution method, which uses a single step

impulse (displacement) distribution based on the network depth level. We also proposed a flexible

length constraint condition satisfaction for performing permanent deformation simulation while still

maintain the structure integrity.

At last, we introduced our design ideology for the user interface.

From the summary, we can conclude that the FREDOMS framework offers a complete set of

solutions for modelling and simulating permanent deformable object. It contents sufficient

functionality to cover all the tasks that are involved in the process. The proposed methods and the

processing flow integrates seamlessly. Moreover, our proposed new methods offer a fast and stable

particle-based model for permanent deformation simulation, which could only be achieved by more

complicated force-based method.

In the next chapter, we will present how we implemented our proposed methods into an APMI

prototype application and how we achieved each task by using programming solutions.

147

5 Implementation of FREDOMS framework

In Chapter 4, we gave a detailed introduction of the methodology behind our proposed modelling

and simulation approaches. The new methods include an automatic BFCC particle-constraint based

physics modelling solution and a real-time impulse distribution based permanent deformation

simulation method. In addition, we have designed a FREDOMS framework that utilizes and

integrates our methods and offers a seamless and efficient workflow for 3D static mesh processing

for physics simulation.

In order to demonstrate and evaluate of our proposed methods, we have developed a prototyping

APMI platform that integrated with our PG simulator. In the implementation, we used the Unity

Engine [100] for rendering and User Interface layout and interaction, we also used the Unity

integrated PhysX engine for conducting ray casting operation. The prototype application strictly

follows the FREDOMS design and the proposed methods as a proof of our concepts. In this chapter,

we will introduce and discuss the implementation details of our APMI application.

In the first section, we will give an overview of the FREDOMS functionality components regarding

its functionality and workflow. In Section 5.2, we will introduce the data types and data structures,

and how they are organised in the implementation. In Section 5.3, we will introduce the workflow

and implementation of each tasks in physics modelling component (APMFC). In Section 5.4, we

will explain the implementation and execution for real-time simulation phase (DOSFC). In Section

5.5, we discuss our I/O procedure of the data and file format for FREDOMS. In Section 5.6, we

will present our interface design for APMI. Finally, we give a summary of the chapter in Section

5.7. We will demonstrate and evaluate the results of our implementation in the next chapter.

148

5.1 An overview of the implementation of FREDOMS

As proposed in Chapter 3, a complete FREDOMS framework has two main functional components:

A physics model generation component, and a real-time simulation component. The tasks of

modelling components are done offline, and the simulation is executed in real-time. Therefore the

implementation focus for these two components are different. The physics modelling phase

concerns more about generating an adaptive and accurate mathematical and physical interpretation

of the given object. While the simulation phase concerns about delivering a fast and stable

presentation of the results. Moreover, as our goal of FREDOMS system is not only to achieve its

proposed functionalities but also integrate the provided solution into an automatic processing

workflow for interactive application development with a smooth and intuitive interface, therefore,

aspects like usability, controllability and simplicity have to be taken into account for the

implementation.

In this section, we will give an overview of the functionality components and architecture design

of our implementation of FREDOMS framework.

5.1.1 Functionality components of FREDOMS

In Chapter 3, we have introduced our implementation plan for Automatic Physics Modelling

Interface (APMI) and PanGu Physics Simulator (PG Simulator). APMI and PG simulator are

two different systems from the end-user perspective of view. However, they also have a partial

inclusion relationship and share some functionalities. APMI system is integrated with PG simulator

functions in order to provide real-time testing feedback. PG Simulator can also be used as a

standalone component for integrating with other existing graphics and physics engines.

To clarify the ambiguity of the terms when explaining the implementation process, we have

separated the functionality of FREDOMS into two main components:

1 The Automatic Physics Modelling Functionality Component (APMFC).

2 The Deformable Object Simulation Functionality Component (DOSFC).

APMFC handles physics modelling tasks. It takes a rendering mesh as input and a physics mesh as

output. DOSFC handles the physics simulation process. It takes a physics mesh (and the

corresponding rendering mesh) as input and the real-time deformation visual effect as output.

149

By combining two components in an APMFC → DOSFC order, we have the whole physics model

proceeding pipeline (as shown in Figure 5.1.1):

Figure 5.1.1. Component relationship

From this context, APMI contains both APMFC and DOSFC functionalities. PanGu simulator only

has DPSFC functionalities.

5.1.2 Review of FREDOMS workflow in relation to functionalities

Before breaking down the component functionalities into more specific modulus, it is essential to

review the FREDOMS workflow to make our implementation goal clear. The workflow had already

been introduced in Section 4.1. A summary diagram can be found in Figure 4.1.1. The FREDOMS.

Now, we analysis the workflow again from an implementation point of view. Using our APMI (with

PG simulator integration) prototype as an example, the whole processing and simulation process

should take the following steps:

1. Import rendering mesh as input data.

2. Acquire physics structure and material property settings from user input.

3. Automatic physics modelling.

4. Physics model data construction and export.

5. Physics model data construction and import.

6. Real-time impulse detection.

7. Real-time deformation.

8. Real-time deformation mapping to rendering mesh.

9. Offline and real-time material property modification.

10. Real-time visual presentation of the results.

In the above steps, functions required in step #1，step #10 and a part of step #2 and 6# can be done

150

by using third-party APIs. The rest of the steps has to be implemented within our project as they are

specifically designed for demonstrating our proposed methods.

From the user point of view, Step #1, #2, #4, #5 and #9 involves user input via the provided interface.

Step #7 also involves user input; however, this is for initiating an external impulse to the system;

no (informative) interface is required.

Therefore we analysis these required steps and summarise them into different system function

modulus, and present them in the next section.

5.1.3 Functional modules for APMFC

As discussed from functionality perspective of view, our FREDOMS system contains two major

modules:

The Automatic Physics Modelling Functionality Component (APMFC) is the component that

designed for the artist. It takes a raw 3D mesh as input and generates a physics model as output. In

APMC the default ‘end-user’ is domain experts who designed/created the input mesh.

In order to achieve the above takes, we designed APMFC into the following function modules:

1. Raw data import module. This module is responsible for importing raw rendering mesh

data and construct the rendering mesh for display.

2. Physics data import module. This module is responsible for importing and reconstruction

of the physics information that was previously exported by FREDOMS.

3. Data export module. This module handles the data formatting and exporting of the physics

mesh information.

4. AABB update module. This module dynamically updates the AABB for a given particle

cloud.

5. BFCC cube generation module, this module contributes to the generation and construction

of particles and constraints, and their geometry connectivity structures.

6. Surface generation module. This module’s function is to analysis both rendering mesh and

physics mesh and adjusts the particles and constraints’ position to match the surface of the

rendering mesh. It is also responsible for generating a triangle mesh based on the surface

151

particles.

7. Rendering mesh mapping (skinning) module. This module is responsible for mapping each

vertex on the rendering mesh to a set of particles in the physics mesh with weighted values.

This module is also responsible for remapping any change from the physics mesh to

rendering mesh based on the weighted value.

8. Parameter managing module. This module is an intermedia between the user input value

and the parameter archive. It retrieves and stores externally defined factor values for the

system.

5.1.4 Functional modules for DOSFC

The Deformable Object Simulation Component (DOSFC) is a separate system that is independently

implemented and embedded with other physics engine. It is part of a complete interactive real-time

application that is developed following FREDOMS framework. It takes FREDOMS physics model

as input and simulate and displays visual effect as output. We have implemented DOSFC

component into the following functional modules:

1. Collision detection module. It handles object collision detection with other objects in the

scene and provides the colliding information.

2. Network structure generation and impulse distribution module. This module dynamically

generates network structure based on each initial impulse and uses a depth-based approach

to distribute the impulse into the whole physics structure.

3. Constraints condition satisfaction module. This module provides a constraint condition

solver to adjust particle’s position based on the condition satisfaction check.

4. Particle update module. This module is responsible for updating each particle’s position

based on the impulse distribution as well as the constraint condition satisfaction.

5.1.5 Functional modules for User interface and feedback

Besides the two core components (APMFC and DOSFC) of FREDOMS, in order to implement a

usable APMI prototype, we need the following additional function modules to provide an interface

for users:

152

1. Visualisation module. This module provides the function to render the rending mesh and

physics mesh, as well as different elements (particles, constraints, AABBs, etc.). The

rendering function in our implementation is achieved by using Unity Engine.

2. User Interface module. This module provides a user-machine communication interface for

users to input variables. It also allows users to interact with the model for real-time testing.

All UI layout display and the interaction function in our prototype application is also

implemented by using Unity Engine.

The primary purpose of FREDOMS framework is to offer the ideology behind the integration of

workflow and the interface design, therefore, it leaves freedom for graphics rendering and interface

implementation. We have introduced a conceptual and fundamental design protocol for the user

interface. However, in future works, the visualisation and user interface for FREDOMS can be

implemented in different forms based on each application’s requirement.

5.1.6 Summary of functional components in FREDOMS

In Figure 5.1.2, we have summarised the functional component and their modules’ relationships

and visualised the structure into an architecture diagram. This presentation offers a clear view of

how the information flows in FREDOMS framework, and how each module interacts with each

other over the two main components.

In the following sections, we will use this flow as a reference to give a detailed introduction of how

we have implemented each functionality.

153

Figure 5.1.2 Overview of functional components in FREDOMS

154

5.2 Physics data types and structures in FREDOMS

5.2.1 Defining elementary physical primitive types

FREDOMS is a physics-based framework; therefore, in order to process physics problems and

interpolate object’s properties, we have defined the basic primitive types into programming data

types. Primitive types are the elements of the data structure in FREDOMS system. In this section,

we will introduce the basic primitive types and their attribute components for FREDOMS.

5.2.1.1 Particle

Particle is the main structural element of FREDOMS system. The distribution of particle defines

the space structure of the object. Furthermore, the displacement of particle represents deformation

of the object. A particle structure contains the following attributes (Table 5.2.1):

Data type Description

Position The 3D local position of the particle.

Mass The mass of the particle

Particle Type Indicates if the particle is on the mesh surface or inside/outside of the

surface mesh boundary.

Velocity The displacement that about to happen in the current execution cycle

(regardless of elapsed time)

Velocity distribution

buffer

A list of impulse distribution that been passed by from all the higher

level tree nodes.

Constraints list A list of constraints that connects to this particle

Table 5.2.1 Particle primitive type attributes

Particle is the basic element to all the more complex structures, like a point element in geometry.

The position property of all the other primitive types are defined by multiple particles.

For implementation of APMI, particle is useful to assign a basic graphical geometry primitive (e.g.

a point, or a small cube) to each particle; this will give a visual presentation for users to view the

structure of the physics mesh and identify the position for each (or chosen) particles.

155

5.2.1.2 Constraint

A constraint is a virtual connection made of two ending particles and a set of parameters. It is the

interaction intermedia of the connected particles. The positioning interference from the constraint

defines how the connected particles take displacement based on external impulse. A constraint

structure has the following attributes (Table 5.2.2):

Data type Description

Particle p1 One particle that is connected by this constraint

Particle p2 The other particle that is connected by the constraint

Rest length (𝑳) The initial state of the constraint length (distance between two

particles when the object is at its original shape with no deformation)

Maximum length

coefficient (𝜺𝒎𝒂𝒙)

The maximum length ratio of the constraint with respect to its rest

length. The maximum length 𝑙𝑚𝑎𝑥 = 𝐿 ∙ 𝜺𝒎𝒂𝒙 where 𝐿 is the rest

length of the constraint. This defines the maximum distance of two

particles without constraint intervention.

Maximum length is responsible for material expansion ability.

Minimum length

coefficient (𝜺𝒎𝒊𝒏)

The minimum length ratio of the constraint with respect to its rest

length. The minimum length 𝑙𝑚𝑖𝑛 = 𝐿 ∙ 𝜺𝒎𝒊𝒏 defines the minimum

distance between two particles without constraint intervention.

Minimum length is responsible for material compressibility

Impulse distribution

factor (𝝁)

The proportional factor of impulse transmission from one particle

(from a higher level) to the other connected particle.

Table 5.2.2 Constraint Type Attributes

In FREDOMS, the maximum length and minimum length coefficients, as well as the impulse

distribution factor, are normally defined by a same set of value for every constraint in the structure.

This results in the whole structure having the same physical propriety. It is possible to individually

configure the attributes for each (group of) constraint into different settings if we require an object

to behave differently in different parts (e.g. rigid at the bottom and soft on top). In our

implementation, all the constraints are applied by the same set of value by default.

In APMI, the constraint is visualised by drawing a line between two connected particles, and is

colour coded to represents its different types.

156

5.2.1.3 Triangle

FREDOMS defines triangle primitive as a face element for defining the surface boundary. This

boundary will then be used for collision detection and initial impulse distribution purpose. Similar

to the triangle used in rendering mesh, a collection of triangle primitives will form a closed surface

mesh. In FREDOMS, each vertex of a given triangle is made of a particle. A triangle contains the

following attributes:

Data type Description

Particle Array[3] The array of three particles that defines the FREDOMS triangle. The

index order 0, 1, and 2 are in clockwise and this represents the front

direction (the normal direction) of the triangle (winding order).

Triangle normal Triangle normal is calculated by taking cross product based on the

given edges (defined in order by the particles). Triangle normal in

FREDOMS is for collision detection and response, and in some case,

the visualisation of the physics mesh surface (in physics model view

in APMI).

Table 5.2.3 Triangle Attributes

In FREDOMS, we generate the actual triangle object instance instead of using vertex index value

as for the rendering mesh. This is because:

1. The triangle size in physics mesh is much smaller than rendering mesh.

2. The vertices (particles) can be changed or removed during the simulation. Therefore, it is

more efficient to use the memory reference to the particle rather than its index.

In APMI, the triangle is visualised by drawing a triangle face using the three particles’ position as

the vertices. The face winding order is clock-wise around its normal in our implementation.

5.2.1.4 BFCC Cube

FREDOMS uses a BFCC cube unit as the foundation for physics mesh construction. Each cube is

a unit that occupies certain space. BFCC cubes are usually not perfect regular cubes but a cuboid

generated by using AABB and density factor as reference. The edge length may differ. All the cubes

units in the same object mesh are identical regarding to its size and internal structure. A BFCC cube

unit has the following attributes:

157

Data type Description

Particle array[15] An array of particles that defines the cube unit. The index of each

particle in the array are in order for identify its position in the cube.

Particle [0 -7] are the 8 corner particles. Particle [8 – 13] are the 6

face particles, and Particle [14] is the centre particle.

Constraint list A list of constraint that is generated based on the cube unit structure.

AABB position The cube’s x, y and z position in relation to other cubes in AABB.

Table 5.2.4 Cube Primitive Attributes

Unlike the other primitive types, the cube unit will only exist shortly during the beginning phase of

the modelling process. The purpose of the cube unit is to determine how to generate constraint

connections between particles. After all the particles and constraints are generated, the cube

structure is no longer needed. Therefore, the cube data will not be exported.

Cube unit will not be individually visualised in APMI as it can be represented by its edge constraints.

It is worth mentioning that BFCC cube unit and BCC cube unit are capable of tetrahedron mesh

generation. Therefore as FREDOMS uses BFCC, it has the potential to generate tetrahedron mesh.

5.2.1.5 Rendering mesh- Physics mesh Mapping (RPM) pair

A RPM pair is specifically designed for rendering mesh skinning purpose. After each deformation

of the physics mesh, the rendering mesh needs to be updated accordingly. RPM pair is a weighted

mapping from a vertex in rendering mesh to a group of particles’ position in physics mesh.

Data type Description

Rendering mesh vertex

index

An integer index value refers to the vertex in the rendering mesh.

Reference particles

array [3]

An array of the three particles that the vertex will use for position

reference.

Weight value array [3] The weight value (0<w<1) for each particle in the array.

Table 5.2.5 RPM pair attributes

Each vertex exists in the rendering mesh has a related RPM pair element.

158

5.2.2 Data structures

In both APMFC and DOSFC component, certain important and universal data structures has to be

defined, stored and updated throughout the entire modelling and simulation process. In fact,

APMFC’s purpose is to properly feed these data structures with correct values. These data structures

are the programming representation of the physics model. A list of the data structures is shown

below in Table 5.2.6.

Data type Description

Particle List An indexed list of references to all the particles in the physics model.

Constraints list An indexed list of references to all the constraints in physics model

Triangle List An indexed list contains the reference to all the triangle primitives in

the physics model. Unlike the triangle list in rendering mesh where

the elements are only integer indices to the vertices list, FREDOMS

triangle list has the elements that are referencing to the actual triangle

object (instance).

Cube list A list of cubes generated based on the AABB. This list only exists for

a short period of time and will not be used in real-time simulation

phase.

RPM Pair list A list of RPM pairs for mesh deformation mapping. It requires the

vertex array from rendering mesh as reference.

Table 5.2.6 A list of important data structures

There is another key information in the processing phase: The data for rendering mesh, including

the vertex list and triangle list. However, as FREDOMS does not offer rendering functions, such

information will work as a reference to FREDOMS framework and is not included within the scope

of our system. In most cases, this information can be retrieved and manipulated via the interface

provided by the graphics engine (e.g. Unity Engine).

5.2.3 Object and scene level structures

In the implementation of FREDOMS, we used a Manager Design Pattern for our system design,

which is a special case of Mediator pattern [101]. Manager design pattern is commonly used in

interactive application development where a set of objects with the same type are grouped into a

159

manager type that is responsible for conducting communication with other types of objects. In our

content, we created a physics manager type for managing all the physics mesh in the system. This

structure exists at the scene level (the multiple-objects execution environment for the application).

5.2.3.1 The Axis-Aligned Bounding Box (AABB)

AABB is a simple yet important component to our FREDOMS system (especially in APMFC

component). Each object model has an AABB that defines its rectangle volume boundary. Unlike

in rigid body simulation where AABB is only used for collision detection, AABB in APMFC serves

as a modelling reference and is used for generating the BFCC structures.

5.2.3.2 Physics mesh

Physics mesh is a conceptual object that contains all the data structures and primitives’ information

for the object that we are going to model. Physics mesh object in FREDOMS has the following

attributes:

Data type Description

Particle List A list of all the particles in the physics mesh

Constraints list A list of all the constraints in the physics mesh

Triangle List A list of all the surface triangles in the physics mesh

Cube list A list of all the cube units in the physics mesh

RPM pair list A list of all RPM pairs in the physics mesh

Rendering mesh A reference to the rendering mesh data structures of the same object

AABB The AABB of the physics mesh

Table 5.2.7 Physics mesh attributes list

5.2.3.3 Physics mesh manager

A physics mesh manager is the control and function master for all the physics mesh in the scene. It

organises, manages, creates and updates all physics mesh. It is also responsible for managing the

collision detection of the physics meshes.

160

Data type Description

Physics mesh list A list of all the physics mesh in the current scene

BVH Tree A tree structure list for all the AABB’s in all physics mesh

Table 5.2.8 Physics mesh manager attributes list

5.2.4 The data type hierarchy summary

For a better understanding of the structure of a physics model in FREDOMS, we have summarised

the physics modelling data types and their connections into a hierarchy. As introduced in Section

5.2.3, our design follows a manager design pattern, which is present it in Figure 5.2.1:

Figure 5.2.1 Physics model data type hierarchy

In the diagram, a solid line with arrow indicates an inclusive dependent relationship. For example,

a constraint contains two particles, and the particles define the constraint. BFCC cubes are made of

constraints as well as particles. A dashed line with arrows indicates a non-inclusive referencing

dependency. For example, RPM pair list requires reference from both particle list and rendering

161

mesh (vertex list) for deformation mapping (skinning).

The data types are classified into four different layers. The Primitive types are the basic elements

for representing our physics model. Data structures are the collection of each element types in the

mesh. Object level integrates all the data into a whole interoperation of the given object model. The

scene level is the collection of all the objects that are loaded into the current interactive environment.

This level is for real-time controlling of the interactive scene.

In our implementation, we mainly focused on Physics mesh manager and its subordinate levels. The

rest layers and elements (which are marked as dashed rectangles) are for a bigger picture and are

often handled by other systems beyond our scope.

5.3 Implementation of Physics Modelling Phase (APMFC)

In this section, we will give a detailed introduction of how we implemented the APMFC component

for our APMI platform. The introduction is given in the order of the physics model processing

workflow. We will explain how we have addressed the problem for each task, and what functionality

component and data types were involved for each task.

5.3.1 Generating BFCC structure

The generation of BFCC is the process of subdividing the given volume and construct the space

structure occupation and interaction model based on the subdivision.

5.3.1.1 Generating AABB

The first step of BFCC structure generation is to generate its AABB. The AABB is an important

reference to the physics modelling. The generation of AABB is straightforward. We go through

each vertex in the rendering mesh and check the maximum and minimum x, y, z value, and define

the AABB accordingly by the 8 farthest corner vertices. An illustration of AABB generation is

shown in Figure 5.3.1.

162

Figure 5.3.1 AABB Generation

Once the AABB was generated, we analyse its edge length in three directions (width, height and

depth), and identify the shortest edge with length 𝑙𝑚𝑖𝑛 as the reference to subdivide the boundary.

For a better explanation, make the assumption that the shortest edge is along-y axis (as shown in

Figure 5.3.1) and the length of the edge is 𝑙𝑦.

We need an input value to define the subdivision density. This enquiry is made by using APMI

interface. A general input range for subdivision density value is between 1 and 4, where 1 is the

most coarse and 4 is considerably very detailed, our recommended values are 2 and 3.

After receiving the density value 𝑑, we divide the shortest edge length by this value. Then we have

𝑟 =
𝑙𝑦

𝑑

where 𝑟 is the reference unit length for AABB subdivision.

Assume the edge length for the other two directions are 𝑙𝑥 and 𝑙𝑧 we have

𝑑𝑥 = 𝜏(
𝑙𝑥
𝑟
)

where 𝜏(𝑛) represents a rounding operator to give the result of the closest integer to 𝑛. In this

case, 𝑑𝑥 is an integer equals to a rounded result of
𝑙𝑥

𝑟
. We then do the same operation for 𝑙𝑧:

𝑑𝑧 = 𝜏(
𝑙𝑧
𝑟
)

Now, we have the integer density value 𝑑𝑥 and 𝑑𝑧 and we are able to calculate the unit length

for edge x and z as 𝑟𝑥 and 𝑟𝑧. Also we know that 𝑟𝑦 = 𝑟. The calculation indicates that there

163

should be 𝑑𝑥 cubes in the x-direction, and 𝑑𝑦 cubes in the y-direction, and 𝑑𝑧 cubes in the z-

direction. Each cube unit has the edge length of 𝑟𝑥 in the x-direction, 𝑟𝑦 in the y-direction and

𝑟𝑧 in the z-direction.

Subdividing AABB

We then start to subdivide the AABB by using the calculated density. We construct the cubes by

distributing the corner particles first, which generates an array of particles with the size of (𝑑𝑥 +

1) ∙ (𝑑𝑦 + 1) ∙ (𝑑𝑧 + 1), as shown in Figure 5.3.2. We add 1 to each edge density because it needs

(𝑛 + 1) particles to construct 𝑛 edges,

Figure 5.3.2 Corner particle distribution

We use the corner particles to define and generate cube units, which is in the size of 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧.

Then we have subdivided the AABB into a uniform cube array. A visualisation of the structure is

shown in Figure 5.3.3.

.

Figure 5.3.3 Cube unit generation

164

5.3.1.2 Generating BFCC structure for cube units

As each cube unit is confirmed, we start to generate BFCC particle and constraint structure for each

unit. Besides the 8 corner particles, the proposed BFCC cube has 6 face particles and one centre

particle. In the implementation, we first generated centre particles for each cube unit, and we have

a BFCC cube array, as shown in Figure 5.3.4.

Figure 5.3.4 Centre particle generation

And then we generate face particles for each cube unit to form an array of BFCC cubes as shown

in Figure 5.3.5:

Figure 5.3.5 Face particle generation

At this stage, all the particles in the structures are generated. As cube units have shared faces,

neighbouring cubes have shared face particles. Therefore, duplicate particles are generated. We use

a temporary particle list to store all the generated particles and perform a check to remove the

165

duplicate particles from the list, and then, we copy the remaining particles to the new list, which

was our current particle list.

Now, the system has a particle cloud that evenly distributed throughout the AABB boundary. A

visualisation of the particle cloud is shown in Figure 5.3.6.

Figure 5.3.6 Particle cloud

5.3.1.3 Generating constraints

Then, we use the cube unit as the reference to connect particles with constraints. We use the

following procedure to generate constraint connection:

1. Generate constraints on each cube edge to connect corner particles. This generates 12

constraints for each cube unit.

2. Generate constraints from each corner particles to the centre particle. This generates 8

constraints for each cube unit.

3. Generate constraints from face particles to the centre particle. This generates 6 constraints.

4. Generate constraints from corner particles to face particles for each rectangle face. This

generates a total 4 𝑥 6 = 24 constraints.

For neighbouring cube units, step 1 and 4 can generate duplicate constraints. We use the same

procedure for removing duplicate particles, which is to use a temporary constraint list to remove all

the same constraints, and then, we store the constraints in the current constraint list. This is the

ending of the BFCC structure generation. The final result of the structure is presented below in

Figure 5.3.7.

166

Figure 5.3.7 Particle and constraint structure of a complete BFCC formation

5.3.2 Generating Surface Mesh

We have described a grid-based sampling method to generate the surface for the physics mesh in

Section 4.2.6.2. During this process, we retrieve the vertex and triangle data from the rendering

mesh as the surface reference. In order to generate physics surface mesh, firstly, we need to

determine the surface particles.

5.3.2.1 Identifying inside/outside particles

We conduct an inclusion test for each particle against the rendering mesh. We then mark each

particle as either inside the rendering mesh or outside the rendering mesh.

For checking if the particle is inside the rendering mesh boundary, we use the popular even-odd

rule algorithm [102] to cast a ray from the testing point to an arbitrary direction and exam the

number of intersections from the ray to the rendering mesh surface boundary. However, instead of

shooting ray the arbitrary direction (normal approach is either up or down along y-axis), in

FREDOMS we do the even-odd checking twice and shoot the ray in the opposite direction (up and

down).

This is because the unique issue with particle generated based on AABB boundary, there is a great

chance that some particles will be on the surface of rendering mesh, especially for a large flat area

that is completely attached to the AABB (example can be seen in Section 6.1.1 The Metal bar Case

and Section 6.1.2 The Metal Plate Case). Testing even-odd intersection only once is not enough to

167

identify the particle’s inclusion status. Especially if the implementation involves a third-party

physics library where the float number rounding tolerance value is black-boxed and unknown. We

had encountered this problem during the initial testing, and we adjusted the method accordingly to

solve this issue.

Then, we use this algorithm to loop through each particle to check its inclusion status and mark

them individually as the particle type attribute. Illustrations of inclusion checking result are given

below in Figure 5.3.8 and Figure 5.3.9:

Figure 5.3.8 Result of particle inclusion check

Figure 5.3.9 Inside particle with rendering mesh

5.3.2.2 Identifying intersected constraints

Once the inside/outside state is confirmed for each particle, we exam each constraint in the object’s

constraint list.

168

For a given constraint, we check the inclusion state for its two ending particles. If both two particles

are outside, then the constraint is outside of the rendering mesh boundary. If both particles are inside,

then the constraint is inside the rendering mesh boundary. If one particle is inside and one particle

is outside, then we define the constraint as an intersected constraint. We mark all the intersected

constraints for further processing. Example result of intersected constraint check is shown in Figure

5.3.10, where intersected constraints are marked in blue lines.

Figure 5.3.10 Intersected constraint check

5.3.2.3 Adjusting particle positions

After having a list of intersected constraints, we start to conduct a constraint-to-rendering-mesh

intersection check. We have already known that the constraint is intersecting with the rendering

mesh, this operation is to find the exact intersection point.

After finding the intersection point for each constraint, we conduct a distance check between each

ending particle and the intersecting point. Then we move one of the particles based on the following

procedure:

IntersectionPoint p

distance1 = |p - constraint.p1.position|

distance2 = |p – constraitn.p2.position|

IF distance1 > distance2

constraint.p2.positionBufferList.add (p)

END IF

IF distance1 < distance2

constraint.p1.positionBufferList.add (p)

END IF

IF distance1 == distance2

169

 IF constraint.p1.type == inside

 constraint.p1.positionBufferList.add (p)

END IF

 IF constraint.p2.type == inside

 constraint.p1.positionBufferList.add (p)

END IF

END IF

The positionBufferList is a temporary list for storing the suggested position of the target

particle. By doing this operation, we give the suggested position to a particle based on its distance

to the intersection point. If the two distances are the same, we always prefer to move the inner

particle to the intersecting position.

After the whole constraint list is finished with the operation, we go through each particle again and

use the position buffer list to calculate the averaged position for each particle. And then, we move

the particle to the new position accordingly.

After all the particle’s position is moved, the constraint structure is also updated. Now instead of a

perfectly unformed BFCC structure, we have a particle and constant array shifted slightly but

captures a rough surface shape of the rendering mesh. An example of result is shown below in

Figure 5.3.11.

Figure 5.3.11 Result of particle position adjustment based on constraint-mesh intersection

We mark the moved particles as well as the particles we already identified as on the AABB

boundaries as the surface particles. In the above figure, the surface particles are marked in yellow

colour. At this stage, we have sorted the particles into three groups: Inner Particles (marked in red

in the figure), Surface Particles (marked in yellow in the figure) and Outside Particles (marked in

white in the figure).

170

In our prototype, we use the proposed AABB frame referencing method for implementation, as

introduced in Section 4.2.11. This requires the reservation of all the particles and constraints,

regardless of their inclusion type. Therefore, in our implementation, we kept all the particles and

constraints in the system. For other implementation that uses our framework, it is up to the

developer’s choice for whether or not to clean up the outside particles and constraints (if not using

AABB frame referencing). A demonstration of AABB framing result can be referred to the torus

case in Section 6.1.3.

5.3.2.4 Generating surface triangles

The final step of physics mesh generation is to find the surface triangles from the surface particles

and constraints. To find the surface triangles, we first choose an arbitrary constraint that is on the

surface (the two ending particles are both surface particles) and go through each other surface

constraints to find two constraints. Assume that the first constraint is 𝑐1 , the other two found

constraints are 𝑐2 and 𝑐3, when the three constraints meet the following condition:

 𝑐1. 𝑝1 == 𝑐2. 𝑝1 && 𝑐1. 𝑝1! = 𝑐3. 𝑝1

 𝑐2. 𝑝2 == 𝑐3. 𝑝2 && 𝑐2. 𝑝2! = 𝑐1. 𝑝2

 𝑐3. 𝑝3 == 𝑐1. 𝑝3 && 𝑐3. 𝑝3! = 𝑐2. 𝑝3

where the operator == is a condition operator to determine if the two particles are the same

particle. Then we have a surface triangle that is defined by three edges 𝑐1, 𝑐2 and 𝑐3, which are

made by 3 particles (𝑐1. 𝑝1, 𝑐2. 𝑝2, 𝑐3. 𝑝3).

By conducting the above condition check through all the surface constraints, we will have a list of

triangles that defines the surface of the physics mesh. This mesh is a coarse approximation of the

rendering mesh, and it’s all vertices are made of particles.

Correction to triangles’ winding order

The problem with the generated triangle list is that the winding order for each triangle is not

determined. Therefore, for each particle groups of 3 that defines a triangle, we first add the two

possible triangles (with the same vertex particles but different winding orders). This gives us a list

of doubled triangles with both facing directions.

We then cast an arbitrary ray from an arbitrary origin point outside the AABB towards the centre of

the AABB, this can normally generate an intersection with one of the triangles. In some cases where

171

the surface shape is hollow in the middle (like the torus case in Section 6.1.3), it is possible that the

ray has no intersection with the mesh, if this happens, we cast a different ray to shoot towards the

centre of the AABB until we get the first intersection.

Then we use the dot product of intersected triangle normal with the ray to determine if the triangle

is facing inward or outward (if dot product is negative then it is outward, which is the correct order,

if dot product is negative then it is inward, which is incorrect).

With one confirmed correct order triangle, we can start to exam its surrounding triangles (triangles

that shares the same edge). The same edge defines in the next triangle should have the opposite

particle order. For example, the same edge p1, p2 in the correct ordered triangle should be defined

as p2, p1 in the next triangle that shares this edge and has the correct order.

By recursively executing this operation, we can identify all the triangle with correct winding order

and delete the inward facing triangles. At this stage, the modelling of the physics structure is

finished. A final physics mesh with particles distribution in AABB frame referencing scheme and a

presentation of physics surface mesh (collision mesh) is shown below in Figure 5.3.12.

Figure 5.3.12 Physics surface mesh with d = 2

5.3.3 Mapping from rendering mesh to physics mesh

We use a quick and simple weighted mapping method from rendering mesh to physics mesh. We

loop through all the vertex in the rendering mesh. For each vertex 𝑣, we test its position with each

particles in physics mesh and find n closet particles with position 𝑝1, 𝑝2 , 𝑝3 …𝑝𝑛 to 𝑣. Then the

172

weight value 𝑤𝑖 for 𝑝𝑖 can be calculated by

𝑤𝑖 =
|𝑝𝑖 − 𝑣|

∑ |𝑝𝑛 − 𝑣|𝑛
0

In our implementation, we used 𝑛 = 3.

For each vertex in the rendering mesh, we generate an RPM pair with the vertex index equal to the

vertex index in rendering mesh. We set the reference particles as the 3 closest particles and the

weight value for each particle in the same order.

By going through each vertex with the same procedure, now we have a complete weighted mapping

from rendering mesh to physics mesh.

It is worth mentioning that our implementation uses AABB frame referencing. Therefore it is logical

to go through all the particles including the outside ones when finding the referencing particle. This

mapping gives a smoother mapping result.

5.3.4 Assigning constraint and global attribute values

The final step of completing the physics modelling phase is to assign parameters to each constraint

and to set the global attribute values to the whole system. This process involves getting user input

for constraint settings. A list of constraint attribute and their effects has been introduced in Section

4.2.9.2 and Section 4.2.10. The interface of constraint attribute input will be introduced later.

In our implementation, we applied a universal setting to all the constraints, meaning that all the

constraints had the same property and behaviour. In the future implementation, it is possible to set

different parameters to different groups of constraints, and give an object different material

properties for different parts.

173

5.4 Implementation of Real-time deformable object simulation

(DOSFC)

5.4.1 Collision detection

The collision detection procedures in FREDOMS has been extensively discussed in Appendix A.

Collision Detection in FREDOMS. In our implementation, we used the Unity Engine integrated

PhysX component for conducting ray-casting and ray-to-triangle intersection testing. Since it has

been explained in details and collision detection is only used as the entry point of the simulation

and not a core part of the FREDOMS framework, we will only give a brief introduction of its

implementation.

5.4.1.1 Broad phase collision detection

Our prototype only concerns FREDOMS object testing, and we treat the incoming rigid collider

separately. Therefore, the BVH tree that we proposed in section A.2 contains only FREDOMS

deformable objects.

AABB update for physics model

The AABB for each physics mesh was an important and fundamental reference in APMFC.

However, after finishing the modelling and moving to simulation phase, the AABB information can

be updated (even by using AABB referencing scheme) as the structure is already generated, and

AABB for modelling purpose can be discarded for the physics mesh as well as BFCC cubes except

for collision detection purpose only. Therefore in DOSFC, AABB for physics mesh has the same

function as in rigid body simulation. And for each deformation happens to the physics mesh, the

AABB has to be updated accordingly.

A noticeable difference between deformable object and rigid body is that the vertices (surface

particles) of deformable objects are already updated during physics simulation phase for each frame

(expectation cycle). Therefore, in particle position update loop, we can insert the checking operation

for x, y, z minimum and maximum value within the position update function instead of creating a

separate loop through each vertex again. Therefore if we review the equation from Construction

of BVH in Section A.2:

174

𝑇 = ∑ 2
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐼𝑁

𝑇𝐴𝐴𝐵𝐵 + ∑
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐿𝑁

𝑁(𝑏)𝑇𝑡𝑟𝑖 + 𝑀(𝑏)𝑅𝐴𝐴𝐵𝐵

We can find out that 𝑅𝐴𝐴𝐵𝐵 (regeneration time for AABB) is fast. Therefore, at the end of each

physics cycle, we update the AABB of the object and its centroid. We have the following procedure:

START PHYSICS LOOP

DO impulse distribution

DO constraint satisfaction

LOOP foreach particle in particle list

UPDATE particle position

UPDATE minimum/maximum x, y, z information for AABB

END LOOP

UPDATE AABB

UPDATE BVH

END PHYSICS LOOP

By using this approach, the AABB will be automatically updated with the particles update.

AABB in DOSFC

In order to generate a BVH tree, AABB data type in DOSFC has to be constructed differently to be

capable of forming a tree structure. Table 5.4.1 gives a summary of the attributes for AABB data

type in DOSFC.

Data type Description

Minimum x, y ,z

Maximum x, y, z

Defines the AABB boundary

Centroid The centroid of AABB, this is the representation of the position of

AABB.

Parent node The parenting AABB reference

Child node list A list of AABB type child node

Table 5.4.1 AABB data type attributes in DOSFC

BVH tree generation

As discussed, we use a Dynamic BVH tree (DBVT) for our deformable object. Therefore, besides

the boundary information, the centroid of AABB has to be updated as well.

For generating the first level of BVH tree, first, for quick identify the top tree node, we uses an

octant subdivision to divide the scene space into 8 sections: (+++), (-++), (+-+), (--+), (++-), (-+-),

175

(+--), (---). By using this approach, we can quickly assign each AABB into one of the eight groups

by checking the sign of x, y and z value of its centroid. The benefit of using an octant subdivision

for the first level is to reduce the AABB searching and generation cost as a sign condition check is

much faster than the value check.

Secondly, for each of the 8 sections, we use the origin point (0, 0, 0) as the min/max point of the

parent AABB and check through child AABBs’ centroid for the other min/max point to define the

AABB. With two edge points (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛) and (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥) we can define AABB

for all the 8 octants. For any octants with no AABBs, we ignore this node and proceed.

Thirdly, we uses the operation we have proposed in Figure A.2.4 to subdivide AABBs for each

octant AABB recursively to generate a complete BVH tree.

The BVH tree generation for deformable object is conduct at the beginning of the execution and

updated at each frame (if needed).

5.4.1.2 Narrow phase collision detection

As the methods are highly specific and applicable, the execution procedure for narrow phase

collision has been discussed and explained extensively in methodology chapter, to avoid repeating,

we only give a brief workflow and implementation-specific comments for narrow phase.

Two types of AABBs

In DOSFC there are two types of AABBs: The AABB for physics mesh, and the AABB for AABBs.

In the broad, phase we concerns only about AABB for AABBs, and in the narrow phase, we look

into the AABBs for physics mesh.

AABB subdivision

The difference is that AABB for physics mesh has one more operation, which is an octree

subdivision as proposed in Section A.3.

In our implementation, we were unable to embed the subdivision of AABB and sorting triangles

into the subdivided sections into the update function for the position for each particle like in AABB

update for physics model. Because at the time of particle updating, the AABB has not been finalised.

Therefore, AABB subdivision requires an additional step after the AABB is generated.

176

Ray casting from the incoming object

When an object with a collider (Collison mesh) is moving in the scene, for each frame we will cast

a ray from its AABB centroid and uses its velocity direction as the direction of the ray. This function

is universal and can be provided by many third-party libraries. In our implementation, we have used

the PhysX library for this task.

5.4.2 Impulse distribution

5.4.2.1 Dynamic generation of distribution network structure

Once the initial impulse is calculated from the collision module and has been passed to the contact

particle, we generate a network hierarchy of the particle for executing particle impulse.

We set the initial three particles as level 0, the next level as 1, and the further level as 2 and so on.

Level 0 and level 1 are special as they use different distribution factors than the rest level.

To construct the network structure, we uses the constraint as a connectivity relationship indicator.

With a higher level particle p with a list of connected constraints (a reference of particle types can

be seen in Table 5.2.1), we have the following check:

Particle p;

LOOP: foreach constraint c in constraint List in particle P

IF c.p1 != p and c.p1.level = -1

c.p1.level = p.level +1;

END IF

ELSE IF c.p2 != p and c.p2.level = -1

p2.level = p.level +1;

END IF

End LOOP

We check level = -1 because we initialise all the level information with -1 to indicate it hasn’t been

assigned a level yet. The above procedure doesn’t happen alone but also comes with the impulse

distribution.

Network construction for multiple impacts

As each impulse distribution happens within one execution cycle, therefore case like “an impact is

taken place before the distribution from the last impact has finished” does not exist. However, there

is a chance that multiple impacts happen simultaneously in the same frame, especially when

multiple contacts are from the same incoming projectile.

177

In such case, the network construction will happen multiple times along with the impulse

distribution. We deal with this by finishing one network mapping and distribution and then start

another one. By the end of each distribution, we will initialise the level information for each particle

back to -1. Therefore, for each impulse, a new network structure is generated.

5.4.2.2 Dynamic impulse distribution through the network

For impulse distribution, we need the following input from the user:

1. General impulse distribution coefficient (µ): This parameter controls how much impulse

will be transferred from the higher level to the lower level.

2. First level impulse distribution coefficient (𝝁𝟏): This parameter decides how much

impulse will be transferred from level 0 into the first level. In our implementation, we set

this parameter the same as the general impulse distribution coefficient by default. However,

there are cases that a user requires a smoother transition for each level’s deformation. For

example, to create a round dent. First level coefficient is usually set at a higher value than

the general coefficient (if set differently).

3. Minimum distribution threshold: This parameter is for preventing the system to conduct

unnecessary distribution when the impulse is decreased to an insignificant degree. In many

cases, a distribution only affects a part of the object directly (the other effects will be

indirectly influenced by constraint condition satisfaction). Therefore, the distribution does

not need to go through the whole network.

4. Max distribution level: In addition to the minimum distribution threshold, a max level can

give a hard control of how many levels of distribution is taken place. This is helpful in

giving additional control for behaviour effect and optimisation.

The parameters should be already acquired in the APMFC phase and imported into DOSFC. With

the parameters ready, we can start the impulse distribution.

As a review of the concept, in FREDOMS, an impulse is a one-time displacement to the particle.

The starting point of the impulse distribution is from the three affected particles from the collide

triangle. This is the level 0 of the network. In our implementation, we have a separate step to

distribute impulse from level 0 to level 1, as the first distribution has a different coefficient.

178

Before the first level distribution, an important parameter has to be considered (if entered), which

is the Impulse Proportion Factor (marked as impulse factor in the interface). This factor is entered

by the user to adjust the incoming impulse value with a proportion value (usually between 0 and 2).

The purpose of this value is to adjust the deformation degree based on the density of the BFCC cube

unit (or the particle distribution density), more detailed discussion with demonstration regarding

this value can be referred to section 6.1.3.2.

Then by modify the pseudocode from 5.4.2.1, we have

Particle p;

LOOP: Foreach constraint c in constraint List in particle P

IF p.level > max distribution level (exit condition 1)

END LOOP AND RETURN

END IF

IF p.velocity <=minimum distribution threshold (exit condition 2)

END LOOP AND RETURN

END IF

IF c.p1 != p and c.p1.level = -1

c.p1.level = p.level +1;

c.p1.displacementBuffer <-add (p.impulse * µ);

END IF

ELSE IF c.p2 != p and c.p2.level = -1

c.p2.level = p.level +1;

c.p1.displacementBuffer <-add (p.impulse * µ);

END IF

END LOOP

We run this procedure recursively throughout the tree structure until exit condition 1 or 2 is met. In

the procedure, it also implies the third exit condition where there’s no further level, the current loop

will also break. Meeting the exit condition means the distribution for current path is finished. After

all the path are finished. The distribution operation is finished.

At this point, the impulse distribution is assigned into the buffer list for each particle. If there are

multiple impacts within the current frame, we make sure that all the impulse distributions are

finished.

Then we loop through each particle to update its initial position with the displacement:

LOOP: foreach particle p in particle list

p.position = current position + Average (displacementBuffer)

UPDAE AABB x,y,z

End LOOP

179

The average () function returns the average impulse that has been passed to the current particle.

Update AABB operation can be referred to the collision detection in section 5.4.1. It is noticeable

that the distribution of the impulse and update of the particle position all happens within one

execution cycle and will bring extra calculation into one frame. It is a drawback to our method. The

effect and valuation of this approach in regard to speed performance are presented in Section 6.3.

It is also a reminder that the velocity term we used in pseudocode only represents a single frame

displacement rather than a continuing moving trend. Therefore, the displacement for each particle

caused by external impulse is time-irrelevant. Time integration is not needed in our approach.

5.4.2.3 Constraint condition satisfaction

Our constraint condition satisfaction procedure is similar to PBD’s constraint condition satisfaction

in time integration that Bender and Muller et al. introduced in [51]. But unlike PBD, FREDOMS

particle does not have a continuous velocity. Therefore, for each frame that is not a key frame (in

which the impact happens). The particles can be considered as static at the beginning of the frame.

Therefore, the condition satisfaction in FREDOMS is considerably easier than PBD, as the position

projection in regards to velocity is not needed for each particle.

The general case of constraint condition satisfaction process takes the following procedure:

LOOP: foreach constraint c in mesh constraint list

IF c.length > maximum length

length excess = (maximum length – c.length) * 0.5;

direction1 = getUnitVector (c.p2-c.p1);

direction2 = getUnitVector (c.p1-c.p2);

c.p1.displacement Buffer<-add (length excess * direction1);

c.p2.displacement Buffer<-add (length excess * direction2);

END IF

IF c.length < minimum length

length excess = (minimum length – c.length) * 0.5;

direction1 = getUnitVector (c.p2-c.p1);

direction2 = getUnitVector (c.p1-c.p2);

c.p1.displacement Buffer<-add (length excess * direction1);

c.p2.displacement Buffer<-add (length excess * direction2);

END IF

END LOOP

In summary, the constraint will push the particles apart by ½ of the excess length if they are too

close and pull them back together by ½ of the excess length if they are too apart.

180

The above procedure only describes the common case. However, there are cases where one of the

particles has one or several degrees of freedom locked (e.g. contact with ground and cannot go

lower). In such cases, we remove the displacement from the locked axis and add it to the other

particle. Using the case of constraint length is less than the minimum length, we have the following

procedure:

IF c.length < minimum length

IF c.p1 is locked

length excess = (minimum length – c.length) * 0.5;

direction1 = getUnitVector (c.p2-c.p1);

direction2 = getUnitVector (c.p1-c.p2);

displacement1 = dot product ((length excess * direction1), lock vector);

 locked displacement = length excess * direction1 – displacement1;

 displacement2 = (length excess * direction1) + locked displacement * -1;

 c.p1.displacement Buffer<-add (displacement1);

 c.p2.displacement Buffer<-add (displacement2);

END IF

END IF

In the above process, we use a dot product for the proposed displacement and a lock vector. We

transfer the locked displacement (the displacement that the given particle should have taken but is

prevented by the lock) to the other particle by assigning an opposite direction. The lock vector is a

vector that has gimbal lock information where the x, y, z value for the locked axis is set to 0, if it is

not locked, the value is 1. For example, a lock vector for preventing object move in the x-direction

is (0, 1, 1). Therefore, the dot product has a zero value for x, which means no displacement in the

x-direction. We used lock vector as an example of apply external constraint to the particle’s

movement in our implementation. Such displacement constraint can be implemented in other

approaches when combining with other physics library that provides the collision or constraint

information.

In the end, we do the same procedure to update each particle again as well as update the AABB

information.

181

5.5 Physics data I/O Procedure

5.5.1 Input file format and data presentation

FREDOMS takes raw rendering mesh as input for APMFC, after physics modelling, the resulting

physics model has to be exported. Therefore, it is important to define a standard file format having

the following key features:

1. It contains all vertices and faces information of the object.

2. Easy to add text-based extra data information without compromising the existing

information and can still be read/imported to other systems.

Based on the above requirements and in the spirit of making the implementation simple, we have

selected Wavefront .OBJ file format as our standard. This format was used in our demonstration

and implementation. In future works, FREDOMS be able to handle most of the standard file format

with minimal modification to the current system design, considering that different 3D file formats

constants very similar information.

FREDOMS provides an interface to import selected 3D mesh files (in .obj format) via APMI. This

interface will be discussed later. Once the file is imported into the system, FREDOMS requires the

following key information from the input data:

1. Vertices position information.

2. Vertices orders for triangles.

A 3D model file has many other information for rendering purposes; however, FREDOMS only

concerns and retrieves the vertices and face information from the file. Rendering information such

as texture and materials are not concerned. Rendering information is reserved and passed on

(directly or via export file) to real-time simulation for graphics engine.

OBJ is an industry standard format. Below is a sample fragment for vertices information in .obj file:

v 0.523 0.542 0.052

v 0.231 1.012 0.932

Where letter v stands for “vertex” and the following three float value are the x, y, z coordinator of

the vertex.

182

A sample fragment of face (vertices order) information in .obj file is as below:

f 3 2 4

f 1 3 4

Where letter f stands for “face” and the following 3 numbers in the same line indicates the index of

the vertex.

FREDOMS reads these information accordingly and construct rendering mesh data type to store

the information as physics modelling reference.

5.5.2 Output data structure and file format for the physics model

The export format for physics model follows the same standard as the input .obj file but with

additional physics data information. We have listed all the data types and formats for the physics

object in Table 5.5.1.

Data name Data type Data form

Particles Coordinate (3D float

vector) with mass

sp x, y, z, m

Surface particles Index array (integer array) ip 𝑖𝑛𝑑𝑒𝑥

Triangles Index (3 integers in order) sf 𝑖𝑛𝑑𝑒𝑥𝑝1, 𝑖𝑛𝑑𝑒𝑥𝑝2, 𝑖𝑛𝑑𝑒𝑥𝑝3

Constraint 2 Indices with 3 parameters ct 𝑖𝑛𝑑𝑒𝑥𝑝1, 𝑖𝑛𝑑𝑒𝑥𝑝2, 𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥, 𝜇

RPM pair Two indies with weight

factor

wm 𝑖𝑛𝑑𝑒𝑥𝑣𝑒𝑟𝑡𝑒𝑥 , 𝑖𝑛𝑑𝑒𝑥𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 , 𝑤

1st level impulse

distribution coefficient

float fl 𝛾

Maximum distribution

level

int mdl

Minimum distribution

Threshold

float mdt

Table 5.5.1 Data information of physics model in FREDOMS

183

BFCC cube information will not be exported as it only needed for the modelling phase. The AABB

will be recalculated in real-time phase; therefore, it is also not included.

The general impulse distribution coefficient is stored as a parameter for each constraint, as they

may have different values. In our implementation and demonstration, we used a global value. In

future work with more capable interface, it is possible to assign different coefficients to different

constraints.

The first Level impulse distribution coefficient, the maximum distribution level and minimum

distribution threshold are global parameters; therefore, they are recorded separately.

An example of a fragment of physics data output by using the proposed format is given below:

sp 1.1255 1.2351 -0.1566 1

sp 1.5256 0.6358 -0.1566 1

sp 0.3525 0.1351 -0.1566 1

sp -0.9632 0.2515 1.3562 1

sp -1.1891 0.1051 1.2667 1

…

ip 15

ip 23

ip 14

ip 37

…

sf 1 3 4

sf 1 3 5

…

ct 1 2 1.5 0.8 0.65

ct 1 3 1.5 0.8 0.65

…

wm 1 53 0.5359

wm 1 46 0.3125

wm 1 21 0.1516

…

fl 0.8

mdl 8

mdt 0.005

APMI provides an interface to allow user to export the data into .obj file following the above format.

PG simulator (DOSFC) is designed to read the data from this format and re-construct the physics

mesh accordingly.

184

5.6 APMI User Interfaces

We have designed APMI to provide a user interface for modelling and real-time testing. APMI

integrates functionalities from both APMFC and DOSFC. One of our goals is to offer a smooth and

easy-to-use tool for fast physics modelling. Therefore, user interface design is an important aspect

of our implementation. In this section we will give an introduction of our UI implementation. A

complete demonstration (Alex’s car case study) is given in the testing Chapter in Section 6.2.

5.6.1 Overview of User Interface Design

The principal of interface design of FREDOMS is to deliver an intuitive user experience. To achieve

such a goal, we have proposed APMI as an intermedia interface to import, export, process, and

simulate tasks for deformable objects. From the user point of view, APMI should contain the

following interface components:

1. Dialogs to import and export rendering mesh and physics mesh.

2. View window to show the rendering mesh from different perspectives in different modes.

3. Information panel for displaying attributes of rendering mesh and physics mesh.

4. Attribute input panel (s) for users to configure a set of physical parameters that meet their

requirements. The attributes including particle properties and constraint parameters as well

as universal settings to the physics model. The parameters were discussed and listed in

4.2.9.2 FREDOMS Constraint Parameters.

5. Different view mode option (toggle) for physics object.

6. Real-time simulation scene with user interaction input for testing the physics model.

In the following sections, we will introduce and discuss each interface component. The introduction

will focus on the presentation and design concept for user interface rather than the implementation

detail for each function. The underlying implementation of UI items like buttons, dialogs, and

panels shares no interest in our research topic.

5.6.2 Data import and export

We have implemented a standard and straightforward file open/save dialogue for users to choose

185

the import file. The current version of APMI does not have an intermedia file format but only

accepts .obj as the default format for importing and exporting. Figure 6.2.1 shows a screenshot of

the file dialogue in the demonstration section. This is a straightforward interface with a standard

file explorer interface that is normally provided by invoking the API from the operating system.

The functionality module behind the interface also contains a file reader/writer function for

explicitly reading and writing the data information follows the I/O procedure (reference: Section

5.5 Physics data I/O Procedure).

5.6.3 Rendering mesh view window

After loading the rendering mesh, APMI provides a 3D view window to present the object’s visual

with texture/material and/or wireframe. It allows the user to use keyboard and mouse to rotate and

view the object. Rendering mesh view has two modes:

1. Model display with texture, material and other rendering properties (3D model mode).

2. Model display with only vertices and edges (wireframe mode).

Figure 5.6.1 3D model view

Figure 5.6.2 Wireframe view

186

Both views offer an overall impression to the user and give them a reference of the detailedness and

the scale of the object for the later modelling. The same is also used to present the deformed object

after the simulation test.

5.6.4 Attribute information display panel

On the top left of the view window, APMI offers a panel to display attributes information for both

rendering mesh and physics mesh. The panel shows the following information for rendering mesh:

Data Interface form Data type

Vertex count Text with number Integer

Triangle count Text with number Integer

Edge count Text with number Integer

File name Text String

Table 5.6.1 Display data list for rendering mesh panel

The panel shows the following information (as shown in Table 5.6.2 Display data list for physics

mesh panel) for the physics mesh:

Data Interface form Data type

Surface particle count Text with number Integer

Total particle count Text with number Integer

Surface triangle count Text with number Integer

Constraints count Text with number Integer

AABB information Text with number Min/Max Coordinates (x, y, z)

Table 5.6.2 Display data list for physics mesh panel

5.6.5 Parameter input and review panels

In the modelling phase, we have implemented a series of panels for APMI that will automatically

popup input interfaces to guide user throughout the entire workflow. The information provided and

187

required through these panels is on a need-to-know basis. The user entered parameters are essential

for proceeding the modelling. The panels are:

1. Physics structure information panel (Titled as “Generating Physics model”). This panel

is data-reverse interpreted for user. It requires inputs for the object size and physics

simulation detail level. Object size input related to the calculation of impulse proportion

factor. The physics simulation detail level is a reverse interpretation of the cube density.

The panel also gives an input field for cube density for users that understand the term. It is

marked as advanced setting.

2. Physics material attributes configuration panel. It requires the user to input constraint

properties. The properties are interpreted into hardness/softness, expansion and

compressibility for easy understanding. They represent the value for general impulse

distribution coefficient, constraint maximum length ratio and constraint minimum length

ratio. The panel also offers access to Advanced setting panel and preset configuration panel.

3. Advanced physics attributes setting panel. This interface is provided specifically for

users have experience with FREDOMS system. It offers direct input for

minimum/maximum constraint length ratio, general impulse distribution coefficient and

first level distribution factor. It also give access to the minimum deformation threshold

value and the impact proportion factor.

4. Material pre-defined configurations panel. This interface provides quick access to

physics material settings that had been pre-defined. It provides a drop-down list of all the

available material settings. The drop-down list is read from an external configurable text

file. As the pre-defined material settings are object size-relevant, it also requires input for

impulse proportion factor; this value will be automatically calculated based on the previous

input for object size and give as a recommended default value.

5. Real-time simulation test active panel (Titled as “Commence real-time simulation

testing”), it gives a basic instruction of how the user can interact with the physics model. It

also gives the option to disable the rigid sub-mesh so the user can focus on deformable body

parts of the object.

6. Model export panel. This panel actives a similar file explorer dialogue for exporting the

physics mesh. In addition, it provides input field for the universal settings of physics mesh,

188

including maximum distribution depth, minimum deformation threshold, and maximum

deformable times. It also gives the option to export the current deformed object mesh into

a static rendering mesh.

An illustration collection of the panels in APMI is given below in Figure 5.6.3.

Figure 5.6.3 Assembly popup input panels

5.6.6 Model view options toggle

It is important to offer display mode options for users to visualize different aspects of the physics

mesh structure. In APMI, we have implemented the following display options:

Display mode Interface Data type

Particle information Toggle Display all particles by drawing a small dot over the

particle’s position. The outside particles are colour

coded in white. The surface particles are colour

coded in yellow. The inner particles are colour

coded in red.

Constraint information Toggle Display all constraints by drawing a line between

two ending particles. The intersected constraints

are colour coded in blue. The rest are in black.

Surface constraint

information

Toggle Display only the surface constraints of the object.

This gives a wireframe view of the Collison mesh.

189

Physics Surface mesh Toggle Display the surface triangles for the collision mesh.

AABB Toggle Display the boundary of AABB in black lines.

BFCC cube unit Toggle Display each BFCC cube unit by wireframe lines.

Rendering mesh Toggle Display rendering mesh with material and texture

Rendering mesh

(wireframe)

Toggle Display wireframe for rendering mesh.

Table 5.6.3 Model display options for APMI

The display options are designed in a toggle switch UI form. By using a combination of the display

option, users can have a better understanding of the physics mesh and make adjustment accordingly.

5.6.7 Real-time simulation test scene

APMI offers real-time testing for the physics model once the construction is completed. The test

interface shares the same scene with the mesh view model. The only difference is the integrated PG

simulator (DOSFC component) starts to run physics simulation in the execution cycle.

Real-time simulation offers two interaction with the tested object that can be initiated by users: Ball

dropping and ball shooting. Ball dropping triggers a ball collider to fall from a certain height and

strike the object (on top). Ball dropping test offers the exact impulse in each time. Therefore, it is

good for comparison test. Ball shooting actives a ball shooting from user camera’s current position

which forms a projectile towards the object. This offers a free-form interaction to the different part

of the object, and it’s close to what happens in real-time applications.

We have used the real-time simulation test scene extensively for our behaviour and material testing.

We will demonstrate and present the results in Chapter 6 Test Cases and Results Analysis.

5.7 Summary

In this chapter, we used our APMI prototype as an example to introduce how we have implemented

the FREDOMS framework into a working application that can fulfil our functionality requirements.

We have introduced the functionality components and architecture of the framework, we have

190

discussed the data types for the system, the implementation detail and workflow procedure for

physics modelling and real-time simulation process. We also explained our import/export protocol

in relation to the data presentation of the physics model. Lastly, we introduced our design of user

interface for APMI, which uses reverse-data interpretation to deliver a smooth user experience with

various information display options.

The implementation of FREDOMS is a heavy task as it offers a complete pipeline from modelling

to simulation with other supporting functionalities. Therefore, a lot of functional modules need to

be integrated into the system and have to be tailored to suit our specific type of model. The overall

system architecture is complex as a cross-disciplinary system. Our main purpose of this thesis is to

prove the core functions of the framework (modelling and simulation for deformable object). In

addition, the FREDOMS framework is meant to be integrated with other development tools rather

than a standalone application. Therefore, the implementation solutions that we employed for other

functions may not be the best options. However, as a framework is an open system with a lot of

flexibility, better solutions such as file handling, rendering, UI display and design can be improved

in the future works.

The APMI prototype presented in this and the next chapter is available upon request.

In the next chapter, we will use APMI as a tool to conduct a series of test cases to demonstrate our

proposed methods and FREDOMS framework. And evaluate the results accordingly to testify if

they meet our expectations and research goals.

191

6 Test Cases and Results Analysis

In this chapter, we will evaluate the implementation results of our proposed method by conducting

a series of tests cases. First, we identify and set goals for each test case. Then, we will discuss and

evaluate the outcomes with respect to our research objectives. The test cases are designed to

demonstrate the following aspects of the FREDOMS framework, which was proposed as our

evaluation matrix in Section 3.7.1:

1. Modelling and simulation capability: We have designed three test cases: The Metal Bar

Case, the Metal Plate Case and the Torus Case to demonstrate modelling and deformation

capability of our proposed method. These test cases will be presented in Section 6.1.

2. Controllability: In Section 6.1, we gave a detailed discussion of how the parameters can

affect the behaviour of the simulation. In Section 6.2, we presented a case study to show

how a user can access and configure these parameter settings.

3. Stability: In the three cases in Section 6.2, and especially in the Torus Case, we showed the

object’s deformation in different stages and how the parameter settings can ensure the

stability of the simulation.

4. Realism: Visual results will be given for each test cases in Section 6.1 and 6.2 for the

evaluation of realism of the simulation results.

5. Speed: In Section 6.3, we have conducted a speed test by using different parameter settings

to evaluate our real-time simulation efficiency.

6. Usability: We presented a user case study in Section 6.2. The case described a non-expert

level designer, Alex, who finished a car modelling task by using our APMI platform. We

will use this example to introduce the workflow of FREDOMS framework as well as a

demonstration of usability.

In Section 6.4, we will give a summary and overall evaluation of the results based on the above

aspects.

192

6.1 Material deformation behaviour testing

One of our research goal for this thesis is to simulate permanent deformation of objects for visual

effects. Therefore, the outcome of the material behaviour in visual representation is important. We

uses simple geometry structures along with different parameter settings to simulate different

behaviour of typical metal-like permanent deformation. The expected behaviour includes bending,

pressing, twisting, denting, and general energy transition to the whole structure. The testing also

involves the automatic mesh processing workflow, which includes how the raw mesh is proceeded

through our FREDOMS framework (APMI) for physics modelling. We use the metal bar case as an

example to introduce a complete walk-through of the modelling and simulation process. For the rest

of the cases, we do not need to follow the same detailed explanation (as the workflow is repetitive),

only key information will be presented.

6.1.1 The Metal bar Case

The first case we have chosen for evaluating our method is a single metal bar. The reason is that a

bar is the simplest geometry form with great flexibility and freedom for manipulation. It is also a

good example that can be related to everyday experience, and the visual presentation can be

compared and judged by using common sense. In addition, deformation on a simple, perfect plain

geometry is easier to analysis than a complex, detailed geometry. Therefore, for testing and

demonstrating our result from the material behaviour point of view, the metal bar is a good option

as the first introductory case. Table 6.1.1 gives an overview of the metal bar testing case.

Scenario description Load a simple metal bar into the scene and use external impulse to

interactive with it and observe the deformation behaviour.

Purpose and goal The purpose of this testing case is to design the simplest scenario to test

and review the simulation. Throughout this case, we will test the

following basic functions:

1. Import raw data/mesh.

2. Proceed raw data/mesh to physics mesh.

3. Proceed mesh into real-time simulation.

4. Test collision detection and response.

5. Test bending.

193

6. Test pressing (compressing).

7. Test twisting.

8. Test material non-elastic recovery

9. Test the same input with different combinations of parameters

and compare the differences.

Object involved Two: A deformable metal bar and a rigid ball collider.

Testing environment

configuration

Intel i5 6800k with NVidia 980ti, 32GB DDR4 RAM.

Table 6.1.1 Scenario summary for Metal Bar Case

6.1.1.1 Modelling

To conduct simulation testing of the bar object we need to perform physics modelling to the simple

3D model we created in blender. The modelling will take the following process:

Original raw rendering mesh

The bar is a hanged and unsupported long 3D rectangle. Figure 6.1.1 Metal bar Raw mesh with

vertices and triangles shows the initial view of the metal bar raw mesh after it has been loaded into

APMI editor. Usually, a static mesh as simple as this bar only requires minimum triangle to generate,

which is 12 edges and 6 face edges in total. However, as stated in previous chapters, unlike static

meshes where faces remain the same, a plain face will deform later in deformation simulation. The

change of shape from the deformation simulation has to map back to the rendering mesh. The

rendering mesh needs to have a certain flexibility and enough vertices to present the detail of the

change. This is the input data requirement of our system. Therefore, we added extra faces when

modelling the bar. In the end, we have a model with 138 vertices and 272 triangles. It is worth

mentioning that when the raw model is loaded into a different graphics engine, the vertex count get

from the engine may differ. Key vertices are duplicated for normalisation and shading purposes.

In addition, as one of our input modelling requirements, the geometry of the model should be

aligned with one axis. Therefore, when creating the bar model, we made its long edge aligned with

the x-axis and the other two edge aligned with the y and z-axis. The whole bar is symmetric with

respect to the x-axis.

194

Figure 6.1.1 Metal bar Raw mesh with vertices and triangles

Generation of AABB

After the bar is loaded into our APMI interface, we proceed to physics modelling. The first step is

to generate the AABB of the object as a boundary reference for the following steps. In the metal

bar case, the AABB will match the exact model shape. Figure 6.1.2 shows the generated AABB in

bold line.

Figure 6.1.2 AABB generation for the metal bar

195

Distribution of particles and BFCC cube units

Then we use the AABB as a reference to distribute our BFCC structure-based particle. Before the

distribution, we have to configure the density parameter of the particle. Considering the shape of

the bar, the narrow end should only have one or maximum two cubes generated. Figure 6.1.3 and

Figure 6.1.4 shows the generated particle structures based on different density settings. The number

of particles is noticeably much higher when density is 2.

Figure 6.1.3 Particle distribution for the bar with cube density = 1

Figure 6.1.4 Particle distribution for the bar with cube density = 2

196

Constraints Construction

The next step is to generate constraints based on the particle per cube unit. The generation follows

our proposed BFCC rule, which results in 48 constrains for each cube. The shared duplicated

constraints from neighbouring cubes are identified and eliminated by FREDOMS. The constraint

structure has been shown in Figure 6.1.3 and Figure 6.1.4. At this stage, the constraints’ material

parameters and rest length are not set.

Surface generation for physics mesh

Now the system will map the surface mesh for the physics mesh by using the surface particles that

is represented in the above figure as yellow dots. As introduced previously, the purpose of this

surface mesh is for collision detection and to determine which area of the object has been affected

by external impulse. In FREDOMS we define triangle face order that follows the “left-hand rule”,

which means the order of the point is always clockwise ordered around its normal. A visual

representation of the surface of the physics mesh for the metal bar is shown in Figure 6.1.5 and

Figure 6.1.6.

Figure 6.1.5 Surface mesh when density = 1

197

Figure 6.1.6 Surface mesh when density = 2

Weighted mapping from physics mesh to rendering mesh

Finally, APMI will perform a weighted mapping from physics mesh to rendering mesh. Each vertex

on the rendering mesh is mapped to three nearest particles in the physics mesh. Each mapping has

a weighted value based on the distance between the vertices and the particle. At this stage, the

vertices to particle deformation influence relationship is finalised.

Finalising rest state for the model

The last step of the modelling process is to calculate the rest length for each existing constraints

based on the current distance between the two ending particles. The current mesh structure is at the

“rest” state. In order to complete the modelling process, we also need to configure the parameters

of the constraints. In metal bar case, our goal is to test different parameter settings; therefore, we

set the parameter value by the default value offered from APMI as below in Table 6.1.2:

Configuration Maximum

length

factor(𝜀𝑚𝑎𝑥)

Minimum

length

factor(𝜀𝑚𝑖𝑛)

Material

deformation

threshold

Impulse

distribution

factor (𝜇)

Maximum

depth control

factor

Default 1.15 0.85 1.2 0.9 30

Table 6.1.2 Default parameter setting for metal bar case

198

6.1.1.2 Case discussion for metal bar modelling

Our automatic modelling solution calculates the cube unit density based on the shortest AABB edge

length, and applies it to the rest edges. Table 6.1.3 shows the physics model figures and compares

the differences between two density settings. This is a summary of key information about the

physics structure that will directly affect the simulation speed and visual outcome. The data for

density value = 3 is not practical for this simple case but just to show as a reference to the increment

of other values caused by higher density.

Density Cubes Cube distribution Particles Constraints Surface Triangles

1 20 1 x 1 x 20 205 848 328

2 160 2 x 2 x 40 1173 5668 1312

3 540 3 x 3 x 60 3505 17940 5904

Table 6.1.3 Summary of structure data with different density values

It is worth mentioning that not all the particles and constraints will be calculated in every loop. The

impulse distribution factor and the impulse distribution depth control factor will affect the tree depth

of the velocity distribution. It is also worth mentioning that the bar geometry is a special case as:

1. The short edge length is much shorter than the long edge, which results in a large number

of cube number on the long length (ratio 1:20). Increasing the cube density will result in

large particle and constraint change as they increase exponentially. This situation can apply

to any object when the length of the long edge is much higher than the short length.

However, in the real-world scenario the AABB box is more close to a regular cube

structure where the three edges along x, y and z does not have large differences in length.

Moreover, based on our testing, a healthy number of cube density for the shortest length

(density values equals to 2 - 4) is often enough to simulate object in any size by using

AABB frame reference method. Therefore, the density value will not become very high in

most cases. This avoids creating a large number of cube units.

2. The bar is a perfect cuboid geometry, which means it fully matches the space boundary

that is defined by AABB. Therefore, every cube division unit and every defined particle

and constraint is included in the bar. In the real-world scenario, the AABB only defines

199

the axis boundary of the object. Usually, there is a lot of empty space (which contains cube

units, particles and constraints) in between AABB boundary and the actual model volume.

FREDOMS is able to perform redundant inner/outer particle and constraint check and

remove unnecessary elements to reduce the calculation for optimisation (if AABB frame

reference method is not used).

3. The two shorter edges on the bar have the same (similar) length, therefore increasing the

density number will results in large increment on only the long axis. Which has much less

shared vertices and constraints that can be reduced. When the AABB is more close to a

regular cube shape, there will be more ratio of shared vertices and constraints.

4. As the shape of the bar is perfectly aligned with AABB with no gap, there is no particle

position manipulation for matching the rending mesh’s geometry. We will demonstrate this

process in later cases.

Choosing the suitable density for metal bar testing case

As stated in Table 6.1.1 , one of the testing goals for metal bar case is the material compressing.

This behaviour requires the object to be pressed in one direction. The expecting behaviour is that

the material should be extended in other directions to release the tension. Based on the observation

from Figure 6.1.5 and Figure 6.1.6, when density = 1, the mid subdivision line (the loop cut through

y-axis) of the raw mesh will be automatically mapped to the corner particles for each cube unit.

This will result in the deformation of the physics mesh not being fully mapped to the rendering

mesh; thus, the result presentation is less realistic (even though it behaves correctly in the physics

mesh). Therefore, choosing a higher density is not only for simulating more accurate deformation

but also have the visual presentation advantages as the rendering mesh will have more referencing

point when doing the mapping. In the spirit of demonstrating material behaviour, we choose the

physics mesh with density = 2 for metal bar testing as our default option, unless otherwise specified.

6.1.1.3 Real-time material behaviour testing for metal bar

After finishing the modelling, we can load the metal bar object into our real-time simulation scene

for behaviour testing. The setup for the behaviour testing in metal bar case contains:

1. A ground surface, which acts as a movement restriction (lock) to the negative y-axis.

2. A deformable metal bar with no gravity and no rigid body simulation.

200

3. An incoming ball collider with mass = 1 unit that takes freefall from a certain height.

The unit can be interpreted to any real-life unit system, by default when introduced in the later

sections we refer the unit to the metric system.

Bending test

We conducted a bending test by dropping ball collider on one end of the bar and observe its reaction.

Firstly, we used the default settings that is stated in Table 6.1.2 to conduct the first round testing.

Figure 6.1.7 Bending deformation after 1st strike by using default configuration - rendering mesh

Figure 6.1.8 Bending deformation after 1st strike by using default configuration - physics mesh

201

Figure 6.1.7 shows the screenshot of the rendering mesh after the first time collision with the falling

ball. It is clearly seen that the structure had bent from its original shape and formed a nice smooth

curve. The deformation was instant, and there was a short period of time for the constraints to

recover if its threshold is breached.

Figure 6.1.8 gives the visualised presentation of the physics mesh. Compare two figures together,

we can observe that the deformation happened to the physics mesh had been correctly mapped to

the rendering mesh. We marked the collision point (triangles) in green and the affected constraints

also in green (lines). The black lines represent the constraints that had not yet been affected by the

initial velocity distribution. The black constraints were still updated to satisfy the constraint

conditions.

After the first deformation, the collision mesh was also updated (as shown in Figure 6.1.8). We then

conducted the same procedure to drop the ball and we had the second round deformation. The metal

bar deformed (bent) further, as shown in Figure 6.1.9 and Figure 6.1.10. At this stage, the lower

end of the metal bar had touched the ground. By repeating the same ball dropping procedure, we

tested how the material react when it has one degree of freedom is locked (cannot pass through the

ground).

Figure 6.1.9 Bending deformation after 2nd strike by using default configuration - rendering mesh

202

Figure 6.1.10 Bending deformation after 2nd strike by using default configuration - physics mesh

Compressing test

We conducted the compressing test by continuing from the 2nd strike of the bending test. We

repeated the ball dropping action to the same metal bar. The result is shown below in Figure 6.1.12

and Figure 6.1.13.

Figure 6.1.11 Compressing test initial state

203

Figure 6.1.12 Compressing test 1st strike

Figure 6.1.13 Compressing test 2nd strike

It is noticeable that the part that was contacted with the ground had been compressed in volume.

The deformation primarily happened on y-axis as it was the ball dropping direction. In this test, the

bar did not stretch its structure very much to the x and z-direction as expected. This is because we

used the default parameter settings where 𝜀𝑚𝑎𝑥 = 1.15. This length flexibility only offered a very

little extension to the length of each constraint and limited the stretching of the structure. A closer

view of the compressed part can be seen in Figure 6.1.14 and Figure 6.1.15.

204

Therefore, to further exam the compressing-stretching ability of our system. We repeated the exact

same testing with all the same parameters and initial input. The only difference was we changed the

constraint max length ratio to 1.7 instead of 1.15. The testing results presented in Figure 6.1.16 and

Figure 6.1.17 show that change the maximum length ratio affected the stretching ability of the

material. The physics mesh view in Figure 6.1.17 shows more obvious stretching than in rendering

mesh. This is because the weighted mapping automatically smoothed out the transformation.

Therefore, the large stretching occurred in physics mesh was averaged out in rendering mesh

presentation. This is a drawback to our RPM mapping method. When averaging the displacements

from multiple reference particles, some deformation becomes lets significant from the rendering

mesh view. However, the deformation effect is still very noticeable.

Figure 6.1.14 Close view of compressing part - rendering mesh

205

Figure 6.1.15 Close view of compressing part - physics mesh

Figure 6.1.16 Close view of second round compressing testing – Rendering mesh

206

Figure 6.1.17 Close view of second round compressing test - Physics mesh

Twisting test

Twisting behaviour is a typical deformation for metal-like objects. In FREDOMS, the behaviour of

this deformation is not achieved by the impulse distribution, but the constraint structure

arrangement in our model. With a small set of particle starts to twist, their connected constraint will

soon exceed the maximum length and start to pull the neighbouring particles towards the twisting

direction.

The action of temporary twisting can also be achieved by other particle-constraint based method

like PBD and PSS. However, in other elastic systems and in PBD, the deformation will be eventually

recovered after the external interference (twisting action) is removed. Our method, on the other

hand, can provide a permanent deformation to the object as our constraint offers certain tolerance

for deformation.

We conducted the twisting test to the metal bar by selecting a group of particles on one end of the

bar and rotated each particle around the x-axis. Figure 6.1.18 shows a presentation of such operation,

where blue dots represent the selected particles that are to be rotated (twisted).

207

Figure 6.1.18 Twisting test preparation

The key to twisting test is the configuration of the constraint length ratio. If it is too loose (high

deformation tolerance), the structure will not perform twisting. If it is too tight (both 𝜀𝑚𝑎𝑥 and

𝜀𝑚𝑖𝑛 are close to or equal to 1) then the twisting will be soon recovered.

For the twisting test, we made two changes. The first change was that we switched to the cube

density = 1 for the modelling. This is because higher density value results in more constraints, and

leads to more constraints satisfaction check. In such case, the deformation has more details, but the

twisting process is slow. This slow process is not caused by the extra calculation but because of the

distribution of the deformation. The satisfaction and recover process takes more loop cycles than a

simple structure to perform a decent twisting. Figure 6.1.19 shows the twisting simulation in

physics mesh with cube density = 2.

208

Figure 6.1.19 Twisting simulation with density = 2

The second change was that we disabled one-to-multiple weighted mapping from rendering mesh

to physics mesh and used one-to-one mapping. In FREDOMS, this can be achieved by setting the

RPM pair list size from 3 to 1. The reason for such change is that when conducting twisting

deformation, the frequent, large angle change from the rotation can result in unrealistic mapping to

the rendering mesh. Therefore, we chose a less smooth but more stable one-to-one approach for

simulating the twisting behaviour.

Figure 6.1.20 and Figure 6.1.21 shows the operation of twisting the metal bar structure along the

x-axis in progress. With cube density = 1, the result was still realistic. As we had set the structure

deformation tolerance considerably tight, therefore, after the twisting, the structure started to

recover from the deformation in a small degree. Figure 6.1.22 shows the metal bar entered relax

state and form a permanent twisting deformation.

To test the structure stability, we used the twisted model to perform an additional ball dropping

collision test. The result is shown in Figure 6.1.23. This result showed a clear difference in material

property from the collision testing in bending, as this material is much more “rigid” (tight).

209

Figure 6.1.20 Twisting test in progress - Physics mesh view

Figure 6.1.21 Twisting test in progress - Rendering mesh view

210

Figure 6.1.22 Final permanent twisting result

Figure 6.1.23 Twisted structure with collision deformation

211

6.1.1.4 Case Summary

In the metal bar testing case, our main purpose is to present and demonstrate the possible material

behaviour our modelling method can deliver. We have successfully simulated bending, compressing

and twisting with the metal bar object and achieved realistic result. All the simulation were

conducted in real-time environment. We also gave a basic introduction of the modelling process

and how the modelling configurations can affect physics material behaviours in simulation.

From the testing, we have found that similar to other particle-based methods, the structure of the

model can largely affect the behaviour of the object. The metal bar had to be modelled differently

in order to achieve certain behaviour (e.g. cube density settings for compressing). However, as

discussed in Section 6.1.1.2, metal bar is a special case that has may unique properties. Some issue

will become less problematic in more general cases.

In this testing case, we mainly focused on presenting the desired material behaviours rather than

material properties and how they linked to the parameter settings. Because of the geometry nature

of the metal bar, we were unable to fully test the denting deformation, which is one of the key

behaviour of metal-like, permanent deformation. In the next section, we will demonstrate denting

and material deformation in a larger scale case. And we will also test different parameter settings to

show how these values can affect the object’s behaviour during simulation.

6.1.2 The Metal Plate Case

The second case we used for testing our method is The Metal Plate Case. A plate is still a simple

geometry, but it offers a large, flat surface that is suitable for perform denting. If we consider a

Metal Bar object as 1D, then Metal Plate is 2D, and it has the ability to perform visible deformation

in an additional degree. It is worth to clarify that when we referred to 1D and 2D objects, we didn’t

mean they are mathematically one or two-dimensional, which does not have any depth in other

directions. We meant that it still has depth and physics structure in all three dimension, however,

due to its shape nature, their behaviour is only obvious in one or two dimension. For example,

during the bending test, all the particles on top surface of the metal bar had the same deformation

(displacement) in the z-axis as the bar’s surface in z-direction is very narrow and only contains one

or two surface subdivision. Therefore, denting behaviour was not visible.

The Metal Plate Case can be generalised to any surface of the object. For example a metal wall, a

212

metal door or a furniture surface that can perform permanent deformation. Similar to a metal bar, a

metal plate with certain thickness is a common basic structural component to many complex objects.

Its deformation can be widely used in different simulation cases.

Table 6.1.4 gives a summary of the Metal Plate testing case. In the presentation of this case, we will

focus less on discussing the modelling process (which was explained in the Metal Bar Case) but

more on different material parameter settings.

Scenario description Load a simple Metal Plate object with certain thickness into the scene

and use a projectile to shoot the structure and observe its deformation.

Purpose and goal The purpose of this case is to design a more complicated scenario

compare to case 1 in order to test the usability of the framework for a

more complex raw mesh. Throughout this case, we will mainly test the

following basic functions:

1. Compressing

2. Denting

3. Partial deformation and its influence to the whole structure

4. Test the same input with different combination of parameters

and compare the differences.

Object involved Two : A deformable Metal Plate object and a ball collider as the incoming

projectile

Testing environment

configuration

Intel i5 6800k with Nvidia 980ti, 32GB DDR4 RAM.

Table 6.1.4 Scenario summary for Metal Plate Case

6.1.2.1 Metal Plate Modelling

Similar to Metal plate, the original rendering mesh of metal plate is manually modelled in Blender.

As stated previously, we added extra face subdivisions to its x-y plane surface in order to give extra

rendering flexibility for the later deformation. Table 6.1.5 gives the raw rendering mesh information

that we imported to APMI modelling process. Figure 6.1.24 shows the screenshot of the raw

rendering of metal plate with the mesh wireframe displayed.

213

Object Type Vertex Count Triangle Count

Metal Plate 629 1152

Table 6.1.5 Rendering mesh information for Metal Plate Object

Figure 6.1.24 Rendering mesh visual presentation of Metal Plate

We then proceed the mesh into automatic modelling with density = 1 with the default constraint

parameter setting. The physics mesh information is shown in Table 6.1.6, and a screen shot of the

physics mesh at its rest state is presented in Figure 6.1.25.

Density Cubes Cube distribution Particles Constraints Surface Triangles

1 256 1 x 16 x 16 1890 9185 2304

Table 6.1.6 Metal Plate Physics model information with density = 1

It is noticeable that the metal plate case and metal bar case has a similar issue: the number of

particles and constraints are relatively large compare to its simple geometry type. This is caused by

214

the large difference of the shortest AABB edge to the longest AABB edge ratio. The topic has

already been addressed and discussed in Section 6.1.1.2.

Figure 6.1.25 Metal Plate Physics mesh at rest state

6.1.2.2 Testing sequence introduction

We conducted the real-time deformation testing by throwing a metal ball with mass = 1.0 with a

horizontal velocity (magnitude) of 1.5 and vertical velocity of 3.0. The horizontal direction 𝑣(𝑥, 𝑧)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

is always from the current camera position to the origin point of x-z plane (0.0, 0.0). With gravity

applied, the incoming ball can form a projectile with an expected target aims roughly to the centre

point of the metal plate. By adjusting the camera position, we are able to shoot the ball from a

different direction. Figure 6.1.26 gives an illustration of the testing sequence where the ball is

shooting at the metal plate object.

In order to test the different parameter settings, we took several rounds of testing that follows the

same input but different constraint settings. For each test round, we shot the ball with the same

velocity for the same amount of time and observed the results.

215

Figure 6.1.26 Testing sequence illustration for Metal Plate Case

6.1.2.3 First round test with default constraint parameters

In the first round test, we used the default constraint parameter settings, which was listed in Table

6.1.2. This was the same setting we used for metal bar case. We repeatedly shot the metal plate by

the ball collider and observed its deformation behaviour. The results of the first 4 impacts from front

and back view are shown in Figure 6.1.27 and Figure 6.1.28. The number on each image indicates

the times of strike the object has taken.

From the result observation, we can identify that the plate performed deformation from its collision

point, the deformation stretched out to the whole structure. The four corners of the plate are the

least deformed as they have the longest distance to the collision point (which is in the centre of the

plate). This result meets our expectation with a fast and stable deformation process. And the visual

presentation is realistic.

We used the default parameter sets where the impulse distribution ratio is high, and the structure

integrity setting (constraint length flexibility) is high. Therefore, the deformation from the collision

point was easily transferred to the whole structure. One of our other tasks for the metal plate case

is to exam denting. The denting effect often occurs on a more rigid material where only a limited

area is deformed while the majority part of the object remains undeformed. In order to achieve this,

we adjusted the parameters and conducted a second-round testing.

216

Figure 6.1.27 First round metal plate testing sequence 1-4: Front View

217

Figure 6.1.28 First round metal plate testing sequence 1-4: Back View

6.1.2.4 Second-round testing with low velocity distribution ratio

For simulate denting, we configured a new constraint parameter setting, which is shown below in

Table 6.1.7. In order to achieve denting, we modified two factors: the impulse distribution and the

maximum depth control factor. We reduced these two values in the new parameter setting.

218

Configuration Maximum

extension

factor(𝑙𝑚𝑎𝑥)

Minimum

compression

factor(𝑙𝑚𝑖𝑛)

Material

deformation

threshold

Impulse

distribution

factor

Maximum

depth control

factor

2nd Denting 1.15 0.85 1.2 0.5 10

Table 6.1.7 Parameter setting for denting test

The result of the second-round testing is shown below in Figure 6.1.29 and Figure 6.1.30. This time

as we had reduced the impulse distribution ratio, the deformation only happened within a small area

on the surface of the plate, which formed a smooth denting effect.

Figure 6.1.29 Second round metal plate testing sequence 1-4: Front View

219

Figure 6.1.30 Second round metal plate testing sequence 1-4: Back View

6.1.2.5 Third and fourth-round testing for material rigidity testing

We further reduced the velocity distribution factor from the second testing, and the material became

more rigid-like and the denting area decreased. We adjusted the parameters again for a third-round

testing with the expectation of a smaller denting deformation. This time, we had also adjusted the

first level velocity distribution factor to 0.4 to form a “sharper” looking denting. The configuration

is given below in Table 6.1.8.

220

Configuration Maximum

extension

factor(𝑙𝑚𝑎𝑥)

Minimum

compression

factor(𝑙𝑚𝑖𝑛)

Material

deformation

threshold

Impulse

distribution

factor

Maximum

depth control

factor

3rd Denting 1.15 0.85 1.2 0.2 8

Table 6.1.8 Third round testing parameter

Figure 6.1.31 shows the third round result with reduced denting. The figure shows the result after

10 times strikes from the ball collider because the material becomes harder, and each deformation

after one strike is small.

Figure 6.1.31 Third-round metal plate testing front and back view after 10 impacts

It is noticeable that after certain impacts, the plate did no longer perform permanent deformation.

It still responded to the impact and performed deformation; however, the deformation was soon

recovered. This is because the deformed area had reached its maximum constraints flexibility. In

order to have further denting deformation, we had to adjust the constraint minimum/maximum

length coefficient to give more freedom for the particles to take displacement. This gave us the

fourth-round testing with adjusted constraint length flexibility.

Therefore, we conducted a fourth-round test by modifying the constraint minimum/maximum

coefficient. The new parameter setting is presented in Table 6.1.9, and the result is presented in

Figure 6.1.32. The result shows a more obvious denting deformation than the third-round testing.

221

Configuration Maximum

extension

factor(𝑙𝑚𝑎𝑥)

Minimum

compression

factor(𝑙𝑚𝑖𝑛)

Material

deformation

threshold

Impulse

distribution

factor

Maximum

depth control

factor

4th Denting 1.5 0.5 1.2 0.2 8

Table 6.1.9 Fourth round testing parameter

Figure 6.1.32 Fourth round metal plate testing front and back view after 10 impacts

6.1.2.6 Material properties and constraint parameters

From the above 4 rounds of tests, we can come to the conclusion that the constraint configuration

can largely affect the material property and the deformation behaviour of the model. We have

summarised the material property that can relate to our deformation model into the following two

categories:

1. Rigidness/Softness: This property represents how sensitive the object can respond to the

external impact. Rigid material has little deformation, and soft material is easily deformed.

The Rigidness/Softness property is determined by the impulse distribution factor (𝝁).

The effect is achieved by determining how much impulse will be transferred into the deeper

level of the system. The higher the factor is (closer to 1), the softer the material becomes,

and the lower the factor is (close to 0, the), the harder (more rigid) the material becomes.

For the first and second level, the relationship of distribution the distribution factor and the

222

material rigidness/softness is linear, but when getting to the deeper level, the relation

becomes exponential, which can be present as the equation: 𝑑𝑛 = 𝐷0 ∙ µ𝑛 , where 𝑛

represents the depth of the network impulse distribution, and 𝑑𝑛 represents the impulse

(deformation) been distributed to the current (nth) level.

2. Compressibility/Expansion: In test cases design, we make the term “maximum extension”

and “maximum constraint length” exchangeable, same arrangement applies to “minimum

compression” and “minimum constraint length”. These properties represent how much

deformation the material can perform. These are two separate factors, unlike rigidness and

softness which are highly related. Compressibility is determined by the minimum length of

the constraint and expansion is determined by the maximum length of the constraint. The

relations between compressibility/expansion and minimum/maximum constraint length are

linear.

By manipulating and combine the above properties, we can set the parameters to simulate different

matters in the real-world, especially a wide range of metals. We conducted a series of experiments

in Metal Plate Case and gave recommended parameter settings to simulate common materials in

this case.

Material Maximum extension

factor(𝜀𝑚𝑎𝑥)

Minimum compression

factor(𝜀𝑚𝑖𝑛)

Impulse Distribution

factor (µ)

Iron 1.6 0.75 0.5

Steel 1.5 0.8 0.35

Aluminium 2.0 0.3 0.95

Copper 1.8 0.5 0.8

Titanium 1.05 0.98 0.05

Table 6.1.10 Parameters for different materials

Table 6.1.10 gives a set of parameters that we found is suitable for simulating certain types of metal

materials. There are infinite possibilities of combinations of the values, the above table offers a

reference and guidance of how to simulate different types of material. We have experimented the

above values in metal plate case. The visual presentation is given in Figure 6.1.33, Figure 6.1.34,

223

Figure 6.1.35, Figure 6.1.36, and Figure 6.1.37.

Figure 6.1.33 Material simulation - Iron

Figure 6.1.34 Material simulation - Steel

224

Figure 6.1.35 Material simulation - Aluminium

Figure 6.1.36 Material simulation - Copper

225

Figure 6.1.37Material simulation - Titanium

Besides the above three parameters, there are also the first-level impulse distribution factor and the

deformation threshold, which are up to the user’s preference to configure based on the requirement

for each application. They will affect the deformation type, however they will not directly determine

the material deformation property. The deformation threshold is related to the rigidness of the

material. It triggers deformable/rigid state of the object.

Important issue when using parameter presets

It is important to state that the above parameter configurations cannot be blindly used in

arbitrary scenarios without further exam of the particular case. These values are given as

references.

The reason for this statement is because the material priorities gained from the parameters

(especially the velocity distribution factor) are highly dependent on the density of particles and the

level of constraints. An example can be an object with the same volume size but object A has two

particles with one constraint in a certain distribution path, but object B has three particles with two

constraints in the same path. When the impulse reached the end point in object A, it was only

decreased once. But in B the same end point has lost impulse twice, as there is one more layer in

the path than A. This causes the impulse passed to the same endpoint having different values.

Therefore, with the same constraint settings and same object structure and volume, but different

particle distribution density, the model with the lower density always seems “softer”. This makes

226

sense in the real world common experience as matters with lower density are usually softer.

Therefore when modelling large object with low-density particles distribution, the solution to

maintain the correct material properties will be:

1. Use an impact-density factor to adjust the impact amount that matches the density of the

object.

2. Use a different set of configuration. This can also be achieved by using an impulse

proportion factor.

The above problem only applies to the softness/rigidness property. The Compressibility/Expansion

property will not have the same problem as no matter how much the density is and how many

constraints, the total constraints length change and tolerance are the same. Therefore this problem

is unique in our method when comparing with PBD and PSS, as their energy loss is independent to

particle and constraint density.

6.1.2.7 The “bullet hole” effect – Handling large impact

One special denting would be a bullet hole on a metal wall (without causing fracture). This effect

is a special case to the previous denting effect, but it is generated from a large, sudden impact which

results in the collide area to have large deformation. In order to maintain an obvious and sharp

change to the whole surface, little deformation should be transferred to the next level (s).

Based on the above behaviour, we can predict that the material should have low distribution ratio

and high deformation flexibility, therefore, we have a new configuration that is shown below:

Configuration Maximum

extension

factor(𝑙𝑚𝑎𝑥)

Minimum

compression

factor(𝑙𝑚𝑖𝑛)

Impulse

distribution

factor (µ)

1st level

distribution

factor

Bullet hole 2.0 0.2 0.01 0.1

Table 6.1.11 Bullet Hole test parameter configuration

Please notice that this time we setup a different 1st level distribution factor, this is to ensure a smooth

hollow shape and still have shape deformation for the next level distribution. The result is shown

below in Figure 6.1.38.

227

Figure 6.1.38 Metal Plate Bullet Hole test result

6.1.2.8 Metal plate Case summary

In the metal plate case, we have accomplished three tasks: Firstly, we have tested permanent

deformation of a large surface with thickness. The metal plate reacted to the impulse and deformed

while maintaining its structure integrate, and generated nicely metal-like effects. Secondly, we have

tested the denting effect, where only a small area of the surface deformed and left the rest of the

surface unchanged. Thirdly, we have looked into how different combinations of parameter values

can affect the material property. We conducted several rounds of tests and analysed the results. We

summarised the relation between key parameters and deformation behaviours. Based on the

findings, we have proposed a set of configurations that can represent several common metal

materials.

The first two test cases (Metal Bar and Metal Plate/Panel) concentrated on the material behaviour

and basic modelling process. We used simple geometries for demonstration, and they gave a good

presentation of what material behaviours our method is capable of; and how to model the object

based on the requirements. In the next section, we will present a test case with more complex

geometry shape and discuss its deformation behaviour accordingly.

228

6.1.3 The Torus case

The previous two cases demonstrated the deformation ability and possibility for our method.

However, the geometry we used was relatively simple. It didn’t demonstrate how our automatic

modelling and real-time simulation can handle more complex geometry. Therefore, we setup a third

test case, where we use a torus model with handle as our test subject.

Figure 6.1.39 The torus object

A torus structure is a unique two-dimensional compact manifold. It has a hole in the middle but yet

it also has a closed surface with a closed inner volume space. It also has a perfectly rounded surface

presentation that can easily identify any deformation shape. Therefore, this simple yet still complex

geometry is perfect for testing object deformation as a whole. Figure 6.1.39 gives a presentation of

the torus object that we used in this case. An overview of the case is given in Table 6.1.12.

Scenario description Load a torus object (as shown in Figure 6.1.39) into the scene and use

dropped ball and shooting projectile to the structure to observe its whole

structure deformation behaviour.

229

Purpose and goal The purpose of this case is to see the change of whole structure rather

than exam individual material property. The main testing goals are:

1. Automatic modelling of complex geometry

2. Structure stability

3. Deformation degree and realism

4. Object deformation behaviour in different parameter settings

Object involved Two : A deformable tours object and a ball collider as the dropping and

incoming projectile

Testing environment

configuration

Intel i5 6800k with Nvidia 980ti, 32GB DDR4 RAM.

Table 6.1.12 Scenario summary for Tours Case

6.1.3.1 Torus Modelling

The tours model is a more complex structure than a plate structure by the first looking. However,

when it comes to vertex and triangle count, the tours object we modelled has similar figures

compares to our metal plate object. The rendering mesh information of the tours model is given in

Table 6.1.13 as well as a comparison to the numbers for the metal plate.

Object Vertex Count Triangle Count

Torus 673 1224

Metal Plate 629 1152

Table 6.1.13 Rendering mesh information for Tours Object

The similarity in numbers of vertex count and triangle count of two objects is because the (relatively)

complex raw surface mesh of the torus has already given it enough detailed vertices in rendering

mesh to represent further deformation. Therefore, we didn’t add many extra surface subdivision to

the rendering mesh. In contrast, a metal plate is simple as it can be represented by 12 triangles;

however, we needed to add a lot of extra subdivisions to its plane surface for further deformation.

230

For automatic physics modelling of the torus, we still used the standard density = 2 considering the

AABB boundary of the torus object (large difference between longest and shortest edge). After

APMI finished proceeding the model, we had a physics mesh with the following properties:

Test Case Density Cubes Cube distribution Particles Constraints Triangles

Torus 2 240 2x12x10 1553 7968 1479

Metal Plate 1 256 1 x 16 x 16 1890 9185 2340

Table 6.1.14 Torus object rendering mesh information overview with comparison to the metal plate

In Table 6.1.14 we also give the values in comparison with the metal plate, it is noticeable that torus

has less particles, triangles and constraints counts than in the metal plate. Therefore, the complexity

of the structure in our model is not directly related to the complexity of the geometry. Figure 6.1.40

shows a presentation of the complete physics model of the torus object.

Figure 6.1.40 Physics modelling visualisation for torus object

It can be observed that different from the previous two test cases, the AABB of the torus object does

not fully match the shape boundary of the physics mesh. There is a lot of empty space in between,

and the distributed particles are not included within the physics boundary. Such particles are marked

231

as white dots in the figure. It is also noticeable that some particles (yellow ones) are moved from

its original distributed position and shifted to match the geometry of the rendering mesh. This is the

result of constraint-rendering surface intersecting and shifting operation from APMFC. This action

was not observed in previous cases.

We used the AABB frame referencing method (introduced in Section 4.2.11) for the simulation.

Therefore, even the particles are outside the volume of the torus we still kept them and construct

constraint in between. This gave extra support and deformation reference for the whole structure to

help it maintain integrity.

6.1.3.2 Testing with different parameter settings

We have introduced the possible deformation behaviour types in Section 6.1.1. We have discussed

and analysed different parameter settings in 6.1.2. In the torus case, we will skip these topics and

go straight into the testing results by using different sets of parameters.

Torus object density

From the configuration showed in Table 6.1.14 we can identify a decreased density of FBCC cube

units on y and z-axis. This led to a very soft material to the torus when using the same set of

configuration and the same impulse. In the spirit of testing how the object density differential issue

can affect the result, for the first test round we still used the default constraint configuration with

the same initial impact value to observe the behaviour of the torus structure.

Default parameter settings with same the impact value from previous test case

For the first testing scenario, we still used the default parameter configuration (Table 6.1.2). As

discussed in Section 6.1.2.6 Material properties and constraint parameters, this setting offers a soft

material behaviour. In addition, because of the reduced cube density, the material should be even

softer. Therefore, we expect the structure to perform large deformation very easily.

We conducted the experiment by the same procedure of dropping a ball collider with mass = 1 and

gravity = 9.8 from the same height for three times. The collision position for the first contact is on

the top left area (as shown below) of the torus. Figure 6.1.41 shows the result of three collisions

from the ball dropping test. As we expected, the object had a significant vertical deformation after

only three times of collision.

232

Figure 6.1.41 Torus dropping ball test with default parameter settings

We also conducted a sideway shooting test by using the same parameter settings. In the test we

aimed at one side of the torus and shot the ball to the upper section of the ring, this generated a

sideway impact and deformed the structure horizontally along z-axis direction (primarily). The

result of sideway shooting test is shown in Figure 6.1.42. Similar to the ball dropping test, the torus

had a large deformation after three collisions.

From the visual presentation in the two tests we can observe that the deformed structure formed

several metal-like patterns, including a combination of bending, folding, compressing and slight

wrinkling, as well as the whole structure shifting. The visual experience can also identify this

structure has a very soft material, which matches our prediction based on the selected parameter

settings. However, the behaviour may be too soft for some applications as the structure will lose its

identifying geometry (the unique form that can be easily identified as a pre-designed object, even

with some degree of deformation).

233

Figure 6.1.42 Sideway shooting test by using default parameter settings

We continued with one more test by using the parameter setting for iron that was given in Table

6.1.10. We conducted a ball-dropping test with the same impact input from the default parameter

test. The result is shown in Figure 6.1.43. As the parameters are more rigid, we can observe a less

deformed result. It is noticeable that the material around the collided area had large deformation

while the other part of the object still maintained its initial structure (mostly, but with a slight,

unnoticeable deformation). This is caused by the low distribution rate as well as the additional

structural support from the AABB frame.

234

Figure 6.1.43 Torus dropping ball test by using iron parameter

Testing with impulse (proportion) factor

In order to achieve a more nature and smooth deformation for the torus, we applied proportional

changes to the impact values instead of changing the parameter settings. The reason behind this is

that it is easier to adjust one value for the input factor instead of at least three values for the

constraint factors. Moreover, it is reasonable to assume that the impact change is proportional to the

size change of the structure (in this case, the cube density).

In order to determine the value of the impact factor, we made an assumption of the actual size of

the torus. In modelling interpretation, both the metal plate and the torus had an AABB size

represented by three float numbers. Table 6.1.15 gives a list of the AABB size for the metal bar, the

235

metal plate and the torus, which are the three test objects we have discussed so far. The X, Y and Z

values that represent the boundary of the object do not have a universal unit assigned, meaning that

it can be scaled to any size as desired.

Object X-length Y-length Z-length

Metal Bar 3.22 0.16 0.16

Metal Plate 0.29 4.71 4.71

Torus 0.49 2.86 2.46

Table 6.1.15 AABB size for different objects in modelling unit

Therefore, we had to make our own assumption of the size of the test object, and use the AABB

difference as a reference to adjust the impact factor, along with the known cube density for each

structure. As shown in Table 6.1.14, the torus has 12 cubes on y-axis, and metal plate has 16 cubes

on y-axis. This makes each cube edge of torus 0.24 unit, and each cube edge on metal plate is 0.26

unit. Therefore, the cube sizes are very similar to each other. This also gives one explanation of the

issue we raised early as the torus is half the size of the metal plate (in other words, low density) but

was assigned with the same set of parameter.

We used the deformation happened in the metal case as a reference and compared to our desired

deformation that wanted for torus structure. We assumed that this torus structure should be at least

as big as the size of the metal plate (in terms of y-z dimension). Therefore, by combining the above

conditions, we had chosen an impact factor (modifier) of 0.5. This reduced the initial impulse

applies to level 0 particles by half.

We then applied this factor into the simulation and conducted a new test round. In this round, we

used the ball collider to strike the structure for 4 times. We first used the default parameter settings

to see the difference. The result is shown in Figure 6.1.44, compare this result with Figure 6.1.41

we can clearly identify the difference in material behaviour. We also conducted the sideway

shooting test in the same configuration, and the result is shown in Figure 6.1.45, as a comparison

with the result in Figure 6.1.42.

236

Figure 6.1.44 Torus ball dropping test with default parameter and impact factor = 0.5

237

Figure 6.1.45 Torus sideway shooting test with default parameter and impact factor = 0.5

We then applied different parameter settings to the model and conducted the same test to observe

the torus’ behaviour. We had chosen parameter settings for iron, steel, copper and titanium from

Table 6.1.10 as examples. We also set the impact factor = 0.5 as in the previous test. The result for

iron material is shown in Figure 6.1.46 and Figure 6.1.47. The result of steel material is shown in

Figure 6.1.48 and Figure 6.1.49. The result for copper is shown in Figure 6.1.50 and Figure 6.1.51.

The result of titanium is shown in Figure 6.1.52 and Figure 6.1.53.

238

Figure 6.1.46 Iron configuration test - ball dropping

Figure 6.1.47 Iron configuration test - sideway shooting

239

Figure 6.1.48 Steel configuration test - ball dropping

Figure 6.1.49 Steel configuration test – sideway shooting

240

Figure 6.1.50 Copper configuration test - ball dropping

Figure 6.1.51 Copper configuration test – sideway shooting

241

Figure 6.1.52 Titanium configuration test - ball dropping

Figure 6.1.53 Titanium configuration test – sideway shooting

From the above results, we observed that the tests with the adjusted impulse factor produced similar

material properties compares to the results in metal plate case. The deformation behaviour is very

different based on different configurations, from soft and easily deformable like copper to rigid

material like titanium, which didn’t perform very noticeable deformation after 4 strikes in both

cases. This has proven that with the correct size assumption and proportion factor, our constraints

parameter configuration can be used as a universal standard for simulating different types of

materials.

242

In addition, the deformation didn’t break the structure integrity and unique identification of the

structure. This can deliver a nice visual effect with the ability to be interacted with in real-time.

6.1.3.3 Torus test case summary

In the torus test case, we have tested the modelling and simulation of material behaviour on a more

complex geometry structure. Rather than looking into individual deformation behaviours, we

concerned more about how the whole structure deforms. As shown in the results, our system is able

to handle automatic modelling for a relatively complex geometry and proceed it to the real-time

simulation. In the deformation test, we have given solution to the over-soft problem when using the

same external impulse and same parameter settings for objects with different cube unit density. In

the end, we have tested different sets of constraint parameter configuration, and the results from the

torus case matched the result from the metal plate case. The visual result presented realistic

deformation to the whole structure of the torus.

At this point, we have had three test cases covered the testing topic from material behaviour testing

(deformation type), degree of deformation (material type) and structural deformation, and the

automatic modelling from simple to more complex objects. These tests had covered all the

functionality of our proposed automatic modelling method and impulse-based simulation method

for permanent deformable objects. In these three tests, we didn’t focus on presenting the workflow

interface (except the process flow in Metal Bar case), but the results achieved still implied the

success of our framework. The whole testing process for all three cases did not require extra

implementation or manual setup of the model except input for parameters. Therefore, we can state

that our framework does meet the definition of “automatic generation of physics model”.

In the next section, we will give a case study that focused more on the workflow of FREDOMS

framework. This will give a clearer demonstration of the efficiency and simplicity of our proposed

framework, and how it combines our two main contributions (modelling and simulation) seamlessly

to offer a computer-aid solution for permanent deformable objects.

243

6.2 FREDOMS workflow case study: Alex’s Car modelling task

In the previous test cases, we have demonstrated the capability and usability of our proposed

modelling and real-time simulation method. In order to take more advantages from our automatic

mesh processing workflow, we have proposed a framework that offers a complete solution to the

deformable object modelling and simulation. The detailed design and implementation of the

framework have already been introduced in Chapter 4 and 5.

The framework utilises each individual functionality of our proposed methods and organised them

into a sequence of tasks. By following these steps, users can easily create and simulate deformable

object with only common sense and no additional effort and expert knowledge. In order to

demonstrate our framework, we have developed a prototype application with APMI interface and

PanGu physics component integrated real-time testing environment (which was already partially

shown in the previous test cases). In this section, we will introduce a fictional user case which goes

through the whole process of the framework. In this case, the user needs to use our framework to

accomplish a particular task. We give a complete walk-through of the whole process, which gives

a clear explanation and demonstration of how FREDOMS works.

6.2.1 Scenario overview

Alex is a level designer in a video game company. She is currently using an in-house level editor to

design a game scene for a new 3D game project. The scene is a small section of city blocks where

the cars on the street are deformable when the player fires projectile to it. This feature is important

for a certain game design purpose.

Alex has just received a 3D car model from the artist team, the static mesh of the car is modelled to

suit for real-time rendering, and the surface are subdivided for deformation purpose. However, it

still needs physics modelling and behaviour testing, and programming implementation to make the

model perform physics simulation in the game. As the deadline is approaching, Alex has little time

to communicate back and forth between art team and the programming team to organise meetings

and tests. In addition, Alex has no experience in 3D mesh modelling, and has little knowledge in

physics modelling and simulation, and is not good at programming. In the development

specification, the requirement for the car model is “to be able to have light to medium degree

damage without breaking apart. The deformation of the car has to correctly respond to user input,

244

and presents a soft, iron-like physics behaviour. The deformation of the car will stop when the

damage reaches a certain degree”.

Now Alex has to use the FREDOMS platform (APMI) to quickly turn a 3D model into a physics

model, and has to setup the run-time physics behaviour test based on the specification and her

common sense knowledge. Her final goal for this task is to deliver a 3D model file with physics

properties. The model should then be ready to perform designed behaviour when been imported

into the game engine, which has already integrated with the PanGu physics simulator.

6.2.2 Breaking down the tasks

Alex’s mission can be simplified into the following tasks:

1. Load the car model received from the artist into APMI.

2. Set the desired physics settings.

3. Perform physics modelling to the car model by using the settings.

4. Quick real-time testing of deformation behaviour of the car.

5. Observe if the car behaviour matches the requirement, if yes, go to task 6, if no, go back to

task 2.

6. Export the model with physics modelling and property settings.

In task 5, when going back to modify the physics property, some changes require a complete

remodel of the object (e.g. change of cube density). However, some other attributes like constraint

parameters can be adjusted at run-time without regenerating the physics structure.

6.2.3 Physics modelling phase

After executing APMI platform, firstly, Alex is required to import a 3D model that can be

recognised by the system. APMI provides a standard file explorer interface, as shown below in

Figure 6.2.1. Alex then selected the given CarModel.obj as the input file.

245

Figure 6.2.1 File explorer interface

Now the car model is loaded into APMI editor mesh view. APMI will display the object’s rendering

mesh along with its surface (triangle) by drawing wireframe of rendering mesh. APMI also has a

text panel for displaying important information about the current object. A screenshot of this step is

shown below in Figure 6.2.2.

Figure 6.2.2 Car model - Rendering mesh view

246

In the mesh view, Alex has the option to toggle the display of the wireframe and rendering mesh.

By the time the mesh is loaded, the AABB box is already automatically generated. Alex can also

toggle the display for AABB using the display options panel that is shown in Figure 6.2.3.

Figure 6.2.3 Display options for rendering mesh

After proceed to modelling, APMI will pop up an interface asking for basic modelling requirements.

For all interfaces provided in APMI, we have used Reverse-data interpretation as introduced in

Section 4.2.3. The concept is to hide the detailed and specialised terminology and interpret the

information into expressions that can be easily understood by using common sense.

Figure 6.2.4 Modelling initial conditions input

As shown in Figure 6.2.4, APMI askes for the object size and physics detail level instead of

“absolute length unit ratio” and “cube/particle distribution density”. This is for users with less

specified knowledge like Alex to understand the context. The cube density value input field is on

247

the interface as in many cases the user needs to manually and specifically adjust this key value and

avoid using the fuzzy conceptualised “low” and “high” in simulation detail. However, for the

physics simulation detailed level, we set low at cube density = 1, and high at cube density = 4.

Based on our testing, this range can cover most of the simulation cases. Usually, the value is between

1 and 3.

Alex understands the interface, from the project specifications she knows that the size of the car

(the longest edge of the car) is around 4.3 meters, which is a normal size for cars in the real world.

She decides to give a good detail simulation as the car object can be seen very closely from the

player, and it is a relatively small object compares to buildings and other big structures. Therefore,

Alex selected the detail level as indicated in the screenshot. This value equals to cube density = 3.

The cube density input field is marked as advanced and it is optional. Therefore, Alex ignored this

input and hit the “OK” button to proceed to the next step. As Alex pressed the “OK” button, the

modelling process has begun. The physics model was generated in a short period of time. Normally,

there is no noticeable lag when the mesh is constructed. However, for large structure with high cube

density, a small period of pause of the application can be experienced.

Figure 6.2.5 Physics material attribute configuration interface

After the physics model has been generated, the system immediately popped up another interface

asking Alex to specify more values for the physics model. The values are for material attributes,

APMI interprets the value as hardness/softness, material expansion ability and compressibility,

248

which can be easily understood by non-experts, like Alex. Moreover, the values are already set as

default values, and the impact factor is automatically calculated based on the previous calculation.

To give more intuitive and efficient solution for choosing the values, APMI offers preset function.

The interface is shown in Figure 6.2.6. The presets are a list of pre-defined parameter settings very

much like what had been discussed and introduced in Section 6.1.2.6 Material properties and

constraint parameters. By selecting presets, users can quickly configure the material property

without coming back and forth to do multiple testing.

Figure 6.2.6 Preset interface

The preset configurations are loaded from an external editable configuration file. Users can freely

edit the file if they found a more useful combination of parameters that can simulate a certain

material behaviour. The format of the configuration file follows a name tag standard which is shown

in Figure 6.2.7. When Alex was exploring the presets options, APMI had already listed some default

configurations that are ready to be used.

Figure 6.2.7 Fragment of a sample preset configuration file

249

The use of presets requires the correct setting for the impulse factor. APMI had already calculated

a recommended impulse factor based on the size and density input. The input field had been filled

with the recommended value.

The physics attribute configuration interface also offers the option to activate a more advanced

setting interface for expert users that have a good understanding of the FREDOMS framework. The

interface is shown in Figure 6.2.8. Advanced setting interface offers full access to every aspect of

the constraint settings.

Figure 6.2.8 Advanced physics attribute setting interface

After viewed all the options, Alex has decided to use preset option and selected the iron material

preset. After confirmed her choice by clicking the “Ok” button, APMI applies the selected

configuration to the constraints in the physics mesh. At this stage, the modelling process is finished.

A simple two-steps operation for modelling

In the first phase of the case, we can see that from a raw rendering mesh to a physics model, Alex

only needed to go through two interfaces: Firstly, she set the physics structure attribute of the model

(density). Secondly, she set the physics material attribute of the model (rigidness, compression,

expansion, etc.). And that’s all the actions required from Alex to create a new model with physics

simulation ability. The interfaces are designed to be as simple and understandable as possible;

250

therefore, Alex only needed to input a few values for the car mesh to be physically modelled. The

whole process took only a few minutes. However, this is usually not the end of the case. For most

cases, the user needs to have a quick test to see the simulated effects based on the selected

configuration; so does Alex.

6.2.4 Real-time testing phase

Alex now has the option to either directly export the physics mesh with all the attribute settings, or

can proceed to the real-time testing scene. At this point, Alex has no idea of how the simulation will

look like in the real-time games. Therefore she has decided to conduct some real-time tests and

observe the behaviour of the deformation. Then she can confirm if the simulation matches with the

design document and her expectation. As shown in Figure 6.2.9, Alex proceeded to real-time testing.

Figure 6.2.9 Commencing real-time testing

APMI is integrated with PanGu physics component which is able to conduct quick real-time test.

The simulation presentation the APMI provides is based on a WYSIWYG (What You See Is What

You Get) bases, assume that the game engine is integrated with PanGu. The model will behave

exactly the same when been imported into the game environment.

Real-time testing scene is for the deformable parts only, as the game design document stated, the

tyres of the car are rigid and should not perform deformation. Therefore, when loading the model

into the testing scene, as shown in Figure 6.2.9 the rigid sub-meshes are disabled, only the main

body of the car is loaded, as we can see in Figure 6.2.10.

251

Figure 6.2.10 Car body section for physics attribute testing

The interface gives instruction on how to active impulse to trigger the simulation as shown in Figure

6.2.9. APMI offers ball-dropping and sideway-shooting. These two types of interaction have

already been introduced and used in the previous 3 test cases.

For viewing the physics model from different perspectives and visualise its physics structure, APMI

offers several different model display options. By toggling the options in Figure 6.2.11 the user can

have different views of the model by displaying a combination of information. Examples of

different views of the same car model are shown in Figure 6.2.12, Figure 6.2.13, Figure 6.2.14 and

Figure 6.2.15. There are many other possibilities of combination based on user’s demands. However,

these options only act as a visual aid but not an essential requirement to proceed the test.

Figure 6.2.11 Model display options

252

Figure 6.2.12 Physics collision mesh

Figure 6.2.13 Physics mesh with AABB and particles

253

Figure 6.2.14 Physics surface mesh wireframe triangle disabled

Figure 6.2.15 Cube unit and constraints structure

Now, Alex started to test the deformation, she began the testing with ball-dropping. She dropped

the ball collider on the car several times. Figure 6.2.16 shows the result that Alex observed. Based

on her own judgement, she felt the deformation looks good. Then she proceeded to sideway

shooting test. The two tests can be conducted at the same time. Therefore, Alex used different

combination of inputs to interact with the car model.

254

Figure 6.2.16 Ball-dropping test for car model

Figure 6.2.17 Car deformation: left side and top collision

255

Figure 6.2.18 Car deformation: left side and top collision, rear view

Figure 6.2.19 Car deformation: front and top collision

256

Figure 6.2.20 Car deformation: front and top collision, side view

Alex found out that the settings are reasonably realistic and the behaviour of the care deformation

matches her expectation (based on her understanding of the requirement). Therefore, after several

more repeated tests, she had decided to use this model configuration, and she started to export the

model.

Figure 6.2.21 Physics Model Export interface

For exporting the model, Alex proceeded to the last interface, which requires Alex to give some

more values. These values are for run-time optimisation purposes. As usual, the values were already

set by recommended values.

257

APMI also provides a very useful function to export the current deformed mesh (caused by

APMI real-time testing) as a rendering mesh. Therefore, if Alex found the destructed (deformed)

can be served as a static mesh in the application, she can export the current geometry of the car

model separately. This provides a quick tool for modelling destructed static model. The function

can be directly used by artists to quickly generate deformed static mesh based on a given

original mesh.

Based on the project specification, Alex set the maximum deformation times to 8. Firstly because

the requirement says the in-game effect should not be over-deformed and requires the deformation

of the model to be controlled within a certain degree. Secondly, this will reduce the physics

simulation once the maximum deformation is achieved. Thirdly, based on Alex’s testing, she has

found out that 8 times of deformation shows enough visual effect to deliver the sense of destruction.

After Alex finalised all the configurations, she successfully exported the model into the same .obj

file. The rendering mesh information remains the same, but there was additional physics model

information written into the file. With any game engine that is embedded with PanGu physics

simulator, the new model can be directly used for permanent deformable object simulation in real-

time. This marks the end of Alex’s case of generating a deformable physics model from an original

rendering mesh.

6.2.5 Case Summary

In Alex’s Car Modelling Case, we presented a walk-through of FREDOMS framework from user’s

(Alex’s) point of view. Instead of a detailed behind-the-scene introduction, we explained how our

reverse-data interpretation concept and simplified APMI interface could assist a non-expert user to

quickly generate physics model and conduct physics simulation for application development.

In this case, we have demonstrated that our modelling and simulation method can be seamlessly

integrated with interactive application development process. With the proposed interface design and

workflow, the user (Alex) only needed to take 4 major steps to finish a physics modelling task:

1. Set the structure information.

2. Set the material information.

3. Conducted tests to see the results.

258

4. Added optimisation options after finalised the settings.

For each step, the interface was kept as neat as possible, and the operation steps were kept at a

minimum degree. The automatic processing was handled by our proposed particle-constraint and

BFCC unit based modelling, and our impulse-based deformation simulation, which deliver a

realistic and fast end result.

6.3 Simulation Speed Test and Evaluation

As FREDOMS framework is designed specifically to conduct real-time simulation, it is important

to test the speed-wise performance in relation to the structure complexity. So far, we have already

conducted many tests in real-time with no noticeable delay in simulation process. However, the

exact speed performance is not yet analysed. In this section, we will look more into the simulation

speed test and evaluation. In modelling process, speed performance is not our major concern, as it

happens in offline. Therefore, our speed performance test only focus on run-time simulation.

6.3.1 FREDOMS system speed-wise performance factors

During the real-time simulation process of FREDOMS, the two main physics-related tasks are:

1. Impulse distribution, which requires a run-time generation of particle tree hierarchy and

distribute the impulse and set the displacement of each (node) particle accordingly.

2. Constraint condition satisfaction check and balance, which loops through each constraint

and adjust the connected particle’s position if the condition is not met.

Task #1 takes place within one execution cycle when a collision is detected. Within this cycle, the

simulation will conduct impulse distribution. Task #2 is conducted constantly in each execution

cycle if the constraints are active. In addition to these two tasks, after each deformation, the changes

in physics mesh is mapped back to the rendering mesh, this also happens in each execution cycle

followed by the constraint condition satisfaction. In order to evaluate the speed performance, we

need to test how the above tasks affect the speed of the simulation.

The amount of computational loads for impulse distribution is determined by two factors: the

physics mesh structure, and the depth of the distribution. Physics mesh structure determines how

259

many neighbouring particles are operated for each tree path node. The depth of the distribution will

affect the total number of nodes (particles) to be operated. The depth of the distribution is related

to two factors: The initial impulse, and the constraint impulse distribution factor. The initial impulse

defines the magnitude of the impulse (instant displacement to the level 0 particles), and the

distribution factor defines the decrease rate of the impulse. With a defined minimum impulse update

control factor 𝑘. We know that the distribution depth can be defined as

𝑑 ∙ µ𝑛 ≤ 𝑘

where 𝑑 is the initial impulse, µ is the constraint impulse distribution factor, and 𝑛 is the depth

of the distribution.

There is another control factor that directly affects the performance, which is the maximum depth

factor for impulse distribution. It puts a pre-defined, artificial hard control to the total calculation

workloads. Therefore, we do not consider this factor in the following tests.

From the above discussion, we can come to a conclusion that the amount of computation workload

for impulse distribution is not related to the number of particles and constraints, but the structure of

the mesh and the impulse distribution factor. From the material behaviour of view, the softer the

material is, the heaver calculation is needed for the simulation.

The general constraint condition satisfaction check is depended on the number of constraints in the

system. However, unlike the impulse factor, which brings an exponential influence to the simulation

workload, the relation between the number of constraints and the computational load is linear.

Moreover, only a part of the constraints have dissatisfied conditions at one time; therefore, only a

part of the constraints are calculated and updated in most of the cases.

6.3.2 Speed Test Case Design

Based on the discussion from the last section, we understand that the goal for the speed test is to

determine to what degree the impulse distribution process and the constraint updating process

affects the execution speed of the application. As it is difficult to establish a “standard” testing

environment (a universal computer hardware configuration, operating system, etc.), we decided to

use a relative testing method that compares the same application running with and without the

physics tasks. We then analyse the performance difference and summarise the result.

260

Therefore, the test procedure is:

1. Run a simulation with all the 3D static mesh loaded but no physics mesh loaded. Then we

record a collection of execution cycle elapsed time. We call this the Rendering speed.

2. Load the physics mesh and start updating the constraints. In this case, we activate all the

constraints, therefore every constraint in the system is updated constantly. Then we record

a collection of execution cycle elapsed time. We call this the Constraint update speed.

3. Apply an impulse to the object to trigger a deformation simulation, and record the elapsed

time for the exact execution cycle that the initial deformation took place. We call this the

Deformation speed.

After repeating these three steps, we will have an application execution speed (the time spent for

completing the current cycle) with no physics (idle), an execution speed with constraint update

simulation, and an execution speed when having collision and conducting impulse and deformation.

By examining the differences between three types of speed, we can evaluate how the physics

simulation affects the application performance, and if the effect is significant enough in real-time

simulation.

6.3.3 Speed Test Results

Based on the test design, we conducted several rounds of tests. We chose the torus object we used

from Section 6.1.3, and the Car object from Section 6.2. In order to have case variations, we have

modelled the car object to different densities from 2 to 5. Based on our understanding, a density

value above 4 (or even at 4) is not practical and unnecessary. However, this case is included in our

test for theoretical purpose to exam the density-speed relation.

We ran all the tests on the same hardware and software configurations, which is Intel i5 6800k with

Nvidia 980ti, 32GB DDR4 RAM. The simulation didn’t involve any GPU accelerated feature or

multithreading computing; therefore, the calculation is CPU-based.

For each test round, we conducted the same test for 22 times, and we eliminated the highest and the

lowest value as exceptions and used the left 20 values as our result reference. There were a few

cases where the elapsed time had big differences from the same test, and this was due to

interruptions from the computer operating system. However, our tests focused on a generalised

261

evaluation of the execution speed of the simulation on an arbitrary hardware configuration rather

than a standardised environment; therefore, a very precise result is not needed.

Then, we averaged the value from the 20 tests and put all the results into the table below in Table

6.3.1 and Table 6.3.2. We set the test cases into two groups, one group with distribution factor = 0.5

(iron material configuration), and one group with distribution factor = 0.8 (copper configuration).

Case Name Torus Car (d=2) Car (d=3) Car (d=4) Car (d=5)

Particles 1553 394 1051 2350 4677

Constraints 7968 1937 5442 12485 25304

Cubes 240 56 165 392 810

Cube distribution 2x12x10 4x2x7 5x3x11 7x4x14 9x5x18

Distribution factor 0.5 0.5 0.5 0.5 0.5

Rendering speed 6.82 6.96 6.93 7.01 6.95

Constraint speed 7.79 7.01 7.13 10.26 17.62

Deformation speed 9.86 7.07 10.30 12.65 23.42

Table 6.3.1 Simulation speed test with distribution factor = 0.5

Case Name Torus Car (d=2) Car (d=3) Car (d=4) Car (d=5)

Particles 1553 394 1051 2350 4677

Constraints 7968 1937 5442 12485 25304

Cubes 240 56 165 392 810

Cube distribution 2x12x10 4x2x7 5x3x11 7x4x14 9x5x18

Distribution factor 0.8 0.8 0.8 0.8 0.8

Rendering speed 6.85 7.01 7.03 6.95 6.97

Constraint speed 7.24 7.03 7.17 11.06 18.03

Deformation speed 13.83 9.79 14.61 33.80 87.95

Table 6.3.2 Simulation speed test with distribution factor = 0.8

262

In the above results, the speed number is in milliseconds. The number is based on measuring the

elapsed time for each execution cycle.

6.3.4 Speed performance Evaluation

For a more straightforward evaluation, we visualised the increment relation between constraint

number and constraint update speed, the increment relation between cube density and constraint

update speed into the following figures:

Figure 6.3.1 Constraint number and constraint update speed relationship

Figure 6.3.2 Cube density and constraint update speed relationship

From Table 6.3.1, Table 6.3.2 and Figure 6.3.1, Figure 6.3.2, we can observe that the time

consumption for constraint update at each execution cycle increases with the complexity of the

physics model. This is directly related to the increase of constraint and particle size. The increment

is small and not significant to produce any noticeable lag until the cube density reaches 5.

In Figure 6.3.1 and Figure 6.3.2, we only used data from the car model tests with different (4)

density values. This is because the comparison with the same object in different density gives best

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000D
ef

o
rm

at
io

n
 c

y
cl

e
ti

m
e

(m
il

li
se

cs
)

Constraint number

Constraint number - Constraint Update Performance Relation

µ = 0.5

µ = 0.8

Benchmark

Idle speed

0

5

10

15

20

0 1 2 3 4 5 6

D
ef

o
rm

at
io

n
 c

y
cl

e
ti

m
e

(m
il

li
se

cs
)

Cube density

Cube density - Constraint Update Performance Relation

µ = 0.5

µ = 0.8

Benckmark

Idle speed

263

evaluation perspective. The torus object has a different geometry, therefore its structure and the

distribution path pattern are different than the car model.

The benchmark line we used in the figures are set at the value of 16.67 milliseconds, which is the

requirement of a smooth real-time rendering speed (60 FPS). By using this benchmark, we can

clearly state that:

1. The constraint update ran at a fast speed when cube value is less than 5; the update of

constraints did not bring significant impact to the simulation speed. When density value

was at 2 and 3, it introduced almost no extra lag compares to the rendering (idle) speed.

When density was 4, there was a noticeable increase in the execution cycle elapsed time

but still fast. At value 5, the performance was slightly below our 60FPS benchmark (with

the frame elapsed time exceeds the benchmark line).

2. The impulse distribution factor plays no role in the constraint update phase; the results are

almost identically with different values of the impulse distribution factor.

We have also visualised the relation between cube density and deformation speed, and the relation

between constraint number and deformation simulation speed into Figure 6.3.3and Figure 6.3.4:

Figure 6.3.3 Relation between constraint number and deformation simulation speed

7.07

10.3
12.65

23.42

9.79

14.61

33.8

87.95

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

D
ef

o
rm

at
io

n
 c

y
cl

e
ti

m
e

(m
il

li
se

cs
)

Constraint number

Constraint number - Deformation Speed Performance Relationship

µ = 0.5

µ = 0.8

Benchmark

Idle speed

264

Figure 6.3.4 Relation between cube density and deformation simulation speed

From the above tables and figures, we observed that:

1. The deformation time consumption increased dramatically with increased cube density. It

performed fast and smooth simulation at lower densities (2-3). When distribution factor =

0.5 and density = 5, the car model simulation cannot maintain 60fps framerate as it has an

average collision time at 23.42 milliseconds, which is slightly above our benchmark. For

distribution factor = 0.8 and density at 4, the simulation speed had a significant decrease.

We also visually identified a noticeable pause in the simulation. For distribution factor =

0.8 and density over 5, the simulation became slow and cannot be used in real-time.

2. In conjunction with the previous point, the impulse distribution factor value introduced a

significant impact to the simulation performance.

Similarly, we visualised the relation between the cube number and the constraint update, and the

relation between the cube number and the speed performance for reference, as shown below in

Figure 6.3.5 and Figure 6.3.6:

Figure 6.3.5 Relation between cube number and constraint update speed

7.07
10.3 12.65

23.429.79
14.61

33.8

87.95

0

20

40

60

80

100

0 1 2 3 4 5 6

D
ef

o
rm

at
io

n
 c

y
cl

e
ti

m
e

(m
il

li
se

cs
)

Cube density

Cube density - Deformation Speed Performance Relation

µ = 0.5

µ = 0.8

Benckmark

Idle speed

0

5

10

15

20

0 200 400 600 800 1000

D
ef

o
rm

at
io

n
 c

y
cl

e
ti

m
e

(m
il

li
se

cs
)

Cube number

Cube number - Constraint Update Performance Relation

µ = 0.5

µ = 0.8

Benckmark

Idle speed

265

Figure 6.3.6 Relation between cube number and deformation simulation speed

The cube number gives a better indication of the structure complexity it represents an absolute value

of the number of the cubes, while density only indicates the cube density along one of the three

directions and the structure can vary in the other two directions. However, as FREDOMS uses cube

density value as the foundation of the structure generation, it is important to consider its relation

with the performance. Cube number and performance relation shows the same trends as the previous

relation figures.

From the testing results, we can state that our run-time simulation is fast for conducting real-time

deformable simulation within a reasonable density scale. One of the advantages of our modelling

method is that the size and degree of detail of the object do not have direct relation to the density

and complexity of the physics model. For most cases, a cube density value at 2 or 3 is enough.

Therefore, most objects, regardless of their size and geometry, can be modelled by our BFCC unit

based structure with very low density, and such model can perform realistic deformation in real-

time simulation.

The drawback of our framework is that due to the nature of uniformed FBCC unit modelling, the

cube number has an exponential relationship with the cube density, and greatly affects the speed

performance. This issue limits our solution only to offer a low density modelling. However, this is

enough for real-time interactive applications where detailed and accurate results are not needed.

In Addition, FREDOMS uses AABB frame referencing in the simulation, which means all the

structures that we originally generated by BFCC cube grid are involved in the calculation. Therefore,

the simulation speed has no relation to the rendering mesh’s complexity.

7.07

10.3 12.65

23.42
9.79

14.61

33.8

87.95

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000D
ef

o
rm

at
io

n
 c

y
cl

e
ti

m
e

(m
il

li
se

cs
)

Cube number

Cube number- Deformation Speed Performance Relation

µ = 0.5

µ = 0.8

Benckmark

Idle speed

266

Performance potential

Based on the result numbers in the table, at density 2 and 3, the execution time consumption for the

physics simulation is low, leaves a lot of extra computation power to conduct other logic

calculations within the cycle. As the simulation didn’t use any GPU acceleration, the rendering of

graphics remains unaffected. Moreover, the testing hardware is three generations behind the current

state, which implies that more powerful hardware is available now, and the simulation can run much

faster on new hardware configurations.

It is also important to state that the speed test was done without applying any control factors.

Therefore, there is a lot of potential to improve the speed performance. By applying depth control

factor and minimum update threshold, the speed performance can be greatly improved.

A one-step simulation

The unique issue of our speed performance is that due to the nature of permanent deformation and

our tree-based distribution, the majority of the deformation calculation are conducted within one

execution cycle. A tree structure path finding can be a very expensive execution from computer

science performance-wise, especially when the tree path has to be decided at run-time. However,

our method ensures that the calculation at each node is kept at minimum. This unique property of

our method can be both advantageous and disadvantageous. Its benefit is that in most of the

execution cycles, the deformation simulation won’t affect the application performance. Its problem

is that once triggered. A lot of calculation will happen within one cycle. This may cause potential

performance issue when the simulation is running in a large scale scene.

6.4 Summary

In this chapter, we have conducted a series of tests for our proposed methods. We have tested the

deformation capability in metal bar case. We have tested the physics material property presentation

and configuration in metal plate case. We have tested complex geometry structure deformation in

torus case. Then we have demonstrated our FREDOMS framework and our prototype platform in

Alex’s car case. We have also conducted multiple tests for real-time simulation speed performance.

267

6.4.1 Simulation performance

For each test, we have discussed the results and evaluated the outcomes. The evaluation outcomes

can be summarised in the following aspects:

1. Modelling and simulation capability: Our FREDOMS framework can handle different

types of closed geometry shape and conduct automatic modelling. The simulation offers

different deformation behaviours, including bending, compression, twisting, denting, and

general large scale arbitrary structure deformation (see demonstration and evaluation in

Section 6.1). It also offers the simulation of different material properties such as

softness/hardness, compressibility and expansion.

2. Controllability: FREDOMS offers many control parameters to manipulate and restricts the

simulation behaviour. The object can be tailored to perform a specific behaviour to a

specific degree (see Section 6.2). The parameters also control the deformation condition

(e.g. deformation threshold) and performance (e.g. distribution depth).

3. Stability: The advantage of our permanent deformable object is that it does not have the

time integration method based on differential equations. Comparing to other elastic systems,

FREDOMS performs a one-time initial impulse distribution. Therefore, the system is stable

with no unexpected system development nor any numerical problems. The only automatic

manipulation of the structure is the constraint condition satisfaction operation, which is also

limited by control factors (see Section 6.2).

4. Realism: We have demonstrated that our method presents realistic metal-like deformation

in different material behaviours. The deformation is entirely based on user interaction and

has a natural feeling. The results were shown in Section 6.1 and 6.2.

5. Speed: We have demonstrated that our simulation can run smoothly in real-time within a

reasonable scale in Section 6.3. The simulation takes only a proportion of the computation

resources and can be integrated into a larger scale scene with other logic calculations.

6. Usability: We conducted a case study to demonstrate our APMI platform for easy modelling

and simulating deformable object in Section 6.2. The result shown that we have integrated

the functionality of FREDOMS into a smooth workflow with a simple interface. It provided

an easy and fast solution for non-expert users to conduct modelling and simulation tasks.

268

6.4.2 Comparison with Position-Based Dynamics (PBD)

The inspiration of our simulation model is from PBD, and our method has many similarities with

PBD. Therefore, it is important to compare our impulse-based model with PBD. This section will

compare the two methods with their computational complexity and performance results.

6.4.2.1 Computational complexity comparison

A complexity comparison between FE model and the Particle-Based Model was given in Section

2.3.5. Our impulse-based method and the PBD both belong to the Particle-Based Model. However,

the PBD is based on an element-node connection relation, where the constraint satisfaction gives

direct operation to the position of the particles (hence “position-based”). Below is the computational

complexity denoted by asymptotic notation:

𝐶 = 𝑂(𝐸) + 𝑂(𝑁) + 𝑂(𝐸) (1)

Where the first 𝑂(𝐸) represents the computation of proposed particle displacement for the number

of 𝐸 particles, 𝑂(𝑁) represents the computation of constraint satisfaction for the number of 𝑁

constraints, and the second 𝑂(𝐸) represents the modification to the final position of the given

particle based on both the proposed initial position and position adjustment from the constraint

satisfaction operation. Within each time step, each constraint only needs to be calculated once and

the initial and final displacement operation for each element also only happens once.

Our impulse-based model, on the other hand, has a different implementation process. Apart from

particle displacement and constraint satisfaction, there is another step for impulse distribution. The

distribution of the impulse is through a tree structure and the operation of such distribution can

happen multiple times for each node, and the numbers of distribution for each node is not constant

but based on the initial collision contact position as well as the construction of the mesh structure.

Therefore, if we analyse the computational complexity for our impulse-based model, we have the

following equation:

𝐶 = 𝑂(𝐷) + 𝑂(𝐸) + 𝑂(𝑁) (2)

Where 𝐷 is the total number of node paths in the tree, 𝐸 and 𝑁 has the same meaning as in

equation (1). 𝐷 does not necessarily equal to 𝑁 and in most cases 𝐷 > 𝑁. Because one node path

that is defined by a constraint connection can be used multiple times to distribute the impulse.

269

From (1) and (2), no significant difference can be found between the two methods. Therefore, in

general case, without concerning the complexity for the individual 𝑂(𝑓(𝑥)) computation, our

model has similar computational complexity with PBD. For comparison purpose, we need to further

examine the individual computation that happens within 𝑂(𝐸), 𝑂(𝐷) and 𝑂(𝑁) to evaluate and

compare the two methods.

The first 𝑂(𝐸) from (1) calculates the particle’s proposed displacement projection. It is based on

Newton’s first law therefore a simple 𝑣∆𝑡 is calculated. As for 𝑂(𝐷) from (2), it calculates the

distributed displacement based on the impulse distribution factor µ and the depth of the current tree

level 𝑛. The calculation for 𝑂(𝐷) is 𝑃0 ∙ µ𝑛, where 𝑃0 is the displacement from the parent tree

node. In this comparison, our method conducts more calculation than PBD.

The calculation 𝑂(𝑁) from both methods conduct a similar check. The differences are that firstly,

in PBD, the attempt to reach constraint satisfaction is applied to the velocity of the particle, while

in our impulse-based method, the manipulation applies to the position directly. Secondly, the

operation happens to both connected particles, while in our method is a one-way operation and only

applied to the lower level node. In this comparison, our method conducts less calculation than PBD.

The second 𝑂(𝐸) from (1) and the 𝑂(𝐸) from (2) both finalise the particles’ position. The

differences are in PBD, this is done by finalising the velocity of the particle, and then the

displacement will be determined. In our method, the final displacement is determined by averaging

the displacement proposals received from both impulse distribution from higher-level nodes and

the satisfaction condition check and response from the constraints. In this comparison, our method

conducts less calculation for a single element (particle).

However, all the above comparison are for general case, where PBD is used for elastic object

simulation, and our impulse-based model is used for plastic object. If we compare both cases for

plastic object simulation, then the PBD needs to be modified from its original form to conduct

plastic simulation. [103] proposed the application of PBD for solid object simulation. In this case,

the oriented particle is introduced to PBD, and an extra step of calculation to determine the angular

states of the particle. Therefore, for the calculation in 𝑂(𝐸) in (1) involves more tasks, and it

introduced more computational complexity to the task. In this case, our method is simpler and faster

to compute.

270

In overall comparison, the computational complexity has no significant difference between our

model and PBD, however, PBD has constant computational complexity once the structure of the

system is confirmed. The computational complexity for our model, on the other hand, may vary as

D is not a constant number but depends on many different conditions.

In addition, in real-world implementation, many control factor will be put into the system, for

example, our method introduces a depth factor to control the impulse path depth, which will

dramatically affect the value of D, and E (as less element will be involved in the simulation). PBD

can be generalised and modified to many other forms, including using oriented particles[103],

which will introduce extra angular calculation into 𝑂(𝐸). Therefore, the comparison above is based

on the simplest and generic scenario, and should not be regarded as an absolute result to the

computational complexity for both models.

6.4.2.2 Performance comparison

Performance-wise (other than speed), our method can produce more detailed deformation than PBD.

PBD for plastic deformation requires extra steps of calculation, and it can support fewer number of

particles than our impulse-based method. Both methods are behaviour based simulation methods

therefore the stability and controllability are all good in comparison to force-based methods.

However the system scope is very different between PBD and FREDOMS, as PBD is a framework

only for physics simulation task, but FREDOMS contains other components like automatic

modelling system and the ability of the integration into the development workflow. Therefore, the

performance comparison has to be limited to the simulation component. We use the same evaluation

matrix with the 6 benchmarks proposed in Section 3.7.1 to compare the performance between the

two methods. The difference between FREDOMS and PBD are summarised in Table 6.4.1:

 FREDOMS PBD

Capability Only for plastic simulation but can

simulate different material

behaviours. With the potential to

simulate fracture.

With an automatic object mesh

modelling method.

Provide a complete framework.

The general version can only simulate

soft bodies. However, with

modification which introduces extra

calculation of oriented particles [103] it

would be able to simulate plastic object

but with a much slower speed.

Does not introduce any mesh

271

modelling approach.

Also provide a framework but covers

less area than FREDOMS.

Controllability Absolute control of the system as

the method directly manipulate the

position.

Scale of the deformation can be

controlled (within the same object).

Good control of the system but the

manipulation is via velocity, therefore

has a delay in response.

The scale of the deformation can be

controlled but will lose realism.

Stability Unconditionally stable.

The system is able to recover to the

original state.

Unconditionally stable.

The system is able to recover to the

original state.

Realism Plausible. Plausible.

Speed Fast (for simulating plastic

deformation only).

Performance drops exponentially

with the increased number of

nodes.

Good performance under low

density.

Fast in soft body simulation but slower

than FRDOMS for plastic simulation.

Performance drops linearly with the

increased number of nodes.

Usability The FREDOMS framework is

designed to be used as a whole

solution, therefore the simulation

and the modelling should be used

together to achieve the best results.

With modification, the components

in the framework can be separated

to work independently.

Has a better integration with other

modelling methods as it is well

developed and widely used.

It follows the general mesh

construction approaches and is

adaptable to different mesh structures.

Table 6.4.1 Comparison between PBD and FREDOMS

When applying test cases to permanent plastic object simulation, our method shows advantages

over PBD. However, PBD is designed and implemented to suit different cases of deformation and

has proven stable and useful. FREDOMS at the current stage still limits its uses to plastic

deformation only. Therefore the scope of use for the two methods is different.

272

6.4.3 Conclusion

Based on the presented results and the evaluation against benchmarks, we can reach a conclusion

that FREDOMS framework has fulfilled our research goal as discussed in Chapter 3. In addition,

we have compared our solution with PBD and provide that FREDOMS can be a competitive

candidate solution for plastic object simulation.

However, the current framework still has its limitations and drawbacks, and potential improvements

can be made. In the next chapter, we will summarise our achievements and discuss possible future

works for our framework.

273

7 Discussion and Conclusion

7.1 Summary of contribution

In this thesis, we have looked into the problem of lacking real-time permanent deformable object

in interactive applications. We proposed a set of solutions that contains our new modelling and

simulation method for fast and realistic simulation of such objects. Moreover, we have integrated

the solutions into a framework (FREDOMS) for fast and straightforward processing of physics

model. Our contribution can be split into three main achievements:

Firstly, in our solution, we proposed a Body-Face-Centred-Cubic (BFCC) unit for utilizing the

particle-constraint system to model continuous volumetric objects. This approach provides adaptive

modelling for any static 3D mesh with a closed geometry, regardless of their mesh qualities and

shapes. It also greatly improves the structural stability of the particle system. In addition, we

proposed a flexible constraint structure with changeable length instead of a fixed position. The new

constraint gives our model the ability to perform a permanent deformation while holding structure

integrity. This modelling approach can be generalised and used for the modelling process in

different physics system.

Secondly, based on our proposed modelling method, we developed a network-and-impulse-

distribution-based simulation method to simulate permanent deformation in real-time. The new

method eliminated the heavy calculation for time integration in the elastic system, which occurs in

force and velocity-based methods. Our simulation model is non-elastic, and the change of the

system state is convergent; therefore, we also avoid numerical instability. Moreover, our simulation

model offers a collection of control parameters that can directly modify the material behaviour of

the object as well as the optimisation options in order to improve speed performance.

Lastly, we have integrated the above two achievements (modelling and simulation) into a Real-time

Deformable Object Modelling and Simulation framework (FREDOMS). The integration offers a

solution for the user to quickly generate a physics model that is ready for permanent deformation

simulation. We have developed a user interface flow to turn the framework into a useful tool for

creating 3D physics content in the modern application development process.

We have developed an APMI (Automatic Physics Modelling Interface) system integrated with our

274

real-time physics Simulator (PanGu) to demonstrate our contribution. By using this system, we

have conducted a series of tests with different object cases. We have evaluated our solution in the

aspects of modelling and simulation capability, controllability, stability, realism, speed and usability.

Based on the outcome, FREDOMS is capable of delivering realistic permanent deformation results

in real-time simulation, especially for metal-like objects, while meeting all the expectations from

the above evaluation matrix.

7.2 Applications

FREDOMS is designed for delivering fast model processing. Therefore the framework can be

embedded with any 3D modelling platform or game engine that requires physics simulation. The

generated deformable object can be used in various real-time interactive application like video

games, educational applications (that do not require accurate simulation results, like a driving

simulator).

With modification to the constraint properties, the BFCC-based modelling method itself can be used

for generating other physics modelling structures like particle-spring system, PBD system and FEM

tetrahedron mesh.

Our simulation delivers results was very loosely based on physics behaviours rather than specific

physics laws. Therefore, the results cannot be used for serious simulation purposes.

7.3 Future works

There is a lot of potential extension and improvement to our work. We have categorised them into

three domains:

Object Modelling

Possible improvements and future works for our modelling method:

1. Adaptive mesh size and refinement: BFCC grid-based modelling is proven to be a stable

structure for volumetric modelling. However, its structure complexity is a concern.

Therefore, it is helpful to reduce the constraints numbers by using adaptive mesh generation.

Due to the nature of BFCC structure, it is difficult to subdivide the unit and use the mesh

refinement approach to make a size-wise adaptive mesh system. Future work can look into

275

this issue and find a solution to make the mesh adaptable while maintaining the BFCC’s

symmetric and stable structure.

2. Surface mesh regeneration: Our approach uses a constraint-mesh intersection. The

generated surface mesh gives a good approximation of the object; however, in some cases,

a few triangles may be ill-conditioned. The impulse-based simulation in FREDOMS does

not have requirement about the triangle’s direction or shape condition; therefore, this issue

does not cause any problem to our method. However, if future work wants to employ this

modelling approach into more generalised and universal cases, the triangle quality on the

collision detection mesh should be considered, and a remeshing (switching edges or

reconstruction of the surface based on the surface particle cloud) may be needed.

3. Improvement of rendering mesh mapping (skinning): Our weighted mapping method

delivered a good result. However, it is possible to improve the skinning further Possible

approach can be using key particles combined with B-spline or NURBS to generate a

smooth transition for the deformed parts.

4. Non-uniform constraint configuration: In our prototype implementation, we applied the

constraint properties as a universal configuration value to the whole structure; this leads to

the object has the same material behaver throughout its entire structure. However, our

system has the potential to perform a non-uniform deformation if the parameters of the

constraints are set separately. This will require extra functions from the user interface.

5. Real-time physics mesh generation: BFCC structure offers high tolerance to the rendering

mesh quality. Therefore, it is possible to generate physics model in real-time instead of pre-

defined. This offers great flexibility to the interactive scene, as the framework can turn any

closed static mesh into a deformable object dynamically.

Real-time Simulation

Possible improvements and future works for our real-time simulation method:

1. Combine our simulation method with Multi-Body System (MBS) approach: MBS

approach is reviewed in our literature survey, which was used for FEM. This approach

combines deformable and non-deformable parts in the same object. Our method simulates

realistic metal-like object, which is a useful aid as a part of a more complex object.

276

Therefore in future work, implementing our simulation with rigid body by using MBS

approach is a potential direction.

2. GPU powered simulation: It is a common approach to utilise GPU power to conduct float

calculation. Our networking data structure is a suitable subject for GPU parallel computing.

However, in order to do this, our algorithm design has to be adjusted accordingly.

3. Multi-step impulse distribution: From the test results, our one-step impulse distribution

can cause a sudden computation spike in one execution cycle. Therefore, it is reasonable to

modify the method to divide the distribution process into several consecutive cycles to share

the calculation.

4. Real-time adjustment of structure mesh: Our constraint-based system limits the

minimum/maximum distance between particles. Therefore, particle merging and splitting

does are normally needed. However, in extreme cases with a very small/large constraint

flexibility ratio, a real-time adjustment is helpful for maintaining the object’s stability.

5. Fractural behaviour: The fractural behaviour of the plastic object is a missing feature in

FREDOMS framework. However, by assigning constraint a breaking threshold, such

behaviour can be achieved. The main concerns in this topic are that firstly, the surface mesh

has to be regenerated to present the new faces from the fractural. Secondly, the object is

split into two separate object; therefore, the rendering and the logic control has to be

rearranged dynamically.

FREDOMS framework

1. Support more file formats: Our prototype only support .obj file, the future implementation

should include different mainstream file formats.

2. Integration with mainstream 3D tools and engines: The framework requires a complete

rendering mesh as the initial input. Therefore, it is helpful to integrate FREDOMS

framework with other modelling tools. For example, a plug-in for modelling software. In

such case, the modelled object can be directly sent into FREDOMS workflow instead of

export/import into another application. Moreover, modern modelling software often

supports integration with other physics engines. Therefore, a standalone interface like

APMI is no longer needed.

277

3. User interface design: In our implementation, we have given an interface presentation

follows by our design ideology. Extensions can be made from our foundation to deliver

more intuitive or more professional interfaces for different targeted users.

278

References

1. Terzopoulos, D., et al. Elastically Deformable Models. in ACM SIGGRAPH Computer Graphics. 1987.

2. Weil, J. The synthesis of cloth objects. in SIGGRAPH '86 Proceedings of the 13th annual conference

on Computer graphics and interactive techniques. 1986. New York, NY, USA: ACM.

3. Gough, C. Number of video gamers worldwide 2015-2023. 2020; Available from:

https://www.statista.com/statistics/748044/number-video-gamers-world/.

4. Fung, Y.-c., P. Tong, and X. Chen, Classical And Computational Solid Mechanics (Second Edition).

2017: p. 2-8.

5. History of Computer Graphics (CG). Available from:

https://www.cs.cmu.edu/~ph/nyit/masson/history.htm.

6. Burks, A.W. and A.R. Burks, First General-Purpose Electronic Computer. Annals of the History of

Computing, 1981. 3(4): p. 310 - 389.

7. Terzopoulos, D. and K. Fleischer. Modeling inelastic deformation: viscolelasticity, plasticity, fracture.

in SIGGRAPH '88 Proceedings of the 15th annual conference on Computer graphics and interactive

techniques. 1988.

8. Terzopoulos, D. and A. Witkin, Physically based models with rigid and deformable components. IEEE

Computer Graphics and Applications, 1988. 8(6): p. 41 - 51.

9. Baraff, D. and A. Witkin. Large steps in cloth simulation. in SIGGRAPH '98 Proceedings of the 25th

annual conference on Computer graphics and interactive techniques. 1998.

10. O'Brien, J.F. and J.K. Hodgins. Graphical modeling and animation of brittle fracture. in SIGGRAPH99:

26th International Conference on Computer Graphics and Interactive Techniques. 1999. ACM

Press/Addison-Wesley Publishing Co.1515 Broadway, 17th Floor New York, NYUnited States.

11. Desbrun, M., P. Schröder, and A. Barr. Interactive animation of structured deformable objects. in

Proceedings of the 1999 conference on Graphics interface '99. 1999.

12. Müller, M., et al., Position based dynamics. Journal of Visual Communication and Image

Representation, 2007. 18(2).

13. Müller, M., et al., Meshless deformations based on shape matching. ACM Transactions on Graphics

(TOG) - Proceedings of ACM SIGGRAPH 2005, 2005. 24(3): p. 471-478.

14. Wieding, J., et al., Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An

Appropriate Method for Automatic Screw Modelling. PLoS ONE, 2012. 7(3).

15. Vorsatz, J., C. Rössl, and H.-P. Seidel. Dynamic remeshing and applications. in SM '03 Proceedings of

the eighth ACM symposium on Solid modeling and applications. 2003. Seattle, Washington, USA.

16. Saad, Y., Iterative Methods for Sparse Linear Systems. 2003.

17. Provot, X. Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior in

Proceedings of In Graphics Interface '96 1996.

18. Volino, P. and N. Magnenat-Thalmann. Comparing efficiency of integration methods for cloth

simulation. in Computer Graphics International 2001. 2001.

19. Cartwright, J.H.E. and O. Piro, The Dynamics of Runge-Kutta Methods. International Journal of

Bifurcation and Chaos, 1992. 2(3): p. 427-449.

20. Volino, P., M. Courchesne, and N.M. Thalmann. Versatile and efficient techniques for simulating

cloth and other deformable objects. in SIGGRAPH '95: Proceedings of the 22nd annual conference

on Computer graphics and interactive techniques. 1995.

21. Jakobsen, T., Advanced Character Physics, in Game Developers Conference 2001. 2001. p. 19.

22. Hayler, G., S. Bangay, and A. Lobb, Implicit and Explicit Methods of Cloth Simulation.

23. Bakroon, M., D. Aubram, and F. Rackwitz, Geotechnical Large Deformation Numberical Analysis

https://www.statista.com/statistics/748044/number-video-gamers-world/
https://www.cs.cmu.edu/~ph/nyit/masson/history.htm

279

Using Implicit and Explicit Integration, in 3rd International Conference on New Advances in Civil

Engineering. 2017: HELSINKI, FINLAND.

24. Butcher, J.C., Numerical Methods for Ordinary Differential Equations. 2003, New York: John Wiley

& Sons.

25. Rosenbrock, H.H., Some general implicit processes for the numerical solution of differential

equations. The Computer Journal, 1963. 5(4): p. 329-330.

26. Iserles, A., A First Course in the Numerical Analysis of Differential Equations. 1996: Cambridge

University Press.

27. Süli, E. and D.F. Mayers, An Introduction to Numerical Analysis. 2012: Cambridge University Press.

28. Dahlquist, G., On accuracy and unconditional stability of linear multistep methods for second order

differential equations. BIT Numerical Mathematics, 1978(18): p. 133-136.

29. Breen, D.E., D.H. House, and M.J. Wozny, A Particle-Based Model for Simulating the Draping

Behavior of Woven Cloth. Textile Research Journal, 1994. 64: p. 663-685.

30. Eberhardt, B., A. Weber, and W. Strasser, A fast, flexible, particle-system model for cloth draping.

IEEE Computer Graphics and Applications, 1996. 16(5): p. 52-59.

31. Reeves, W.T., Particle Systems—a Technique for Modeling a Class of Fuzzy Objects. ACM

Transactions on Graphics (TOG), 1983. 2(2): p. 91-108.

32. Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. in SIGGRAPH '87:

Proceedings of the 14th annual conference on Computer graphics and interactive techniques. 1987.

Association for Computing MachineryNew YorkNYUnited States.

33. Provot, X. Collision and self-collision handling in cloth model dedicated to design garments. in

Computer Animation and Simulation '97 1997. Springer Vienna.

34. Hutchinson, D., M. Preston, and T. Hewitt. Adaptive Refinement for Mass/Spring Simulations. in

Computer Animation and Simulation'96. 1996. Springer.

35. Coquillart, S. and P. Jancène, Animated free-form deformation: an interactive animation technique,

in SIGGRAPH '91. 1991.

36. Zhang, D. and M.M.F. Yuen, Cloth simulation using multilevel meshes. Computers & Graphics, 2001.

25(3): p. 383-389.

37. Villard, J. and H. Borouchaki, Adaptive meshing for cloth animation. Engineering with Computers,

2005. 20(4): p. 333-341.

38. Birra, F. and M. Santos, Towards Efficiency in Cloth Simulation. Articulated Motion and Deformable

Objects, 2008. Volume 5098 of the series Lecture Notes in Computer Science: p. 144-155.

39. Golec, K., Hybrid 3D Mass Spring System for Soft Tissue Simulation, in Modeling and Simulation.

2018, Université de Lyon.

40. Cornejo, A., et al., Combination of an adaptive remeshing technique with a coupled FEM–DEM

approach for analysis of crack propagation problems. Computational Particle Mechanics, 2019. 7:

p. 735-752.

41. Liu, T., A.W. Bargteil, and J.F. O'Brien. Fast Simulation of Mass-Spring Systems. in ACM Transactions

on Graphics. 2013. Hong Kong.

42. Choi, Y.-H., M. Hong, and Y.-J. Choi, Parallel cloth simulation with GPGPU. Multimedia Tools and

Applications, 2018. 77: p. 30105-30120.

43. Rodriguez-Navarro, J., M. Sainz, and T. Susin, GPU Based cloth simulation with Moving Humanoids.

2005.

44. Cotin, S., Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on

Visualization and Computer Graphics, 1999. 5(1): p. 62-73.

45. Yang, Y., R. Xiao, and Z. He, Real-time deformations simulation of soft tissue by combining mass-

spring model with pressure based method, in Advanced Computer Control (ICACC), 2011 3rd

280

International Conference on. 2011: Harbin. p. 506 -510.

46. Lang Xu, Y. Lu, and Q. Liu, Integrating viscoelastic mass spring dampers into position-based

dynamics to simulate soft tissue deformation in real time, D.D. Repository, Editor. 2018.

47. Selle, A., M. Lentine, and R. Fedkiw, A mass spring model for hair simulation. ACM Transactions on

Graphics (TOG), 2008. 27(3).

48. Mosegaard, J., P. Herborg, and T.S. Sørensen, A GPU accelerated spring mass system for surgical

simulation. 2005.

49. Kilian, A. and J. Ochsendorf, Particle-Spring Systems for Structural Form Finding. Journal of the

International Association for Shell and Spatial Structures (J. IASS), 2005. 46(2): p. 77-84.

50. Bender, J., et al., Position-based simulation of continuous materials. Computers & Graphics, 2014.

44(November 2014): p. 1-10.

51. Bender, J., M. Muller, and M. Macklin, A Survey on Position Based Dynamics, 2017. EUROGRAPHICS

2017, 2017.

52. Müller, M. Hierarchical Position Based Dynamics. in Workshop in Virtual Reality Interactions and

Physical Simulation "VRIPHYS". 2008. The Eurographics Association.

53. Steele, T., et al. A position-based dynamics system for animated character effects. in SIGGRAPH '14:

Special Interest Group on Computer Graphics and Ineractive Techniques Conference. 2014.

Vancouver Canada: Association for Computing MachineryNew YorkNYUnited States.

54. Orell, A.N., Position Based Dynamics for Character Effects, in MSc Computer Animation and Visual

Effects 2016, Bournemouth University. p. 34.

55. Bender, J., et al., Position-based Methods for the Simulation of Solid Objects in Computer Graphics,

in EUROGRAPHICS 2013 State of the Art Reports. 2013, Eurographics Association: Girona, Spain.

56. Umetani, N., R. Schmidt, and J. Stam, Position-based elastic rods, in SCA'14: The ACM SIGGRAPH /

Eurographics Symposium on Computer Animation. 2015, Eurographics Association: Copenhagen

Denmark. p. 21-30.

57. Kelager, M., S. Niebe, and K. Erleben, A Triangle Bending Constraint Model for Position-Based

Dynamics, in Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2010). 2010.

58. Chentanez, N., M. Müller, and M. Macklin. Real-time simulation of large elasto-plastic deformation

with shape matching. in SCA '16: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on

Computer Animation. 2016.

59. Macklin, M. and M. Muller, Position based fluids. ACM Trans. Graph., 2013: p. 104:1–104:12.

60. Macklin, M., et al., Unified particle physics for real-time applications. ACM Transactions on Graphics

(TOG), 2014. 33(4).

61. Indraratna, B., et al., Coupled discrete element–finite difference method for analysing the load-

deformation behaviour of a single stone column in soft soil. Computers and Geotechnics, 2015. 63:

p. 267-278.

62. Versteeg, H.K. and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite

Volume Method. 3 ed. 2011: Pearson Education, Limited.

63. Hrennikoff, A., Solution of problems of elasticity by the framework method. Journal of Applied

Mechanics, 1941. 8(4): p. 169-175.

64. Courant, R., Variational methods for the solution of problems of equilibrium and vibrations. Bulletin

of the American Mathematical Society, 1943. 49(1-23).

65. Cutler, B., J. Dorsey, and L. McMillan. Simplification and Improvement of Tetrahedral Models for

Simulation. in Proceedings of the Eurographics Symposium on Geometry Processing 2004. 2004.

66. Berkley, J., et al., Real-time finite element modeling for surgery simulation: an application to virtual

suturing. IEEE Transactions on Visualization and Computer Graphics 2004. 10(3): p. 314-325.

67. J.M.Huang, S.K.Ong, and A.Y.C.Nee, Real-time finite element structural analysis in augmented reality.

281

Advances in Engineering Software, 2015. 87: p. 43-56.

68. Fiorentino, M., G. Monno, and A.E. Uva, Interactive "touch and see" FEM Simulation using

Augmented Reality. International Journal of Engineering Education 2009. 25(6): p. 1124-1128.

69. Dietz, S., G. Hippmann, and G. Schupp, Interaction of Vehicles and Flexible Tracks by Co-Simulation

of Multibody Vehicle Systems and Finite Element Track Models. Vehicle System Dynamics, 2002.

37(1): p. 372-384.

70. Busch, M. and B. Schweizer, Coupled simulation of multibody and finite element systems: an

efficient and robust semi-implicit coupling approach. Archive of Applied Mechanics, 2011. 82: p.

723-741.

71. Swidergal, K., et al., Experimental and numerical investigation of blankholder’s vibration in a

forming tool: a coupled MBS-FEM approach. Production Engineering, 2015. 9: p. 623-634.

72. Marinkovic, D. and M. Zehn, Survey of Finite Element Method-Based Real-Time Simulations. Applied

Sciences, 2019. 9(14).

73. Liu, Y., et al., GPU accelerated fast FEM deformation simulation, in IEEE Asia-Pacific Conference on

Circuits and Systems. 2008: Macao, China.

74. Kiss, I., et al., Parallel Realization of the Element-by-Element FEM Technique by CUDA. IEEE

Transactions on Magnetics, 2012. 48(2): p. 507 - 510.

75. Allard, J., H. Courtecuisse, and F. Faure. Implicit FEM and fluid coupling on GPU for interactive

multiphysics simulation. in Talk at SIGGRAPH '11: Special Interest Group on Computer Graphics and

Interactive Techniques Conference. 2011. Vancouver British Columbia Canada: Association for

Computing MachineryNew YorkNYUnited States.

76. AMD. AMD FEMFX webpage. 2020; Available from: https://gpuopen.com/femfx/.

77. PhysX, N. Announcing NVIDIA PhysX SDK 5.0. 2020 January 18, 2020; Available from:

https://news.developer.nvidia.com/announcing-nvidia-physx-sdk-5-0/.

78. Parker, E.G. and J.F. O'Brien. Real-time deformation and fracture in a game environment. in SCA '09

Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2009.

79. Jones, B., et al., Example-based Plastic Deformation of Rigid Bodies. ACM Transactions on Graphics

(TOG), 2016. 35(4).

80. Teran, J., et al., Adaptive physics based tetrahedral mesh generation using level sets. Engineering

with Computers, 2005(21): p. 2-18.

81. Farmaga, I., et al., Evaluation of computational complexity of finite element analysis, in 11th

International Conference The Experience of Designing and Application of CAD Systems in

Microelectronics (CADSM). 2011, IEEE: Polyana, Ukraine. p. 213-214.

82. Bender, J. and C. Deul, Adaptive cloth simulation using corotational finite elements. Computers &

Graphics 2013. 37.

83. Müller, M., et al. Real time physics: class notes. in SIGGRAPH '08 ACM SIGGRAPH 2008 classes. 2008.

Los Angeles, California.

84. Fuchs, A. Automatic Grid Generation with Almost regular Delaunay Tetrahedra. in 7th international

meshing roundtable. 1998. Dearborn, Michigan, USA.

85. Radovitzky, R. and M. Ortiz, Tetrahedral mesh generation based on node insertion in crystal lattice

arrangements and advancing-front-Delaunay triangulation. Computer Methods in Applied

Mechanics and Engineering, 2000. 187(3-4): p. 543-569.

86. Martins, F.N., Velocity-based dynamic model and adaptive controller for differential steered mobile

robot - MATLAB and Simulink blocks, in Velocity-based dynamic model and adaptive controller for

differential steered mobile robot. 2014.

87. Martins, F.N., M. Sarcinelli-Filho, and R. Carelli, A Velocity-Based Dynamic Model and Its Properties

for Differential Drive Mobile Robots. Journal of Intelligent & Robotic Systems, 2017. 85: p. 277-292.

https://gpuopen.com/femfx/
https://news.developer.nvidia.com/announcing-nvidia-physx-sdk-5-0/

282

88. Mirtich, B. and J. Canny. Impulse-based simulation of rigid bodies. in I3D '95 Proceedings of the 1995

symposium on Interactive 3D graphics. 1995.

89. Mirtich, B.V., Impulse-based dynamic simulation of rigid body systems. 1996, University of California,

Berkeley.

90. Blender 2.79 Manual. Available from:

https://docs.blender.org/manual/en/2.79/game_engine/physics/introduction.html.

91. Physics in Unity 5.0. Available from: https://docs.unity3d.com/Manual/UpgradeGuide5-

Physics.html.

92. Simnett, T.J.R., R.G. Laycock, and A.M. Day, Simulating Real-Time Cloth with Adaptive Edge-based

Meshes. Journal of WSCG, 2010. 18(1): p. 65-72.

93. Gravel, S., V. Elser, and Y. Kallus, Upper Bound on the Packing Density of Regular Tetrahedra and

Octahedra. Discrete & Computational Geometry, 2010. 46: p. 799-818.

94. Drakopoulosa, F., et al., Tetrahedral Image-to-Mesh Conversion Software for Anatomic Modeling of

Arteriovenous Malformations. Procedia Engineering, 2015(124): p. 278-290.

95. Lee, Y.K. and D.Y. Yang, A Grid‐based approach to non‐regular mesh generation for automatic

remeshing with metal forming analysis. Numerical Methods in Biomedical Engineering, 2000. 16(9):

p. 625-635.

96. Botsch, M. and L. Kobbelt. A Remeshing Approach to Multiresolution Modeling. in SGP04:

Symposium on Geometry Processing. 2004. Nice France: Association for Computing MachineryNew

YorkNYUnited States.

97. Busaryev, O., T.K. Dey, and H. Wang, Adaptive fracture simulation of multi-layered thin plates. ACM

Transactions on Graphics (TOG) - SIGGRAPH 2013 Conference Proceedings, 2013. 32(4): p. Article

No. 52

98. Służalec, A., Plastic Behaviour of Material. Theory of Metal Forming Plasticity. 2004: Springer, Berlin,

Heidelberg.

99. Weir, G. and P. McGavin. The coefficient of restitution for the idealized impact of a spherical, nano-

scale particle on a rigid plane. in The Royal Society A: Mathematical, Physical and Engineering

Sciences. . 2008.

100. Unity Engine official website. Available from: https://unity.com/.

101. Gamma, E., et al., Behavioral Patterns, in Design Patterns: Elements of Reusable Object-Oriented

Software. 1994. p. 273-282.

102. Shimrat, M., Algorithm 112: Position of point relative to polygon. Communications of the ACM, 1962.

5(8).

103. Müller, M. and N. Chentanez, Solid Simulation with Oriented Particles. ACM Transactions on

Graphics (TOG), 2011. 30(4): p. 92.

104. Cai, Y., et al., Hardware-accelerated collision detection for 3D virtual reality gaming. Simulation &

Gaming, 2006. 37(4): p. 476-490.

105. Dinas, S., Collision Detection, N. Lee, Editor. 2018: Encyclopedia of Computer Graphics and Games.

106. Bentley, J.L., Multidimensional binary search trees used for associative searching. Communications

of the ACM, 1975. 18(9).

107. Wald, I., S. Boulos, and P. Shirley, Ray tracing deformable scenes using dynamic bounding volume

hierarchies. ACM Transactions on Graphics (TOG), 2007. 26(1).

108. Karras, T., T. Aila, and Fast parallel construction of high-quality bounding volume hierarchies. in HPG

'13: High Performance Graphics. 2013. Anaheim California.

109. Goldsmith, J. and J. Salmon, Automatic Creation of Object Hierarchies for Ray Tracing. IEEE

Computer Graphics and Applications, 1987. 7(5).

110. MacDonald, J.D. and K.S. Booth, Heuristics for ray tracing using space subdivision. The Visual

https://docs.blender.org/manual/en/2.79/game_engine/physics/introduction.html
https://docs.unity3d.com/Manual/UpgradeGuide5-Physics.html
https://docs.unity3d.com/Manual/UpgradeGuide5-Physics.html
https://unity.com/

283

Computer, 1990. 6: p. 153-166.

111. Cohen, J.D., et al. I-COLLIDE: an interactive and exact collision detection system for large-scale

environments. in I3D '95: Proceedings of the 1995 symposium on Interactive 3D graphics. 1995.

112. Ganestam, P., et al., Bonsai: Rapid Bounding Volume Hierarchy Generation using Mini Trees. Journal

of Computer Graphics Techniques (JCGT), 2015. 4(3): p. 23-42.

113. Gottschalk, S.A., M. Lin, and D. Manocha. OBBTree: a hierarchical structure for rapid interference

detection. in SIGGRAPH96: 23rd International Conference on Computer Graphics and Interactive

Techniques. 1996. Association for Computing MachineryNew YorkNYUnited States.

114. Hochg, S., et al., Collision Detection for k-DOPs using SAT with Error Bounded Fixed-Point Arithmetic.

2005.

115. Möller, T. and B. Trumbore, Fast, Minimum Storage Ray-Triangle Intersection. Journal of Graphics

Tools, 1997.

116. Mesh Quality Overview. Moldex3D R16 Help; Available from:

http://support.moldex3d.com/r16/en/modelpreparation_reference-

pre_meshqualitydefinition.html.

117. Shene, C.-K. CS3621 Introduction to Computing with Geometry Notes. 2011; Available from:

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/model/euler.html.

118. N.A.Golias and R.W.Dutton, Delaunay triangulation and 3D adaptive mesh generation. Finite

Elements in Analysis and Design, 1997. 25(3-4): p. 331-341.

119. Edelsbrunner, H., Triangulations and meshes in computational geometry. Acta Numerica, 2000. 9:

p. 133-213.

http://support.moldex3d.com/r16/en/modelpreparation_reference-pre_meshqualitydefinition.html
http://support.moldex3d.com/r16/en/modelpreparation_reference-pre_meshqualitydefinition.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/model/euler.html

284

Appendix A. Collision Detection in FREDOMS

A.1 A two-phase approach for collision detection

Collision detection is a necessary but not a core component in FREDOMS framework; this function

can be achieved in conjunction with other physics libraries. However, as our permanent deformable

object model has its unique attributes and needs special treatment from collision detection, we will

introduce our approach that is designed for FREDOMS.

In run-time simulation, the initial interaction and the start point of any physics behaviour begin with

a collision. Therefore, collision detection runs constantly in the background. In modern interactive

applications, there are usually a large number of objects in the scene with complex geometry data.

The objects in the scene can be categorised into five different types by collision behaviour.

1. Non-collision objects. These are objects with no interaction to other objects and can be

ignored when doing collision detection.

2. Movement boundary objects. These objects act as a block and restricts any movement of

other objects in a certain range. An example of such object is a flat floor. In such case, a

complicated collision detection is not needed, only certain constraints need to be satisfied

(e.g. cannot go below a certain height as it is the ground level).

3. Static Rigid body. This type of object is the most common object in an interactive scene.

It has basic a collider (collision detection mesh) element, often represented by primitive

shapes (e.g. box, sphere, and cylinder) or basic geometry shape (like a convex hull) with as

little triangles as possible. Such object will have collision with other objects, but it does not

move and has no response. They only act as a decoration or obstacle. An example of such

type of object can be a non-destructible wall or large piece of rock on the ground.

4. Dynamic rigid body. Such object also uses basic collider as the static rigid body. However,

it will interact with any external impulse and will perform displacement and rotation. The

shape of such object does not change. Examples can be found as bullets and small rocks

that can be kicked around. In some cases it may deform after collision but not based on

real-time physics simulation but based on pre-set animation, and the fact is that the mesh

of the object is simply replaced by another mesh or multiple other meshes. An example of

285

such object transaction can be an object exploded and split into multiple pre-defined parts.

5. Deformable object. Such object is the most difficult and most complicated to simulate and

needs finer detailed collider than any other type of object. The deformation requires the

system to know where exactly the collision is taken place in order to perform a realistic

simulation. Moreover, the collider mesh will constantly change because of the simulation

of the object.

Therefore, this raises two questions when carrying out the collision detection:

1. Which two objects in the scene may be colliding?

2. For these two objects, where are the colliding point on the surface mesh for each other?

In computer graphics, these two questions are defined as Broad Phase and Narrow Phase of the

collision detection. It is hard to find the original mentioning of the terms, but the concept can be

found in [104, 105] and it has been widely accepted and used in the industry. In summary, Broad

Phase is to determine which two objects are likely to collide from a collection of candidates, and

the Narrow Phase is to give a specific test for these two selected objects to see if they are going to

collide and where they are going to collide. In FREDOMS, PanGu simulator is responsible for

executing real-time simulation including collision detection. In the design of the simulator, we

follow this two-steps test to determine the collision against the physics object that needs to be

simulated.

A.2 Broad Phase Collision detection for multiple objects in the

scene by using Dynamic Bounding Volume Tree (DBVT)

For the broad phase of collision detection in a large scale scene in real-time, it is important to handle

the detection for a large number of objects at the same time with minimum computational resources

for constant collision detection. Therefore, optimisation method is needed for a large scale of

triangle faces. There are two main approaches to reduce the number of objects (triangles) to be

tested. The first approach is space-based, and the second approach is object (face) volume-based.

Space-based method uses recursive space subdivision to divide the space volume into sub-space

volume. Most popular example of space-based method is K-d trees, which is similar to Octree and

initially proposed by Bentley [106]. K-d trees can have different ratio with its elementary sub-space

286

while octree has identical sub-space volume. K-d trees have flexible depth because of adaptive

volume size while octree cannot share the flexibility as the sub-volume is fixed.

Object (face) based method, on the other hand, uses elementary boundary volume (e.g. sphere or

cuboid) around the object (faces) and defines its initial collision range. An example of such

approach is Bounding Volume Hierarchies (BVHs), which creates a tree of boundary volumes. The

difference between the two approaches can be seen in Figure A.2.1 Example of Space-based

approach vs. Object (face) volume-based approach.

Figure A.2.1 Example of Space-based approach vs. Object (face) volume-based approach

As shown above, space-based approach is fast for simulating static objects because it only needs to

reference to k-dimension axis. However, when the object or group of triangle faces are moving in

between the cells, this approach can be hard to perform adjustment based on the change. Moreover,

in deformable object simulation, the shape of the object (s) will change over time; therefore, it is

costly to adjust the cell size and refit the geometry back.

Object volume-based method, on the other hand, is more flexible, as the volume boundary can be

re-calculated based on the change of individual nodes without affecting the global settings of the

whole structure. The change of volume directly applies to the object without other processing, while

in space-based approach, the changes of the cells means refilling operation of the affect elements.

However, space-based approach in a small volume with small number of cells can be an efficient

aid when applies to an object boundary volume box (AABB) in the narrow phase. However, it is

not suitable for the broad phase of collision detection in FREDOMS.

287

In order to achieve fast speed collision detection, we choose the object volume-based approach.

PanGu simulator employs Dynamic Bounding Volume Tree (DBVT), which also can be referred

to as Dynamic Bounding Volume Hierarchies (DBVH), as the method for broad phase detection.

DBVT is proposed by Wald et al. in [107] and was introduced initially for ray-tracking. It is an

inheritance and improvement of Bounding Volume Hierarchies (BVHs) and can be used for

deformable objects. BVH or BVT was originally used for high-resolution meshes for ray-tracing,

but the concept can be adopted and used in real-time fast collision detection with low-resolution

colliders (collision mesh). Bounding Volume Tree is directly related to the generation of Axis-

Aligned Bounding Box (AABB), which we have already covered in Section 4.2.5.3 Define

bounding volume by generating Axis-Aligned Bounding Box (AABB). BVHs generates a tree of

AABBs where each AABB is grouped with other AABBs within a larger AABB (an AABB for a

collection of smaller AABBs). Figure A.2.2 shows the structure of a BVH. Each higher-level AABB

has a conclusive relationship with its child nodes (lower level AABBs in the hierarchy). Therefore,

this approach divides the space into multiple large volumes, and only exam the children nodes when

their parenting node is detected for collision. BVH and DBVT are popular solutions in solving real-

time physics collision detection problem.

Figure A.2.2 A Bounding Volume Hierarchy

Ray-tracing and collision detection

It is worth to write a little note for non-professional readers to address that ray-tracing and

collision detection shares similar algorithms. The ultimate goal for both techniques is to efficiently

check if a ray will intersect with a particular triangle face. After the intersection, the two topics go

separate ways, ray-tracing rendering will determine the light reflection, and the physics simulation

288

will decide the collision response. But before the intersection is detected, ray-tracing and collision

detection basically has the same tasks.

A.2.1 Construction of BVH

In order to proceed fast collision Broad Phase checking, the BVH needs to be carefully structured.

The hierarchy can have a significant impact on performance. The computation cost for BVH can be

evaluated by using the equation [108] that were originally proposed by Goldsmith and Salmon [109]

and MacDonald and Booth [110].

𝑇 = 𝐶𝑖 ∑
𝐴(𝑛)

𝐴(𝑟𝑜𝑜𝑡)
𝑛∈𝐼

+ 𝐶𝑙 ∑
𝐴(𝑙)

𝐴(𝑟𝑜𝑜𝑡)
𝑙∈𝐿

+ 𝐶𝑡 ∑
𝐴(𝑙)

𝐴(𝑟𝑜𝑜𝑡)
𝑖∈𝐿

𝑁(𝑙)

where 𝐶𝑖 and 𝐶𝑙 represents the traversal costs for nodes set 𝐼 and 𝐿. 𝐶𝑡 represents the cost of

ray-triangle intersection test. 𝐴(𝑛) denots the surface area of the bounding volume in node n. The

equation was proposed to analysis Surface Area Heuristic (SAH) cost in ray-tracing. It was then

reformed by Wald et al. [107] to fit DBVT for global cost estimate of a BVT, as follow:

𝑇 = ∑ 2
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐼𝑁

𝑇𝐴𝐴𝐵𝐵 + ∑
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐿𝑁

𝑁(𝑏)𝑇𝑡𝑟𝑖

where 𝐼𝑁 stands for Internal Nodes and 𝐿𝑁 stands for Leaf Nodes, and 𝑇𝐴𝐴𝐵𝐵 is the calculation

time to test ray-AABB intersection. 𝑇𝑡𝑟𝑖 is calculation for testing ray-triangle intersection. 𝑁(𝑏)

denotes the triangle number of within the boundary of node 𝑏.

In order to improve the performance, we need to either decrease 𝑇𝐴𝐴𝐵𝐵 and 𝑇𝑡𝑟𝑖, or we have to

decrease the triangle number in 𝑏. In FREDOMS, as discussed before in 4.2.5.3 Define bounding

volume by generating Axis-Aligned Bounding Box (AABB) after the object deformation we need to

regenerate AABB, which we believe should be included in the collision detection stage. Therefore

in our case, the above equation should be modified as

𝑇 = ∑ 2
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐼𝑁

𝑇𝐴𝐴𝐵𝐵 + ∑
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐿𝑁

𝑁(𝑏)𝑇𝑡𝑟𝑖 + 𝑀(𝑏)𝑅𝐴𝐴𝐵𝐵

where 𝑅𝐴𝐴𝐵𝐵 stands for the regeneration time for the AABB, and 𝑀(𝑏) denotes the number of

parents of the objects.

The problem in with AABB regeneration with parenting nodes real-time dynamic simulation is that

289

if a child node gains velocity and moving further apart from other child nodes, the parenting AABB

will need to be regenerated to cover this movement, and its size will increase. If the moving child

nodes have a rather large displacement, the parenting AABB can become very large and overlap or

include other AABBs. In this case, it may loses its function as a testing boundary. Such cases can

happen if:

1. There are a large number of objects (faces) are using BVT, which means a large number of

leaves are in the system, and the tree has high complexity.

2. One or multiple leaves of objects have large displacement.

In order to eliminate the above problem, we use a double BVT approach in PanGu simulator.

We define the first BVT as static BVT, which is constructed for all the static objects, both rigid and

deformable. The reason for not using octree or k-d tree is because deformable objects require

adaptive dynamic cell size, which these methods cannot offer efficiently. The second BVT is

dynamic BVT where moveable deformable objects are placed as leaves. We do not prefer the

moving rigid body within BVT as they often have primitive collider that is easy for collision

detection. Therefore moveable rigid body are treated independently in our system. We define these

objects as free objects.

It is possible that in a real-world application that uses FREDOMS, PanGu simulator will be used

in conjunction with other physics engines. Therefore, it is logical that the free objects and other

static meshes can be simulated by other physics simulators (which maybe more efficient and ready

to use) rather than implemented by using PanGu. In this case, the objects will not be included in

the BVTs in PanGu simulator. To prepare for such situation, PanGu will provide application

programming interfaces for key values and implementation bridging with other physics simulators

in order to be used as input to other APIs in the process of development.

By using double BVT approach, we limits the number of leaves and nodes in the hierarchy. However,

we still define certain tolerance to the apart distance if one leaf is moved as proposed in [107].

Within this range, the hierarchy structure remains the same even if overlapping occurs. In cases

where one leaf is very apart from its original position and exceeds the tolerance range simulators

will have the following options:

1. If the total moveable number of objects in the scene is below a certain amount, and the

number of free object is below a certain amount, the moving deformable object will be

290

removed from the tree and will be set as a free object.

2. If the scenario does not meet the above conditions, and restructure of the BVT is needed,

we use sweep and prune algorithm [111] to quickly find the inclusion relationship to other

parenting AABBs by using the centroid of AABB. An illustration of the algorithm is given

below in Figure A.2.3. When combining Sweep and prune with BVT we do not need to list

all the AABBs for sorting but only high-level parenting nodes (which are AABBs). By

limiting the checking depth, we can improve the speed by reduce unnecessary calculations.

Figure A.2.3 Sweep and prune method for quickly find AABB inclusion

A.2.2 Generation of BVH

For the generation of BVH, we adopted and modified the method that was proposed by Ganestam

et al. in [112] for generating mini trees for triangles. We follow two procedures to generate BVH

for the scene. The first one is the top-down procedure, which means we generate the top level of

the tree first and then we gradually and recursively generate each lower level in high to low order.

The second one is the centroid-based approach which we use the centroid as the representation of

the AABB instead its boundary values.

As shown in Figure A.2.4, firstly, we calculate and record centroid for each AABB. Then we

generate a boundary volume box to include all centroid of the AABBs that are to be assigned into

the BVH (Level 1). Then we use the long-edge-cutting rule that for the generated boundary volume

box, we cut the cuboid by its longest ledge into two subdivided cuboids, and we reconstructed two

boundary volume box that includes all the centroid of AABBs within the two cuboids. This

291

procedure will be recursively executed until all the leaves are reached. Then we use this hierarchy

to generate AABB for each node through a bottom-up order, that is, to generate AABBs for the

leaves and then their parent node, and so on.

Figure A.2.4 The Generation of BVH

292

Figure A.2.5 shows the results from the previous figure. Figure A.2.6 shows the final hierarchy

structure of the case in Figure A.2.4.

Figure A.2.5 Final Generation of AABB tree

Figure A.2.6 BVH structure

In real-time simulation, when a still object gains initial velocity and starts moving, we will apply a

constant AABB check between the moving object and the BVH. It is fast to check if the parenting

AABB node in BVH is overlapping with the object’s own AABB, if yes, the check will continue

until it reaches a specific leaf, which means a collision with this leaf is possible, or return an empty

result, which means no collision is detected.

293

A.3 Narrow Phase collision detection by using octree and ray-

casting

After finished broad phase detection, we have two objects that have their AABBs overlapped, which

means they are likely to collide (but not guaranteed). Therefore, the narrow phase has two possible

outcomes:

1. The pair of objects do not collide with each other upon further exam.

2. The pair of objects do collide, and we need to find out the contact position.

There are many methods that can offer narrow phase collision detection. The most commonly used

approach in real-time physics simulation is the Separating Axis Test (SAT). Related works of SAT

can be found in [113, 114]. SAT can perform fast intersection check; however, it has three

drawbacks that make it not suitable for our purpose:

1. SAT is fast for detection the intersection, that is, to give feedback of whether two objects

are colliding (true or false). However, it does not answer where the objects are collided,

which is the essential information that we need in FREDOMS.

2. SAT only works for convex hull, while FREDOMS can handle concave hull.

3. Performance of SAT is dependent on surface complexity when finding the axis. Therefore

it is more suitable for simple geometry like rigid body with primitive type collider.

In FREDOMS, we need a narrow phase collision detection method that can offer information about

the collision contact position as well as be able to handle irregular triangle surface. Therefore we

employ ray-casting method which can solve the above problems #1 and #2. From performance-

wise, ray-casting is not the best solution; however, we have reduced the surface triangle count when

constructing the physics model to speed up the triangle-ray intersection check.

A.3.1 AABB subdivision by octree

In order to speed up the collision detection further, we use octree to subdivide the AABB for the

object. The generation of octree for surface triangles is very straightforward. Firstly, we recursively

divide each edge of AABB of the physics mesh by their middle points and subdivide them into

unique smaller uniform cuboids. It is worth mentioning that the BFCC grid is not suitable for such

294

subdivision as the cube density may not be an even number. Therefore, the BFCC grid does not

always subdivide the AABB from its middle point.

Secondly, we assign each surface triangles to corresponding cells (nodes) of the octree. The rule is

that for one give triangle T, if one of the three vertices lies within the cell C, then we will assign T

to C. Example of a fragment of the object can be found in Figure A.. It is evident that by doing such

operation, one triangle can be assigned into multiple nodes. For example, C1 in figure contains 6

triangles. This is an unavoidable problem when using octree; where the cells are in uniform. A BVH

can be used to solve this problem; however, as discussed before we need to take the cost of AABB

regeneration into consideration. AABB regeneration and the deformation on the surface will lead

to complete regeneration of the tree, which for BVH can be very a costly task.

Figure A.3.1 Assigning Triangles to octree nodes

Therefore a solution is to subdivide the cell where the triangle density is much higher than the other

cells. For example, the average triangles in each cell in Figure A. is 3.25 while C1 has 6 triangle. In

this case, we will do a further step of space subdivision for C1 as shown in Figure A.3.2 Cell

refinement. This refinement can be executed recursively and will be terminated when the following

conditions are met: 1. The maximum allowed tree depth is reached. 2. The minimum cell size is

reached. 3. The desired triangle number per cell is reached.

295

Figure A.3.2 Cell refinement

The subdivision level is balanced by using the aforementioned equation with modification:

𝑇 = ∑ 2
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐼𝑁

𝑇𝑂𝑐𝑡𝑟𝑒𝑒 + ∑
𝐴(𝑏)

𝐴(𝑟𝑜𝑜𝑡)
𝑏∈𝐿𝑁

𝑁(𝑏)𝑇𝑡𝑟𝑖 + 𝑀(𝑏)𝑅𝑂𝑐𝑡𝑟𝑒𝑒

where 𝑇𝐶𝑒𝑙𝑙 is the calculation time to test ray-cell intersection 𝑅𝑂𝑐𝑡𝑟𝑒𝑒 is the cost of regeneration

of the octree. Therefore the point is the numbers of cells (depth of the tree) vs. number of triangles

in cells.

Figure A.3.3 AABB subdivision by octree

296

Figure A.3.3 shows an example of how an object is subdivided into smaller sections by generating

octree based on its AABB. This generation process is done at the loading time of the physics mesh

for each object. This subdivision will be repeated after each collision that causes the deformation

of the object.

A.3.2 Dynamic collision detection

A collision event involves at least two objects. We define one object as the incoming object and

the other one as the target object. An incoming object has an initial constant velocity, and it moves

(takes displacement) in each time frame and follows a projectile until it collide with other objects.

A target object, on the other hand, is a static object in our assumption that does not have initial

velocity until been collided. The projectile of an incoming object without any additional forces but

only gravity follows the curve of free fall problem with initial velocity. An example of such scenario

is shown in Figure A.3.4. This is the most common case in an interactive application.

Figure A.3.4 Collision event for two solid objects

The prediction of the path D and the object position P and its velocity V at time T is an easy physics

problem follows Newton’s law of motion. The position can be found by:

𝑝𝑡 = ∫ (𝑣0

𝑡

0

+ 𝑎𝑡)𝑑𝑡 = 𝑝0 + 𝑣0𝑡 +
1

2
𝑎𝑡2

where 𝑎 as acceleration is a constant that equals to gravity g.

The velocity can be found by

𝑣 = 𝑣0 +
𝑑𝑥

𝑑∆𝑡
= 𝑣0 + 𝑎∆𝑡

297

A.3.3 Ray-casting

Before going into further discussion, we make an assumption of that both objects have their AABB

generated, and the target object is a permanent deformable object (the incoming object can be any

types of solid object). As we use ray-casting based approach for collision detection, it is important

to cast the ray properly. To define the ray, we need to know its original point (end point) and its

direction. The direction can be easily defined by using the unit vector of the incoming object’s

instant velocity at the time 𝑡. However, our determination on the endpoint of the ray depends on the

motion state of the incoming object. There are two motion states (rather than static) that we concern

about:

1. Moving with only displacement.

2. Moving with displacement and rotation.

For 1 we can use the AABB of the incoming object directly. We propose an octant-based analysis

to check the velocity of the incoming object. The AABB of the incoming object is a cuboid with 8

corner vertices. If we looking from the perspective of the centroid of AABB, each corner vertex

represents one of the 8 octants (+++, +-+, --+, -++, -+-, ---, +--, ++-). We can simply check the

positive-negative of each coordinate in velocity vector to determine which octant the velocity is

moving to. Then we can use this to find the related corner vertex and use it as the original point of

the ray. Figure A.3.5 shows a 2D example of determining the endpoint of the ray by using octant-

based approach. The reason we choose this approach is that it will guarantee to find the nearest

corner vertex to the current destination, which means if the AABB is going to overlap with any

other AABBs, this vertex will be the first to contact. Octant-based approach also implies a first-

level octree subdivision, therefore, it can be easier to find the actual contact vertex on the face mesh

of the incoming object, because it will be located within the same octant of the endpoint of the ray.

298

Figure A.3.5 Octant-based ray casting

Case in Moving with displacement and rotation. is usually simulated in conjunction with other

physics libraries that are specialised in collision detection. Moving with rotation is more

complicated as AABB does not rotate (otherwise it loses its purposes) and regenerating AABB in

each frame can be costly. An example is presented in Figure A.3.6. For rotating objects, we propose

a bounding sphere collider to cast the ray during its movement. We create a circumscribed sphere

for AABB of the incoming object. The sphere centre will be the centroid of AABB. The object has

its own defined geometry centre. The geometry centre of the object is the rotation centre and this

point does not necessarily lie on the sphere centre and the rotation. An illusion of sphere collider

can be found in Figure A.3.7.

Figure A.3.6 Object rotation with AABB

Figure A.3.7 Sphere collider for rotating object

299

In such case, we cast the ray by drawing a line through the centroid of the incoming object’s AABB

(or the sphere centre of the collider, which lies on the same point with the centroid of the AABB)

and follows the direction follows the instant velocity at the time. We then define the intersection of

the line with the sphere collider as the endpoint of the ray.

Figure A.3.8 AABB Bounding sphere collider based ray casting

After a collision with other bounding volumes with the sphere collider is confirmed. We will

dynamically generate AABB for the object based on its current rotation state and proceed further

test.

A.3.4 Find the ray-triangle intersection

Once we have confirmed the endpoint, we are able to perform the ray-triangle check. We use octree

to narrow down the scope of the test. We recall that BVH for objects is generated for narrowing

down which object are going to be collided. While octree is generated for narrowing down which

part of the object are going to be collided. We first subdivide the object’s AABB as mentioned in

AABB subdivision by octree and find the cell of collision. A representation of this process is

shown in Figure A.3.9. After this process, a limited number of triangles are left to be tested

individually. We then use Möller-Trumbore intersection algorithm [115] to detect the ray-triangle

intersection for each triangle, which is a straightforward operation.

300

Figure A.3.9 Ray-triangle intersection by using octree

After a collision event is confirmed and the intersection is identified, we record information of the

collided triangle and the intersecting point for further proceeding. We also record the current

velocity and the mass information from the incoming object in order to proceed impulse-based

deformation that happens on the target object.

A.3.5 Collision response for the incoming object

In FREDOMS, the PanGu simulator mainly concerns the simulation of the deformation of the object.

Therefore, the kinematic problem for the incoming object is out of the scope. Moreover, the

collision response for the incoming object is a well-studied topic and can be simply implemented

in other physics engines or done by the developer. PanGu simulator will provide the key information

from the collision detection:

301

Value Form and notion Purpose

Normal of the collided triangle �⃗⃗� = (𝑖, 𝑗, 𝑘) To calculate the direction of vector

Position of the intersection point 𝑝 = (𝑥, 𝑦, 𝑧) To calculate torque if needed

Mass of target object 𝑚 To calculate velocity after collision

Energy lost factor 𝛾 ∈ {0~1} To calculate velocity after collision

The above information is enough to process the collision response for the incoming object when it

is a rigid body. If the incoming object is a deformable object then the deformation simulation will

be proceed based on its local position matrix instead of the global matrix. The overall kinematic

behaviour is still treated as a rigid body.

302

Appendix B An alternative approach for physics mesh

modelling

B.1 Mesh quality expectation

Once the raw mesh is loaded constructed, the system will go through each face and exam their

quality. The loaded mesh is the only source of original input data of the system; therefore, it is

important to check if the overall mesh meets our minimal standard. These standards act as a

safeguard to ensure the framework can safely process the data and deliver expected results.

The quality of the rendering mesh will directly affect the quality of the construction of physics mesh,

which will directly affect the simulation performance and the computational consumption during

the simulation. Though professional artists that follow general industry standards often produces

high-quality mesh where the surfaces are represented in a preferred way and with suitable size and

shaped triangles. However, there is no guarantee as our system have no control over the input data

and in some cases, the input 3D mesh may even be generated by 3D scanning or automatically

generated mesh which has a lot of bad-shaped faces. Therefore conducting quality analysis to the

rendering mesh is very important before doing the physics modelling.

If the mesh is not qualified, we can offer feedback to the user why the data is not suitable and what

modifications need to be done to improve the mesh to the level that can be used in our system. The

purpose of the quality check is to exam the loaded mesh for the following concerns:

1. Mesh type. We only consider triangle mesh as our mesh type, therefore other mesh types

like quadrangle or polygon mesh will be rejected by the system and requires new input. Our

framework may support other mesh types in the future. Mesh type can be simply checked

by the format of the mesh file. We will verify the format by checking if there are only three

indices for vertices for each face.

1. Any ill-conditioned triangle. Triangles define the surfaces of the mesh. The ideal triangle

is an equilateral triangle; therefore, an isotropic triangle is more preferred than anisotropy,

as shown in Figure B.1.1 Example of quality mesh. We use aspect ratio as the reference

value to exam the quality of each triangle. Aspect ratio is the ratio of the length of the

shortest edge to the longest edge. There are other methods to determine this value, e.g. by

303

using inscribed circle and circumscribed circle[116] ;however, we simplified this process.

The value is from 0 to 1 where 0 is an invalid value and means the triangle has an area of

zero (three vertices within the same straight line). The closer the value is to 0, the lower the

quality is. The closer the value is to 1, the higher the quality is. Value equals to one means

the triangle is perfectly equilateral, which is the ideal value for the subsequent simulation.

2. Therefore for each triangle with three edges e1, e2, e3 we have the aspect ratio 𝑇𝑎 that:

𝑇𝑟 =
min (𝑒1, 𝑒2, 𝑒3)

max (𝑒1, 𝑒2, 𝑒3)

Where min and max are the functions to determine the minimum and maximum value of

three variables. We define a triangle is with satisfied quality if (0.25 ≤ 𝑇𝑎 ≤ 1). We also

keep the record of the ratio of the number of the bad quality triangle (𝑇𝑎 < 0.25) to total

number of triangles.

Figure B.1.1 Example of quality mesh

3. Smoothness of neighbouring triangles. In a common 3D rendering model, the size of each

triangle face is not likely to be identical. To map different details on geometry, the size of

the triangle will change. The smoothness of a mesh is defined by the size change from one

triangle to its neighbouring triangle. A sudden change of size will leads to an ill-conditioned

triangle or triangles shares vertices in the same straight line. An example can be seen in

Figure B.1.2 Example of good and bad smoothness. We exam smoothness of the mesh by

loop through all the triangles, and for each triangle we will calculate its value of area and

check any triangle that shares two vertices with the current triangle and check their value

area. Then we have:

𝑆 =
max(𝑎1, 𝑎2)

min(𝑎1, 𝑎2)

where 𝑎1, 𝑎2 are the areas of the two neighbouring triangles (orders doesn’t matter). We

304

define the triangle face has a smooth transaction to the other triangle if(𝑆 < 1.5).

Figure B.1.2 Example of good and bad smoothness

4. Manifold mesh. Non-manifold mesh is considered not a closed geometry, therefore does

not existing in real-world. Non-manifold mesh cannot be physically modelled as a

continuum object; therefore, our system does not accept manifold mesh as input.

5. Triangle shape. Triangles define the surfaces of the mesh. The ideal triangle is equilateral

triangle; therefore isotropic triangle is more preferred than anisotropy, as shown in Figure

B.1.2. Isotropy also means equal length of the edge of the triangles. In reality it is difficult

to have the exact same length for the edges of each triangle (equilateral triangle) but the

closer the better.

6. Vertex degree/Valence. Valence is one way of indicating the regulation of a mesh surface.

We expect valence >≥4 for any surface vertex and ideally, valence should equal to 6.

7. Vertex position and density. Sometimes the 3D mesh can be unnecessarily detailed or

there can be redundant vertices on the mesh, or poorly aligned to a curvy surface.

B.2 Overall mesh quality analysis

With an initially generated mesh based on the raw input data. Firstly we will perform the following

count for conducting the Euler-Poincaré Formula[117]:

The total number of vertices (V).

The total number of edges (E).

The total number of faces (F).

305

Number of genus (G).

Number of shells (S).

Total number of loops (L).

Then we have

𝑅 = 𝑉 − 𝐸 + 𝐹 − (𝐿 − 𝐹) − 2(𝑆 − 𝐺)

The expected value of R is 0. Otherwise, the geometry is deemed to be no solid, and the system will

reject the input value.

APMC system will loop through all the faces to check the mesh quality based on the above

requirements. We introduced a mesh quality parameter Q to represent and give the user feedback to

identify the quality of the mesh. Q is calculated by:

𝑄 =
∑ 𝑓(𝑇𝑛)𝑖=1

𝑛

𝑁𝑡

Where 𝑓(𝑇𝑛) is the process we use to determine the quality of the n-th face (triangle) of the mesh.

𝑁𝑡 is the total number of triangle faces in the mesh. To get the result from 𝑓(𝑇𝑛) we will exam

each angle in the n-th triangle face:

For a triangle T defined by three point P1, P2, P3 and 𝜃 is the angle between P1P2 and P1P3. We

have u = P2 - P1 and v = P3 – P1. And 𝜃 can be calculated by

cos𝜃 =
(

𝑢
→∙

𝑣
→)

(||
𝑢
→|| ∙ ||

𝑣
→||)

If 𝜃 < 𝐴𝑚𝑖𝑛 or 𝜃 > 𝐴𝑚𝑎𝑥 then 𝑓(𝑇𝑛) returns 0. Otherwise 𝑓(𝑇𝑛) returns 1. By this

calculation we have Q equals to the percentage of well-shaped triangles in the total triangle faces.

Q offers an initial, approximated reference for both user and the system to identify if the mesh is

suitable for further process. Based on our testing, a well-defined mesh can have Q valued below

0.005. For a computer generated 3D scanning mesh where a lot of noise and badly-shaped faces can

be detected, Q can vary from 0.1 to 0.3. We choose 0.4 for the threshold for Q and if Q > 0.4. The

mesh is considered to be in extreme condition and even invalid value (incomplete or open shape or

noise data). 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 represents the minimum and maximum angle we can tolerate in the

quality check. It can be difficult do determine the exact threshold for 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 as the closer

one angle of the triangle are closer to 180 degrees or close to 0 degrees the worse the shape can be.

306

Bad shaped triangle with large angles can cause interpretation errors. Small angles are somewhat

more tolerable in our case as we do not use stiffness matrices as in FEM. However, a very thin/skim

triangle is still not ideal for our purpose as we prefer regulated vertices with similar edge length.

Considering all the above issues, we decide to set 𝐴𝑚𝑖𝑛 = 10 and 𝐴𝑚𝑎𝑥 = 160 as a default value

in our system. Therefore for any angle 𝜃 in any Triangle 𝑇 ∈ 𝑇𝐴 where TA is the set of all

triangles on the surface S. We have

10° < 𝜃 < 160°

𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 are editable by domain expert with knowledge of mesh quality and understands

the input data.

The system will also do a valence check for each vertex to see if there are any poorly connected

vertices. A vertex with valence = 2 indicates it is not forming a closed surface. In this case, we either

delete

A complete workflow of quality analysis is given in Figure B.3.1 Flowchart for mesh quality check.

Once the system determine the input mesh is valid, it will proceed to the next step where

modification to the mesh will be conducted based on how we want to generate the physics model.

B.3 Data analysis and feedback

The analysis result has two possible outcomes:

1. The raw data does not meet the minimum system requirement and needs modification. This

is due to either the file has invalid/different standard data format or the mesh quality

assessment is failed. Failed assessment includes incomplete model and extreme triangles

and vertices placement that excess the handling threshold, which means the system is

unable to automatically proceed the second-degree modification. The message will show

the specific problem (which case the issue belongs to) and advisory information on how to

re-prepare the data before next import.

2. The raw data meets the minimum. If the system decides the data does not need any

modification, the data will proceed as is. If automatic modification is needed, the interface

will show the message of the modification information. This includes how many triangles

are involved, how many triangles and vertices are reduced/merged, and the final triangle

307

and vertex count.

In both outcomes, the quality percentage (good triangle/bad triangle) will be given as a

reference and indication of the quality of the data [84].

Figure B.3.1 Flowchart for mesh quality check

B.4 A one-time particle structure generation and surface remeshing

Physics modelling is not limited to surface meshing but also the meshing processing of the interior

structures. As discussed in 4.2.1, we use a particle-based model which requires the distribution of

the particle throughout the object volume. In physics model, each vertex on the surface mesh also

represents the surface particle therefore they should follow the same role as the distribution of

308

particles for the whole model as well as marching the requirements from 4.2.4.3. Therefore we

believe the best approach is to do the surface remeshing and particle structure construction in the

same process because:

1. Each vertex on the surface after the remeshing is a particle shares the same particle structure.

2. Put these two tasks in one process can ensure they meet the same standard and the same

mesh size.

3. Save the intermedia step where after the remeshing the surface the system needs to

distribute particles on the surface again.

We employ a grid-based mesh generation method for surface and internal particles structure. Grid-

based remeshing approach has been employed by other research for mesh generation for FEM

elements [95]. And we have adopted and modified this concept to do a similar element generation

for particle system as well as the re-generation of geometry surface mesh. The benefit of grid-based

is that it provides a uniform sampling of element group size. The size of the element and the

structure of the element are highly adaptive based on the density and the form of the grid. To clarify

any ambiguity, the term “element group” in this content (grid-based method specifically for particle

system) refers to a particle group of one particle and its neighbouring particles that forms a basic

unit of the grid (in our case, in 2D it is a triangle with three connected particles, in 3D it is a group

of 4 particles and their connections that forms a tetrahedron). Therefore an element group defines

the particles forms a close space (or area) and the volume they enclosed. This is different than grid

base meshing in FEM where the tetrahedron itself is defined as an element. In particle-based system,

the prime element unit is a single particle.

The two fundamental approaches are parameterisation-based and surface-oriented. As we use grid-

based mesh generation it implies that we will use surface-oriented mesh regeneration. However our

approach is different from a type remeshing operation like works from Botsch et al. [96] where the

operation of existing and new inserted particles are based on geometry analysis of the current mesh.

Our approach is to use both original surface mesh and the generated grid as references and

manipulates and insert/delete vertices in order to make the surface mesh satisfy with the grid

condition. Therefore, the surface vertices distribution cannot be manipulated by just satiations of

edge lengths and valence (6) but has to be considered together with the inner grid structure. Each

triangle on the mesh surface is also one of the four faces of an element group (tetrahedron) therefore

309

it has to maintain unity with other element groups, most of which are inside the enclosed geometry

space.

Therefore, the first step for our remeshing and structure generation is to generate the grid. In order

to generate the grid, Axis-Aligned Bounding Box (AABB) is needed as the initial condition.

B.5 Define bounding volume by generating Axis-Aligned Bounding Box

(AABB)

In order to determine the size of the grid, we need to calculate the maximum boundary volume of

the object, which is an Axis-Aligned Bounding Box (AABB) of the initial raw rendering mesh.

AABB is also the first layer of the collision detection mesh and a commonly used optimisation

solution for real-time collision detection.

AABB is a fast and simple way to define a box boundary of the object. For a given closed mesh M,

in order to find its AABB the system needs to loop through each vertex and find the maximum and

minimum value for x, y, z of all vertices. The AABB of the mesh M can then be defined by 8 vertices,

and it is in the shape of a 3D box:

(XMax, YMax, ZMax)

(XMax, YMax, ZMin)

(XMax, YMin, ZMin)

(XMax, YMin, ZMax)

(XMin, YMax, ZMax)

(XMin, YMin, ZMax)

(XMin, YMax, ZMin)

(XMin, YMin, ZMax)

AABB is widely used in rigid body collision detection. In such cases, AABB can be rotated with

the object by linking the rotation matrix of the AABB box to the object rotation matrix. However,

we only concerns permanent deformable object, which means the physics mesh and rendering mesh

will keep changing as the physics simulation proceeds and deformation occurs. Therefore in the

run-time simulation, after a collision has happened, we will re-calculate and update the AABB

information to make sure that it still captures the maximum bounded volume of the object. The grid,

on the other hand, only needs to be generated once.

310

B.6 Grid generation

Once the AABB is generated, we can start generate grid, we use equilateral triangle as the mesh

standard; therefore in volume grid we use tetrahedron as the basic element. To generate the grid,

firstly, the system will need the AABB information. Secondly, the system will require user input for

the grid size (density) parameter. The parameter comes in two forms (only one is needed):

1. Grid Density on one edge of AABB. User can define the density of the grid however they

can only use one of the three values from the AABB as the reference: Width, Height or

Depth of the AABB, which are defined by(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛),(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛),(𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛).

And the picked value also represents the Primary Direction of the particle distribution in

the later stage. The density 𝑑 is an integer to define how many particles will be distributed

evenly along this axis. For each element group the three edges have the same length

therefore by a given AABB we can only ensure axis (the one defines the Primary Direction)

is fully filled with particles and edges from end to end. The other two edges will not be

perfectly fitted with particles; however that is not a concern as the grid is only one of the

two references for mesh generation.

2. Absolute length size of the element group. This will define the absolute value of the edge

length. The system will then automatically generate elements based on this value. Similar

to point 1 there is no guarantee each edge of the AABB will be fully filled with particles

from end to end. therefore the system will pick an original start point

The value does not only defines the density of the grid but also decides the fineness of the re-

generated mesh because the grid is the main remeshing reference of the surface mesh. Therefore

when deciding the fineness of the object, the efficiency of collision detection should also be taken

into consideration. This may not be in the awareness of the users as they are not experts in physics

simulation and system optimisation. Therefore recommendation information and comments will be

offered in an understandable way to remind them certain values may affect the performance of the

simulation. This can prevent unusually detailed mesh that slows down the calculation.

Once the input value of grid density is acquired, we will start to generate the Reference Grid.

Reference Grid will be generated from a Start Point that we defined as (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛) by

default (top-down and front-back order). From x, y and z-axis we will pick one axis as the Primary

311

Grid Generation Direction base on the user input, and then the system will pick one of the other

two axis as the Second Primary Grid generation Direction, and the last one will be the Third

Primary Grid Generation Direction. The distributed particles on these three directions will be

referred as Row (in Primary Direction, indexed by i), Column (Second Primary, indexed by j) and

Layer (Third Primary, indexed by k) when we need to describe the related index of the particles.

By default we use Top-Down and Front-Back order as the principal order for the reference grid

generation. Therefore the direction and the index increment order along x-axis is from 0 to infinite.

The index increment order direction along y-axis is downwards which is from 0 to negative infinite.

The index increment order direction along z-axis is from 0 to infinity. And we use (𝑖, 𝑗, 𝑘) for the

index of a particular particle. Figure B.6.1 Example of grid generation order based on AABB shows

a visual representation of how we define the three primary directions in a specific case where the

dot represents the start point of the potential particle distribution. In this example we made the

assumption that the x-axis is the primary direction, z-axis is the second primary direction and y-

axis is the third primary direction. The increment order direction of row, column and layer is shown

in Figure B.6.1.

Figure B.6.1 Example of grid generation order based on AABB

We generate the grid not by drawing lines and exam their interactions but instead by distributing

potential particle positions along the three axis. And connect them by edges to form the grid and

element groups within the grid. Each element group is based on the shape of tetrahedron which has

4 vertices and 6 edges where the edges are identical in length. Figure B.6.2 Example of element group

shows an individual “cell” (element group) of the 3D grid. It is in the form of a tetrahedron but does

not contain the enclosed volume space, only the edges and vertices.

312

Figure B.6.2 Example of element group

We use the term Potential Particle because the distributed “particles” are not in their final position

and some of them will be deleted as they may be outside the object. Some particles will be merged

into one particle and some new particles may be added into the system. Therefore to generate the

final mesh, the workflow contents the following steps:

1. Generate AABB of the rendering mesh.

2. Get user input value for density and primary direction.

3. Potential particle distribution through 1st, 2nd and 3rd primary direction.

4. Exam vertices of rendering mesh and conduct operation like repositioning, merging,

inserting to remesh the surface.

5. Surface triangle mesh regeneration.

6. Connect particles by using Delaunary Triangulation to form the reference grid.

7. Weighted mapping from regenerated mesh to the original rendering mesh.

Because a regular tetrahedron cannot fully fit and tile a close space without gaps, even the ideal

solution for the grid is to have uniform edge length, compromise has to be made. And to make the

model simpler for generation we uses layer scheme as the approach to generate the grid. This means

we define the plane defined by Primary Grid Generation Direction and Second Primary Grid

Generation Direction as a layer and the third primary direction as the depth of layer. Our method is

to generate one layer at a time and then the next layer. Figure B.6.3 Illustration of layer from a

front-back view shows an example of layer based grid generation. The blue line represents each

layer plane and the dash line shows the structure behind. Please note that the triangles in the figure

are not equilateral triangles as in this front-back view it has an angle from this perspective therefore

313

this view looks different than Figure B.6.6 A 2D example of grid generated based on AABB Box.

Calculate to decide the height of each layer is discussed later in this chapter.

Figure B.6.3 Illustration of layer from a front-back view

As shown below in Figure B.6.4 Illustration of unequal edge length in tetrahedron based grid the

length of edge between P1 and P2 will be connected however this length is different than the

standard length edge length L. P1 and P2 are the centroids of the triangle. The dash line represents

the projection on the surface therefore the fourth particles’ projection on the plane are positioned at

P1 and P2. As we know the centroid formula indicates the centroid separates the medians in a 2:1

ratio therefore we know that the length of P1P2 is
2

3
cos 30° 𝐿 ≈ 0.58𝐿 . Therefore with our

distribution method, not every edge have the same length. In every second layer there will be

tetrahedron structure that are not a regular tetrahedron. And only one edge in these structures will

be different, which has a length of approximate 0.58𝐿.

314

Figure B.6.4 Illustration of unequal edge length in tetrahedron based grid

To start the distribution, firstly we have the edge length for AABB on the primary direction as 𝐿𝑝,

and the user input value of grid density d. We can calculate the edge length for each parameter group

by 𝑙𝑒 =
𝐿𝑝

𝑑
. Then based on the location of start point (𝑥0, 𝑦0, 𝑧0) we have each particle’s position

for the first row. For example if the primary direction is x-axis, the second primary direction is y

and the third primary direction is z, then the position for each potential particle starting from the

start point along with x-axis on the first row is 𝑝𝑖 = (𝑥0 + 𝑙𝑒 × 𝑖, 𝑦0, 𝑧0) where 𝑖 ≤ 𝑑.

As the grid is in a tetrahedron form, only the primary grid generation direction can use the length 𝑙𝑒

as the distribution distance step. The second row along with the second primary direction should be

distributed a way that three particles can form an equilateral triangle therefore its y position will be

shifted by 𝑙𝑒 × cos(30°) and x position should be shifted by
1

2
𝑙𝑒. To ensure all the volumes of

AABB are covered, the grid has to go over the AABB (which implies the original rendering mesh

is fully covered within the grid). Therefore for the second row, the initial distribution start point of

x should be 𝑥0 −
1

2
𝑙𝑒. Therefore for each potential particle on the second row, the position are:

 𝑝𝑖 = ((𝑥0 −
1

2
𝑙𝑒 + 𝑙𝑒 × 𝑖), (𝑦0 − 𝑙𝑒 × cos(30°)) , 𝑧0).

On the direction of the third primary direction, we use “column” to describe each layer. An example

is given in Figure B.6.3 Illustration of layer from a front-back view. The distribution of this direction

will affect by the slant height of the tetrahedron, which has a sample representation in Figure B.6.5

Height for tetrahedron.

315

Figure B.6.5 Height for tetrahedron

As shown, we know that 𝑃𝑎𝑃𝑏 = cos 30° 𝐿 and 𝑃𝑏𝑃𝑐 =
1

3
cos 30° 𝐿.

Therefore we use (𝑃𝑎𝑃𝑐)
2 + (𝑃𝑏𝑃𝑐)

2 = (𝑃𝑎𝑃𝑏)
2 to calculate h, which is 𝑃𝑎𝑃𝑐:

ℎ = √(cos 30° 𝐿)2 − (
1

3
𝐿)2

Therefore for each potential particle for each layer raw the position are:

𝑝𝑖 = ((𝑥0 + 𝑙𝑒 × 𝑖), (𝑦0 − 𝑙𝑒 × cos(30°) × 𝑗) , (𝑧0 + ℎ × 𝑘)) In the odd row

And

 𝑝𝑖 = ((𝑥0 −
1

2
𝑙𝑒 + 𝑙𝑒 × 𝑖), (𝑦0 − 𝑙𝑒 × cos(30°) × 𝑗) , (𝑧0 + ℎ × 𝑘)) In the even row.

In the assumption of Figure B.6.1 Example of grid generation order based on AABB we also assume

the AABB size (absolute edge lengths) along x-axis (width), y-axis (height) and z-axis (depth) as 𝐿𝑤,

𝐿ℎ and 𝐿𝑑. Which are already know as:

𝐿𝑤 = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

 𝐿ℎ = (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)

𝐿𝑑 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)

And the particle separation of each row, column and layer as 𝑙𝑤, 𝑙ℎ and 𝑙𝑑. The density (how many

particles on each edge) of each axis as 𝑑𝑤, 𝑑ℎ and 𝑑𝑑. we already know 𝑑𝑤 = 𝑑 as the user input

316

value. Therefore we know that 𝑙𝑤 =
𝐿𝑤

𝑑
⁄ . We define 𝑙𝑤 as the standard edge length 𝑙. Then as

explained before in the distribution phase we have already calculated that 𝑙𝑑 = 𝑙 × cos(30°)

and 𝑙ℎ = √(cos 30° 𝑙)2 − (
1

3
cos 30° 𝑙)2. Therefore we have

𝑑ℎ =
𝐿ℎ

√(cos 30° 𝑙)2 − (
1
3
cos 30° 𝑙)2

And

𝑑𝑑 =
𝐿𝑑

𝑙 × cos(30°)

We also know that in order to full cover the space of AABB, for every second row and column for

each layer an additional particle need to be inserted (examples in the figures of 2D view). Therefore

we can calculate the approximated total number of potential particles in the grid by a given AABB

with 𝐿𝑤, 𝐿ℎ and 𝐿𝑑 and a starting point with defined primary direction with the density 𝑑𝑤. The

number of particles 𝑛 will be

𝑛 = 𝑑𝑤 × 𝑑ℎ × (
1

2
𝑑𝑑 +

1

2
(𝑑𝑑 + 1))

The reason for doing this calculation is that it gives a rough indication of the particle number size.

Before proceeding to the next step, the system should be able to verify the data to see if the input

value (particle density associate with the AABB size) is reasonable, otherwise, the system will be

stuck at a large amount of unnecessary calculation and results in a model that cannot be used in the

simulation. Moreover it will introduce unpredictable delay to the interface and will affect user

experience (slow or nonresponsive application).

Figure B.6.6 A 2D example of grid generated based on AABB Box shows the example of the grid

from top-down view (x-z plane). The blue bounded box represents the AABB box and the black

lines defines the grid. The Start point in this example is picked as (𝑥𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛) in this 2D plane

and in 3D as this is the first layer as the default top-down rule and the 3D position of start point will

be (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛). Each interstation of black lines indict a potential particle distribution

position.

317

Figure B.6.6 A 2D example of grid generated based on AABB Box

In the above discussion, we have used many terms to describe similar geometry concepts, in order

to clarify the uses and meanings of each term we made a Table B.6.1 Coordinate terms in grid

referencing and sampling for all the terms with their purpose to avoid any ambiguity.

Terms Form Purpose

Width, Height and

Depth

𝐿𝑤, 𝐿ℎ and 𝐿𝑑 To define and indicate the three edges of

AABB.

x, y, z axis (𝑥 , 𝑦 , 𝑧) To define the global coordinates and axis

direction.

Row, Column and

Layer

(𝑖 , 𝑗 , 𝑘) To indicate particle’s reference related to the

generated grid

1st ,2nd and 3rd

primary direction

1st ,2nd and 3rd primary

direction

To indicate user-defined primary distribution

direction along with x, y, z axis.

Table B.6.1 Coordinate terms in grid referencing and sampling

In Figure B.6.7 Top-down view (x-z plane) of the grid, Figure B.6.8 Front-back view (x-y plane) of

the grid and Figure B.6.9 Side view (left-right, z-y plane) of the grid we use plane view from different

perspectives of the same object to show the structure of the grid and the relative terms and values

are shown in the figures. The coloured dot represents start point (in second layer the dashed blue

318

cycle represents the start point which is not located in this layer, the coloured dots represents

potential particles). The dash line represents the structure that is blocked behind the shown plane.

Figure B.6.10 Example of grid goes over AABB shows the same grid structure as in Figure B.6.6 A

2D example of grid generated based on AABB Box but in the case that the column (z-axis) size

cannot perfectly fill the edge length of AABB therefore the mesh goes over AABB to ensure it has

been fully covered.

Figure B.6.7 Top-down view (x-z plane) of the grid

319

Figure B.6.8 Front-back view (x-y plane) of the grid

Figure B.6.9 Side view (left-right, z-y plane) of the grid

Figure B.6.10 Example of grid goes over AABB

320

B.7 Surface vertex re-distribution

In our approach, the volume space of rendering mesh is a subset of AABB, and the volume of

AABB is a subset of the grid enclosed space. Therefore, after generating the mesh, we can ensure

that the original object rendering mesh is fully contained within the space that are enclosed by the

boundary of the grid. And we can use the grid as a reference to check and manipulate the surface

vertices of the rendering mesh. The remeshing process has several targets:

1. Make the surface more uniform.

2. Link surface structure with the internal particle structure.

Therefore the main issue needs to be solved are:

1. Solve small triangles and close particles.

2. Solve large triangles and faraway particles.

3. Disconnection with the inner particle structure (grid).

We perform an initial vertex reduction to solve the first issue and uses the grid referenced sampling

to solve the second and third issue.

Figure B.7.1 Grid overlays with surface mesh

The distribution of potential particles are already finished when constructing the grid (as the process

of constructing the grid is the process of distributing potential particles). Therefore the first step to

321

remesh the surface is to overlay the grid to the rendering mesh. The potential particles will be

divided into 3 groups, which has been shown in Figure B.7.1 Grid overlays with surface mesh:

1. The particles that are already deep inside the geometry boundary of the closed rendering

mesh. These particles will reserved and remain unchanged as they will form the interior

structure of the physics mesh. An example is P3 in the figure.

2. The particles that are far outside of the object. This group is excluded from the surface

range and can be ignored and later be deleted. An example is P2 in the figure.

3. Small part of particles that are close to the surface mesh (distance to any vertices particles

on rendering mesh is less than the grid edge length according to the input density). This

group will be checked for further proceeding and the particles of this group act as important

remeshing reference for the surface mesh. Examples can be found as P3 and P4 in the figure.

Vertex reduction

Before using the grid to sample the rendering mesh the system will perform an initial mesh

complexity reduction for small-sized triangles. For doing this, we use the standard mesh element of

the grid which is the tetrahedron as reference to find the distance range. We define the standard

edge length of a grid element as 𝐿. Then we define two conceptual spheres centred at vertex V. The

first one is the circumscribed sphere of the regular tetrahedron element of the grid with the uniform

edge length 𝐿. The second one is the inscribed sphere of the same tetrahedron. If we define the

radius of the circumscribed sphere as 𝑅 and the radius of inscribed sphere as 𝑟, then we know

that 𝑅 = 2𝑟. And 𝑅 =
√3

3
𝐿 ≈ 0.58𝐿, then 𝑟 =

√3

6
𝐿 ≈ 0.29𝐿. The task is to find the particle that is

suitable for 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃, 𝑉) ≤ 𝑅. A 2D diagram is shown below in Figure B.7.2 Two cycles of

manipulation range. Please note that this is a 2D demonstration for the concept and not a 3D

tetrahedron-sphere projection on 2D (it will look differently).

Figure B.7.2 Two cycles of manipulation range.

322

The inscribed sphere radius r defines the minimum tolerance for two particles in the final physics.

We then search for {𝑣𝑎, 𝑣𝑏} ∈ 𝑉 where 𝑉 = {𝑣1, 𝑣2, 𝑣3 …𝑣𝑛} which are the set for all the vertices

in the rendering mesh. Vertices 𝑣𝑎 , 𝑣𝑏 should be the minimum-distance-neighbouring particles to

each other which means they are the closest particle to each other. Then we exam

if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑣𝑎, 𝑣𝑏) ≤ 𝑟. If so, it indicates that the distance between the two particles are too close

and should be repositioned. We use a merge operation to manipulate these two vertices. We use

their averaged position ((
𝑥𝑎+𝑥𝑏

2
) , (

𝑦𝑎+𝑦𝑏

2
) , (

𝑧𝑎+𝑧𝑏

2
)) as the new position and we replace these two

vertices with one new vertex. Figure B.7.3 Vertex merge operation shows an example of how we

replace two vertices with a new one.

Figure B.7.3 Vertex merge operation

Merge operation will be conduct recursively until there are no distance between two vertices are

smaller than the minimum value. The new merged particle will be reserved and excluded from the

current check loop to avoid repeat merge for the same area that will cause inaccuracy of the

323

approximated mesh. Merge also involves restricting the triangle edges. If we have two sets of

triangles edges defines all edges attach to 𝑣𝑎 , 𝑎𝑛𝑑 𝑣𝑏, which is 𝑆𝑎 → 𝑣𝑎 and 𝑆𝑏 → 𝑣𝑏. We have:

 𝑆𝑎 ∪ 𝑆𝑏 − {𝑙𝑎𝑏} = 𝑆𝑓 → 𝑣𝑓

Where 𝑆𝑓 is the final edge set that all attach to 𝑣𝑓, which is the final merged vertex that replaced

 𝑣𝑎 and 𝑣𝑏. And 𝑙𝑎𝑏 is the edge connects the vertices 𝑣𝑎 and 𝑣𝑏.

Vertices alignment with the grid

After the vertices reduction, the (minimum) density of the mesh should be close to the density of

generated grid. The second step to remesh the surface is to go through each remaining vertex on the

rendering mesh and exam its position with potential particles in the generated grid. And apply

manipulating actions to the vertices of the rendering mesh includes repositioning, deleting and

adding. FREDOM will loop through each vertex to check its condition. We define the current vertex

being examined is V and we perform tests for V to each potential particle in the grid. And we find

the particle P or a set of particles {𝑃𝑖} within a certain position range to V.

The manipulation follows two rules:

1. In any surface triangles T, the length of any edge shouldn’t exceed a maximum length 𝐿𝑚𝑎𝑥

that is related to the circumscribed sphere radius 𝑅. We define the relation as:

𝐿𝑚𝑎𝑥 = 2𝑅 × 𝜑

where 𝜑 is the parameter to define the maximum edge length that is related to 𝑅. This

value can be defined by user with a recommended range between 1~2. The default value

in our system is 1.2.

2. Distance between any two vertices or/and particles should not be smaller than 𝑟, which is

the inscribed sphere radius.

Therefore we use a two-step method to remesh the surface vertices. The first step is to test

if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃, 𝑉) ≤ 𝑅. If yes, this P and V are relevant. Further processing will be conducted.

There will be several cases for distance between P and V related to R and r, as shown in Figure

B.7.4 Cases of distance (d) between V and P. Please note again this is a 2D presentation, and in 3D

case it will look different, but the concept is universal.

324

Figure B.7.4 Cases of distance (d) between V and P

In the first case (𝑟 < 𝑑 < 𝑅), the operation we conduct is to do position shifting for V towards P.

We have proposed a formula for calculating the new position for V by averaging the position of V

and P:

𝑃𝑣 = 𝑝0 +
𝐷(𝑉, 𝑃)𝛾

2

where 𝛾 is the unit vector of (𝑣, 𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗.

In the second case (0 < 𝑑 < 𝑟) the operation is to reposition V to the location of P.

325

In the Third case where more than one particles are within the range of (𝑟 < 𝑑 < 𝑅). V will remain

at its current location and no operation is needed. Figure B.7.5 Mesh after vertex manipulation

shows the current mesh been modified from Figure B.7.1 Grid overlays with surface mesh.

Figure B.7.5 Mesh after vertex manipulation

It is important to not break the integrity of the mesh and connection between the surface mesh

and the grid mesh as they will be merged into one mesh. Therefore for any (𝑉, 𝑃) after the vertices

is repositioned based on P by any of the case 1 and 2, the particle P will be deleted from the grid

and replaced by V.

Handling large edges and triangles

The next step of surface remeshing is to eliminate large edges (which results in large triangles). A

large edge is defined as in the surface mesh there is an edge of a triangle whose length is larger

than 𝐿𝑚𝑎𝑥 = 2𝑅 × 𝜑. For a giving triangle T with large edge(s) L, firstly its three vertices should

be sampled and aligned with the grid when conducting Vertices alignment with the grid. Then we

will exam L with each potential particles P by finding the distance from P to L (𝐷(𝑃, 𝐿)). We define

another value 𝑑𝑚𝑎𝑥 for the distance range of 𝐷(𝑃, 𝐿). Then for any 𝐷(𝑃, 𝐿) < 𝑑𝑚𝑎𝑥 we will

insert this D into the edge L by shifting P onto L using the projection mapping. In this process, the

edge L will not be broken into a sequence of line segments. The reason of shifting P to L instead

of using the direction of P directly is because we would like to keep the inserted particle within the

same plane for applying triangulation method later on.

326

After conducting the above operation, we then again exam the length for each new edge (line

segments). The check is to find if there’s any new edge whose distance is larger than 2R, which was

previously defined as the radius of circumscribed sphere of a tetrahedron element. If such new edge

is found we insert a new vertex in the middle between the two vertices. The whole process will be

recursively executed until all the edges are met with the condition. A 2D illustration is given below

as Figure B.7.6 Steps to handle large edges and triangles.

Figure B.7.6 Steps to handle large edges and triangles

327

Final surface regeneration and the mesh construction

In the whole process of surface remeshing, we mark all the vertices on the surface mesh as a

reference that will be distinguished from a grid particle. Also, the edge information is kept for the

surface mesh. However, in the operation of handling large edges, some unconnected vertices are

created without been assigned to triangles. Therefore, after all the vertices are successfully sampled

and operated, the system will then perform a triangulation to construct triangle structure for the

missing surface area.

Large triangles are the only surface needs to be constructed with newly added vertices and as

explained in Handling large edges and triangles. Therefore the triangulation can be considered as

2D problem. Therefore the commonly used Delaunary triangulation[118, 119] is deemed to be a

good solution to this situation. Therefore we uses a modified triangulation on the surface for new

particles and their surrounding surface vertices. In the proposed triangulation method, firstly we

define all the vertices that are waiting to be triangulated as a set V. We select a vertex 𝑣 ∈ 𝑉 for

sampling. Then we search for 𝑣1 ∈ 𝑉 that satisfied with that it has minimum distance to v than

any other vertex in V. We connect these two vertices and draw circumscribed cycle of the triangle

that defines with this two vertices and any other arbitrary vertex in V. And then by checking the

particle inclusive and exclusive of the particles as the standard Delaunary approach we can construct

triangle subsets for the original triangle T. In the triangulation progress we assign edges in an

arbitrary order and not consider the order of the vertices at the moment.

After the triangulation, the system will determine the face normal direction for each triangle by

doing normal direction check. We use the position of all particles to calculate the geometry centre

C of the object and we draw perpendicular line to the triangle plane T to compare the direction of

C→ 𝑇 is in the same direction with the triangle plane. Based on the result, the system will either

flip the order or keep the order same as before. This is the last step for mesh regeneration.

B.8 A weighted vertex mapping method form physics mesh to raw mesh

In the remeshing process, we flag the surface particle information as well as keeping the rendering

mesh. In order to visually present the deformation of the object, we have to map any changes of the

physics mesh back to rendering mesh. We use a weight based mapping method to create link

between original mesh and physics mesh. After loading the original raw mesh M, we have a set of

328

vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛} where n is the total number of vertices. Then after

remeshing/regeneration we have a new surface mesh 𝑀𝑛𝑒𝑤 which has a new set of vertices P =

 {𝑝1, 𝑝2, 𝑝3 … 𝑝𝑢} where u is the total number of vertices in P. As discussed the new mesh is a

much coarser approximation of the original mesh therefore we can expect u in P is smaller than n

in V. The physics mesh is considered as the “skeleton” of the rendering mesh. Any deformation

occurs to the physics mesh from the simulation will be transferred to the original rendering mesh.

Therefore a mapping rule R = 𝑃 → 𝑉 is employed to map each p to v. The mapping of P to V is

not one to one relationship but one to many. Each vertex p in P act as a control point to the related

v(s) in V. As each p controls multiple v we employed weighted mapping rule.

The determination of mapping relationship:

We use position-based method to determine which v will be mapped from a certain p. The mapping

order should be 𝑣 → 𝑝, and for each 𝑣 ∈ 𝑉 the mapping is unique which means one vertex can

only be mapped to one particle (but one particle can have multiple vertices mapped to it). The

method is to iterate through each 𝑣 ∈ 𝑉 and perform a distance check with each 𝑝 ∈ 𝑃 . If the

distance from a certain 𝑣𝑖 ∈ 𝑉 to a certain 𝑝𝑗 ∈ 𝑃 is smaller than any other p then we will assign

𝑣𝑖 to 𝑝𝑗. For each 𝑝𝑗 the system creates a mapping pool for recording all the surface vertices that

are mapped to it. The pool contains one surface particle from physics mesh 𝑝, and a set of n number

of (can be one or multiple) vertices from the rendering mesh 𝑉. We define this structure as a

mapping group (𝑉 → 𝑝), or in a set form 𝑉 ∪ 𝑃, where 𝑉 = {𝑣1, 𝑣2 …𝑣𝑛} and 𝑃 = {𝑝}; n is the

number of vertices that are mapped to particle p. Figure B.8.1 Vertices mapping to particle shows

a 2D example of the mapping result from a fragment of the whole object, where {𝑣1, 𝑣2 …𝑣5} → 𝑝

and 𝑣6 → 𝑝.

Figure B.8.1 Vertices mapping to particle

329

The determination of weight distribution:

For a given mapping group, we apply a distance-based method to assign a sort of weight value w

to all elements (vertices) in the mapping group (𝑉 → 𝑝). Each individual vertex has a specific

weight value that is not necessarily same to the value of other vertices. To determine w the weight

value w of each vertex v to particle p. Firstly we will have to calculate all distances for each 𝑣 → 𝑝,

therefore we have

𝐷 = {𝑑(𝑣1, 𝑝), 𝑑(𝑣2, 𝑝) …𝑑(𝑣𝑛, 𝑝)} = {𝑑1, 𝑑2 …𝑑𝑛},

where 𝑑(𝑣, 𝑝) is the distance calculation denotation between v and p, and n is the total vertices in

the mapping group. We then find the minimum 𝑑𝑖 in D. Then we set this 𝑑𝑖 as the unit

displacement factor 𝛾. Then we have another set (R) of the ratio between each 𝑑𝑖 with 𝛾:

𝑅 = {
𝑑1

𝛾⁄ ,
𝑑1

𝛾⁄ …
𝑑𝑛

𝛾⁄ } = {𝑟1, 𝑟2 …𝑟𝑛}

As 𝛾 represents the minimum 𝑑 ∈ 𝐷 we know that for any 𝑟 ∈ 𝑅 we have 𝑟 ≥ 1 and there must

be at least one 𝑟 = 1. We then need to apply a value we define as weight factor (k) to R to determine

the degree of influence for each v. The weight factor k is a universal constant parameter throughout

the whole process. It defines how much influence that related to the distance between vertex and

particle will apply to the displacement of the vertex when a displacement of the particle is happened.

The weight factor k has a value range of (0 ≤ 𝑘 ≤ 1) where 0 means fast influence (but not zero)

change related to the distance change and 1 means no influence change related to the distance

change. To ensure the surface is always properly attached to the physics mesh, the vertex with the

minimum distance will always gain full influence from the particle displacement, which means that

it will follow the particle to move in full distance and in same direction. Therefore the weight factor

k will only apply to the rest of the vertices with an inverse ratio with each d, and should describe a

displacement influence equal or less than the displacement of the vertices with the minimum

distance. Therefore we have the equation to apply k to calculate weight influence w:

𝑤 = −
(𝑟 − 1)

𝑟 + 1
(1 − 𝑘) + 1

 Therefore, following the equation we can determine each weight influence w by:

𝑊 = {−
(𝑟1 − 1)

𝑟1 + 1
(1 − 𝑘) + 1,−

(𝑟2 − 1)

𝑟2 + 1
(1 − 𝑘) + 1…−

(𝑟3 − 1)

𝑟3 + 1
(1 − 𝑘) + 1}

= {𝑤1, 𝑤2 …𝑤𝑛}

330

For example, on the action of a collision on the object that causes surface particle p to have a

displacement ∆𝑙 , then the displacement L for each vertex will be:

𝐿 = 𝑊 ∆𝑙⃗⃗ ⃗ = {𝑤1∆𝑙 ,𝑤2∆𝑙 …𝑤𝑛∆𝑙 } = {𝑙1, 𝑙2 … 𝑙𝑛}

Therefore, for each vertex, its weight factor is different and related to the distance to the particle

that it is mapped to. The longer the distance is, the less influence will occur when displacement

happens to the particle. The formula uses vector with the same unit vector, which implies the

movements for all the vertices are in the same as the movement of the particle. Figure B.8.2

Example of vertex displacement based on weighted mapping method shows how the deformation of

the mapped vertices v1 to v5 looks when displacement occurs to the particle p. By applying a

weighted mapping method we can ensure the deformation of the surface is not too “stiff” but has a

natural appearance. However, the vertices can form an unwanted pattern after a certain time of

deformation.

Figure B.8.2 Example of vertex displacement based on weighted mapping method

