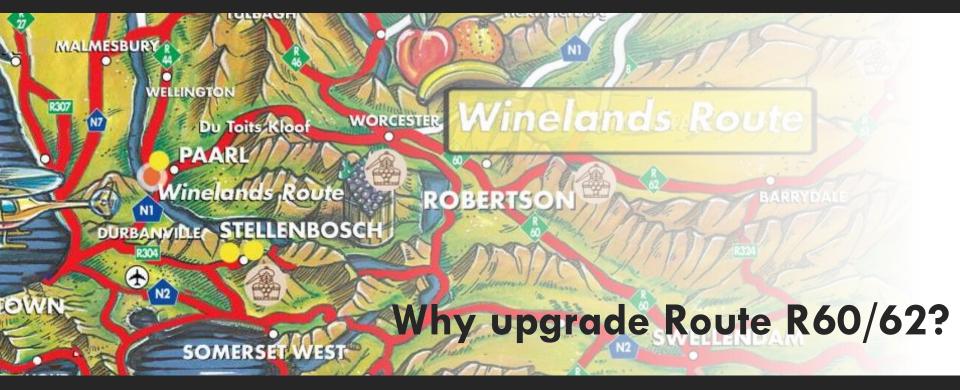


NEW ASHTON ARCH

Presented by AECOM SA June 2021

DESIGN AND CONSTRUCTION CONSIDERATIONS CONSTRUCTION OF TEMPORARY AND PERMANENT WORKS CONSTRUCTION CHALLENGES TRANSVERSE LAUNCHING ACKNOWLEDGEMENTS


BACKGROUND

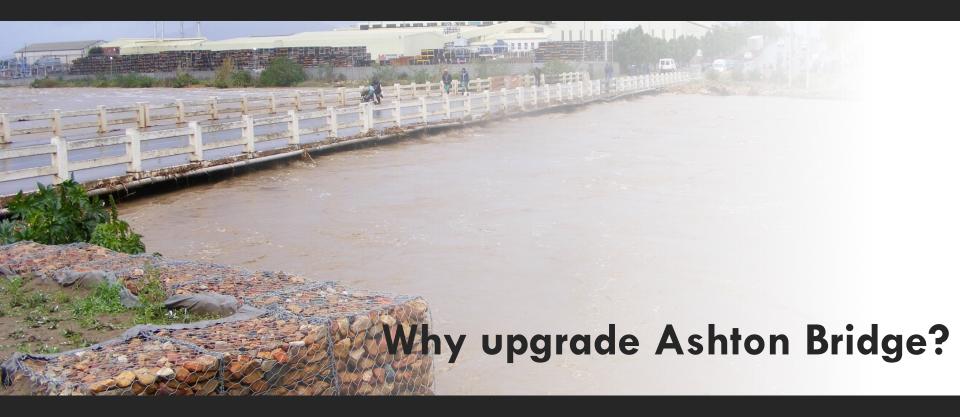
Strategic road link

- Important local and national route
- Main link between Ashton and Montagu
- Important Tourism Route
- Scenic and historic considerations

WESTERN CAPE GOVERNMENT

Flooding

Various floods in the area leading to damage and related road closures


- leading to geometric, pavement and structural improvements:
- To enhance flood resistance
- Improve flood capacity at critical locations

Flooding

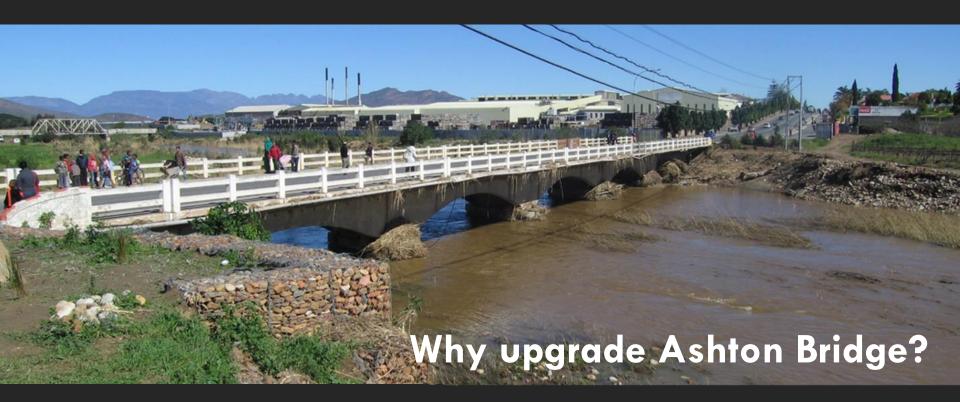
- Hydraulically inefficient
- Recurring floods resulting in damages
- Debris build-up

WESTERN CAPE GOVERNMENT

Overtopping of existing bridge

Debris build-up

WESTERN CAPE GOVERNMENT


Damage and debris build-up

WESTERN CAPE GOVERNMENT

Hydraulic Capacity

- Arched deck soffit hydraulically inefficient
- Pier in river obstructs flow and allows for debris build-up
- Overtops during large floods event

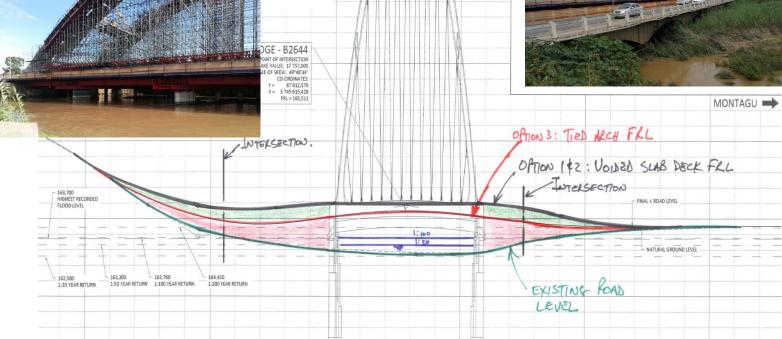
Existing Bridge Configuration

- On R60 which is an important link between N1 and N2
- Built in 1930 and widened in 1950
- Negative impact on traffic flow

WESTERN CAPE GOVERNMENT

Existing Bridge Configuration

- Built in 1930's [single lane]
- Substantially widened in 1950 [(x2) 3,35m lanes + 1,80m sidewalks]
- Total Length of bridge ± 95m
- Angle of Skew 50°
- Road level varies between 5m to 8m above NGL


Option 1, 2 & 4: Voided Slab or Precast Beams

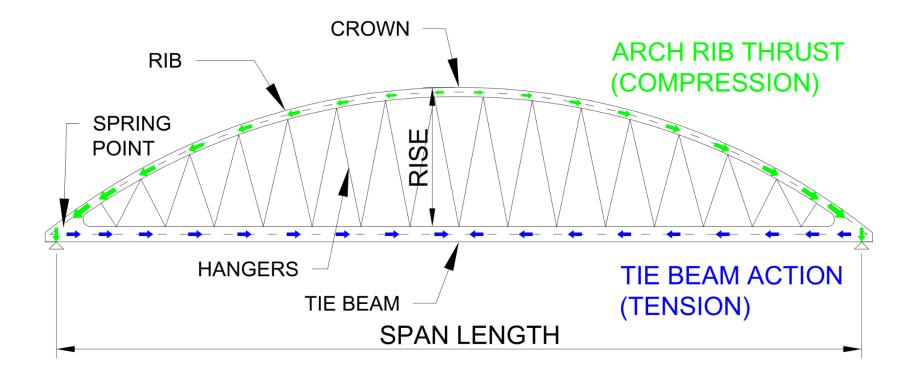
- Deck depth = approx. 1,50m
- Raise existing FRL with 3,00m to achieve min freeboard
- 4 Piers in river = debris build-up
- Higher approach fills complicates intersections

Option 3: Tied Arch Bridge

- Deck depth = 1,00m
- Raise existing FRL with 2,50m to achieve min freeboard
- No piers in river = no debris build-up

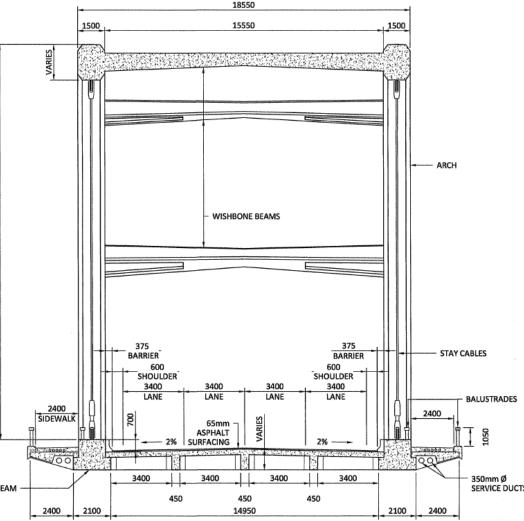
Options considered

Key Design Considerations	Voided Slab Deck with Temporary Bypass	Voided Slab Deck built in Half Widths	Single span Tied Arch Launched transversely	Precast Beams a) Temp Bypass b) Half widths
Hydraulic efficiency	✓	\checkmark	$\checkmark\checkmark$	√,√
Construction flood risk	×	~	✓	×,×
Geometric Alignment	\checkmark	×	$\checkmark\checkmark$	√,√
Traffic Accommodation	 ✓ ✓ 	×	$\checkmark\checkmark$	√√,×
Aesthetics	\checkmark	✓	$\checkmark\checkmark$	×,×
Constructability	$\checkmark\checkmark$	×	✓	√, ×
Ratio: Construction costs	1.15	1.0	1.35	1.20
Ratio: Construction + indirect costs	1.20	1.0	1.10	1.25

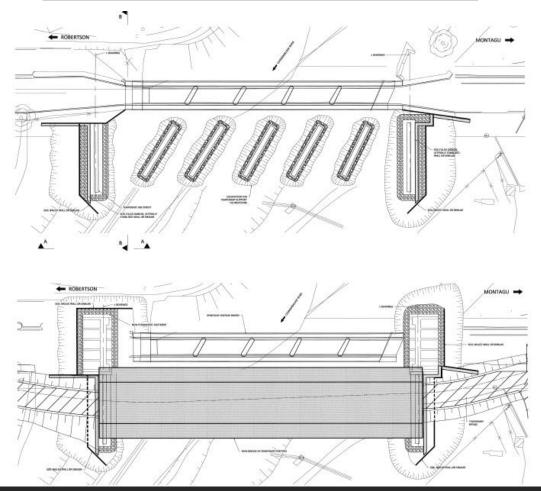


Final Concrete Tied Arch Configuration

General details of Ashton Arch



WESTERN CAPE GOVERNMENT


General details of Ashton Arch

- Single tied concrete arch
- 110m span
- 4 x 3.4m traffic lanes
- 2 x 2.4 m side walks
- 22m arch rise
- 5 x 15.6m transverse wish bones
- Twin post-tensioned arch ties
- Post tensioned deck grillage
- 48 x fully locked coil cable hangers
- hangers connected with adjustable cast iron fork sockets & compound welded steel anchors

Transverse Launching Concept

TEMPORARY WORKS CONCEPT (TENDER STAGE)

WESTERN CAPE GOVERNMENT

DESIGN & CONSTRUCTION CONSIDERATIONS

Structural form and bridge aesthetics

- Attention was paid to the historical significance of existing multiple-span arch bridge
- Major benefit of the arch is ability to span over the entire river and consequently improves the hydraulic efficiency, specifically due to the large skew angle
- A tied-arch bridge is particularly suitable for this topographic location, since it suspends the roadway and does not require propped arch founding conditions
- V-hanger-configuration was adopted in preference to the vertical hanger orientation, since it provides an aesthetic advantage
- Aesthetically, the slender tied arch design is appropriate since the depth of the proposed roadway above the riverbed with a visually appealing light deck.
- The tied-arch form expresses a visualisation of flowing of forces with light hangers and slender members displaying a transparency accentuated by the surrounding mountains

Concrete as the primary construction material


- Primary load transfer mechanism of the arch rib is compression
- Due to the complex nature of the flow of forces within the spring point, particular attention to modelling and analysing this element was paid during the detail design
- In terms of concrete volumes cast, the four spring points are massive elements, requiring management of thermal performance (heat of hydration) of the concrete and associated cumulative strains
- Particular concrete placement methodology was adopted to exercise due care in the construction of the tie points, using pre-inserted temporary steel tubes (160mm dia)
- A specially developed, high mobility 50/13 pumpable, concrete mix was designed for casting the tie points.
- Thermal performance was predicted according to Ciria C660 'Early-age thermal cracking control of concrete.
- Additionally, the peak temperature within these massive elements were monitored via embedded Giatec SmartRock sensors

Concrete as the primary construction material

Steel tube concrete pour access provided through congested reinforcement

Top/inclined shutters introduced incrementally as pour progressed (temporary inspection holes visible

Imagine it. Delivered.

Structural modelling for design and construction

- Structure was modelled locally using Bentley's RM Bridge and internal design review conducted by the AECOM's UK complex bridge specialist team using SOFISTIK
- The state-of-the-art analysis software packages modelled construction stage and inservice analysis for design.
- Models were updated with concrete material parameters, determined from laboratory testing allowing accurate simulation of stage & time-dependant material behaviour
- Updated models were calibrated for determination of the following with continuous backward analysis comparisons of actual results during construction:
 - Hanger length determination,
 - Hanger force distribution optimisation,
 - Pre-camber requirements & influence of temporary works displacements,
 - Movement capacities of (temporary and permanent) & expansion joints

CONSTRUCTION OF TEMPORARY AND PERMANENT WORKS

Temporary Works

- Temporary abutment
- Caisson foundations
- Temporary Columns
- Lateral support

WESTERN CAPE GOVERNMENT

Temporary works

WESTERN CAPE GOVERNMENT

Deck False Work

- Transverse steel girders
- Sand jacks
- Longitudinal steel girders

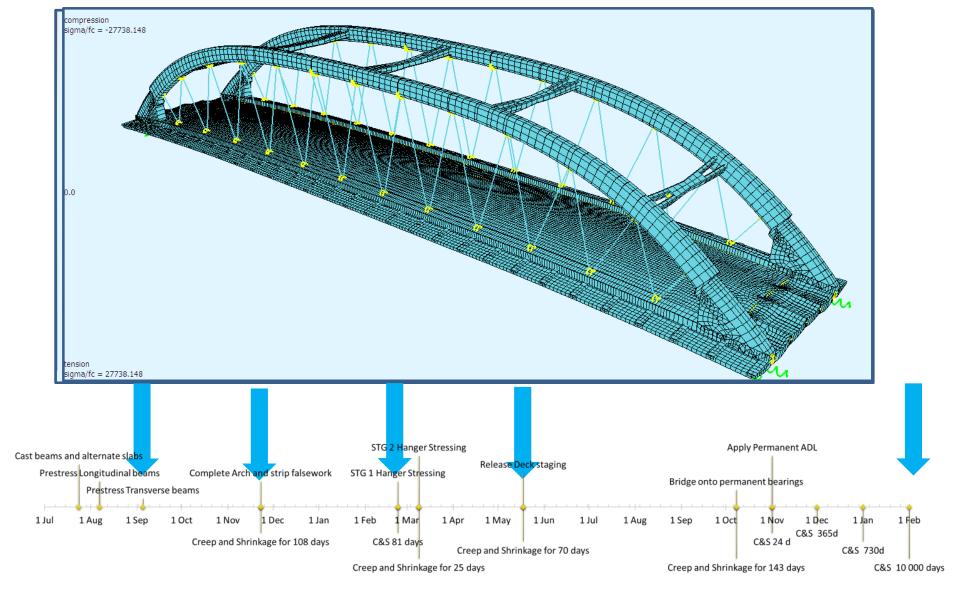
Deck False Work

- Soffit formwork
- Arch spring point

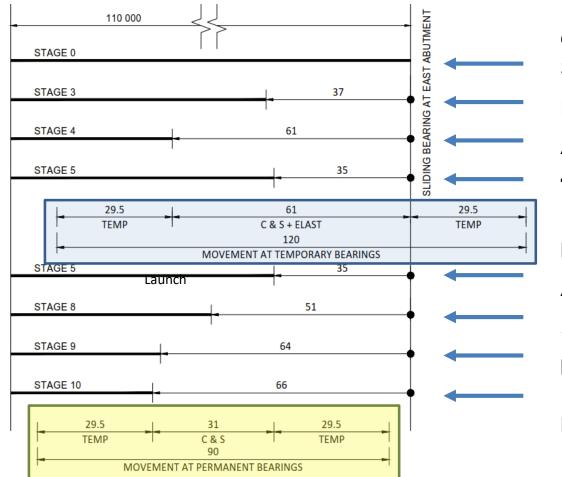
Structural Displacements

- Foundations
- Temporary works & falsework
- Permanent works during all construction stages & service life

WESTERN CAPE GOVERNMENT


Imagine it. Deliver<u>ed</u>.

SR



Horizontal Deck Movement

Completion of hit and miss construction Stress longitudinal beams Before installing hangers After hanger installation **Temporary bearing movement range** Install perm bearings ADL added

30 years C&S

Final C&S

Permanent bearing movement range

Stay Cable Lengths

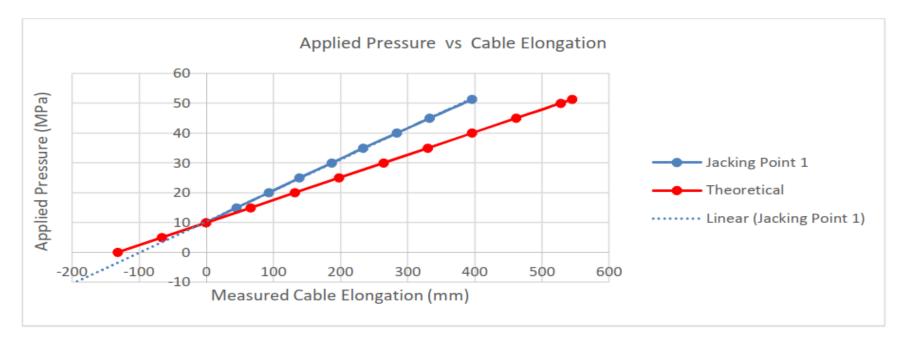
- Unintentional variations (construction tolerances & modelling)
- Intentional variations (Time dependent material behaviour)
- Available fork socket tolerances

		Tolerance allowances (+ increase distance : - reduces distance)															
STAY CABLE NUMBER			Unintentioinal variation (extreme + or - indicated)								Intentional variations (actual + or - indicated)						
		Temporary works	Concrete works	Cast Anchors & fixing bolts	Cable Length manufactur e	Fork socket	Structural model	Material properties	Total unintentional chord variance	Arch Deflection (After formwork removal)	Arch temp range	Cable temp range (20 deg var)	Arch Deflection (Cable Installation)	Deck deflection	Cable Elongation	Total Intentional chord variance	TOTAL CONTROL SHORTENING OF THEORETICAL CHORD DISCTANCE
NORTH	SOUTH	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
N1, N24	S1, S24	-2	-1	-10	-10	-5	-1	-1	-30	0	0	0	-4	-2	-7.37	-12	-42
N2, N23	S2, S23	-4	-2	-10	-10	-5	-2	-1	-35	0	0	0	-7	-2	-7.74	-16	-51
N3, N22	S3, S22	-4	-2	-10	-10	-5	-2	-1	-35	0	0	0	-7	-4	-15.18	-26	-61
N4, N21	S4, S21	-12	-6	-10	-10	-5	-5	-4	-52	0	0	0	-20	-4	-13.01	-37	-88
N5, N20	S5, S20	-12	-6	-10	-10	-5	-5	-4	-52	0	0	0	-20	-6	-20.61	-47	-98
N6, N19	S6, S19	-26	-13	-10	-10	-5	-11	-9	-83	0	0	0	-43	-6	-14.68	-64	-147
N7, N18	S7, S18	-26	-13	-10	-10	-5	-11	-9	-83	0	0	0	-43	-9	-27.13	-79	-162
N8, N17	S8, S17	-41	-21	-10	-10	-5	-17	-14	-117	0	0	0	-68	-9	-6.92	-84	-201
N9, N16	S9, S16	-41	-21	-10	-10	-5	-17	-14	-117	0	0	0	-68	-10	-31.92	-111	-228
N10, N15	S10, S15	-54	-27	-10	-10	-5	-23	-18	-147	0	0	0	-90	-10	-26.19	-126	-273
N11, N14	S11, S14	-54	-27	-10	-10	-5	-23	-18	-147	0	0	0	-90	-11	-37.30	-138	-285
N12, N13	S12, S13	-57	-29	-10	-10	-5	-24	-19	-154	0	0	0	-95	-11	-12.76	-119	-273

WESTERN CAPE GOVERNMENT

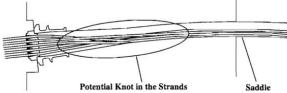
CONSTRUCTION CHALLENGES

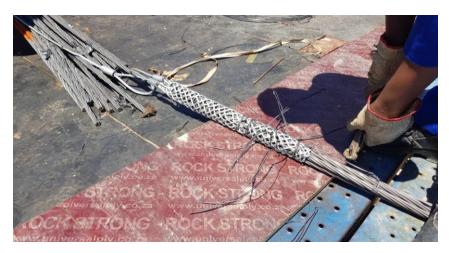
Original Construction Contract Termination


Original Construction Contract termination & New Contracts

- Original Construction Contract was awarded to Basil Read Construction (BR) and commenced during 2015
- Contract was terminated during 2018 after BR was placed under business rescue
- H&I Construction was awarded an Interim Maintenance Contract to facilitate essential works and maintain traffic and safety measures.
- H&I Construction was also successful with the New Construction Contract which commenced during 2019
- Engineer and client appointed temporary works designer managed certain works during Interim Maintenance Contract & exercised control over free issue items eg. Post Tension installation, hanger anchors, falsework for arch etc.

- Strand property verification
- Strand installation method & lubrication
- Duct condition verification ; Friction & Wobble calibration
- Lift off testing


Figure 40 Elongation comparison



WESTERN CAPE GOVERNMENT

WESTERN CAPE GOVERNMENT

WESTERN CAPE GOVERNMENT

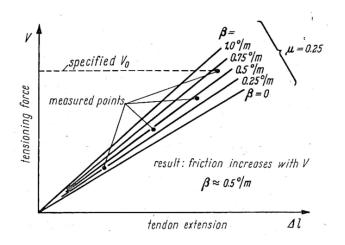
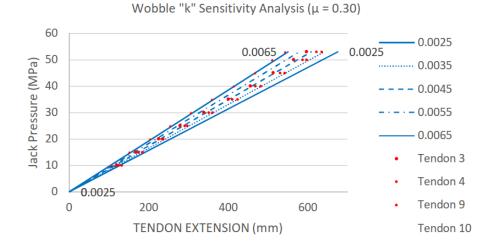
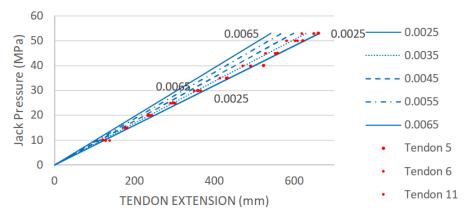




Figure 47 Wobble coefficient calibration (Leonhardt, 1964)

DUCT 3,4,9,10

DUCT 5,6,11,12 Wobble "k" Sensitivity Analysis (μ = 0.30)

WESTERN CAPE GOVERNMENT

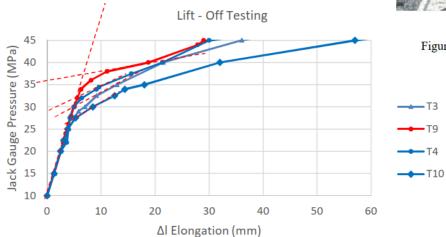


Figure 49 Jack with magnetic precision Dial Gauge

—T3

T9

-T4

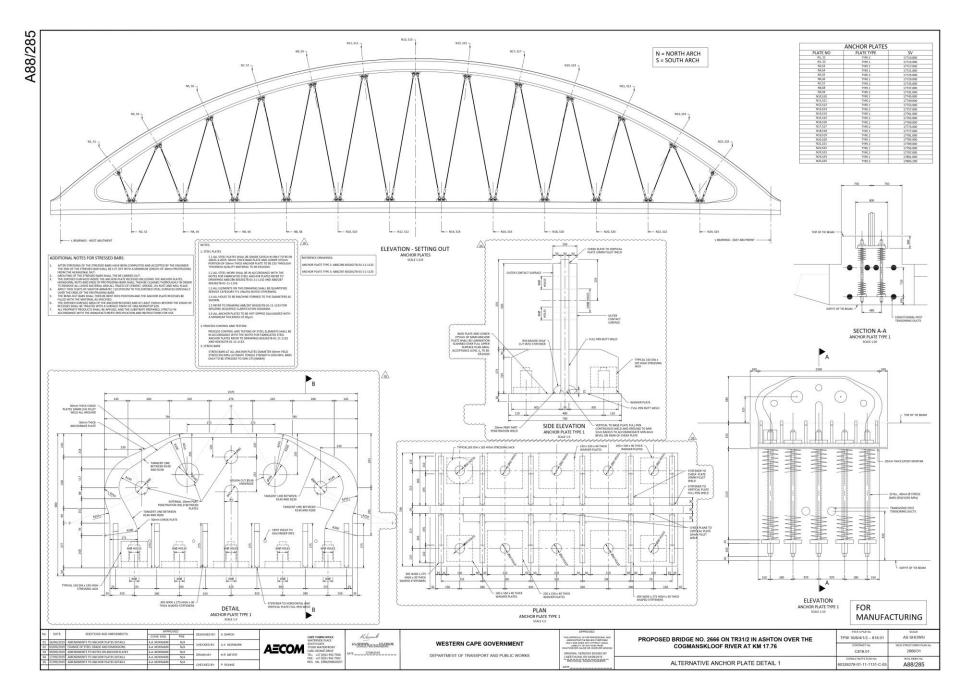
Figure 57 Typical lift off test results

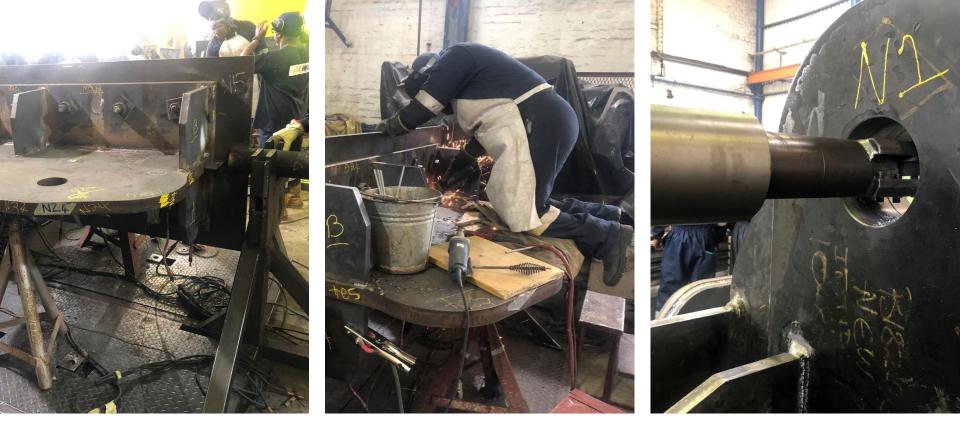
Hanger anchors manufacturing

Hanger anchor manufacturing

- Rejection of original cast iron hangers
- Procurement & Manufacturing (International)
- QCP & Authorized Inspection Authority (OHS requirements)
- Compatibility & service life verifications (dimensional, fatigue, inspection & maintenance manuals)
- Important service life considerations
- The structural form dictates that the anchors are subject to the following general loading regime:
 - A free tensile load in which (in a failure situation) a significant proportion of the load would still be applied up to rupture
 - Limited redundancy with potential susceptibility to "unzipping" failure
- The form of the anchor connection results in a partial creation of a hidden critical element (the embedded section), that means subsequent complete inspection will be difficult.

Hanger anchor manufacturing


- Rejection of original cast iron hangers due to inadequate durability and fatigue resistance parameters
- Procurement & Manufacturing (International) resulted in new compound steel plate solutions in view of programming constraints
- Compatibility & service life verifications (dimensional, fatigue, inspection & maintenance manuals) with important service life considerations
- The structural form dictates that the anchors are subject to the following general loading regime:
 - A free tensile load in which (in a failure situation) a significant proportion of the load would still be applied up to rupture
 - Limited redundancy with potential susceptibility to "unzipping" failure
 - The form of the anchor connection results in a partial creation of a hidden critical element (the embedded section), that means subsequent complete inspection will be difficult



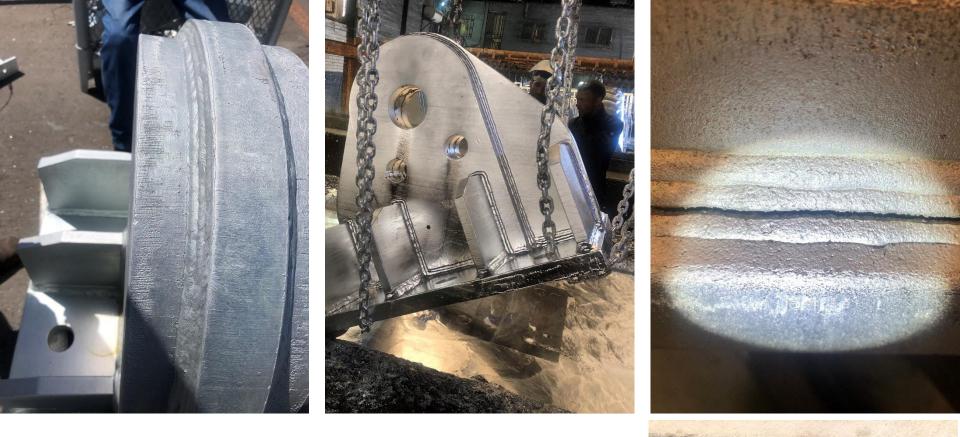
Hanger anchor manufacturing

AECOM·SA·approa	ches¤			AECOM·UK·Ltd¤					
Scenario∙ description¤	lmpact∙on∙ programme¤	Actions¤	Risks¤	REVIEW-COMMENTA					
Scenario:A: Acceptance in current condition based on a Fit for Service (FFS) analysis¤	Only-scenario- that-would-allow- pre-arch-casting- installation¤	AECOM·UK· specialists to· advise·on· probability·of· successful· outcome·based·on· available· information¤	Negative FFS result, uncertain long-term effect on structural system¤	Unlikely-to-be-sufficient-considering-the-variability-of-defects-and-number-of-components¶ ¶ Even-if-metallurgical-FFS-recommendation-is-positive-it-will-be-difficult-to-align-with-structural- design-responsibility-for-a-new-120-year-lifespan-public-CC3-structure.¤					
Scenario B: Re- heat treatment of all anchor plate¤	Process would- require post- arch casting- installation¤	Assess effects of re-heat treatment and property improvement probability¤	This may provide the least duration risk, metallurgical view not too positive with current casting material composition¤	Metallurgical·specialist·advice·appears·to·doubt·this·route·but·has·to·be·discussed·in·detail.¶ ¶ Substantial·upgrade·of·Charpy·and·%elongation·results·required·to·meet·the·spec·are·difficult·to· achieve, particularly-when·considering·the·large·number·of·potentially·affected·cast·components.·¶ ¶ Post·arch·casting·installation·would·require·careful·consideration·to·avoid·incorporation·of·a·defect.¶ ¤					
Scenario C: Remanufacture of all components¤	Process·would- require·post- arch·casting- installation¤	Steel-castings-or- steel-plate- manufacturing- options-to-be- considered-with- costs, sourcing- internationally-&- delivery¤	Indications are that a minimum 6 month procurement process required, any delays could significantly impact on construction¤	This is the structurally safe option based on the currently available and presented information. ¶ I Efforts to minimise the cost and programme implications could be made but are nevertheless likely to be significant.¶ I Post arch casting installation would require careful consideration to avoid incorporation of a defect.¶ X					
Scenario·D:· Strengthening·of· all·components¤	Process would- require post- arch casting- installation¤	Ultra-high strength steel plate strengthening options to be considered with feasibility, cost etc.	Feasibility uncertain but may be easier than remanufacturing with reduced cost implication¤	Based on the nature of the defects, the number and shape of the cast components this option is not considered feasible. If Welding high strength plates to this type of high yield casting would be problematic and could potentially make matters worse. #					

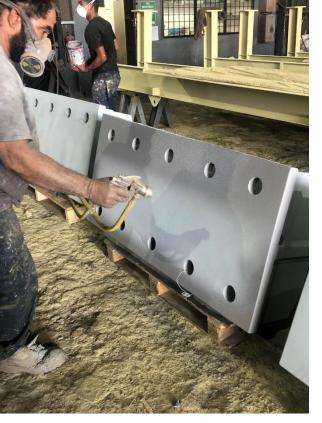
Welding operations

Welding operations

Machining operations



Heat treatment and quality control



Galvanizing trials



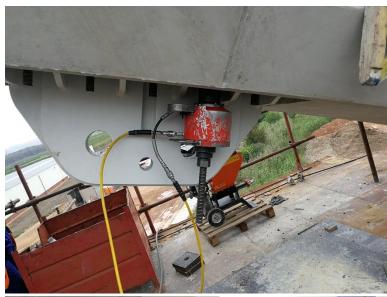
Coating System :

- TMS (Zinc , 125 micron)
- Carboguard 635 (150 micron)
- Carbothane 137 HS (90 micron)

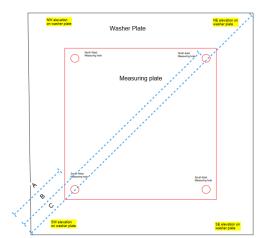
Imagine it. Delivered.

Thermal Metal Spray and paint coating

Hanger Anchor Installation

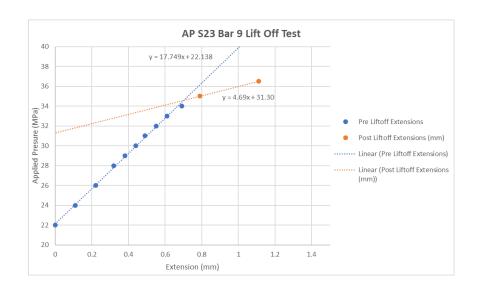


WESTERN CAPE GOVERNMENT



Installation testing

Avg N Avg S Avg V Avg E diff W to E N to S	0.3014872 1.7166313 Bolt	- Wankee plate entrapolated neener	Aug N Aug S Aug W Aug E diff W to E N to S	Average 255.83 259.03 256.97 257.88 0.902 3.1995 Bolt2	Worst Case	Avg N Avg S Avg W Avg E diff W to E N to S	Average 255.65 258.92 256.98 257.59 0.6127		Avg N Avg S AvgW AvgE	Average 258.51 260.81 258.71 260.6		Avg N Avg S AvgW AvgE	Average 260.31 259.79 259.24 260.86	
Avg S 2 Avg W 4 Avg E 2 diff W to E N to S N to S NW SE NE SW sured: 27/05/20: 258.16	260.04082 259.03176 259.33324 0.3014872 1.7166313 Bolt Hearing Jule salar 258.35	1.7166 1 Washer plair releapelaird	AvgS AvgW AvgE diff W to E	259.03 256.97 257.88 0.902 3.1995	Worst Case	AvgS AvgW AvgE diff W to E	258.92 256.98 257.59		Avg S AvgW AvgE	260.81 258.71		Avg S Avg V	259.79 259.24	
AvgW AvgE 2 diff W to E N to S N to S N to S N S S W S S W S S W S Ured: 27/05/200 258.16	259.03176 259.33324 0.3014872 1.7166313 Bolt Hemminghale 258.35	1.7166 1 Washer plair releapelaird	AvgW AvgE diff V toE	256.97 257.88 0.902 3.1995	Worst Case	AvgW AvgE diff W toE	256.98 257.59		AvgW AvgE	258.71		AvgV	259.24	
Avg E 2 diff W to E N to S N SE NE SW 258.16	259.33324 0.3014872 1.7166313 Bolt Heaseing tale salar 258.35	1.7166 1 Washer plair releapelaird	Avg E diff V to E	257.88 0.902 3.1995	Worst Case	Avg E diff V to E	257.59	Worst Case	AvgE					
diif w to E N to S N to S NW SE NE SW sured: 27/05/20: 258.16	0.3014872 1.7166313 Bolt Herenzingelale ealer 258.35	1.7166 1 Washer plair releapelaird	diff V to E	0.902	Worst Case	diff V to E		Worst Case		260.6		AvgE	260.86	
W to E N to S N NW SE NE SW 258.16	0.3014872 1.7166313 Bolt Heavering plate salar 258.35	1.7166 1 Washer plair releapelaird	V to E	3.1995		V to E	0.0107	Worst Case						
N to S NW SE NE SW sured: 27/05/20: 258.16	1.7166313 Bolt Hearing state water 258.35	1 Washee plate entropolated merger		3.1995	3.1995		0.0107		diff		Worst Case	diff		Worst Cas
NW SE NE SW sured: 27/05/203 258.16	Bolt Hransing plate ealer 258.35	- Wankee plate entrapolated neener	N to S			Mite C	0.6127	3.2676	V to E	1.8891	2.2975	V to E	1.612	1.612
NW SE NE SW sured: 27/05/20; 258.16	Hearening plate saler 258.35	- Wankee plate entrapolated neener		D-b*		N (0 S	3.2676		N to S	2.2975		NtoS	0.5168	
NW SE NE SW sured: 27/05/20; 258.16	Hearering plate value 258.35	entrapolated normer		BOIL			Bolt3			Bolt4			Bo	lt 5
NW SE NE SW sured: 27/05/20; 258.16	258.35				Washer plate			Wanker plate			Washer plate			Wanker plate
SE NE SW sured: 27/05/20; 258.16		elanalism		Heatering plate natur	roleapolaled ourore elanalison			ralespalsled aaroer rlaaslinna		plate salar	ralespalsled aurore elsestions		plate natur	rale-spalaled aarare elaasliaaa
SE NE SW sured: 27/05/20; 258.16		258.16	NV	256.29	255.45	NW	256.23	255.44	NV	258.23	257.37	NV	259.38	259.28
NE SW sured: 27/05/20: 258.16	200.00	260.18	SE	258.7		SE	258.51		SE	260.69		SE	260.27	
SW sured: 27/05/20: 258.16	258.62	258.49	NE	256.67	256.2	NE	256.41		NE	259.73		NE	260.27	260.37
sured: 27/05/20; 258.16	259.77	259.9	SV	258.02		SV	257.97		SV	259.97		SV	259.41	259.21
258.16	200.11	200.0	0	200.02	200.0	0.	201.01	200.02	0*	200.01	200.00	0.	200.41	200.21
	020								-					
259.9		258.49	255.45		256.2	255.44		255.87	257.37		259.65	259.28		261.34
259.9	1			2			3			4			5	
		260.18	258.5		259.55	258.52		259.32	260.05		261.56	259.21		260.37
			_				chor N							
262.64	10	260.93	261.4	9	262.15	258.19	8	258.68	259.99	7	259.22	258.79	6	259.34
259.35		258.34	258.53		259	255.35		256.28	256.1		254.71	256.75		257.54
	Bolt	10		Bolt 9			Bolt8			Bolt7			Bo	h C
				DUIL								_		
н	Heavering plate value	Wankee plate enteapolated norme elanationn		Heasering plate value	Wankee plate enteapolated normee elanationn			Wankee plate ente apolated normee elanationn			Wankee plate entropolated normer elanations		Heatering plate value	Wankee plale entrapolated normee elanations
NW	262.24	262.64	NV	260.91	261.4	NW	257.8	258.19	NW	258.91	259.99	NV	258.67	258.79
SE	258.74		SE	259.5	259	SE	256.68		SE	255.81		SE	257.66	
NE	260.78	260.93	NE	261.41		NE	258		NE	258.58		NE	259.1	259.34
SV	259.5	259.35	SW	259.28		SV	256.04		SV	256.75	256.1	SV	256.99	
A	Average			Average			Average			Average			Average	
	261,78552		Avg N	261.78		Avg N	258.44		Avg N	259.6		Avg N	259.06	
	258.84448		AvgS	258.76		AvgS	255.81		AvgS	255.41		AvgS	257.15	
	260,99796		AvgV	259.96		AvgV	256.77		AvgV	258.05		AvgV	257.77	
	259.63204		Avg E	260.58		Avg E	257.48		AvgE	256.96		Avg E	258.44	
avg = 4	200.00204		my C	200.00		ny c	201.40		org c	200.00		my c	200.44	
diff		Worst Case	diff		Worst Case	diff		Worst Case	diff		Worst Case	diff		Worst Cas
V to E		2.941	V to E	0.6127	3.0123	V to E	0.7148		Sect 1			SILL		worscoas


Washer plate machining

Imagine it. Delivered.

Arch Anchor plates

- 2 or more tensioning cycles result less anchorage losses according to Macalloy bar literature
- 3 stressing cycles on Arch anchor plates.

WESTERN CAPE GOVERNMENT

Tie Beam Anchor plates

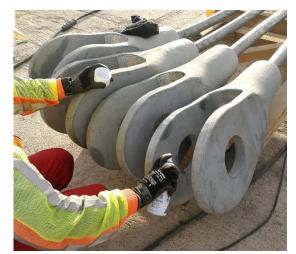
- Bars shorter than the Arch ones.
- 4 stressing cycles

Anchor plate tensioning summary

- 484 bars tensioned
- Over 1200 lift-off tests
- Over 1900 washer plate alignment measurements
- 2400 litres of grout

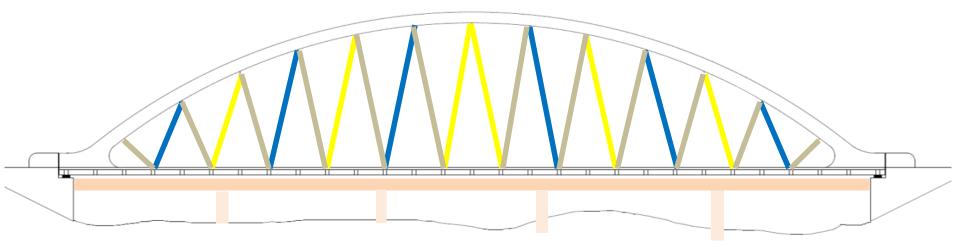
WESTERN CAPE GOVERNMENT

Hanger Installation



Utilisation of the C-hook

Utilisation of the C-hook

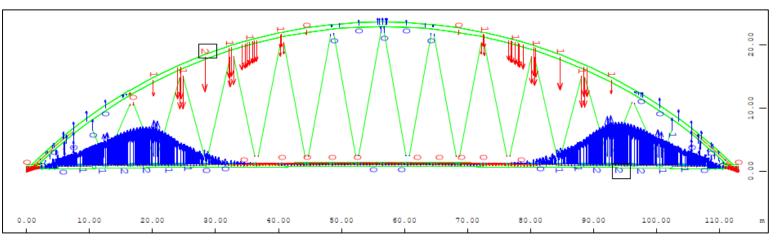


Hanger Tensioning

Hanger tensioning sequence

Stage 1 = 50% of load -> Stage 2 = 100% load

The intent of this process was to start by removing the slack from the cables and to get some stiffness into the structural system before the cables are sequentially stressed to their design force



Simultaneous tensioning of 2 cables per Arch

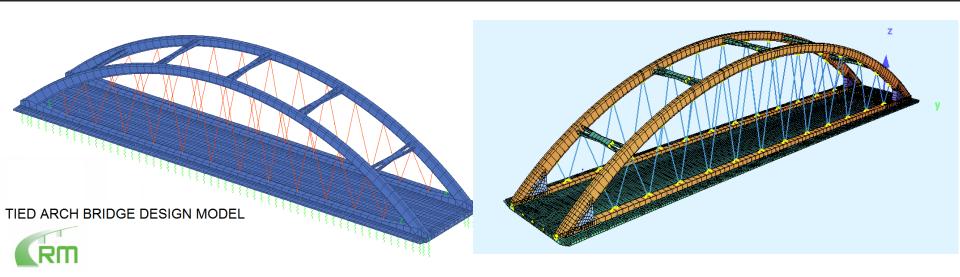
WESTERN CAPE GOVERNMENT

Live structural monitoring during tensioning

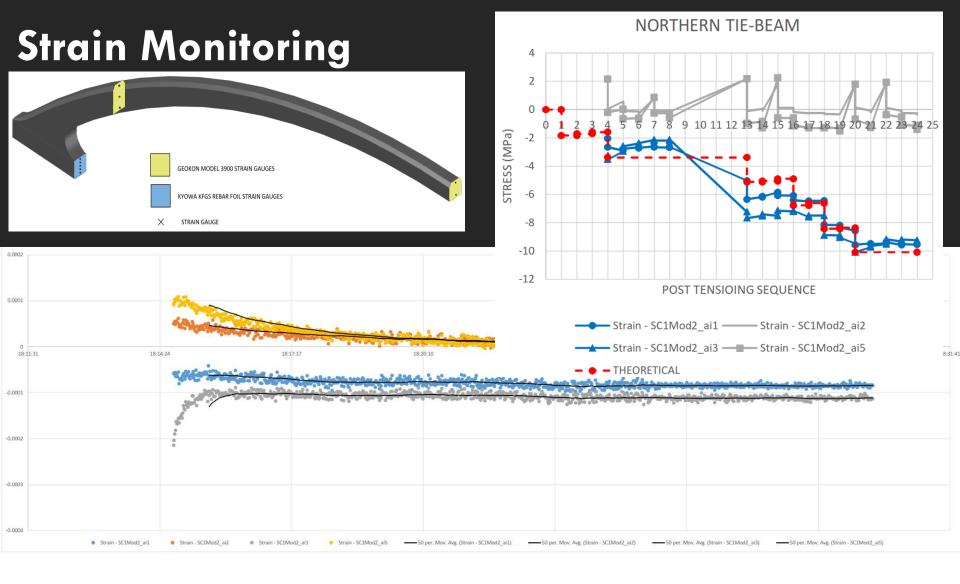
WESTERN CAPE GOVERNMENT

Tensioning checks and calculations

Instrumentation and Monitoring

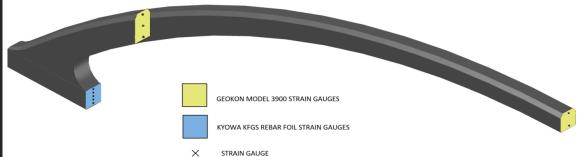

FEM Model Review and Calibration

Bentley RM Bridge Advanced V8

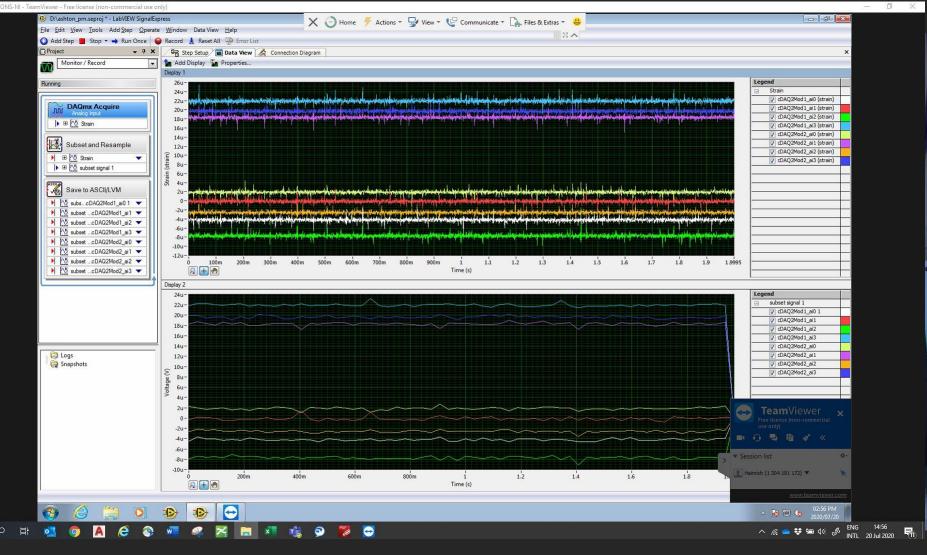

AECOM SA design 30 Construction Stages Rigid support for deck falsework Spring point modeled with rigid links C&S models – BS 5400

Sofistik 2014

AECOM UK 89 Construction Stages Calculated stiffness for deck falsework Springing point modeled with shell elements C&S models – TMH 7

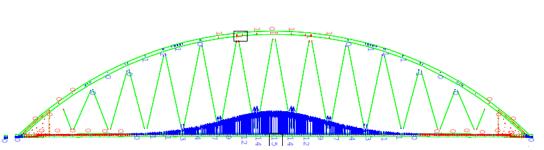


Strain Monitoring



WESTERN CAPE GOVERNMENT

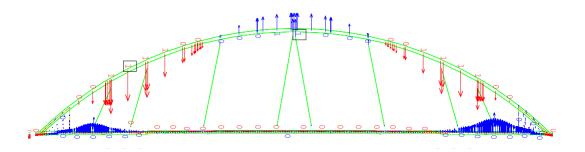
Imagine it. Delivered.


Strain Monitoring

WESTERN CAPE GOVERNMENT

Ŧ

Displacement monitoring

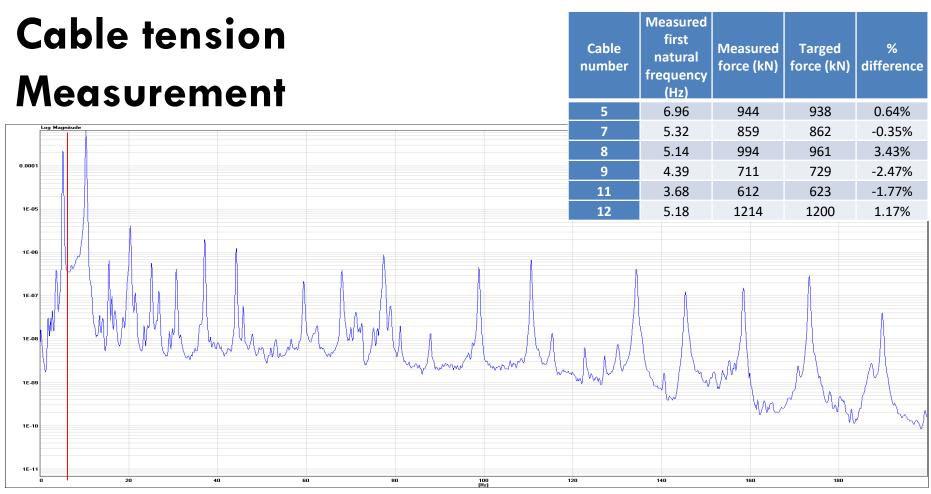


WESTERN CAPE GOVERNMENT

lmagine it. Delivered.

Cable Tension Measurement

																								_	
Cables						St	ge 1 Cable	Installatic	n						Stage 2 Cable Installation										
		4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132
		STG4H	STG4J	DTG4L	STG4G	STG4I	STG4K	STG4A	STG4B	STG4C	STG4D	STG4E	STG4F	STG4HH	STG4JJ	DTG4LL	STG4GG	STG4II	STG4KK	STG4AA	STG4BB	STG4CC	STG4DD	STG4EE	STG4FF
N	4	650	682	886	850	758	845	820	718	587	472	442	445	1089	1055	1043	986	828	813	797	730	631	565	571	599
N	8		930	684	687	600	399	420	472	493	393	190	44	0	1092	961	956	828	626	627	623	582	436	267	183
N	12			793	810	827	434	456	531	626	669	576	249	178	100	1200	1198	1182	870	872	885	919	964	839	388
N	2				466	429	472	414	323	257	211	194	184	81	63	51	688	643	637	612	569	534	522	536	549
N	6					825	809	819	821	735	561	450	421	282	186	155	137	988	919	916	887	783	631	569	584
N	10						1019	1042	1114	1193	1198	1030	749	664	552	189	186	151	1317	1318	1324	1330	1293	1115	831
N	1							867	693	666	696	756	806	744	788	818	739	716	741	1131	1035	994	1002	1014	1021
N	3								913	766	762	856	963	817	888	966	906	813	869	827	1217	1078	1038	1034	1051
N	5									962	842	868	976	806	831	938	909	729	780	769	696	1215	1054	975	985
N	7										1115	999	1024	877	785	862	852	702	676	677	665	571	1335	1105	1040
N	9											1213	1087	975	811	729	723	653	485	488	498	493	391	1375	1118
N	11												1208	1119	1003	623	620	590	313	316	333	367	396	190	1234


Cable Tension Measurement

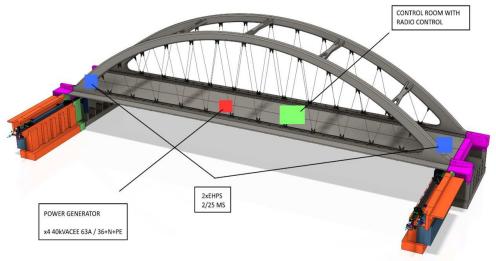
 $T = 4f^2Lm$

 $T = 4f^2Lm$

Adverse founding conditions

Adverse founding conditions at west abutment

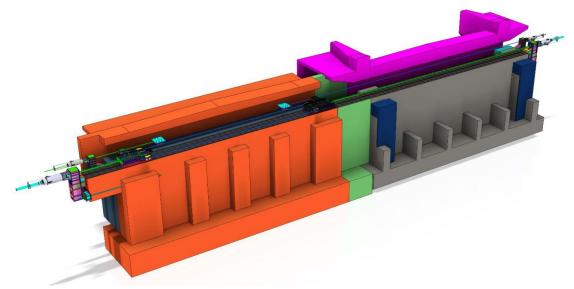
- Significant amount of ground water
- comprehensive reassessment
- 5 design scenarios were tested in the market to assess the cost and programme aspects.
- A large diameter
 (>1000mm) piling
 solution with
 approximate 10m
 length was adopted

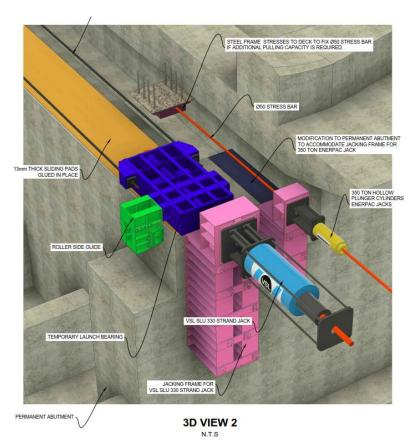

TRANSVERSE LAUNCHING

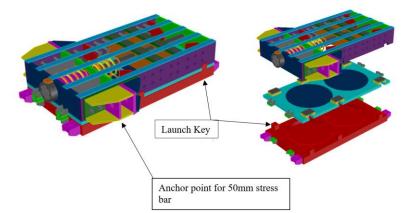
Transverse Launching

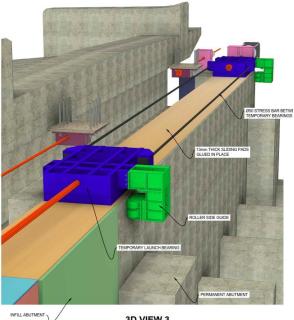
The proposed launching system consists of the following main components:

- 4 x 322 ton (VSL SLU 330) launching strand jacks plus 1 spare, including power pack and control unit;
- 4 x pulling cables, consisting of 31 strands each (15.3 mm dia, 276.7 kN UTS / strand);
- For additional pulling capacity 2 x 120 ton (VSL SLU 120) cylinders which will be adapted by VSL to act as hollow plunger cylinders with necessary pipes to connect to main power pack and control unit.
- For additional pulling capacity 50 mm diameter stress bar between hollow plunger cylinders and steel brackets mounted to deck;
- o 50 mm diameter stress bar between temporary launch bearings;
- 4 x temporary launch bearings. Each bearing has two custom built-in 900 mm diameter pot bearings to accommodate deck rotation and construction tolerances of the sliding surfaces;
- 4 x roller side guides fixed to the temporary launch bearings; and
- 13mm thick Eberspächer sliding pads.




Transverse Launching


The launch designer has designed the launch according to the following basic criteria:


- Dead Weight of Bridge.....
 Max Friction System can overcome
 Maximum pulling capacity of system
 Pulling capacity of SLU 330t jack
- Expected starting force per increment
- Expected pulling force.....
- Max. safe force allowed before investigation required 3200kN @ 8%
- Capacity of system identical forward and reverse
- 4000t / Abutment 11.6% 4630kN / Abutment 3220kN / Abutment 2400kN @ 6% 1600kN @ 4%

Transverse Launching

3D VIEW 3 N.T.S

Client:

Local Municipality: Consulting Engineer: Bridge Engineering: Erection Engineering:

Main contractors: Specialist Sub-contractors:

Temporary Works Designers:

Acknowledgements

Western Cape Government, Department of Transport & Public Works

Langeberg Municipality

AECOM SA

AECOM SA, AECOM UK & Edward Smuts

AECOM SA & Dave Middleton (Interim Maintenance Contract & New Construction contract Contract)

Basil Read (OCC), Haw & Inglis (IMC & NCC)

Amsteele Systems & Redaelli

Nova Engineering Works

Fairbrother Geotechnical Engineering

AllWeld

Form Scaff & Richard Beneke Designs Aurecon, Maffeis, Nyeleti

WESTERN CAPE GOVERNMENT

lmagine it. Delivered.