Appendix 1

Hipparchus's Table of Chords

The construction of this table is based on the facts that the chords of 60° and 90° are known, that starting from chd θ we can calculate chd $\left(180^{\circ}-\theta\right)$ as shown by Figure A1.1, and that from chd θ we can calculate chd $\frac{1}{2} \theta$. The calculation of chd $\frac{1}{2} \theta$ goes as follows; see Figure A1.2. Let the angle $A O B$ be θ. Place F so that $C F=C B$, place D so that $D O A=\frac{1}{2} \theta$, and place E so that $D E$ is perpendicular to $A C$. Then

$$
A C D=\frac{1}{2} A O D=\frac{1}{2} B O D=D C B
$$

making the triangles $B C D$ and $D C F$ congruent. Therefore $D F=B D=$ $D A$, and so $E A=\frac{1}{2} A F$. But $C F=C B=\operatorname{chd}\left(180^{\circ}-\theta\right)$, so we can calculate $C F$, which gives us $A F$ and $E A$. Triangles $A E D$ and $A D C$ are similar; therefore $A D / A E=A C / D A$, which implies that $A D^{2}=A E \cdot A C$ and enables us to calculate $A D$. $A D$ is chd $\frac{1}{2} \theta$.

We can now find the chords of $30^{\circ}, 15^{\circ}, 7 \frac{1}{2}^{\circ}, 45^{\circ}$, and $22 \frac{1}{2}^{\circ}$. This gives us the chords of $150^{\circ}, 165^{\circ}$, etc., and eventually we have the chords of all

Figure A1.1.

Figure A1.2.
multiples of $7 \frac{1}{2}^{\circ}$. The table starts:

θ	0°	$7 \frac{1}{2}$	15°	$22 \frac{1}{2}$	30°	$37 \frac{1}{2}$	45°	$52 \frac{1}{2}$
chd θ	0	450	897	1,341	1,779	2,210	2,631	3,041

We find the chords of angles not listed and angles whose chords are not listed by linear interpolation. For example, the angle whose chord is 2,852 is

$$
\left(45+\frac{2,852-2,631}{3,041-2,631} \times 7 \frac{1}{2}\right)^{\circ}=49^{\circ} \text { approximately. }
$$

Calculation of the EccentricQuotient for the Sun, and the Longitude of its Apogee

This is Hipparchus's method as described by Ptolemy. However, Ptolemy used his own table of chords; I use the figures from Hipparchus's table as reconstructed by Toomer [103].

The basic data are that the interval from spring equinox to summer solstice is $94 \frac{1}{2}$ days and the interval from then to autumn equinox is $92 \frac{1}{2}$ days. In Figure A2.1, T is the earth, O is the center of the sun's orbit, H and L are the equinoxes, and J and K are the solstices.

Figure A2.1.

Figure A2.2.

The sun turns through the angle $H O L$ in
It turns through a whole circle in
Therefore the angle $H O L$ is
and so
and so
Therefore, by linear interpolation,
The sun turns through the angle HOK in Therefore
But $N O H=\frac{1}{2} U O H$ and so
and so
Then
Therefore, by linear interpolation, and so
But
and so, because $T O^{2}=T Q^{2}+O Q^{2}$, Thus

This is the eccentric-quotient.
As above
and so (see Figure A2.2)
Then by linear interpolation, and so

$$
\begin{aligned}
& 92 \frac{1}{2}+94 \frac{1}{2} \text { days } \\
= & 187 \text { day. } \\
& 365 ; 14,48 \text { days. } \\
& 184^{\circ} 20^{\prime}, \\
N O H+V O L= & 4^{\circ} 20^{\prime}, \\
U O H= & 4^{\circ} 20^{\prime} . \\
H U= & 260 . \\
H O K= & 942^{\frac{1}{2}} \text { days. } \\
N O H= & 2^{\circ} 9^{\prime} . \\
P O K= & 59^{\prime} . \\
K O X= & 1^{\circ} 58^{\prime} . \\
K X= & 118, \\
O Q= & 59 . \\
T Q= & \frac{1}{2} H U \\
= & 130, \\
T O= & 143 . \\
T O / O N= & 143 / 3438 \\
= & 1 / 24 \text { approximately. }
\end{aligned}
$$

$$
\begin{aligned}
O Q / O T & =59 / 143 \\
& =2830 / 6876 \\
O Q / O Y & =2830 / 3438 . \\
O Y Q & =49^{\circ} \\
O T Q & =244^{\frac{1}{0}} .
\end{aligned}
$$

Therefore the apogee is $24 \frac{1}{2}^{\circ}$ west of the summer solstice, i.e., its longitude is $65 \frac{1}{2}^{\circ}$.

Appendix 3

Ptolemy's Table of Chords

Ptolemy's table of chords is much more sophisticated than the one that we think Hipparchus used (see page 128). The chords are in a circle of radius 60 instead of 3,438 , which makes calculations much easier. The interval between entries is $\frac{1}{2}^{\circ}$ instead of $7 \frac{1}{2}^{\circ}$; and the smaller the interval the smaller the errors introduced by linear interpolation. Attaining a smaller interval is not merely a question of subdividing more finely. Hipparchus could easily have produced a table with intervals of $3 \frac{30}{4}$ or $1 \frac{7 \circ}{8}$ or $\frac{15{ }^{\circ}}{16}$ by the halving process, but such a table would have been awkward to use. Ptolemy stated and proved a theorem (usually known today, in fact, as Ptolemy's theorem) which enabled him to calculate the chords of $x+y$ and $x-y$ if the chords of x and y are known. He used Euclid's construction of a regular pentagon to find the chord of 36°, which, since he knew the chord of $37 \frac{1}{2}^{\circ}$, enabled him to find the chord of $1 \frac{1}{2}^{\circ}$.

It is not possible to trisect an angle of $1 \frac{1}{2}^{\circ}$ by Euclidean methods, but it is possible to find a good enough approximation to the chord of $\frac{1^{\circ}}{}{ }^{\circ}$ by using the result that

$$
\text { if } x>y, \text { then } \frac{\operatorname{chd} x}{\operatorname{chd} y}<\frac{x}{y} \text {. }
$$

Taking $x=1 \frac{1}{2}^{\circ}$ and $y=1^{\circ}$, we have

$$
\text { chd } \begin{aligned}
1^{\circ} & >\frac{2}{3} \text { chd } 11_{2}^{\circ} \\
& >\frac{2}{3} \times 1 ; 34,14,41>1 ; 2,49,47
\end{aligned}
$$

Similaly, taking $x=1^{\circ}$ and $y=\frac{30}{4}$, we can show that

$$
\text { chd } 1^{\circ}<1 ; 2,49,55
$$

Between them these show that chd $1^{\circ}=1 ; 2,50$ correct to two sexagesimal places. It is now easy to calculate the chord of $\frac{10}{2}$ to two places and to complete the table. (Ptolemy's own explanation of his calculations was a trifle careless. He worked to only two sexagesimal places, and stated that the chord of 1° was both greater than $1 ; 2,50$ and less than $1 ; 2,50$.)

Calculating the Radius of the Moon's Epicycle

On page 133 we saw how Hipparchus (or Ptolemy) could calculate the radius of the moon's epicycle from data obtained by observing three eclipses. Here are the details of one such calculation carried out by Ptolemy using eclipses observed by the Babylonians in the first and second years of the reign of Marduk-apal-iddina, about 720 в.с. The time intervals between the eclipses, reduced to mean solar time, were 354 days, 2 hours, 34 minutes from the first to the second, and 176 days, 20 hours, 12 minutes from the second to the third. From the anomalistic period Ptolemy calculated how far round the epicycle the moon traveled in these two intervals. If the positions of the moon on the epicycle at the times of the eclipses are P_{1}, P_{2}, and P_{3}, respectively, then, measured clockwise

$$
\begin{equation*}
\operatorname{arc} P_{1} P_{2}=306^{\circ} 25^{\prime}, \quad \operatorname{arc} P_{2} P_{3}=150^{\circ} 26^{\prime} \tag{1}
\end{equation*}
$$

From the times of the eclipses, converted to Alexandria time, Ptolemy found the longitudes of the sun and hence of the moon. From these, as described on page 133, he found (see Figure A4.1, in which T denotes the earth)

$$
\begin{equation*}
\text { angle } P_{2} T P_{1}=3^{\circ} 24^{\prime}, \quad \text { angle } P_{2} T P_{3}=0^{\circ} 37^{\prime} \tag{2}
\end{equation*}
$$

(1) and (2) are the numerical data for the calculation.

Ptolemy several times used the table of chords to find the proportions of a right-angled triangle. This is how it is done. Let $A B C$ be a triangle with a right angle at B (see Figure A4.2). Suppose that the angle $A C B$ is $\frac{1}{2} x$ and we want to find $A B / A C$. If O is the midpoint of $A C$, then $A O B=x$. If we look up x in the table of chords and find that chd $x=y$, this means that $A B=y$ on a scale in which $A O=60$. Thus

$$
A B / A C=y / 120 .
$$

This is the reason for such items as $\frac{1}{2} \times 6^{\circ} 48^{\prime}$ or $\frac{1}{2} \times 1^{\circ} 14^{\prime}$ in various steps of the calculation.

Figure A4.1.

Figure A4.2.

Figure A4.3.

Let $P_{2} T$ cut the epicycle at X (Figure A4.3). Drop perpendiculars $X Y$ and $X Z$ to $T P_{3}$ and $T P_{1}$. Drop a perpendicular $P_{3} W$ to $P_{1} X$. Choose a scale in which $X T=120$. Then:

Appendix 5

The Eccentric-Quotient and Apogee of Mars

As pointed out on page 166, Ptolemy could calculate the eccentricquotient and the direction of apogee of Mars if he knew the angles marked $Z_{1} T Z_{2}, Z_{2} T Z_{3}, Z_{1} E Z_{2}$, and $Z_{2} E Z_{3}$ in Figure 6.32. This is by no means obvious, so let us follow the method in some detail.

In Figure A5.1, the points Z_{1}, Z_{2}, Z_{3}, E, and T are as in Figure $6.32, K$ is the point where $Z_{3} T$ cuts the circle $Z_{1} Z_{2} Z_{3}$ again, and $K F, K G, Z_{1} H$, and $E N$ are perpendicular to $Z_{1} T, Z_{2} T, Z_{2} K$, and $Z_{3} K$, respectively, A is the apogee.

Knowing $Z_{2} T Z_{3}$, we know the angles $K T G$ and $T K G$, and $K G / T K$.
We know $Z_{2} K Z_{3}$ (it is $\frac{1}{2} Z_{2} E Z_{3}$), and so by (i) we know $Z_{2} K G$ and $K G / Z_{2} K$.

Figure A5.1.

Knowing $Z_{1} T Z_{3}$, we know $F T K$ and $K F / T K$.
We know $Z_{1} K T$ (it is $\frac{1}{2} Z_{1} E Z_{3}$) and $Z_{1} T K$ (by iii) and therefore $T Z_{1} K$ and $K F / Z_{1} K$.
We know $Z_{1} K H$ (it is $\frac{1}{2} Z_{1} E Z_{2}$), so we know $Z_{1} H / K H$ and $Z_{1} K / K H$.
Now in terms of $K G$ we know $Z_{2} K$ (by ii), $T K$ (by i), $K F$ (by iii), $Z_{1} K$ (by iv), and $K H$ (by v). Therefore we know $Z_{2} H$. We also know $Z_{1} H$ (by v), so we know $Z_{1} Z_{2}$ (in terms of $K G$). But we also know $Z_{1} Z_{2}$ in terms of the radius r of the circle $Z_{1} Z_{2} Z_{3}$, because we know the angle $Z_{1} E Z_{2}$. Therefore, we know all these lengths in terms of r. In particular, we know $Z_{1} K$, therefore $Z_{1} E K$, therefore $Z_{3} E K$, therefore $K Z_{3}$.

Knowing $Z_{3} K$ and $T K$, we know $Z_{3} T$. Since $A T \cdot T P=Z_{3} T \cdot T K$, we know $A T \cdot T P$. But $A T \cdot T P+T E^{2}=r^{2}$, so we know $T E$ (in terms of r) -we have found the eccentric-quotient $T E / r$.

We know $Z_{3} N$ (it is $\frac{1}{2} Z_{3} K$) and $Z_{3} T$. Therefore we know $N T$. We know also $T E$, so we know the angle $N T E$. This gives us the direction of $T E$ (the direction of apogee) in term of the observed direction $T Z_{3}$.

Appendix 6

Reversed Epicycles

In Figure 6.9 , let T be the earth, let C be the center of the epicycle of a planet revolving about T anticlockwise in a circle of radius 60 , and let P be the planet revolving clockwise round C in an epicycle of radius r. The minimum velocity of P as seen from T (counting anticlockwise velocities as positive) occurs when P is at the point A beyond C on the line $T C$.

Let the sidereal period of the planet be x years and its synodic period y years. Then the (angular) velocity of the line $T C A$ about T is $1 / x$ revolutions per year. The distance T is $60+r$ and so the linear velocity of A is $2 \pi(60+r) / x$. The angular velocity of the line $C P$ relative to $C T$ is $1 / y$ revolutions per year, and so the linear velocity of P, when it is at A, relative to A is $2 \pi r / y$. Thus the condition that the planet should retrogress is $2 \pi r / y>2 \pi(60+r) / x$, i.e., $y<r x /(60+r)$.

Figures from the Almagest are as follows:

	r	x	$r x /(60+r)$	y
Mercury	$22 \frac{1}{2}$	1	0.03	0.3
Venus	$43 \frac{1}{3}$	1	0.4	1.6
Mars	$39 \frac{1}{2}$	1.9	0.7	2.1
Jupiter	$11 \frac{1}{2}$	11.9	1.9	1.1
Saturn	$6 \frac{1}{2}$	29.4	2.9	1.0

This shows that the first three planets will not retrogress. This conclusion would not be reversed if we made the orbit of C eccentric and introduced an equant.

Besides this, it is possible that if Ptolemy went through the detailed calculations to find the parameters of the planets' orbits using clockwise epicycles, his data would not yield coherent results. And, for the outer planets, making it part of his theory that $C P$ points toward the mean sun, coupled with the fact that the synodic periods are greater than a year, requires the epicycle to rotate anticlockwise.

If the motion of the sun is presented as epicyclic motion (see Figure 7.1) then, because the line joining the mean sun to the sun is in a fixed direction in space, the sun must move clockwise round its epicycle, like someone walking down an up-escalator at precisely the speed of the escalator. It is possible that the clockwise epicycle for the moon was copied from the theory for the sun. In spite of all this, there is evidence that some early Greek astronomers did use clockwise epicycles [154].

Further Reading

General Astronomy

H. Spencer Jones, General Astronomy, Arnold, London, 1934.

General History of Astronomy

J.L.E. Dreyer, The History of the Planetary System from Thales to Kepler, Dover, New York, 1953 (second edition). The classic text: very readable, though outdated.
A. Pannekoek, A History of Astronomy, Allen \& Unwin, London, 1961. (Dutch original, 1951.)

Preliterate Astronomy

Evan Hadingham, Early Man and the Cosmos, Heinemann, London, 1983.
Gerald Hawkins, Beyond Stonehenge, Harper and Row, New York, 1973. Investigates, in various localities, alignments of the type believed to exist at Stonehenge.
Douglas C. Heggie, Megalithic Science: Ancient Mathematics and Astronomy in Northwest Europe, Thames \& Hudson, London, 1982.
E.W. MacKie, The Megalith Builders, Phaidon, Oxford, 1977.

Alexander Thom, Megalithic Sites in Britain, Oxford University Press, Oxford, 1967; Megalithic Lunar Observatories, Oxford, 1971; (with A.S. Thom) Megalithic Remains in Britain and Brittany, Oxford University Press, Oxford, 1978.
J.E. Wood, Sun, Moon and Standing Stones, Oxford University Press, Oxford, 1980.

Egyptian Astronomy

R.A. Parker, Ancient Egyptian astronomy, Philosophical Transactions of the Royal Society, volume 276, (1974).
There are also brief references in A. Pannekoek's, A History of Astronomy, London, 1961; and Otto Neugebauer's, The Exact Sciences in Antiquity, Brown University Press, Providence, 1957.

Babylonian Astronomy

Otto Neugebauer, The Exact Sciences in Antiquity, Brown University Press, Providence, 1957. This concise beautifully written text opened up the subject to the general public.
Otto Neugebauer, History of Ancient Mathematical Astronomy, Springer-Verlag, New York, 1975. An extensive and detailed compendium with considerable mathematical detail.
B. van der Waerden, Science Awakening, volume 2, Noordhoff, Leyden, 1974, (and Oxford University Press, New York).
H. Hunger and D. Pingree, Mul'apin, Archiv für Orientforschung, Beihefte 24, (1989).

Chinese Astronomy

Ancient China's Technology and Science [no author named], Foreign Languages Press, Beijing, 1983.
Joseph Needham, Science and Civilization in China, Cambridge University Press, Cambridge, 1954. This extensive work is the main source of information in English on the history of Chinese science and technology. Volume 3 contains three hundred pages on astronomy, with particularly full coverage of early Chinese sources, cosmology, the history and organization of the xiu, star maps and armillaries, the last two topics abundantly illustrated.
Ho Peng Yoke, Li, Qi and Shu: an Introduction to Science and Civilization in China, Hong Kong University Press, Hong Kong, 1985.

Greek Astronomy

D.R. Dicks, Early Greek Astronomy to Aristotle, Cornell University Press, London, 1970. The strong point of this book is the author's careful treatment of Greek texts, rather than his understanding of astronomy.
Otto Neugebauer, History of Ancient Mathematical Astronomy, Springer-Verlag, New York, 1975. An extensive compendium with considerable mathematical detail of Ptolemy's work and Greek astronomy immediately preceding and following him.
R.R. Newton, The Crime of Claudius Ptolemy, Johns Hopkins University Press, Baltimore, 1977. This author brought doubts on Ptolemy's reliability into the limelight. In the course of denigrating Ptolemy he gives some very clear explanations of parts of the Almagest.
Olaf Pedersen, A Survey of the Almagest, Odense University Press, Odense, 1974.
G.J. Toomer, Ptolemy's Almagest, Springer-Verlag, New York, 1984. Supersedes all previous translations. Its introduction, footnotes, and appendices almost render commentaries (such as Pedersen's Survey) superfluous.
Gerd Grasshoff, The History of Ptolemy's Star Catalogue, Springer-Verlag, New York, 1990.

Indian Astronomy

D.A. Somayaji, A Critical Study of the Ancient Hindu Astronomy, Kamatak University Press, Dharwar, 1971.

David Pingree, History of mathematical astronomy in India, in the Dictionary of Scientific Biography, Scribner, New York, 1978, volume 15, pages 533 to 633.

Arabic Astronomy

We are in sore need of a general study of Arabic astronomy by a specialist. Meanwhile, the best source of extra information is J.B.J. Delambre's Histoire d'Astronomie du Moyen Age, Paris, 1819; and articles under the names of individual astronomers in the Dictionary of Scientific Biography, New York, 1978.

Maya Astronomy

Floyd G. Lounsbury, Maya numeration, computation, and calendrical astronomy, in the Dictionary of Scientific Biography, Scribner, New York, 1978, volume 15, pages 759 to 818 .
John E. Teeple, Mayan Astronomy, Carnegie Institute of Washington, Washington, 1930.
J. Eric S. Thompson, Maya Hieroglyphic Writing, University of Oklahoma, Norman, Oklahoma, 1960 (second edition). The writing treated is largely concerned with astronomy.
J. Eric S. Thompson, A Commentary on the Dresden Codex, American Philosophical Society, Washington, 1972.

Later European Astronomy

Max Caspar, Kepler, Abelhard-Schuman, London, 1959.
J.L.E. Dreyer, Tycho Brahe, Dover, New York, 1963.

Alexander Koyré, The Astronomical Revolution, Cornell University Press, Ithaca, 1973.

Thomas S. Kuhn, The Copernican Revolution, Harvard University Press, Cambridge, Massachusetts, 1957.
Edward Rosen, Copernicus and the Scientific Revolution, Krieger, Malabar, 1984.
Bruce Stephenson, Kepler's Physical Astronomy, Springer-Verlag, New York, 1987.

Noel M. Swerdlow and Otto Neugebauer, Mathematical Astronomy in Copernicus' De Revolutionibus, Springer-Verlag, New York, 1984.
Victor Thoren, Tycho Brahe, in volume 2A of the General History of Astronomy, edited by René Taton and Curtis Wilson, Cambridge University Press, Cambridge, 1989.

Sources of Information

1. Tribal constellations from M.P. Nilsson, Primitive Time-Reckoning, Lund, 1920.
2. Babylonian constellations: B.L. Van der Waerden, Science Awakening, Leyden, 1974, volume 2, pages 63 to 74 .
3. E. Walter Maunder, The Astronomy of the Bible, New York, 1908.
4. Stansbury Hagar: The celestial bear, Journal of American Folklore, volume 13 (1990), pages 92 to 98.
5. Change in obliquity: Vistas in Astronomy, volume 10 (1968), page 54, or almost any standard tables. The obliquity in 2800 b.c. was 24.01°.
6. Ant on mill-stone: Jin shu, Chapter 11. (See note 67.)
7. Primitive observers: from M.P. Nilsson, Primitive Time-Reckoning.
8. Temples in Egypt: Joseph Norman Lockyer, The Dawn of Astronomy, London, 1894. Temples in Mexico and Guatemala: Gerald Hawkins, Beyond Stonehenge, New York, 1973.
9. Newgrange: C. O'Kelly, Illustrated Guide to Newgrange, Oxford, 1971.
10. D. Lewis, Voyaging stars, Philosophical Transactions, volume 276 (1974), pages 133 to 148. Also Kjell Åkerblom, Astronomy and Navigation in Polynesia and Micronesia, Stockholm, 1968.
11. Anthony F. Aveni, Venus and the Maya, American Scientist, volume 67 (1979), pages 274 to 285 . For further details on this, including a reidentification of the pyramid as Cehtzuc instead of Nohpat, and a suggestion that the sight-line was from the pyramid to the Casa del Gobernador, see Ivan Šprajc, The Venus-Rain-Maize complex, Journal for the History of Astronomy, volume 24, (1993), pages 18 to 48.
12. Intervals between solstices: Schiaparelli, Le Sfere Omocentriche di Eudosso, di Callipo, e di Aristotele, Milan, 1875, page 46.
13. Van der Waerden, Science Awakening, volume 2, page 103.
14. Almagest, Book 1, Chapter 12.
15. Yuan shi, Chapters 48 and 52.
16. E.C. Krupp, Shadows cast for the sun of heaven, Griffith Observer, volume 46, number 8 (1982), pages 12 to 17 . Wen wu (1976), pages 92 to 95 .
16a. Aydın Sayıl, The Observatory in Islam, New York, 1981.
16b. E.W. Piini, A giant astronomical instrument of stone: the Ulugh Beg observatory, Griffith Observer, volume 48, number 9 (1984), pages 3 to 19 .
17. Joseph Needham, Science and Civilization in China, Cambridge, 1954, volume 3, pages 339 to 343.
18. Almagest, Book 5, Chapter 1.
19. Ancient China's Technology and Science, Beijing, 1983, page 28.
20. Opere Storiche del P Matteo Ricci, Macerata, 1911, volume 1, page 135.
21. Stonehenge and sunrise: William Stukely, Stonehenge, a Temple Restored to the British Druids, London, 1740.
22. Car-park post-holes: C.A. Newham, Supplement to "The Enigma of Stonehenge," 1970.
23. Aubrey holes for counting: Gerald Hawkins, Nature, volume 202 (1964), page 1258. Also Fred Hoyle, On Stonehenge, San Francisco, 1977.
24. Distance between centres: Thom, Journal for the History of Astronomy, volume 5 (1974), page 84.
25. Horizon height: National Geographic Survey Research Reports for 1965 , pages 101 to 108 .
26. Directions of sunrise: My own calculations. The most uncertain factor is the correction for refraction. Hawkins, Hoyle, and Thom all used different figures (in Vistas in Astronomy, volume 10 (1968), page 54, On Stonehenge, page 141, and Journal for the History of Astronomy, volume 5, page 84, respectively). I have followed Thom. The effect on the final result is a variation of just under 0.1°.
27. Directions from heel-stone to center, etc.: National Geographic Survery Research Reports for 1965, pages 101 to 108. To realize how measurements vary, note that J.F.C. Atkinson (Journal for the History of Astronomy, volume 7 (1976) page 144), got 49.4° and 50.6° for the short sides of the station rectangle.

That the short sides of the station rectangle point to midsummer sunrise and midwinter sunset was first noticed by Edward Duke in 1846 (according to Peter Lancaster Brown, Megaliths, Myths and Men, Poole, 1976, page 107).
28. Stone 93 cutting the horizon: Fred Hoyle, On Stonehenge, page 76.
29. Alignments of the long sides of the station rectangle: discovered by G. Charrière (Société Prehistorique Française, Bulletin, volume 58 (1961), pages 276 to 279); rediscovered by C.A. Newham and written up (together with stone-hole G alignments) in the Yorkshire Post, 16 March, 1963.
30. Alignments in diagram 1.6: Gerald Hawkins, Nature, volume 200 (1963), pages 306 to 308 .
31. Central Stonehenge alignments: as note 30 .
32. William Stukely, The History of the Temples and Religion of the Antient Celts, 1723 (quoted in Aubrey Burl, The Stonehenge People, London, 1987.)
33. Dacia, volume 4 (1960), pages 231 to 254.
34. Stuart Piggott and D.D.A. Simpson, Excavations of a stone circle at Croft Moraig, Perthshire, Scotland, Proceedings of the Prehistoric Society, volume 37 (1971), pages 1 to 15.
35. Use of post-holes as fine graduations: C.A. Newham, Nature, volume 211 (1966), page 456.
36. Stone-holes, F, G, H: R.J.C. Atkinson, Stonehenge, page 70.
37. G.S. Hawkins, Stonehenge Decoded, New York, 1966, pages 135 to 136.
38. Atkinson: Moonshine on Stonehenge, Antiquity, volume XL (1966), pages 212 to 216.
39. Fred Hoyle, Speculations on Stonehenge, Antiquity, volume XL (1966), page 270.
40. Alexander Thom, Megalithic Sites in Britain, Oxford, 1967; and Megalithic Lunar Observatories, Oxford, 1971. With A.S. Thom, Megalithic Remains in Britain and Brittany, Oxford, 1978.
41. Callanish. First suggestion of astronomical alignments: Henry Callendar, Proceedings of the Society of Antiquaries of Scotland, volume 2 (1857), pages 380 to 384. The moon alignments were first suggested by Boyle Somerville, Journal of the Royal Anthropological Institute, volume 42 (1912), page 23 onward. The latest investigation is by J.A. Cooke and three colleagues in the Journal for the History of Astronomy, volume 8 (1977), pages 113 to 133.
42. Thom, 1967, page 151.
43. Notch and observers: Thom, 1971.
44. C.L.N. Ruggles, Megalithic Astronomy, B.A.R. British Series 123, 1984.
45. Vincent H. Malmström and James T. Carter, Stenalderskalendrar i Sverige? Forskning och Framsteg, volume 5 (1979), pages 1 to 5; and Curt Roslund, Aleforntidsmatematiker (the next article, on pages 6 to 11).
46. Neugebauer, The Exact Sciences in Antiquity, Providence, 1957, pages 58 to 66 and 110 to 121.
47. Peter J. Huber, Astronomical dating of Babylon I and Ur III Occasional Papers on the Near East, volume 1, issue 4 (1986).
48. Successful eclipse prophecy: report 272C in R.C. Thompson's Reports of the Magicians and Astronomers of Nineveh and Babylon, London, 1900, foretells the eclipse; report 274 F confirms that it occurred.
49. Earliest reference to 8° placement: Manilius, Astronomica, III, 257, III, 680 to 681 (A.D. 15). 8° placement in A.D. 1396: F. Kaltenbrunner, Die Vorgeschichte der Gregorianischer Kalenderreform, 1876, page 294. Hipparchus, In Arati et Eudoxi Phaenomena Commentarium, page 132 of the Manitius edition, stated that most of the ancient astronomers used the 0° placement. Some modern writers state that Meton (about 450 в.c.) used the 8° placement, but the only evidence is from Columella (De re Rustica, IX, XIV, 12). In fact, Meton is unlikely to have used degrees at all. His close collaborator Euctemon placed the solstices at the beginnings of the signs (A. Rehm, Das Parapegma des Euktemon, Sitzungsberichte der Heidelberger Akademie der Wissenschaft, 1913).
50. Nearly all the known tablets have been reproduced, transcribed, translated, and annotated by Otto Neugebauer in his Astronomical Cuneiform Texts, London, 1955 , usually abbreviated to $A C T$.
51. $A C T$, table 13 , reverse side (second half). The names of the months as transcribed in $A C T$ differ from the names given here because each cuneiform symbol can be pronounced in more than one way.
52. Otto Neugebauer, History of Ancient Mathematical Astronomy, New York, 1975, volume 1, page 368.
53. ACT tablet 80/1. (See note 50.)
54. ACT 200.
55. Ephemerides for new crescent moon: $A C T 5$ and 18. Instruction-tablets; ACT 200 and 201.
56. A. Aaboe, Scientific astronomy in antiquity (Philosophical Transactions of the Royal Society) volume 276A (1974), pages 21 to 42.
57. $A C T, 812, \S 10$ and $813, \S 20$.
58. A.H. Gardiner, Ancient Egyptian Onamastica, Oxford, 1947.
59. O. Neugebauer and R.A. Parker, Egyptian Astronomical Texts, Providence, 1969.
60. R.A. Parker, Ancient Egyptian astronomy, Philosophical Transactions of the Royal Society, volume 276 (1974), pages 51 to 65.
61. F.R. Stephenson, Astronomy in the monasteries, New Scientist, 1984 April 19, pages 27 to 31 .
62. Si feng almanac: Hou Han shu, Chapter 13.
63. Hsüeh Chung-san, A Sino-Western Calendar for 2000 years, 1-2000 A.D., Beijing, 1956.
64. Hou Han shu, Chapter 13.
65. H. Maspero, Les instruments astronomiques des Chinois au temps de Han, Mélanges Chinois et Bouddhiques, volume 6 (1939), page 235.
66. Yuan shi, Chapter 53.
67. Ho Peng Yoke, The Astronomical Chapters of the Chin Shu, Paris, 1966.
68. F.R. Stephenson, Quarterly Journal of the Royal Astronomical Society, volume 17 (1976), page 121.
69. A. Beer et al., An 8th-century meridian line, Vistas in Astronomy, volume 4 (1960), pages 3 to 28 .
70. Shigeru Nakayama, Accuracy of pre-modern determinations of tropical year length, Japanese Studies in the History of Science, volume 2 (1960), page 102.
71. Yuan shi, Chapter 52.
72. Laplace: Exposition du Système du Monde, fifth edition (1876), page 458.
73. Shigeru Nakayama: Accuracy of pre-modern determinations of tropical year-length, Japanese Studies in the History of Science, volume 2 (1963), pages 101 to 118 .
74. Pan Nai, Guo Shoujing, Shanghai, 1980; and Li Ti: Guo Shoujing, Shanghai, 1966.
75. Yuan shi, Chapter 55.
76. Yuan shi, Chapter 54.
77. Yuan shi, Chapter 55.
78. As note 20, pages 175,184 to 5 , and 207.
79. Herodotus i, 74, 2.
80. Eclipse Periods and Thales' Prediction of a Solar Eclipse: Historic Truth and Modern Myth, Centaurus, 1969, page 60.
81. Parapegmata: details in Pauly's Real-Encyclopädie der Classischen Altertumswissenschaften.
82. Meton and Euctemon's observations: Ptolemy, Phaseis, 67.2.
83. 19-year period: Geminus, Isagoge, Chapter VIII.
84. Eudoxus's mathematics: anonymous comment in Euclid, Book V (page 275, volume 5 in Heiberg's edition) and Archimedes, introduction to On Spheres and Cylinders.
85. Geminus: Isagoge, Chapter I.
86. Aristotle on Eudoxus: Metaphysics, 18, 1073, b17. Simplicius on Eudoxus: In de Caelo (page 493 of Heiberg's edition).
87. Otto Neugebauer, On the "hippopede" of Eudoxus, Scripta Mathematica, volume 19 (1953), page 225.
88. Schiaparelli: as note 11.
89. Callipus: from Aristotle, Metaphysics, 48, 1073b, 32 and Simplicius In de Caelo (page 497 of Heiberg's edition).
90. Phaenomena, lines 147 and 148.
91. Cleomedes, De Motu Circulari Caelestium, i 10, edited by Ziegler.
92. Later writers’ 252,000 stades: Strabo, Geographia, II, 5, 7.
93. Pliny on the length of the stade. Historia Naturalis, II: universum autem circuitum Eratosthenes CCLII milium stadiorum prodidit, quae mensurae Romana computatione efficit trecentiens quindeciens centena milia passuum. Ibid. XII, xxx: Schoenus patet Eratosthenis ratione stadia XL, hoc est p . $\overline{\mathrm{v}}$, aliqui XXII stadia singulis schoenis dedere. Both these passages make Eratosthenes's stade equal to one-eighth of a Roman mile, the first one equating 252,000 stades to 32,500 miles, the second one saying that Eratosthenes took a schoenus to be 40 stades, i.e., 5 miles. The second passage notes that other people took a schoenus to be 32 stades.
94. Dennis Rawlins: The Eratosthenes-Strabo Nile map. Is it the earliest surviving instance of spherical cartography? Did it supply the 500 -stade arc for Eratosthenes' experiment? Archive for the History of Exact Sciences, volume 26 (1982), pages 211 to 220.
95. Strabo on Rhodes/Alexandria distance: Geographia, I, 4, 6.
96. Posidonius's 180,000 stades: Strabo, Geographia, II, 2, 2.
97. Columbus's mistake: Irene Fischer, Quarterly Journal of the Royal Astronomical Society, volume 16 (1975), page 164.
98. Simplicius on Heraclides: In de Caelo (page 519 of Heiberg's edition).

98a. Dennis Rawlins, Ancient heliocentrists, Ptolemy, and the equant, American Journal of Physics, volume 55 (1987), pages 235 to 239; and B.L. van der Wærden, Die Astronomie der Griechen, Darmstadt. 1988.
99. Pliny: Natural History, 2, 26(24), 95.
100. $[p, q]$ denotes Almagest book p chapter q. length of the year $[3,1] \quad$ period relations $[4,2]$ dioptra $[5,11] \quad$ sun's distance [5,14-15] constellations [7,1] sun's motion [3,4] moon's motion book 4 .
101. Schmidt and Petersen: Centaurus, volume 12 (1968), pages 73 to 96.
102. Dennis Rawlins: Ancient geodesy: achievement and corruption. Vistas in Astronomy, volume 28 (1985), page 267 (note 3).
103. G.J. Toomer, The chord table of Hipparchus and the early history of trigonometry, Centaurus, volume 12 (1963), pages 145 to 150.
104. Ovenden: The origin of the constellations, Philosophical Journal (1966), pages 1 to 18 . See note 3 for Maunder. According to Peter Doig (A Concise History of Astronomy, New York, 1951, page 7) the use of the blank space round the south pole to estimate the date of the constellations was first suggested by Carl Schwartz, the Swedish consul at Baku, in 1807. Doig gave no details.
105. Aratus on Ara and Arcturus: Phaenomena, lines 404-405. Hipparchus thereon: In Arati et Eudoxi Phaenomena, i 8, 14 onward.
106. Aratus on simultaneous risings: Phaenomena, lines 559-739 (the quotation is lines $569-580$).
107. Eratosthenes's star-map is reprinted in the Loeb edition of Aratus's Phaenomena.
108. Aratus on stars between Argo and Cetus: lines 366 onward. Hipparchus thereon: i 8, 2.
109. Phaenomena, line 518.
110. Steven C. Haack, Astronomical orientation of the Egyptian pyramids, Archaeoastronomy, no. 7 (1984), pages S119 to S125.
111. D.H. Fowler, The Mathematics of Plato's Academy, a New Reconstruction, Oxford, 1987.
112. Severin: Non tantum erasse ilium dixit observando sed plane finxisse observatum quod ex Hipparcho computaverit, Introductio in Theatrum Astronomicum, Copenhagen, 1639, L if 33.
113. The most detailed investigation of Ptolemy's calculation of the obliquity of the ecliptic is by John P. Britton, in Centaurus, volume 14 (1969), pages 29-41.
114. B.L. van der Waerden, Greek astronomical calendars and their relation to the Athenian civil calendar, Journal of Hellenic Studies, volume 80 (1960), pages 168-180.
115. A. Rehm, Das Parapegma des Euktemon, Sitzungsberichte der Heidelberger Akademie der Wissenschaft, 1913.
116. Foreshortening error: Olaf Pedersen, A Survey of the Almagest, Odense, 1974, page 200.
117. Newton on the epicycle-radius: The Crime of Claudius Ptolemy, Baltimore, 1977. This title will be abbreviated to Crime.
118. Simplicius: In de caelo. Geminus: Isagoge, Chapter I.
119. Latitude of Alexandria: the temple of Canopus is at Abu Qir, latitude $31^{\circ} 19^{\prime}$. The city itself is at $31^{\circ} 13^{\prime}$.
120. Error in moon's longitude: Viggo M. Petersen, The three lunar models of Ptolemy, Centaurus, 14, page 169.
121. Newton: Crime, pages 218 to 237.
122. James Evans, On the origin of the Ptolemaic star catalogue, Journal for the History of Astronomy, volume 18 (1987), pages 155 to 172 and 233 to 278.
123. Jaroslaw Włodarczyk, Notes on the compilation of Ptolemy's catalogue of stars, Journal for the History of Astronomy, volume 21 (1990), pages 283 to 295.

123a. The latest summary of the controversy is N.M. Swerdlow's The enigma of Ptolemy's catalogue of stars, Journal for the History of Astronomy, volume 23 (1992), pages 173 to 184.
124. "Ptolemy assumed that the converse is true." It isn't: Comments in Crime, page 289.
125. Accuracy of Venus theory: Crime, page 211.
126. Crime, page 322.
127. Bernard R. Goldstein, The Arabic version of Ptolemy's planetary hypotheses, Transactions of the American Philosophical Society, volume 57 (1967), pages 3 to 13 .
128. Both are available in English: Āryabhatīya of Āryabhata, edited by K.S. Shukla, New Delhi, 1976; and The Khandakhādyaka (an Astronomical Treatise) of Brahmagupta, edited by Bina Chatterjee, Calcutta, 1970.
129. Almagest [9, 2].
130. Part 2, stanza 23 (page 109 in Shukla's edition).
131. Quoted in Chatterjee's edition, pages 146 to 147.
132. D.A. Somayaji, A Critical Study of the Ancient Hindu Astronomy, Dharwar, 1971, page 97.
133. Otto Neugebauer, The transmission of planetary theories in ancient and medieval astronomy, Scripta Mathematica, volume 22 (1956), pages 165 to 192. Hugh Thurston, Greek and Indian planetary longitudes, Archive for History of Exact Sciences, volume 44 (1992), pages 191 to 195.
134. Otto Neugebauer, Tamil astronomy, Osiris, volume 10 (1972), pages 252 to 276.
135. Dictionary of Scientific Biography [DSB], New York, 1978, volume 7, page 360.
136. G.J. Toomer, Ptolemy's Almagest, New York, 1984, page 2.
137. B.R. Goldstein, The Arabic version of Ptolemy's planetary hypotheses, Transactions of the American Philosophical Society, volume 57 (1967), page 3.
138. N.M. Swerdlow and O. Neugebauer, Mathematical Astronomy in Copernicus's De Revolutionibus, New York, 1984, page 44.
139. Swerdlow and Neugebauer, pages 45 to 47.
140. Swerdlow and Neugebauer, pages 47 and 196.
141. $D S B$ (see note 135), volume 1, page 510.
142. J.B.J. Delambre, Histoire d'Astronomie du Moyen Age, Paris, 1819, page 209.
143. $D S B$, volume 1, page 511.
144. Delambre, page 211.
145. Mayan data from John E. Teeple, Mayan Astronomy, Washington, 1930; and J. Eric S. Thomson, Maya Hieroglyphic Writing, Norman, 1950.
146. Venus almanac: extracted from pages 46 to 50 of the Dresden Codex.
147. Aveni: Archaeoastronomy in the Maya region, Archaeoastronomy, volume 3 (1981), pages S1 to S8.
148. Teeple, pages 71 to 74 .

148a. Dialogo di Galileo Galilei linceo . . . sopra i due massimi sistemi del mondo, Tolemaico e Copernicano, Firenze,1632. (Third day.)
149. Walter G. Wesley, The accuracy of Tycho Brahe's instruments, Journal for the History of Astronomy, volume 9 (1978), page 42.
150. Tychonis Brahe Dani Epistolarum Astronomicarum, Uraniborg, 1596, page 167.
151. J.L.E. Dreyer, History of the Planetary System from Thales to Kepler, second edition, New York, 1953, page 356.
152. The earth's rotation does cause bodies to fall nonvertically-by about 1 cm in a fall of 70 meters. See Alexander A. Mikhailov, on the quest of direct proofs of the earth's motion, Vistas in astronomy, volume 19 (1975), page 169.
153. Astronomia nova, edited by Caspar, Munich, 1929, Chapter VII.
154. A Aabæ, On a Greek qualitative planetary model of the epicyclic variety, Centaurus, volume 9 (1969), pages 1 to 10.
155. The Selected Works of Pierre Gassendi, Johnson Reprint Corporation, New York, 1972, page 121.

Answer to the question on page 197: The next day is 2 Ik 5 Pop.

Index

a 67
Aaboe, A. 255, 258
absin 67
Abu Qir 257
acrostic 117
adaru 20
Åkerblom, K. 252
Ale 62
Alexandria $119,148,150,152$
Algonkin 4
allul 67
Almagest 138-171. Also 129, 192, 205
almanac 69, 92, 199
Alphonsine tables 194
Altair 11
Amenhope 82
Ammasalik eskimos 11
Ammisaduqa 64
Anaxagoras 110
Anaximander 110
Andromeda 3
annular eclipse 149
anomalistic period $75,78,106,127$, 131-133
anomaly 75
epicyclic 133,162
of the moon 133,162
of a planet 162,169
zodiacal 164
ant on a millstone 9
antikhthon 111
Anyang 84
aphelion 223
apogee $129,160,208,214,244-245$
Apollonius 170
apparent direction 133
Aquarius 67,112

Ara 136
Arabic astronomy 32, 190-195
Arabic miles 121
Aratus 117, 124, 137-138
Archimedes 122
Arcturus 24, 136
area-rule 226
Ares 21
Argo 2, 137
Aries 67, 112
Aristarchus 122-123, 126, 128
Aristotle 117-119, 124, 206, 212
on Eudoxus 113
Ptolemy's criticism of 173
Aristyllus 152
armillary $35-41,94,214$
Āryabhaṭa $148,178-188$
Āryabhaṭīya 178-188, 207
astrolabon 35-38, 153-154
astrology 2,177, 213
astronomer-priests 53, 109
Astronomiae Instaurata Mechanica 215
Astronomiae Instaurata Progymnasmata 215
Atkinson, R.J.C. 54, 253
Aubrey holes 46,55
Aveni, A.F. 252, 258
azimuth 6,23
of moonrise 13-15, 49
of the rise of Venus 23
at Stonehenge 50
of sunrise $9-11,49$
Aztecs 96

Babylonian astronomy 7,64-81
constellations 2

Index

Babylonian astronomy (continued)
coordinates 66,74
eclipse intervals 19, 201
kings 141
length of the year 128
months 20
numerals 124
periods, synodic and sidereal 80 , 127
zodiac 67
backsight 10,215
Baghdad 193
Baikari 2
baktun 197
Ballochroy 56
barley-corn 74
al-Battāni 194
Batu Salu 10
bear 4
Bei hai 101
bei tou 4
Beijing 101
β Scorpii 26
big dipper 4
Brahe, Tycho (Tyge) 41, 152, 174, 210-217
Brahmā 178, 187
Brahmagupta 178
branches, celestial 87
brightness, apparent 152
Britton, J.P. 257
Brown, P. Lancaster 253
bushmen 2
calculations (contrasted with observations) 64
calendar $20,87-89,141,196,202$, 203
and see under Babylonian, Chinese, Egyptian, Greek, Mayan
"calendar," diagonal 83
calendar-maker 189
calendar-round 197
Callanish 55
Callender, H. 254
Callipic cycle 126
Callipus 112, 117
Cancer 67
Canopus 120, 138
temple of 257
Capricornus 67
Casa del Gobernador 23
Cassini 113
Cassiopeia 12, 213
celestial equator 6,32
latitude 7, 32, 36
longitude 32, 36, 38
pole $5,7,26,36,97$
sphere 1,109
model of 5
rotation of $5,24,188$
size of $1,90,94,172,179$
Cetus 137
Charles's wain 4
Charrière, G. 51
chi 87
Chinese astronomy 84-109
calendar 87-89
comet recorded by 124
constellations 4
coordinates 4,85
instruments 38-41
names of planets 21-22
vertical rod (gui biao) 96-97, 101
chords 128, 138, 237-238
Chukchi 2
circumpolar template 94
Cleomides 121
clockwise epicycles 170-171,246247
Codex, Dresden 23, 199-201
coffin lids 83
Columba 138
Columbus 121
Columella 254
comet $84,85,124,174,207,211$
conjunction 69, 95, 212
constellations $2,85,155$
constancy of 125,150
on the moon's path 65
origin of 4,135
continued fractions 199
Cooke, J.A. 254
Copan 203
Copernicus 1, 113, 146, 205-211, 222
Coriolis force 207
cosmology 90
crank 160, 163; see also 145
Croft Moraig 51
cross-staff 212
crystalline spheres 173
culmination 65
cun 87
Cygnus 2

Daming 93, 100
Da tong 107

Dadu 101
date, Ptolemy's method of citation 141
see also calendar
day 9
daylight, length of 124
De caelo 117
De nova stella 213
De revolutionibus 205
decan 82
declination 7,32,57, 151
of the moon 15,56
of the sun $11,44,57-58$
deferent $133,143,145,148$
degree 71
Delambre, J.B.S. 258
diagonal calendar 82
Dilbat 21
al-Dīn, Naṣir 191
al-Dīn al-Shirazi, Qutb 192
dioptra 124
distances of heavenly bodies 91,113 , 123, 147
dodecametorion 66
Doig, P. 256
draconitic month 18
Dresden Codex 23, 199-201
Dreyer, J.L.E. 210
du 84
Duke, Edward 253
Dun Ruadh 51
earth, movement of $4,111,121-122$, 188
shadow of $18,19,111,149$
shape of $90,111,118,138$
size of 118, 119-121, 179
eccentric 121, 131, 158, 173, 222
eccentric-quotient (or -distance) 129, 164, 168, 183, 208-209, 218, 224, 244-245
eclipses 17-19
annular 149
causes of $13,85,95,111$
consequences of 95
intervals between $18-19,150,202$
magnitude of $75,85,143,150$
prediction of 19, 212
by the Babylonians 19, 66
by the Chinese 19,85
by the Indians 189
by Thales 110
at Stonehenge 55
trios of $133,143,240-243$
in the Āryabhațiya 187
in the Babylonian tablets 69, 74-75
in the Dresden Codex 201-202
used for lunar parameters 133,143, 240-243
ecliptic 9,13,68
see also obliquity
Egyptian months 141
Egyptians 7, 8, 24-26, 82-83
elongation 22, 79, 160
Enoptron 117
Eosphoros 21, 110
epagomenal (= extra) days 20, 196
ephemerides 71,78
epicycle 132-133, 143, 156-173, 181-184, 208, 246-247
epicyclet 208, 218
epicyclic anomaly $132,146,162$
Epitome Astronomiae Copernicanae 233
epoch (= zero-date) 141, 172
equant $164,217,222,225$
equation of time 142
equinox 10,112
in Arabic astronomy 94
in Babylonian astronomy 73
in Chinese astronomy 94
in Greek astronomy 112, 125, 130, 140
Eratosthenes 119-120, 137, 139
Eridanus 137
errors (inaccuracies) $100,124,128$, 141
in longitudes 169, 170
in the moon's latitudinal parameters 144, 148
in the winter solstice $104-105$
see also length of the year, foreshortening, distance of the sun and moon, obliquity
eskimos 11
Euclid 112
Euctemon 66, 128, 254
Eudemus 117
Eudoxus 112-118
Evans, James 257
exeligmos 127
falling bodies $210-211$
finger 75
first gleam sunrise 49
Fischer, Irene 256
foreshortening 143
foresight $10,53,215$
Foucault 10, 207
Fowler, D.H. 139
Frederick II 214
full moon 13, 15, 71, 145
gaitian 5, 90, 94
Galileo 206, 233
gan 88
Gardiner, A.H. 255
Gassendi, P. 211
Ge Hong 94
Gemini 2, 67, 117
Geminus 113, 146, 255
Genna 21
Geographica (Strabo) 119
geographical treatise (Ptolemy) 177
geometry 122
geostatic 206
gir 3, 67
gir-tab 67
glyph 23
gnomon ($=$ vertical rod) $26-31,66$, 119
Chinese (gui biao) 27, 91, 96-99
goal-year 69
Goldstein, B.R. 257
graha 182
Great Bear 2, 82, 117
great circle 2
Greek astronomy $1,24,110-177$
and Babylonian astronomy 123 , 128
constellations 3
coordinates 32
and Indian astronomy 178
months 20,141
names of the planets 21
numerals 123
Gregorian calendar 203
gи 67
gu-ad 21
gu-utu 21
guest stars 84,95
gui biao 27
gula 67
Guo Shoujing 29, 102
Gustav Adolf 213

Hadingham, Evan 249

Hagar, Stansbury 252

Hakemite tables 174
half-moon 122, 145
Harkhebi 82
Harmonice Mundi 233
Hartner, Willy 110
Hawkins, Gerald 51,55
al-Haytham, Ibn 192
heel-stone 45-49
Heggie, Douglas 213
heliacal rising ($=$ first visibility) 24 , 69, 199
in Babylonian tablets 79-80
in Egyptian astronomy 82
in the Almagest 171
heliacal setting (= last visibility) 69, 79, 199
heliocentric 206
heliostatic 206
Heraclides 122
Heraclitus 110
Hermes 21
Herodotus 110
Hesiod 24
Hesperus 21, 110
Hipparchus 123-135; also 8, 78, 208
in the Almagest 140, 143-146
on Aratus 124
Hipparchus's ring 112,126
hippopede 115
hippos 3
Ho Peng Yoke 255
Hopi 10
horizon 50, 137
Hottentots 2
Hou Han shu 93
Hoyle, Fred 54, 55
Hsüeh Chung-san 255
hull down 118, 138
hun 67
huntian 90, 94
Huo xing 21
Hveen $=$ Hven 214
Hydra 3, 136, 138
Hypotheseis ton planomenon 1,172$173,179,207$
iku 3
inclination (of the moon's orbit) 13, 16, 148
"Indians" (American) 4, 121
infinite sky 1,206
instruction-tablets 71
intercalation $20,89,92$

Iroquois 4
irregularity 7
of the moon $17,75,114$
of the sun 72, 78, 114
Islamic (= Arabic) astronomy 32

Jesuits 109
jian 89
Jin shu (older spelling Chin shu) 9495
jin xing 21
Jones, H. Spencer 248
Jupiter 21
in Babylonian astronomy 69, 79-81
in Chinese astronomy 94, 108-109
in Greek astronomy $159,169,170$
in Indian astronomy 179, 184
Jupiter stations 94
kakṣyamāndala 180,183
kaksyāvrtta 180
Kaltenbrunner, F. 254
Katasterismoi 137
katun 197
ke 90
ke xing 95
Kepler 13, 217-233
al-Khwārizmi 190
Kronos 21
Krupp, E.C. 252 and photographs
Krupp, R.R. photographs
kushu 67, 68
Kusumapura 178

LaPlace 99, 104
latitude 32
of the devisers of the constellations 135
of Mars 221
of the moon 74, 143
of planets 114,170
of stars 153
latitudinal period $18,75,78,127$
laws
Kepler's 222-223
Newton's 233
Leo 2, 67, 117, 135, 160
Lepus 137
Lewis (Scotland) 55
Lewis, D. 252
li 87

Li Ti 255
Libra 67
Lui Chuo 86
Loanhead of Daviot 51
Lockyer, Norman 252
long-count 197
longitude 32,69
longitudinal period 166
see also sidereal period
Lounsbury, Floyd G. 251
Loyang 100
lu 67
luhunga 67
luni-solar calendar 19

MacKie, E.W. 249
madhya 182
magnitude of eclipses $75,85,143,150$ of stars 152
Malmström, V.H. 254
al-Ma'mun 193
manda 182, 187
mandakendra 182, 187
mandocca 182, 184
Manilius 254
Maoris 2
maps, Chinese 85
Maragha 193
Mars 21
in Babylonian astronomy 69,79
in Chinese astronomy 86
in Greek astronomy 116, 159, 166170
in Indian astronomy 179, 184
Kepler on 218-232
mash 67, 68
másh 67
mashtabba 67
Maspero, H. 255
Maunder, E.W. 8, 135
Mayas 14, 23, 196-204
mean elongation 160
mean longitude 133
mean moon 133
mean solar day 141
mean solar time 141
mean sun 130, 223
Mecca 195
Melanesia 10
Mercury 21
in Babylonian astronomy 69, 80
in Chinese astronomy 86
in Indian astronomy 179,184

Index

Mercury (continued)
Copernicus on 208
Ptolemy on 159-163
Meru 187
Metaphysics 117
Meton 66, 111, 128
Metonic cycle 20
mi 95
Micmac 4
Micronesia 11
midday ($=$ noon) 26
midnight 9
midsummer 8,30
interval to midwinter 11
at Stonehenge 48-50
see also solstice
midwinter 11, 54
see also solstice
Mikhailov, A.A. 258
miles, Arabic 121
Miletus 141
milky way 94
Ming shi 98, 107
mo xian 107
month $13,20,82,87,88$
length of $68,75-78,89,127$
names of 20
moon 12-21
in Babylonian astronomy 65-78
in Chinese astronomy 85,106
in Indian astronomy 181
in Mayan astronomy 198-199
Copernicus on 208-209
Eudoxus on 113-114
Hipparchus on 131-133, 240-241
Ptolemy on 143-148, 240-241
anomalistic period of $75,106,127$, 131-133
declination of 15,16
full $13,15,71,145$
half 122,145
inclination of (to the ecliptic) 13, 16, 148
irregularity of $17,75,114$
latitude of 74-75, 143
latitudinal period of 127,143
megaliths and 49,56
new 15,71
orbit (path) of 13,64
parallax of 146-148
size and distance of 113,122 , 147-148
velocity of 76-77
moonrise $13,15-16,49,68$
moonshine 110
motion of the earth $4,111,121-122$, 188
$m u$ xing 21
mul 66,67
mul-apin 64
mul-babbar 21
music of the spheres 111

Nabu-nasir 141, 172, 179
Nakayama, S. 255
nangar 67
Nanhai 101
Nanjing (Nanking) 99
Naṣir al-Dīn 191
navigation 11
Needham, Joseph 250
Neugebauer, Otto 64, 71, 78, 115, 187, 204, 255
Newgrange 12
new moon 15, 71
new year (Chinese) 87
Newham, C.A. 253
Newton, Isaac 207
Newton, R.R. 144, 171
Nibiru-maruk 21
Nile 8, 119
Nilsson, M.P. 252
Nindaranna 21
Nine maidens 57
nisannu 20
node $13-14,74,143,179$
Nohpat 23
noon 26-27, 30, 96-99, 102-103
north 26
Norway 10
notch (in horizon) 57-58, 60-61
nova 95
numerals
Arabic 190
Babylonian 69, 124
Greek 123
Indian 178
Mayan 198
obliquity 9,25
estimates of $9,44,96,105-106$, 148,194
in armillaries 35
in Chinese astronomy 105
in Indian astronomy 179
Ptolemy on 139-140
observations (contrasted with
calculations) 68
O'Kelly (O Ceallaigh) 252
omens 94-95
opposition 13, 21, 168-169, 219-224
oracle bones 84
orbit, shape of 227-233
orientation (of edifices) 11, 14, 23, 25-26, 45-63, 82
Orion 2, 82
Osiander 205
Ovenden, Michael 4, 135
$\begin{array}{ll}\text { pa } & 67\end{array}$
pabilsag 67
Palenque 199, 202
Pan Nai 255
Pannekoek, A. 249
Pappus 124
parabola 57
parallax 6,133
of Mars 220
of the moon 133, 146-149
of stars 149, 201
parameter 129,161
parapegma 111, 141
parhelion 95
Parker, R.A. 83
Parmenides 110
Pedersen, Olaf 250
Pegasus 3
Peking $=$ Beijing
pendulum 10
Peri megathon kai apostematon heliou kai selenas 122
Peri takhon 117
perigee 160,163
periodicity 110
Persia 86
Petersen, V.M. 257
Phaenomena 117, 136
Phaseis aplanon asteron 177
Philip of Macedon 172
$\pi 187$
Piggot, S. 253
Piini, E.W. 258
Pingree, David 250
Pisces 2, 67, 112
planetarium, mini- 5
planets 8,21
in Babylonian astronomy 79-81
in Chinese astronomy 86
in Greek astronomy 115-117, 155173
in Indian astronomy 181-187
Plato 146
Pleiades 2, 66
plinth 27, Figure 1.9
Pliny 119,124
plough 4
plumb-line 2, 31
pole (gnomon) 27-31, 66, 91, 96-99, 119
pole, celestial 5, 7, 24, 41, 97, 136
pole of a great circle 113
pole-star $5,24,141$
Polynesia 11
Pondicherry 188
Posidonius 120
power-drive 41
Prague 218
precession $24,34,79,135,150-153$, 170
prediction of eclipses 19,212
priestesses 11
Prodromos dissertationem cosmographicarum 218
proper motion 8
prosthaphaeresis 133,145
Prutenic tables 212
Psammites 122
Ptolemaic system 173
Ptolemy 138-177, 206, 239, 244-245
his geographical treatise 121
on Hipparchus 124, 134
his instruments 27, 35-38
on the size of the earth 121
on the size of the universe 1,172
pyramids 25-26
Pythagoras 111
Pythagoreans 111, 146

Qian Han shu 93
qi-lin 92
quadrant 28, 32, 212
radius-rule 226
Rahu 179
Raqqa 194
ratio 129,161
Rawlins, Dennis 119, 120, 128
rectangle $45,50,53$
reference-object 38
reference-stars 155
refraction $6,24,50,112,214$
regression of the nodes 14,74

Index
regular (uniform) circular motion 146
Rehm, A. 254, 257
reign-period 87
Relativity 207
retrograde motion
in the Almagest 157, 164, 170
in Babylonian tables 79
in Chinese astronomy 86, 109
of comets 207
in Eudoxus's theory 114
retrogression 21, 164
of Venus 22
Rhodes 120, 124, 137, 152
ri fa 93, 105
Ricci Matteo 41, 253
right ascension 32, 142
rin 67
rising, direction of $9-10,13-15,23$, 136
rising-times of ecliptic arcs 74
of constellations 136
river of heaven 94
rod, vertical (= gnomon) 26, 66, 91, 119
Roman months 20
Roslund, C. 254
Rothman, Christopher 210
Rudolph II 215
Rudolphine tables 236
Ruggles, Clive 58
Russia (reports from) 85

Sagittarius 67
sahurmash 67
Salbatani 21
Samarkand 32, 193
San guo zhi 93
San tong 92-93
Sanskrit numerals 178
Sarawak 10
Sarmizegetusa 51-52
Saros 19, 75-78, 127
Saturn 21-22, 159
in Babylonian astronomy 80
in Chinese astronomy 86
in Indian astronomy 179, 184
Sayil, A. 258
Schiaparelli 116
schoenus 252
Schwartz, C. 256
Scorpio or Scorpius 3, 67, 135
sea-shell 189, 198
seasons, length of 111,131

Seleucid era 72
Severin, Christian 140, 214, 218
sexagesimals 69, 123
sextant 212, Figure 10.6
shadow, earth's $18,111,118$
of a rod 27-31, 96-103
Shandu 101
al-Shātir, Ibn 192
she 74
shi 90
Shi Shen 92
Shi ji 93
Shou-shi 102-108
Shu jing 84
Shuixing 22
sidereal day 9,179
period $80-81,116,127,159,179$
see also longitudinal period 166
year 25
sifen almanac 86
śigh hra
182, 186
síghrakendra 185, 186
śĭhrocca 182, 184, 188
sign of the zodiac $66-68,112$
Simplicius 113, 116, 146
sine 179
Sirius 20, 82, 138
Skorpios 67
solar day 9,142
solar time 142
solstice 10
Chinese time of 90
determination of 10,57,97-99
observations at $44,91,96-99,103$
position on ecliptic 68
time-intervals from $11,25,111,130$
in tribal astronomy 10-11
used by Hipparchus 125
used by Ptolemy 140-141
see also midsummer
Somayaji, D.A. 187
Somerville, Boyle 56
Sosigenes 146
south 26
Southern Cross 2
sphuṭa 182, 185
sphutamadhya 185
Spica 135
stade 119
stars, Ptolemy on 150-155
list (catalogue) of 38, 64-65, 85, 124
station-stone 45,50
statistics $54,137,152$

Stephenson, F.R. 96
Stilbon 222
Stonehenge 10, 45-55
Strabo 119, 256
Stukely, William 51, 256
Sui xing 22
Sultan of Turkey 213
sun 8-13
in Babylonian astronomy 71-73
in Chinese astronomy 91
in Greek astronomy $113,128-131$, 140-143
in Indian astronomy 179-181
declination of $11,44,58$
distance of $91,123,149,179$
irregularity of $11,72,92,114$
megaliths and 45, 48-62
size of $110-111,122$
sunrise $9-11,48-50,68$
sunset $4,9-11,57,68$
sunspots 85,172
supernova 95,212
Swerdlow, N.M. 258
Syene 119
synodic month 13
synodic period $21-23,80,86,157$, 159,200
Syntaxis 138
systems A and B 78
table of chords $128,139,236-237$, 239
of eclipses 201-202
of the moon's motion 106-107
of parallax 149
of planets' motions $86,108-109$
of sines 180
of the sun's motion 141
Alphonsine 194
Hakemite 194
Prutenic 212
Rudolphine 236
Toledan 194
Tai shi ling 101
Tang dynasty 87,96
target-practice analogy 152
Taurus 67,135
Techne Eudoxou 117
Teeple, John E. 202, 251
telescope (constellation) 2
template 94
temple 11,53
Tetrabiblos 177

Thales 110
Thom, Alexander 51-58, 249
Thompson, J.E.S. 251
Thompson, R.C. 254
thoth 20, 141
tides 206
Timocharis 135,152
Tlingit 2
Toledan tables 194
Tong dian 105
Toomer, G.J. 128, 237
top, spinning 25
transversal 215
tribal names of stars 2
trigonometrical tables $128,139,180$
trilithon 45,50
tropical year 25
true direction 132
true (as opposed to mean) 223
trunks, celestial 88
tu xing 21
tun 197
al-Tūsi 192
Tycho (= Tyge) Brahe $175,210-218$

Udaltar 21
uinal 196
Ulugh Beg 32, 193
ulūlu 20
umbrella 5
uniform (regular) circular motion 146
ura 67
Uraniborg 214
ush 71
Uxmal 23

Van der Waerden 250
variance 152
Varuna 187
Vedic 178
Veen 214
velocity of the moon $76,77,106-108$
of the sun 72,78
Ven 214
Venus 21-23
in Babylonian astronomy 69,80
in Chinese astronomy 86
in Greek astronomy $154,163-166$
in Indian astronomy $179,181-185$
in Mayan astronomy $14,199-201$
$=$ Hesperus 110
vernal (spring) equinox 38

"Viking ship" 62
Virgo 67
Wang Chong 85
Wang Xun 101
Wesley, W.G. 258
winter solstice 90,104
Wood, J.E. 249
Xanadu 10 Xia xiao zheng 92 xiu 4,85
Babylonian estimate 128
Brahe's estimate 214
Chinese estimates 92-93, 101, 105
Hipparchus's estimate 126
Indian estimate 179
length of 194
rough estimate 9
supposed Mayan estimate 204

Virgo 67

Wang Chong 85
Wang Xun 101
Wesley, W.G. 258
whole disc sunrise 49
winter solstice 90, 104
Wood J.E 249

Xanadu 10
Xia xiao zheng 92
xiu 4,85
xuanye 90,94

Yangcheng 32, 94
year $9,25,87$
Babylonian estimate 128
Brahe's estimate 214
Chinese estimates 92-93, 101, 105
Hipparchus's estimate 126
Indian estimate 179
length of 194
rough estimate
supposed Mayan estimate 204
yi jing 94
ying fu 29
yojana 179
Yuan shi 98, 101-109
Yucatan 23
yuga 179
Yūnus, Ibn 194
zenith 137
zero 70, 109, 198
zero date 141, 172, 197
Zeus 21
zib 67
Zieljahrtexte 69
zhi 87
zhi yuan 102
Zhou bei suan jing 90
zibatanu 67
zib-me 67
zig-zag 76-78
zodiac 66-67, 111
and precession 142
zodiacal anomaly 164
zodion 66
Zu Chonzhi 97
Zulu 10
Zuñi 10

