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1. Introduction

To write about combinatorics in ancient Greek mathematics is to write about an
empty subject. The surviving evidence is so scanty that even the possibility that “the
Greeks took [any] interest in these matters” has been denied by some historians of mathe-
matics.1 Tranchant judgments of this sort reveal, if not a cursory scrutiny of the extant
sources, at least a defective acquaintance with the strong selectivity of the process of
textual transmission the ancient mathematical corpus has been exposed to – a fact that
should induce, about a sparingly attested field of research, a cautious attitude rather than
a priori negative assessments.2 (Should not the onus probandi be required also when
the existence in the past of a certain domain of research is being denied?) I suspect
that, behind such a strongly negative historiographic position, two different motives
could have conspired: the prejudice of “ancient Greek mathematicians” as geometri-
cally-minded and the attempt to revalue certain aspects of non-western mathematics
by tendentiously maintaining that such aspects could not have been even conceived by
“the Greeks”. Combinatorics is the ideal field in this respect, since many interesting
instances of combinatorial calculations come from other cultures,3 whereas combina-
torial examples in the ancient Greek mathematical corpus have been considered, as
we have seen, worse than disappointing, and in any event such as to justify a very
negative attitude. The situation was somewhat complicated (and the obscurity of the
reference was taken as index of its unreliability) by the fact that the most relevant piece
of evidence is the following, astonishing passage in Plutarch’s De Stoicorum repug-
nantiis:

ajlla; mh;n aujto;" ta;" dia; devka ajxiwmavtwn sumploka;" plhvqei fhsi;n uJperbav-
llein eJkato;n muriavda" ou[te di’ auJtou' zhthvsa" ejpimelw'" ou[te dia; tw'n
ejmpeivrwn tajlhqe;" iJstorhvsa". [. . .] Cruvsippon de; pavnte" ejlevgcousin oiJ ajr-
iqmetikoiv, w|n kai; ‘′Ipparcov" ejstin ajpodeiknuvwn to; diavptwma tou' logis-

1 Biggs 1979, p. 114.
2 In this respect the position of Rome, who says that an attentive “dépouillement des ‘mathe-

matici graeci minores”’ is needed (Rome 1930, p. 104), appears more reasonable, even if his study
clearly displays a strong skepticism about the ancients’ achievements in the field.

3 See e.g. Biggs 1979 on this.
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mou' pammevgeqe" aujtw/' gegonov", ei[ge to; me;n katafatiko;n poiei' sumpe-
plegmevnwn ajxiwmavtwn muriavda" devka kai; pro;" tauvtai" triscivlia tes-
saravkonta ejnneva to; d’ ajpofatiko;n ejnakovsia penthvkonta duvo pro;" triav-
konta kai; mia/' muriavsi. (1047c-e)

But now he [Chrysippus] says himself that the number of conjunctions produced by means
of ten assertibles exceeds a million, though he had neither investigated the matter care-
fully by himself nor sought out the truth with the help of experts. [. . .] Chrysippus is
refuted by all the arithmeticians, among them Hipparchus himself who proves that his
error in calculation is enormous if in fact affirmation gives 103049 conjoined assertibles
and negation 310952.4

Past attempts at explaining these numbers (which I shall call henceforth Hipparchus’
first and second number) have been completely unsuccessful,5 and historians of sci-
ence and of logic have generally been bound to a sceptical attitude about the subject.6

Recently, the numbers have been finally (and fortuitously) identified by experts of enu-
merative combinatorics: 103049 is the tenth Schröder number, 310952 is only very
slightly different from half the sum of the tenth and the eleventh such number.7 The
effects of this observation are disruptive: it is absolutely plain that the whole issue of
ancient Greek combinatorics must be reconsidered from an entirely different perspec-
tive, taking also into account that, as we shall see, comparatively refined techniques
are required to compute the above numbers. The fact is that the problem of identi-
fying Hipparchus’ numbers on the sole basis of the Plutarchean passage was simply
too difficult to be given a solution which were more than fortuitous, considering also
the widespread belief that, if combinatorics in “Greek mathematics” had existed, it
could not have gone beyond utterly trivial results. But this was not the case, and we
are forced to conclude that the vagaries of textual tradition have (almost) annihilated
the field. The historian of ancient thought is now compelled to face two distinct prob-
lems:

(i) To explain the numbers in terms of Stoic logic.
(ii) To reconstruct the calculations performed by Hipparchus; moreover, to try to

outline the composition of the combinatorial humus in which such calculations
must have grown out, possibly relating it to some extra-mathematical field of
research.

4 Plutarch 1976, p. 527. The translation is slightly reworked, insofar as the logical terms are
rendered in accordance with Bobzien 1999 (elsewhere, unless otherwise specified, all translations
are mine). The standard references on Stoic logic are Mates 1953 and Frede 1974. A very good
recent survey is Bobzien 1999, and see also Bobzien 1996. The extant fragments and testimonies
on Stoic dialectics are conveniently collected in Hülser 1987–1988, which has superseded the
corresponding portions of Von Arnim’s Stoicorum Veterum Fragmenta.

5 Biermann-Mau 1958.
6 See e.g. Heath 1921, vol. 2, p. 256; Neugebauer 1975, p. 338; Kneale-Kneale 1971,

p. 162; Biggs 1979, pp. 113–114; Rome 1930, p. 101; Toomer 1978, pp. 223–224.
7 Stanley 1997, Habsieger et al. 1998.
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My interest here is to reconstruct the way Hipparchus’ numbers were arrived at,
trying en passant to convince the reader that time has come for a reappraisal of ancient
Greek combinatorics. I shall provide only a resumé of the striking (to modern eyes)
interpretation of the numbers in terms of Stoic logic, leaving a wider discussion of the
logico-philosophical background for a separate study.

The present work is organized as follows. The rationale beyond the identification
of 103049 as the tenth Schröder number is briefly summarized in Sect. 2. Section 3
presents a short discussion of the Plutarchean passage, focussing on the technical lex-
icon employed, and an outline of the interpretation in terms of Stoic logic. Section 4
contains a discussion of combinatorial results in ancient Greek sources, with additional
evidence with respect to the one usually adduced, the data being organized in such a
way as to follow Hipparchus’ probable calculations. Section 5 offers some provisional
conclusions.

2. Hipparchus, Schröder, and Stanley

Schröder numbers were first introduced in Schröder 1870 in order to solve a series
of “bracketing problems”. Suppose a string of n letters to be given: it is requested to find
all possible ways to put the letters between brackets. The bracketing of a single letter
is always omitted, as well as overall brackets enclosing the whole string of letters and
brackets. A bracketing of a string of ten letters looks as follows:

(x(xx)x)xx(xx)(xx).

If s(n) denotes the number of possible bracketings of a string of n letters, then we
have8

s(1), s(2), . . . , s(11), . . .

= 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, . . . .

Hipparchus’ first number coincides thus with the tenth Schröder number s(10). This
striking observation has been published for the first time in Stanley 1997 (the discovery
is due to D. Hough). The Schröder numbers are of course the common solution of a
series of combinatorial problems. For instance, s(n) counts in how many ways non-inter-
secting diagonals can be drawn inside a convex polygon with n+1 vertices, or how many
trees there are with one single root and n endpoints (with the condition that no vertex
has one single further branch). The representation of the process of bracketing as a plane
tree takes into account the various levels of parentheses in a natural way, clearly showing
the recursive character of the operation. For instance, the plane tree which corresponds
to the above bracketing is

8 s(1) is in the list just as a matter of convention, very much in the same way as 0! is given a
sense and set equal to 1.
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An identification of Hipparchus’ second number has been proposed, too. Shortly
after Stanley’s paper, Habsieger, Kazarian, and Lando pointed out that (s(10) +
s(11))/2 = 310954, and proposed the following explanation: consider the “number of
bracketings on the string NO x1 x2 . . . x10, with the following convention: take the ne-
gation of all the simple propositions included in the first brackets that include NO. Since
the bracketings [NO[P1] . . . [Pk]] and [NO[[P1] . . . [Pk]]] give the same result, most of
the negative compound propositions will be obtained in two different ways; the only
case which is obtained in an unique way is when one only takes the negation of x1”.9

They also briefly commented on the discrepancy between their result and the second
number reported by Plutarch, suggesting a “misprint”, a mistake in the calculation, or
some reason connected with Stoic logic.

3. Stoic logic and Hipparchus’ numbers

3.1. Lexical features

The above Plutarchean passage is repeated almost verbatim in Quaestiones Conviv-
iales VIII 9, 732f, the main difference between the two texts being that the manuscript
tradition of the latter reports 101049 as first number (civlia instead of triscivlia). The
number has been restored to 103049 by Hubert on the sole basis of the De Stoicorum
repugnantiis passage.10 Presumably, Hubert regarded the falling of the prefix tris
during a transcription as more likely, in that its undue insertion is a highly implausible
mistake for a copyist: the former kind of mistake is made more likely by the fact that,
in the main manuscripts of the Plutarchean treatises, the numbers are not written with
numerals. (But this does not entail that during the whole tradition the numbers had never
been written with numerals. It is plausible instead that the opposite actually occurred,

9 Habsieger et al. 1998. The authors provide the terms x with unnecessary subscript indices.
NO denotes the negation, and is also the first term in the string of eleven terms NO x1 x2 . . . x10.
The Pi’s denote strings of terms and (possibly) brackets.

10 In the apparatus of the Teubner edition of the Quaestiones Conviviales one finds “add. Hu.
ex 1047 d” (Plutarch 1938, p. 296).
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since a scribal error is the most likely source of the discrepancy in the last digit between
Hipparchus’ second number as attested and as reconstructed by Habsieger et al.)

As we shall presently see, the relevant terms in the Plutarchean passage conform very
precisely to the lexicon of Stoic logic; since it is well known that (following the ancient
practice of quoting from memory) Plutarch often quotes inaccurately,11 this suggests
that he is actually consulting a source. It is convenient to stick to such an assumption
if we want to accept the received numbers as the correct ones, i.e. those originally cal-
culated by Hipparchus (even if, as we have seen, the last digit in 310952 is very likely
wrong). The identification of the first number as the tenth Schröder number strongly
supports such a working hypothesis as well as Hubert’s emendation, to the extent that
101049 cannot be given a reasonable combinatorial explanation.

3.2. Stoic logic, Hipparchus’ numbers

The Stoic “conjunction” (sumpeplegmevnon ajxivwma,12 or, interchangeably, sump-
lokhv) is defined as a non-simple assertible formed by means of the connective “and”: “A
conjunction is an assertible which is conjoined by certain conjunctive connectives, like
‘And it is day and it is light”’13. The truth values of a conjunction depend on the truth
values of the conjuncts: “In every conjunction, if one [among the conjuncts] is false,
even if the others are true, the whole is said to be false”.14 Referring to the conjunction,
Cherniss observes that “[t]hese technical Stoic definitions should have been assumed
by Hipparchus if his calculations were supposed to refute Chrysippus (though the lat-
ter may himself have used sumplokhv non-technically in the context criticized)”.15 The
bracketed part of Cherniss’ suggestion should more properly be applied to the linguistic
distinction Plutarch himself introduces (that is to the problem whether he was able

11 Cfr. Ziegler 1951, especially cc. 915.15 ff. and 928.10 ff..
12 “Assertible” (ajxivwma) is a technical term: it is defined (see e.g. Sextus Empiricus, Pyrr.

Hyp. ii.104) as a “self-complete sayable that can be stated as far as itself is concerned”. More-
over, the assertibles are the carriers of truth-values: “an assertible is that which is true or false”
(Diogenes Laertius, Vitae Phil. vii.65). It is crucial for our interpretation to keep in mind that
the former is the definition of ajxivwma, the latter its main property.

13 kai; hjmevra e[sti kai; fw'" e[sti (Diogenes Laertius, Vitae Phil. vii.72). I have chosen
to translate the prefixed kai; in such an unidiomatic and uncommon way (“both. . . [and]” would
have been the standard choice) for two reasons. First, the prefixed kai; is unidiomatic in Greek as
well; as we shall see below, prefixing particles was a peculiarity of “Stoic syntax” in strictly tech-
nical contexts. Second, using “both. . . and” entails introducing a lexical differentiation between
the first conjunctive particle and the others in a conjunction, a feature not shared by the Greek
original expression. (My choice of translation has been induced by some very pertinent criticisms
by Henk Bos).

14 “In omni autem conjuncto si unum est mendacium, etiamsi cetera vera sunt, totum esse
mendacium dicitur” (Aulus Gellius, Noctes Atticae xvi.8.11). Cfr. also Sextus Empiricus,
Adv. Math. viii.125. Notice that the one referring to the truth values is not the definition of “con-
junction”: the definition is purely syntactical. Other Stoic connectives, e.g. disjunction or several
forms of implication, are not even truth-functional.

15 Plutarch 1976, p. 527 note c.
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to appreciate the pregnancy of the technical terms in his source or not): when referring
to Chrysippus he speaks of sumplokav", while Hipparchus is said to have calculated
the total number of sumpeplegmevnwn.16 At any rate, all that we are interested in are
Hipparchus’ calculations, so that ascribing to him the use of the main technical term
for “conjunctive assertible” is highly significant.

Two main features characterize the Stoic conjunction:

(i) It is an n-place connective, as clearly results from e.g. the second negated conjunc-
tion in the following Chrysippean statement reported by Plutarch: “[. . .] it is not
the case that the day is a body [and] it is not the case that and the first day of the
month [is] a body and the tenth and the fifteenth and the thirtieth and the month and
the summer and the autumn and the year”.17

(ii) As the preceding examples show, one of the connectives was prefixed to the first
constituent assertible: i.e., the standard form of a conjunction was “and. . . and. . .

and. . .” (“kaiv. . . kaiv. . . kaiv. . .” – “et. . . et. . . et. . .” in Latin sources).

A similar rule held for disjunction. In an analogous way a negation (ajpofatikovn)
was always formed by prefixing to a whole assertible the particle ‘not’.18 It is clear that
the above rules were intended to avoid the ambiguities which could arise in the case of
(incorrectly formed) assertibles such as “the first and the second or the third”, or “not the
first and the second”.19 The case of negation excepted, no explicit discussions of these
prescriptions are attested, but, in technical contexts and whenever points are touched on
in which ambiguities could arise, the prescription is adhered to with remarkable consis-
tency: assertibles are often encountered where a negated conjunction is expressed in its
complete form: “It is not the case that and it is day and it is night (oujci; kai; hjmevra e[sti
kai; nu;x e[sti)”.20 Moreover, even if no original Stoic work on logic has come to us,

16 Aristotle employed both terms in the broader sense of “compound expression”. A good
sample of their use is already provided by the Categoriae and De interpretatione, but see also
Bonitz 1870, p. 718 sub vocibus (cfr. also Sect. 4.2.3 below). The restriction of sumplokhv to a
technical term for “conjunction” only was regarded as a distinguishing feature of Stoic logic: “We
say that those are followers of the Stoics who have reserved the name sumplokhv to the utterance
containing the conjunctive connective only; Aristotle, who came before them, followed the cus-
tom of the ancients, who called sumplokhv the assemblage of several parts of speech” (Dexippus,
In Arist. Cat., pp. 22.18 ff. (Busse)). Plutarch very likely intended sumplokhv in its broader
sense: in Quaestiones Conviviales 733b both Chrysippus’ claim and Hipparchus’ correction are
referred to in order to support the statement that, given all kinds of aliments and drinks the body
assimilates, and given the various metabolic processes within the latter, “the sumplokaiv of all
these can sometimes produce new and unfamiliar diseases”.

17 De communibus notitiis adversus Stoicos 1084d. Translation from Plutarch 1976, p. 859,
slightly reworked. Cfr. also Aulus Gellius, Noctes Atticae xvi.8.10.

18 oujk, oujciv,. . .; see e.g. Sextus Empiricus, Adv. Math. viii.89.
19 The Stoics used such a way of writing (non-simple) assertibles in the representation of a

generic argument called its mode. A modern transcription of the given examples could be a ∧ b

∨ c and ¬a ∧ b – where a, b, c are propositional variables –, which are not well-formed as well,
unless further rules for handling connectives in a parentheses-free notation are spelled out.

20 See e.g. Sextus Empiricus, Adv. Math. viii.226. There is a very important passage in
Alexander (In An. pr., pp. 401.16–405.16 (Wallies)) attesting to the care with which the Stoics
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“formalistic” issues such as forming unambiguous expressions are of the kind the Stoics
were criticized for in antiquity.21 The works devoted to such arguments were thus the
most suited to be left out in the process of textual transmission, whereas the arguments
themselves were the less suited to be resumed in philosophical debates outside the an-
cient Stoa. Among Chrysippus’ writings, as listed by Diogenes Laertius, we find a
treatise in two books “On the conjunction”,22 as well as seven treatises (in seventeen
books) dedicated to various forms of ambiguity (ajmfiboliva).23 On the other hand, as
we have seen and shall see just below, our sources attest to a careful effort to avoid
ill-formed expressions, and the possibility that some technical treatises had contained
sharper prescriptions cannot be ruled out. For what concerns us, the care in avoiding
ambiguity in the use of the connectives means that both the lexicon by means of which
the connectives were expressed, and the relative position in non-simple assertibles of
both the connectives and the constituent assertibles, were strictly fixed. In this way,
the logical properties of non-simple assertibles were determinable through a syntactical
analysis.

Representing a sequence of assertibles as a string of letters, a correspondence be-
tween bracketed strings of letters and conjoined assertibles immediately suggests itself.
On the affirmative side, it is enough to conjoin all the assertibles corresponding to the
letters contained in each bracket, considering every nested bracket as a non-simple as-
sertible to be conjoined with the rest of the collection of assertibles/brackets lying at
the same level. Let us stop and consider such a prescription from the point of view of
first-order propositional logic: the connective “and” is associative (the fact of being two-
or n-placed is immaterial exactly for this reason), so that every conjunction/bracketing
actually collapses and gives rise to the same proposition: the logical product of the con-
stituent propositions. In general, the criterion by which different molecular propositions
are distinguished is grounded on their truth-table: since all possible conjunctions of the

discussed the various ambiguous (dittovn) expressions arising from not placing the negation pre-
fixed to the whole sentence to be negated. A paradox generated by playing with ambiguity in the
scope of the negative particle oujciv is reported in Sextus Empiricus, Pyrr. Hyp. ii.241 (cfr. also
Pyrr. Hyp. ii.231).

21 See for instance Galenus, Inst. Log. iv.6 (Kalbfleisch): “The followers of Chrysippus, fix-
ing their attention more to the manner of speech than to the things spoken about, use the term
‘conjunction’ for all propositions compounded by means of the conjunctive connectives, whether
they are consequents of one another or incompatibles” (translation from Mates 1953) and cfr.
Lukasiewicz 1957, pp. 18–19; Frede 1974, pp. 198–201; Bobzien 1999, pp. 103–104. See also
Galenus, Inst. Log. iii.5 (Kalbfleisch) and Alexander, In An. pr., p. 283.28–30 (Wallies). Recall
moreover that the Stoics introduced the notion of subsyllogistic argument in order to classify those
arguments not sharing the exact linguistic format of the corresponding syllogisms, but equivalent
to them. As an example, “If the first, the second. But the first. Therefore the second” (a mode of
a first indemonstrable) is a syllogism, whereas “The second follows from the first. But the first.
Therefore the second” is subsyllogistic (See Alexander, In An. pr., p. 373.31–35 (Wallies) and
Galenus, Inst. Log. xix.6 (Kalbfleisch)).

22 Peri; tou' sumpeplegmevnou pro;" ’Aqhnavdhn a v b v (Diogenes Laertius, Vitae Phil.
vii.190).

23 Diogenes Laertius, Vitae Phil. vii.193.
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same terms have the same truth-table, irrespective of where the brackets have been put,
they are the same proposition.24 The correct number in Chrysippus’ statement would
then be 1. As we have seen, Stoic logic provides instead for a way out from such a
collapsing: a kai; must be prefixed in a conjunction. Hence, “and and the first and and
the second and the third and the fourth” and “and the first and the second and and the
third and the fourth”, to which the bracketed strings (x(xx))x and xx(xx) unambiguously
correspond,25 count as different conjunctions, insofar as they are syntactically distin-
guishable.26 It is easy to see that almost every bracketing gives rise to one and only
one conjoined assertible: there is in fact a residual ambiguity left. Take for instance the
strings (xx)xx and (xxx)x: they would admit the same expression: “and and the first and
the second and the third and the fourth”. Clearly, the problem lies in the fact that the rule
of prefixing the connective determines where to open the bracket, but not where to close
it. Hence, whenever in a bracketed string an arrangement occurs like this: . . . x)xx . . .,
the conjoined assertible corresponding to it could have been generated as well by the
slightly different string . . . xx)x . . .: the mapping from bracketed sequences to prose
statements as above is surjective but not injective.

Could the Stoics have detected the problem? Does it undermine the interpretation
just sketched? Two answers can be envisaged. First of all, Hipparchus’ results could
be viewed as an indirect evidence that at least in his milieu the ambiguity had been
resolved.27 In fact, we are told by Plutarch that “Chrysippus is refuted by all the
arithmeticians”, i.e. by people able to recognize whether a problem is well-formulat-
ed or not. Hence, even supposing Chrysippus had employed sumplokhv in its broader
meaning, a fact that could explain his claim that the conjunctions “exceed a million”, the
“arithmeticians” had to stick to a sharply determined meaning in order to set up their cal-
culations; moreover, without removing the ambiguity pointed out above no calculations
could have been carried out, and Hipparchus’ numbers attest to the fact that at least he
(and very likely the arithmeticians together with him) did not use the broader meaning
and attacked an ambiguity-free problem. Whether such moves were accomplished either
by the arithmeticians or by Chrysippus himself or by his followers we are not told nor
are we entitled to guess.28

24 Such a criterion underlies the modern result (originally proved by Schröder) that the num-
ber of distinct molecular propositions that can be formed from n given elementary propositions is
equal to 22n

(for a proof and a discussion see e.g. Hilbert-Ackermann 1950, pp. 18–19).
25 To be precise, the various x should have been differentiated, for instance using subscript

indices, in the same way as the several assertibles in the modes to which the bracketed strings cor-
respond are represented by a suitable numeral. But counting bracketings does not require at all that
the assertibles be differentiated, so I prefer not to introduce unnecessary notational complications.
See also the remarks in Sect. 4.3 below.

26 See also Bobzien 1999, p. 105 on this point.
27 Recall that Chrysippus lived between 280–276 and 208–204 B.C., whereas Hipparchus’

astronomical observations reported in the Almagest range from 147 to 127 B.C., and that the
field of logic was extensively developed by the Stoics well beyond Chrysippus’ times (cfr. e.g.
Bobzien 1999).

28 But strict adherence to the syntactic approach cannot be reasonably ascribed to dialecti-
cians much later than Chrysippus, even less to any arithmetician. The latter, or even Hipparchus
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Alternatively, suppose the ambiguity had not been detected by the dialecticians nor
by the arithmeticians. If we allow for the possibility that a sort of symbolic translation
had underlain the real calculations (and this could simply have consisted in an abstract
mathematical representation; see also the discussion under point 4.3 below), it is enough
that the rules of such a translation had been established for a proper subset of the less
subtle cases, namely the unambiguous ones, even if the “translator” was completely un-
aware of the fact that the prescription does not set up a one-to-one correspondence in all
instances. Once the problem is represented in mathematical language, the computational
procedures can independently produce a well-defined answer. The arithmeticians could
hence have unintentionally worked out a different problem with respect to the intended
one – provided we can speak of “intended problem” even if the problem is not properly
posed. Mathematics is a language that requires definiteness, and sometimes forces it in
problems that naturally arise as “unformalized” in character, or, as in our case, “for-
malized” but under another conception of “formalization”. Paradoxically, then, it may
have happened that neither the Stoics nor the arithmeticians had perceived the original
ambiguity in the Stoic prescription for conjunction.

To complete the correspondence sketched above, notice that the character of the
constituent assertibles is left undetermined, so that no permutation of them is required.
Moreover, the conjunction being at least a binary connective, the bracketing of a single
letter is forbidden, and it is understood that all the constituent assertibles have to be
conjoined. Hence counting conjunctions coincides with counting bracketings of strings
of letters, and the number of conjoined assertibles produced by means of ten assertibles
equals what is now called the tenth Schröder number, i.e. 103049.

Concerning the negative case, the very definition of ajpofatikovn entails that the
particle “not” must be prefixed to the assertible it negates, and that precisely this is the
feature making it an ajpofatikovn, regardless of the affirmative or negative (or non-sim-
ple) character of the original assertible.29 Supposing Hipparchus had calculated the
number of negative conjunctions via the same techniques he employed in the affirmative

himself, could have adopted the pragmatic attitude of considering, by stipulation and on the analo-
gy of the unambiguous cases, also the seemingly – i.e. syntactically – ambiguous ones well defined
(I owe this remark to S. Bobzien). At any rate, to remove the ambiguity an enclitic te could have
been placed after each nested conjoined assertible as in the following mixed Greek-English ex-
ample: kai; kai; the first kai; the second te kai; the third kai; the fourth, which is ungrammatical,
insofar as redundant, but is unambiguous – it corresponds to the bracketing (xx)xx.

29 The best testimony in this respect is in Sextus Empiricus, Adv. Math. viii.89–90, where
we are told that “[the Stoics] say in fact that ‘contradictory (ajntikeivmena) [assertibles] are those
which exceed (pleonavzei) each other by a negation’, e.g. ‘it is day’ – ‘it is not the case that it is
day”’; Sextus proposes then an objection – a conjunction in which the negation encompasses the
second conjunct only, being hence not contradictory of the original conjunction but nevertheless
exceeding it by a negation – and reports the reply of the Stoics: “Yes – they say – but they are
contradictory with this [added condition], that the negation is prefixed (protetavcqai) to one or
the other: for then it has scope over (kurieuvei) the whole assertible”. The rule of prefixing the
“not” is thus strictly functional to the requirement that the negation transforms one assertible into
its contradictory. Thus, if katafatikovn and ajpofatikovn in the Plutarchean passage are to be
taken in their technical meaning, they are assertibles which are one the contradictory of the other:
they are respectively an assertible without or with the prefix “not”.
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case, had he allowed for the insertion of further negative particles inside the string of
conjoined assertibles and had he taken into account all possible cases, a number which
is greater than the received one by several orders of magnitude would have been pro-
duced.30 Hipparchus must hence have followed the Stoic prescription of prefixing one
“not”. The latter cannot simply encompass the whole subsequent series of conjoined
assertibles: the resulting number of negative conjunctions would of course be equal to
103049. One must therefore allow for the “not” to act also upon an initial segment of
the string (in other words, the negation oujciv must be allowed to step over some among
the kaiv particles the conjoined assertible begins by). This way an unambiguous rule is
provided about which (sub)set of conjoined assertibles the negation actually has scope
over. Translating it into the language of bracketings, we are given a prescription sim-
ilar to that by Habsieger et al. quoted above: consider the number of bracketings on
the string ¬xx . . . x, with the following convention: take the negation of the conjoined
assertible corresponding to the first bracket that immediately follows ¬, otherwise take
the negation of the first assertible in the string. Since the bracketings ¬(. . .) and (¬(. . .))
give the same result, many of the negative assertibles will be obtained in two different
ways, the only ones which are obtained in an unique way being those in which the sign
¬ encompasses the whole string of letters and brackets.

It is not difficult to see that with the above convention one gets the same result as
Habsieger et al., i.e. that the number of negative conjunctions of n assertibles is (s(n) +
s(n+1))/2. In fact, the string ¬xx . . . x has n+1 symbols, the related number of bracket-
ings being thus s(n+1). As explained above, since the negation maps simple assertibles
onto simple assertibles, the same negative assertible corresponds in many cases to a pair
of bracketings, the exception being constituted by all configurations of the form ¬(. . .),
where the bracket contains all n symbols x, possibly further bracketed. There are exactly
s(n) such configurations: adding them again to the whole collection of bracketings of
¬xx . . . x, i.e. summing s(n) to s(n+1), every negative compound will correspond to one
(and only one) pair of bracketings, that is

s(n + 1) + s(n) = twice the number of negative conjunctions

from which the above result follows at once. As an example, I list the strings relative to
the seven negative conjunctions of 3 assertibles. The right column contains, in the case
of assertibles obtained in two different ways, the corresponding duplicates.

30 Recall, moreover, that every Stoic descripition of logical entities built up from assertibles is
formulated in a way that is independent of the affirmative or negative character of the constituent
assertibles (see on this e.g. Bobzien 1996, p. 137). To call a conjoined assertible an ajpofatikovn
would then have been justified only whenever the negative particle had been intended to act upon
a previously formed conjunction.
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(¬x)xx ¬xxx

(¬x)(xx) ¬x(xx)

((¬x)x)x (¬xx)x

(¬(xx))x ¬(xx)x

¬(xxx)

¬(x(xx))

¬((xx)x)

As s(11) = 518859, we are given this way 310954 as the total number of negative
conjunctions of ten assertibles and this leaves us with the discrepancy with the attested
310952. As far as I know, Stoic logic does not allow for the elimination of two cases, and
it seems very difficult to accommodate for the second number reported by Plutarch
without radically changing the interpretation. The hypothesis of a miscalculation is not
plausible either: the correctness of the result for s(10) entails that every s(n) with n ≤
10 had to have been correctly calculated (see the beginning of the next Section for the
details). Moreover, even if Hipparchus had also to compute s(11), a discrepancy of
two units only is suspect insofar as it is too low: by the very nature of the calculations
involved, an error at a certain stage is amplified exponentially by the subsequent steps.
It follows that a would-be mistake could have occurred only during the very final, trivial
steps in the calculation of s(11), computations whose exactness is very easy to check.
The safest attitude is perhaps, as suggested by Reviel Netz, to ascribe the discrepancy
to a mistake of a copyist, who read a numeral � (i.e. 4) as a shorthand for duvo. After all,
it is really surprising that such abstruse numbers, deprived of any supporting calculation,
have come to us affected by two scribal errors only (counting also the variant reading in
Quaestiones Conviviales for the thousands in the first number).31

4. Hipparchus’ calculations

My aim is now to inquire what kind of calculations Hipparchus performed. One of
the main reasons of interest of the whole issue lies in the mathematical techniques he
employed in order to reach a result which is impossible to obtain by direct inspection of
all possible cases. In other words, the sheer possibility of the calculations presupposes
acquaintance with some basic (in a modern perspective) facts of combinatorial analysis.
Stanley suggests,32 in order to compute the number of bracketings of a string of n
letters, an algorithm which is sufficiently effective and which could be regarded in some
sense as “natural”, since it explicitly takes into account the recursive character of the
process. It can be expressed by the following formula:

31 For comparison’s sake, see the wealth of variant readings in the extant (and highly corrupt)
Greek text of Archimedes’ Dimensio circuli.

32 Stanley 1997, p. 349.
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s(n) =
∑

i1+···+ik=n

s(i1) . . . s(ik), n ≥ 2 (∗)

where the sum is over all ordered partitions of n into k ≥ 2 positive addenda. In words,
one starts by fixing the first level of brackets, i.e. the more external one (here the repre-
sentation in terms of trees is useful). The building-blocks at this level are single letters
or brackets. To calculate the total number of possible bracketings given a specific con-
figuration of first-level brackets one has to take the product of the numbers of possible
bracketings associated with each building-block. The only non-trivial contributions to
the product arise when the building-block is a bracketed string made of i (2 < i < n) letters
and possibly further brackets, so that its contribution amounts to s(i). As an example,
take the bracketing of 10 letters in Sect. 2 above. There are five first-level building-
blocks: (x(xx)x), x, x, (xx), (xx), which can be associated with the following string of
digits, each corresponding to the number of x’s in the relative building-block: 4, 1, 1,
2, 2. With this partition of 10 fixed, the corresponding contribution to the sum (*) is
s(4)s(1)s(1)s(2)s(2) = s(4) since s(1) = 1 = s(2). Fixing the first level of brackets
corresponds to picking up one specific ordered partition of n, i.e. one specific addend
in the above sum. Summing over all possible partitions (i.e. all ways of fixing the first
level of brackets) we get the result. One is thus enabled to determine the numbers s(n)
in succession starting from the obvious s(2) = 1.

These calculations (and the combinatorial shortcuts which are necessary in order to
make the problem workable) could, I think, be a good approximation of what Hippar-
chus actually did. Around them I shall organize the following discussion of some direct
evidence of combinatorial results in ancient Greco-Roman sources.

4.1. Recursive arguments and proofs

The recursive character of the procedure described above is so patent that it could not
have escaped Hipparchus. A comprehensive survey of recursive methods in the ancient
Greek mathematical corpus would fall outside the aim of the present study. Yet, a se-
lected series of examples should suffice, I hope, to show that what we would nowadays
call recursive mathematical arguments were a matter of course over the whole range
of the corpus, though no systematic “metamathematical” thinking concerning such a
kind of arguments can be shown to have occurred (and very likely did not occur). In
particular, recognizing the widespread use of iterative proofs is a key element of the
present reconstruction, since such proofs constitute one of the main mathematical tools
founding any sort of combinatorial reasoning, especially whenever general rules and
results are to be found and subsequently to be expressed in compact form. I arrange
the examples by increasing degree of linguistic explicitness; the reader may note the
recurrent presence of standard words and phrases, which will eventually find a synthesis
in the verbal construct described under item g). The existence of a circumscribed and
stable linguistic wording for the iteration of a well-defined proof-step shows that the
entire process of iteration was recognised as an autonomous, meaningful unit in a proof,
ready to be transferred to other mathematical fields.
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a) Many instances of recursive reasoning in philosophical contexts can be adduced.
It is enough to recall, e.g., the Aristotelian definition of the continuum as “divisible into
further (aijeiv) divisibles”,33 or the argument of Archytas on the infinity of the Cosmos
(reach the boundary and then stretch out a hand),34 or paradoxical arguments such as the
“Sorites”. A form of the latter reads as follows: “It cannot be that if two is few, three is
not so likewise, nor that if two or three are few, four is not so; and so on up to (kai; ou{tw
mevcri) ten. But two is few, therefore so also is ten”.35 The allusion to the paradox made
in Sextus Empiricus, Pyrr. Hyp. iii.80 contains the adverb ajeiv to express the iteration.

b) Concerning the much debated problem of the existence of proofs by complete
induction in the ancient mathematical corpus, I have argued elsewhere for the survival
of one such proof in Plato, Parmenides 149a–c, and for its being in relation with the
elaboration of soritical arguments. It suffices to our purposes to recall that Plato’s text
displays a series of phrases, adverbs, and syntactical constructs which enable him to
word in a very refined way the explicitly iterative character of the proof.36 Yet, such an
impressive apparatus is distributed among the various steps of the proof, which lacks
therefore a formulaic expression able to summarize the entire process.

c) A problem very likely involving recursive calculations, and similar to that of find-
ing the partitions of a number into ordered addenda, is already hinted at by Plato in
Leges 737e-738a, when he says that “[5040] could not be divided into more than 60
minus 1 divisions, in succession from 1 to 10”. The reference here is to the fact that 5040
(= 24 · 32 · 5 · 7) admits as factors all integers from 1 to 10, and that the total number of
its factors (the number itself excepted) is equal to 59. As already observed by Becker,37

Plato’s curious wording of 59 as “60 minus 1” seems to reflect a general computational
prescription, according to the fact that the total number of factors of a number of the form
pa · qb · rc · sd is (a + 1)(b + 1)(c + 1)(d + 1), from which one unit must be subtracted
if the number itself is not to be counted as a factor. The calculations are well in the range
of psêphoi-arithmetic, when the prime factors are at most three, via the device of plane
and solid representations of numbers.38 The general result could be reached by applying
a sort of reasoning by recurrence, observing that every composite number is also some
(though not univocally determined) plane or solid number, repeating the remark for the
sides of the latter and so on, so that one has only to determine the number of factors
of plane numbers (or, if one likes, of solid numbers with three different prime factors).
As we shall see repeatedly in what follows, the construct of plane and solid numbers,
unfavourably looked upon in a modern perspective insofar as not providing an univocal
classification of numbers in terms of their parts (factors), has the surprising virtue, not
shared by the modern approach to factorization, of being very well suited to enter into
iterative procedures.

33 See e.g. Physica Z 1, 231b15–16.
34 Simplicius, In Phys., p. 467.26 ff. (Diels).
35 Diogenes Laertius,Vitae Phil. vii.82. For a full discussion of the extant sources see Barnes

1982.
36 An analysis of the Platonic text is in Acerbi 2000.
37 Becker 1936, p. 553.
38 From this could come a first perception of what combinations with repetitions are.
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d) From the perspective of the present work, the Archimedean notation for large
numbers in the Arenarius is very relevant even though slightly disappointing. Briefly
put, the first step is to call “first numbers” those up to the myriad of myriads, to take
the latter as unit of the “second numbers” and to start counting these second numbers
till their myriad of myriads is reached. One continues in this way, the end being arrived
at with the myriad of myriads of the myriad-myriad-th numbers. The construction goes
further: “Let us call in fact numbers of the first period those just named, and let the
last number of the first period be called unit of the first numbers of the second period
[. . .] and so on (kai; ajei; ou{tw")” up to the end of the myriad-miriad-th period. The
final number among those named is exceedingly larger than the number of grains of
sand which could fill the entire universe (Archimedes finds for them an upper bound of
1063). The relevant point in the Archimedean notation is that whole numbers are taken
as units of the successive level,39 and that such a procedure can be repeated indefinitely,
even if Archimedes does not expressly state this.40

e) More explicit in wording the recursive character of the method employed are ex-
amples such as the rule for approximating the square root of a number given in Heron,
Metrica I.8.41 The first step in the approximation is described in detail on the grounds
of an example: an approximate square root of 720 is found by picking first the nearest
square 729, whose side is 27. Divide then 720 by 27, add the result to 27 and halve what
is obtained: it gets 26 1/2 1/3, whose square is 720 1/36. The prescription terminates thus:
“If we want that the difference be less than 1/36, in place of 729 we put 720 1/36 just
found, and doing the same things (taujta; poihvsante") we shall find that the difference
is by far less than 1/36”. The peculiar structure of the final expression, a subordinate
participial clause followed by a principal clause in which the fulfilment is declared of
what is sought, is here employed to mark one single step in the iteration, even if it is of
the standard sort we shall encounter under item g) below, where the entire series of steps
is encompassed by the same kind of construct. As Heron’s treatises collect a congeries
of techniques summarizing a whole tradition, one is inclined to suspect that the original
source had contained more than the first step of the iteration, with explicit indication
that arbitrarily precise approximations of the square root could be obtained.

The Elements contain several proofs in quasi-inductive format: as a paradigm in-
stance take IX.8, “If any numbers are in continuous proportion from unit, the third from
the unit and every other one will be square, the fourth and every third one cube [. . .]”. If
the numbers areA, B, �, �, E, Z, the proof directly shows first that B is square. Since then
B, �, � are in continuous proportion and B is square, also � is square by VII.22. “By

39 A similar idea is Pythagorean in origin: cfr. the names deuterwdoumevnh, triwdoumevnh. . .

monav" for 10, 100, etc. (the notion is expressly ascribed to the Pythagoreans e.g. in Iamblichus,
In Nichom. arithm. introd., pp. 88.21 ff., 103.16 ff. (Pistelli)).

40 But recall that the notation was fully discussed in an entire book (now lost) addressed
to Zeuxippus, while in the Arenarius only what is strictly functional to Archimedes’ calcu-
lations is reminded. In this respect, the useless introduction of the second period of numbers
could be viewed as an indication towards the indefinite repeatability of the process. Recall also
that Apollonius returned on the subject in a lost work of unknown title (Pappus 1876–78,
pp. 18.23–24.20).

41 Heron 1903, pp. 18.12–20.5.
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the very same arguments (dia; ta; aujta; dhv) also Z is square. We shall prove similarly
(oJmoivw" de; deivxomen) that also every other one is square”.42 The actual repeatability of
the proof is here invoked (it is very significant that the general level is reached in two
steps), a very standard move which is by no means typical of iterative proofs: here the
procedure has not a self-contained status. The fact is confirmed by the presence of the
two canonical clauses (in Greek above) marking the repetition of the proof: they belong
to second-order discourse, indicating that reflection on the preceding proof is necessary
in order to express its recursive character: the iterative step is not embodied in the proof
as a self-contained unit.

f) The quadratures of some (rectilineal and) non-rectilineal figures (e.g. in book
XII of the Elements and in several Archimedean treatises) are based on the bisection
principle, an explicitly recursive procedure. As is well known, Archimedes pushed the
technique up to the very refined iterative proofs in Quadratura parabolae 20–24 and in
Dimensio circuli 3 (cfr. also the determination of the center of gravity of the segment of
parabola in Planorum aequilibria II).

The proof in Quadratura parabolae differs in a decisive respect, insofar as the sur-
face content of the (inscribed) polygons can be exactly determined at each step, from
other, similar demonstrations: in the latter all that one can say is that the difference
between the original figure and the approximating polygons can be made as small as one
likes, and this is enough to let the proof by reductio work. In Quadratura parabolae, in-
stead, the reference to Elements X.1 (even if not explicit) is supported by a direct control
of the process of successively taking away more than half of the residual figure: in this
case one is given a segment of parabola, from which a suitable triangle is subtracted;
two segments of parabola are left, from each of which a triangle constructed in the same
way as the one in the preceding step is subtracted, and so on. The key point lies in the
fact that the Archimedean method fournishes an exact estimate of the error committed
in taking a partial sum of the succession of inscribed triangles, and this is made possible
by the explicitly recursive character of the latter operation, which generates a (readily
summable) geometrical series of ratio 1/4. That the proof ends with the canonical reduc-
tio is of no real significance, for summing the complete series is meaningless without
having proved that it converges, and this is done nowadays by an indirect argument of
the same sort we encounter in the ancient approach.

In Dimensio circuli 3, an estimate of the ratio between circumference and diameter
is provided by approximating the circle by means of inscribed and circumscribed reg-
ular polygons. Starting from the hexagon, successive bisections lead to the 96-gon. It
is absolutely clear that the procedure can be iterated at will, providing better and better
approximations of the sought for ratio (the text of the Dimensio circuli is too corrupt
to allow us any conjecture about whether Archimedes could have explicitly made this
point or not). Better approximations had in fact been calculated by Archimedes himself
and by Apollonius,43 but it is worthwhile to remark the Archimedean care in matching
the requirement of a good approximation with the one of having it using the lowest

42 Euclides, vol. II, p. 195.5–7.
43 Cfr. Heron, Metrica I.<26> (Heron 1903, p. 66.13–17) and Eutocius, In dim. circ. 3,

p. 258.16–20 (Heiberg) respectively.
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possible denominators in the numerical ratios involved in the upper and in the lower
bound.

The common feature of the above sketched proofs, and in general of all quadratures,
consists in subtracting in sequence portions of the figure at issue until a certain condition
is met (typically that the residual figure has become less than a preassigned one). The
process of subtraction is recursive, since the same kind of construction (bisection of
an arc, etc.) is performed at each step on the very figure resulting from the preceding
step. Now, the last move in the proof is not the end of the iterative procedure, in which
case the latter had not been truly recursive, but the fulfilment of a condition external to
it, a sort of parameter of control which, and this is the important point, is not a priori
fixed, but is functional to the development of the proof by reductio, and hence can be
set arbitrarily far away from the first step of the iteration. Such a parameter of control
(which can also be construed as a preassigned bound to the precision required in an
explicit calculation) does not undermine at all the length of the iteration, which is then
indefinitely extendable in its very conception. In a well-defined sense there are infinitely
many steps in the process, and the very interesting point lies in the fact that the latter
is worded in such a way as to constitute one single step in a proof, as we shall see
presently.

g) A peculiar, compact linguistic tool was in fact developed at some comparatively
early stage in order to express the recursive procedure of successive bisections on which
the quadratures – or the successive subtractions in an ajnqufaivresi" (Elements VII.1, 2;
X.1–3) – are grounded. There are two basic forms of expression,44 usually compound-
ed of two clauses, one subordinate to the other. When the first clause is subordinate
to the second, the former employs participial forms (as in the interpolation lemma to
Theodosius’ Sphaerica, III.9: “Cutting DE in two and the half of it in two and do-
ing this continually (ajeiv), we leave (leivpomen) a certain magnitude less than AZ”45),
or a genitive absolute construction; conversely, e{w"+verbal form is used in the second
when the first is a principal clause (e.g. in XII.5). The presence of the adverb ajeiv in
the first clause is the rule, with the notable exception of Archimedes’ De sphaera et
cylindro I.11, where eJxh'" appears. Forms of the verb leivpw in the second clause are the
standard format, the sole exceptions being represented by Elements VII.31 and by the
version of book XII contained in the Bologna manuscript, where lambavnw is regularly
employed.

In our perspective, it is interesting to remark the presence of the same verbal format
(in the genitive absolute + principal clause form) in the just mentioned Elements VII.31,
where no bisection principle is at issue. It is to be proved that “every composite number
is measured by some prime number”. But every composite number A is by definition
measured by some number: if the latter is prime, end of proof. If not, it is measured by
some number, which measures also the one originally set out. If the last number found
is prime, end of proof; if not, “[t]hen, such a procedure being done, some prime number
will be taken, which will measure the one before itself, and which will measure also

44 In Quadratura parabolae 24 the analogous step is expressed by means of two principal
clauses, correlated by dhv; otherwise the manner of wording is identical.

45 Heiberg 1927, pp. 193.20–194.9.
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A”.46 In fact, if this is not the case, “infinitely many numbers will measure A”, which
is impossible “in numbers”. This example shows that the verbal format we are discuss-
ing was not intended as specifically associated with the bisection principle, but was
conceived as the standard wording for those iterative procedures of which the bisection
principle had to become a widely used, and hence paradigmatic, instance. (Remark, in
the above proof, also the explicit recognition that the outcome of such a single proof-step
could be infinitely many objects.) Thus, also the linguistic side displays a remarkable
degree of standardization, a fact that confirms the full extent to which the procedure had
been recognised as an independent proof-technique: noticeably, and unlike the case of
Elements IX.8 above, there is no second-order (the use of the first person in the verb
“we leave” can obviously be dispensed with) discourse in the proof.

4.2. Combinatorics

For n = 10, the sum in formula (*) has 511 terms; in general, the number of ordered
partitions of a positive integer n is 2n−1 − 1. 47 The calculation is easy: “write” n as a
sequence of n conveniently spaced psêphoi: you can generate an ordered partition of n
by inserting a mark in some of the spaces between the psêphoi. There are n − 1 spaces
between n psêphoi, and you can decide for each of them whether to insert the mark or
not. Hence you can partition the n psêphoi into 2 · 2 · 2 · · · · · 2 (n − 1 factors), i.e.
2n−1, ways. You have to subtract 1 since the case in which no mark at all is inserted
gives rise to no partition. 511 terms are not an unreasonable amount, but the sum (*)
can be further shortened if one realizes that several ordered partitions correspond to
one and the same unordered partition, that every such ordered partition gives the same
contribution to the sum, and that a general and elementary combinatorial calculation
provides for the number of ordered partitions corresponding to a single unordered one.
It is not difficult to write down all unordered partitions of an integer n, and the list can be
effectively (i.e. recursively) and quickly (n = 10 has 41 different unordered partitions)
computed starting from n = 2.48 Given an unordered partition n = n1 + n2 + · · · + nk ,
containing l ≤ k different addenda, the number of ordered partitions corresponding to
it is k!/k1!k2! . . . kl!, where k1, . . . , kl are the occurrences of the different addenda (so
that k1 + k2 + · · · + kl = k). I find it incredible that Hipparchus had performed his
calculations without noticing the possibility that several different conjunctions actually
gave the same contribution to the sum, and that they differed only by a rearrangement of

46 Euclides, vol. II, p. 138.14–15. I adopt the wording of the Theonine manuscripts, which add
the last two clauses. The reading is confirmed by the mediaeval Latin translations from Arabic: see
Busard 1983, p. 217.509–510 and Busard 1984, c. 182.17–20. Cfr. also Heiberg’s perplexities
about the text carried by the manuscript P in Euclides, vol. II, p. 138 in app.

47 By the way, 2n−1 − 1 is the sum of the first n− 2 terms of the geometric progression of ratio
2; the sum is calculated for a generic ratio in Elements IX.35.

48 An introduction to the problem of partitions can be found in Hardy-Wright 1979, chap.
XIX. There is no closed formula providing the number of unordered partitions p(n) for generic n;
however, a generating function can easily be written. The values of p(n) from n = 2 to n = 10
are 1, 2, 4, 6, 10, 14, 21, 29, 41.
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the first-level conjunctions. Their common contribution to the sum is always a product of
s(i)’s with i < n, operation which is of course commutative (Elements VII.16), and the
calculation of the number of equivalent first-level ordered conjunctions is a problem of
the kind a mathematician cannot but feel himself compelled to solve. The technical tool
needed is not, of course, the expression written above in its symbolic form, but simply
a clear understanding of how to use multiplication and division in order to calculate the
possible combinations (in a generic, extended sense) of objects out of a given set. This
raises a general point: the fact is that our symbolic representation of calculations tends
to obscure the meaning of the operation actually carried on, making us lose contact with
the complex concatenation of arguments the symbols stand for. The meaning is trans-
ferred to the symbolic representation itself, a fact which should be forbidden by the very
definition of “symbolic representation”, and this has the natural consequence of gener-
ating the belief that whoever does not possesses the symbolism cannot thereby be able
to perform the corresponding calculations, which should obviously be too complicated
or even incomprehensible to him.

4.2.1. Procedures in which multiplication is needed, and in one case used, to com-
pute simple “combinations” of objects are attested in at least two ancient sources (the
Platonic passage under point 4.1, item c) above should be added to them).

a) In Aristotle’s Politica special attention is devoted to arguments in which combi-
natorial manipulations are decisive.At � 4, 1290b25–39 the parts of a state are compared
to the parts necessarily an animal must have (mouth, ears, etc.). Every part presents itself
in many different forms (diaforaiv). Hence, “the number resulting from their combina-
tion (suzeuvxew") will necessarily produce many genera of animals (for it is not possible
for the same animal to have several forms of mouth, and similarly for ears), so that,
whenever all possible pairings (sunduasmoiv) of these have been taken, they will pro-
duce species of animals, and the species of animals will be precisely as many as the
combinations (suzeuvxei") of the necessary parts are”. sunduasmov" as technical term
appears also in � 15–16, 1300a31–1301a15,49 where an extended discussion is present-
ed of all possible systems of government (but the text is here highly corrupt) and judicial
elements in a state. However, no reference is made to any general combinatorial pre-
scription, the attested lists of cases being not exhaustive nor entirely consistent (further
cases are introduced in the course of the argument).

b) Boethius’ De hypotheticis syllogismis (composed ca. 515 A.D.) contains
detailed lists of all types of hypothetical syllogisms, differentiated on the grounds of
the character of the constituent propositions (necessary, contingent, affirmative, nega-
tive, etc.). The most interesting passage from the combinatorial point of view is a simple
calculation of combinations with repetitions.50 The problem is similar to the one we
find in Plutarch: “If someone is inquiring the number of all conditional propositions,

49 sunduasmov" is employed in the same meaning also, e.g., in Politica 1294b2, 1317a3. It is
clear that the original meaning of “pairing” (i.e. with reference to only two objects coupled) had
been already lost in Aristotle’s times.

50 Boethius, De hypotheticis syllogismis I,viii,1–7 (Boethius 1969, pp. 244.1–248.55). Since
the relevant variable for distinguishing the propositions involved is their character, and not the
specific term they contain, real combinations with repetitions are at issue here.
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he can find it from categorical [propositions]; and first one must inquire the [condition-
als] made up of two simple [. . .]”.51 The answer runs thus: there are five affirmative
categorical propositions and five correlated negative propositions: ten in all. An hypo-
thetical proposition is made of two categorical propositions: one hundred combinations
result. Considering also the propositions composed of one categorical and one hypothet-
ical, or of two hypothetical, one obtains one thousand and ten thousand respectively.52

Boethius also points out that, in the case in which the middle term of the two hy-
pothetical propositions is the same, the last number must be reduced to one thousand.
The overall argument is of course trivial, but the idea of taking all possible combina-
tions is expressly stated, and cannot be supported by any direct reckoning or by a dia-
gram: an abstract and general conception of what combinations are is needed. Moreover,
Boethius’ last remark is followed by the confused statement that “if it is proposed this
way: “if a is, b is, and, if b must be, either c is or is not”, two conditional proposi-
tions, i.e. four predicatives, result. It results that in relation to those that are composed
of four predicatives, ten thousands conjunctions are produced”.53 Here it is not clear
in what sense the terms in the second and third proposition are to be considered as
wholly independent. This could suggest that Boethius is severely abridging an earlier
source.

4.2.2. True calculations of combinations without repetitions (in modern, technical
sense) have been transmitted in two well-known texts:54

a) A thirteenth-century manuscript of Euclid’s Data carries a scholium,55 present-
ing the odd feature of being unrelated to the main text, in which a diagram correspond-
ing to what is nowadays termed “Pascal’s triangle” is written down as far as n = 10,

51 “Si quis igitur propositionum omnium conditionalium numerum quaerat, ex categoricis pote-
rit invenire; ac primum in conexis ex duabus simplicibus inquirendus est [. . .]” (De hyp. syll. I,
vii.7, see Boethius 1969, p. 244.69–71).

52 I report the most interesting portion of the text: “Sed cum prima propositio secundae prop-
ositioni quadam consequentia copuletur, ut una hypothetica fiat, omnes decem affirmativae ac
negativae propositiones omnibus decem affirmativis negativisque propositionibus applicabuntur.
Itaque complexae centum omnes efficiunt propositiones, haec quae conexae ex simplicibus coni-
unguntur. Secundum hoc vero modum potest propositionum numerus inveniri etiam in his propo-
sitionibus quae ex categorica et hypothetica copulantur vel ex quae duabus conditionalibus fiunt.
Nam quae ex categorica et conditionali constant, vel e diverso, haec tribus categoricis iunctae sunt.
[. . .] Quo fit ut tertia propositio cum duabus superioribus, centum inter se modis copulatis atque
complexis, iuncta atque commissa, mille omnes faciat complexiones. Centum namque duarum
propositionum modi, cum decem modi tertiae propositionis complicati, mille perficiunt. [. . .];
quod si centum superiorum propositionum categoricarum modi centum posteriorum categorica-
rum modis complicentur, fient decem milia complexiones” (Boethius, De hyp. syll. I,viii.2–5,
see Boethius 1969, p. 244.12–246.40).

53 “si ita proponatur: “si est a, est b, et, si necesse est esse b, est vel non est c”, duae proposi-
tiones conditionales, id est quatuor praedicativae fiunt. Quo fit ut secundum eas quae ex quatuor
praedicativis conectuntur, decem milia faciunt complexiones” (De hyp. syll. I,viii.49–51).

54 Both the scholium and Boethius’ remarks were brought to the attention of the scholars by
Heiberg, and are translated and commented on in Rome 1930.

55 Euclides 1916, p. 290.



484 F. Acerbi

supplemented by a series of instructions for computing combinations of terms taken two
and three at a time (called duadikai; suzugivai and triadikai; suzugivai respectively; the
results are arranged as the third and fourth row of the triangle. See the figure, taken from
Heiberg’s text – the empty spot is empty in the manuscript too).

Here is the text of the scholium, which is whortwhile to translate in its entirety: “Given
any terms whatever56 to find dyadic combinations (duadika;" suzugiva"). We find them
this way: we take of the given 10 terms a number57 (ajriqmo;n) a unit less and we multi-
ply it by the one near to it a unit greater and we take the half of the resulting quantity;
and we have this as finding of the dyadic combinations of the given terms. The triadic
[combinations] in this way: we take the number two units less than the generic quantity
(tou' posou') among the terms given at the beginning and we multiply it by the quantity
(to;n poso;n) resulting from the dyadic combinations of the generic quantity (tou' po-
sou') among the terms given at the beginning and we take the third part of the resulting
multiplication; and we have triadic combinations (triadika;" suzugiva"). And similarly
in succession (kai; eJxh'" oJmoivw")”. A rule for calculating triangular numbers follows,
limited to some numerical examples.

The real potentialities of the scholium have been so far neglected.

(i) The scholium is late, but the fact that it reports the rules without any proof could
support the assumption of an ancient origin of the rules. A superposition of

56 The text reads oJposaou'n within a genitive absolute. Maybe a plural genitive should be
required.

57 The text makes here poor sense and is very likely corrupt (for instance, the object the taken
number is a unit less than is not specified): a wording such as the one subsequently adopted in
the case of triadic combinations should be preferred. The numeral 10 is at all out of place, and
I suspect it has been inserted by a late copyist to conform the text to the range covered by the
triangle. Heiberg records a lacuna after “number”.
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several sources is here very likely: I conjecture that the accompanying diagram
could have a late origin, whereas the primary source of the text, subsequently epit-
omized at several stages, could date back to very early times. It is clear that the
written indications in the diagram stop at the triadic combinations because the same
is done in the text (at least because of the missing denominations of the higher order
combinations).

(ii) The instructions are clearly intended to provide a complete description of the pro-
cedure for calculating combinations, as the final clause shows. Generality in the
prescription shows up at two levels. First, the final clause completely describes
the generic step of the procedure exactly because the procedure is recursive: use
is made of the combinations of the preceding order, the n-th part taken at the end
corresponding to the n-adic combination calculated at that stage. Second, it is of
some interest to note the presence of the term posovn in the particular meaning of
“well defined, but otherwise indetermined, quantity” (possibly arising as a result
of an operation on well defined, but otherwise indetermined, quantities, as in the
second instance above). It is in fact to be intended in this sense, i.e. as the noun
corresponding to adjectives such as oJpososou'n and variations on it (cfr. also the
first line of the scholium) we regularly find e.g. in the Elements. I have undertaken
a survey of ancient (i.e. not later than Iamblichus’ treatises) sources in search of
similar usages of the noun, with negative results.58

(iii) A proof of the rules can easily be outlined fully justifying the way the latter are
expressed.59 First, dyadic combinations can be readily computed through the de-
vice of triangular numbers (recall the second part of the scholium). Suppose next
that the dyadic combinations of a certain amount of terms (conceive the latter as a
row of psêphoi) are given, and that the triadic ones are to be computed. Pick one
dyadic combination; to have a triadic one, one more term is to be added. The new
term can be chosen among a number of terms equal to the original one minus two,
since two terms have already been used in the dyadic combination that was fixed.
Hence, each dyadic combination gives rise to “total-number-of-terms-minus-two”
triadic combinations. Multiplying by the number of dyadic combinations would
lead to the result, were it not for the fact that the prescription is redundant. In fact,
the new term can be added to the chosen dyadic combination in 2 + 1 (the first
summand comes from the dyadic combinations at the beginning) different places

58 But cfr. Heron 1912, p. 388.23.
59 Rome proposes that the peculiar enunciation of the rule “mène peut-être plus vite au résultat

que le additions successives; et, d’autre part, il est plus maniable pour un Grec que le nôtre, qui
comporte une longue multiplication et surtout une division avec un diviseur élevé [. . .]” (Rome
1930, p. 99). But he misses the recursive character of the procedure, and is misled by having
reversed the relationship between the text and the triangle, making the content of the former a
mere description of the numbers reported in the diagram, i.e. as a set of rules for constructing a
particular Pascal’s triangle, whose main property should be (to modern eyes) its being generated
by successive additions (cfr. Rome 1930, p. 99: “Il est curieux qu’on n’ait pas observé que le
triangle arithmétique pouvait se former par de simples additions”). But in this way the connection
between the diagram and combinatorial issues should be proved anew! Such a way of reasoning is
a beautiful instance of the way anachronistic viewpoints creep into seemingly harmless arguments.
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– in front, in the middle, and after the terms composing the dyad –, but the same
triadic combination actually results in each case. The total number of the latter
is hence arrived at by dividing by three. And so on. End of proof. Is the above
demonstration outside the range of “ancient mathematics”? Compare the passage
from Aristotle’s Analytica priora discussed below.

b) A rule for computing combinations of terms taken two at a time is provided in
some ancient commentaries to Aristotle’s Categoriae. Porphyry’s Isagoge (written
ca. 270 A.D.) is an “exposition in few words” of what the five predicables, namely ge-
nus, species, differentia, proprium, accidens, are; in particular, both common features
(koinwnivai) of and differences (diaforaiv) among them are discussed. How many dif-
ferences did Porphyry have to expound? He answers the question in an excursus: “It
has been said in what the genus is differing from the other four, but it happens that each
[term] differs from the other four, so that, being five and each one differing from the
[other] four, it [should] result four times five, twenty differences in all. But this is not
so, rather, [the terms] being reckoned every time in succession, and the [ones which are
reckoned as] second lacking one difference (since it has already been considered), the
third two, the fourth three, the fifth four, in all ten differences result, four, three, two,
one”.60 He then provides the complete list of the ten differences at issue. The argument
triggered Boethius’ glossae in his commentary (written ca. 508 A.D.) to Porphyry’s
Isagoge:61 he first expands and explains with an example Porphyry’s (intentionally

60 Porphyry, Isagoge, p. 17.14–20 (Busse). I report Boethius’ faithful Latin translation:
“Genus vero quo aliis quattuor differat dictum est. Contingit autem etiam unumquodque aliorum
differre ab aliis quattuor, ut cum quinque sint, unumquodque autem ab aliis quattuor differat,
quater quinque viginti fiant omnes differentiae; sed semper posterioribus enumeratis et secundis
quidem una differentia superatis propterea quoniam iam sumpta est, tertiis vero duabus, quar-
tis vero tribus, quintis vero quattuor, decem omnes fiunt differentiae, quattuor, tres, duae, una”
(Boethius, Porphyrii Isagoge a Boethio translata, p. 45.10–17 (Busse)).

61 Boethius, In Porphyrium Commentariorum libri V, cc. 148A–150A (Migne). I report the
relevant texts: in “[s]ed hoc fiet si ad numeri referatur naturam, comparationisque alternationem:
nam si ad ipsas differentiarum naturas vigilans lector aspiciat, easdem spe sumptas differentias
inveniet. Quo enim genus differt a differentia, eodem differentia distat a genere; et quo differ-
entia distat a specie, eodem species a differentia disgregatur, et in cæteris eodem modo. In hac
igitur differentiarum dispositione, quam supra disposui, easdem sæpius annumeravi. At si differ-
entiarum similitudines detrahamus, decem fient omnino differentiæ, quas ad præsentem tractatum
velut diversas atque dissimiles oportet assumi” Boethius explains why ten, and not twenty, is the
right result, while in “ut tamen has secundum dissimilitudinem differentias non in quinario tantum
numero, verum in cæteris quoque notas habere possimus, dabitur regula talis, quæ plenam differen-
tiarum dissimilitudinem in qualibet numeri pluralitate reperiat. Propositarum enim numero rerum
si unum dempseris, atque id quod dempto uno relinquitur, in totam summam numeri multiplicave-
ris, dimidium ejus quod ex multiplicatione factum est, coæqualiter ei pluralitati quam propositarum
rerum differentiæ continebant” he gives the rule for calculating combinations. Rome’s analysis
(Rome 1930, pp. 101–102) of the whole Boethian text is not satisfying. He wrongly interpreted the
meaning of differentia as “des arrangements ou des combinaisons”, and misconstrued Boethius’
explanation of the rationale behind the first statement of Porphyry, viewing it as a rule (by the
way, Boethius gives no rule) for computing combinations of terms taken two at a time with
repetitions.
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wrong) statement that the differentiae were twenty, and enunciates then the general rule
that the total number of differentiae of n objects equals (n − 1)n/2, providing a nu-
merical example and checking the rule in the case of four objects. He finally promises
that “[i]n the exposition of the predicaments, also the reason why this is the case will
be explained”. In this treatise (written 510 A.D.) we only find an example (namely that
there are six differentiae of four terms).62

As already observed by Rome,63 the very reasoning of Boethius suggests that the
differentiae of n objects could easily be calculated as the triangular number of siden−1,64

and it is difficult to imagine that such a result had escaped even the first investigators on
the subject (see below for a few clues in Aristotle’s Analytica priora).

4.2.3. To these texts other passages of combinatorial interest could be added which,
albeit often less explicit, are nonetheless interesting from the point of view of both ter-
minology and mathematics involved – and have been written in some cases well before
Hipparchus’ times.

The first testimony is in Pappus’ Collectio VII.11–12.65 The author briefly reports
there on the content of Apollonius’ Tangencies, and sets down one of its propositions:
“given in position any three points, straight lines, or circles, to draw a circle through
each of the given points, if there be given any, and tangent to each of the given (straight
or circular) lines. Because of the number of like and unlike givens in the hypothesis,
necessarily there are ten propositions differing in part. In fact out of three unlike kinds,
ten different unordered groups of three result (ejk triw'n ga;r ajnomoivwn genw'n trivade"
diavforoi a[taktoi givnontai ῑ)”.66 Pappus mentions also another, simpler problem (it
is not clear whether it was contained in Apollonius’ treatise or not) of the same kind:
“given any two points, lines, or circles, to draw [. . .]. Already this contains six prob-
lems, since from three different entities one obtains six different unordered pairs (ejk tw'n
triw'n ga;r diafovrwn tinw'n duavde" a[taktoi diavforoi givnontai to; plh'qo" ς̄ )”.67

A few remarks are in order.

(i) The very similar sentences I reported also in Greek are paradigm instances of a com-
mentator’s remark, and hence in their attested form must be ascribed to Pappus,
but this does not entail that similar arguments were absent from the Tangencies.

(ii) In fact, the sentences themselves are oddly redundant, since the passages are fol-
lowed by the complete list of all possible triples (resp. pairs). It looks very much
as if Pappus is quoting two cases of a general statement, expressed in a techni-
cal lexicon and presenting a formulaic structure, where the spots here occupied
by both trivade"/duavde" and the numerals after givnontai were to be filled with

62 Boethius, In Categorias Aristotelis libri IV, cc. 272C–273A (Migne). The Aristotelian
passage commented on is Categoriae x, 12b5–16, where no combinatorial reasoning is present.

63 Rome 1930, p. 103.
64 I.e. as the sum of all numbers from n− 1 down to 1, a sum which can obviously be arranged

as the triangular number of side n − 1.
65 The relevance of the passage for the history of combinatorics had already been pointed out

by Jones (Pappus 1986, p. 388). The translations are Jones’, with one slight modification.
66 Pappus 1986, pp. 91.24–93.2.
67 Pappus 1986, pp. 93.28–95.3.
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suitable, corresponding terms. I regard as a further clue in this sense the presence
of the expressions ajnomoivwn genw'n and diavforoi, which are completely out of
context here, and which strongly suggest a connection with investigations into the
mathematical structures underlying the genus-species relationship (i.e. the study of
categories: recall the differentiae in Boethius’ passage above). This confirms the
feeling that the field of logic was the ideal milieu in which combinatorial research-
es could grow up, so that I could venture to conjecture that Pappus was actually
drawing on a source of this kind. Even more interesting is the explicit reference
to the “unordered” character of the combinations: it presupposes of course an ac-
quaintance with ordered combinations too, and reasons for distinguishing the two
kinds (it is at all natural to conjecture some underlying treatment here too).

(iii) It is easy and well within the range of ancient arithmetical techniques to compute
the above numbers in the general case: the number of unordered n-tuples of three
terms with repetitions is (n + 2)(n + 1)/2, i.e. the triangular number of side n + 1.
The possible n-tuples can in fact be arranged in a triangular array following a rule
ensuring that all of them have been taken into account (in other words, this amounts
to provide a proof of the above formula): starting from each vertex, where each of
the three n-tuples containing only one kind of term is placed, every layer of n-tuples
situated k steps away from a vertex has n–k terms of the same kind as the vertex,
the side opposite to the vertex at issue containing no term of that kind, as follows:

aa aaa aaaa

ab ac aab aac aaab aaac

bb bc cc abb abc acc aabb aabc aacc

bbb bbc bcc ccc abbb abbc abcc accc

bbbb bbbc bbcc bccc cccc

(The above prescription is unambiguous and exhaustive since a triangle is a sim-
plex in the plane. The unordered n-tuples of four terms with repetitions can be
represented as tetrahedral numbers, so that there are (n + 3)(n + 2)(n + 1)/6 of
them.) The successive triangles can be generated recursively: one constructs the
n+1-th triangle by adding an “a” term to the left of all n-tuples present in the n-th
triangle and then putting, with an “obvious” formation rule, a further row at the
bottom made of “b”s and “c”s only.

A further passage in Collectio VII.16 is interesting. Referring to Euclid’s Porisms,
Pappus claims that a certain result there contained holds in greater generality: “It is not
recognised that it is true for every number put forward, if one states it thus: [. . .] ‘If any
number of lines should intersect each other, not more than two through the same point,
and all points on one line be given, the rest being in quantity a triangular number, the
side of this having each point touching a line given in position, and no three being at the
angles of a triangular area, each remaining point will touch a line given in position”’.68

I have underscored the clause relevant to us: the problem with it is that, as Simson
already remarked,69 the “rest” is always in quantity a triangular number, in that, given

68 Jones’ translation. For the text see Pappus 1986, p. 99.9–20.
69 See Pappus 1986, p. 393.



Ancient Greek Combinatorics 489

n mutually intersecting lines (no more than two of them passing through any point
of intersection, so that the number of intersections is n(n−1)/2), if the n−1 intersections
lying on one line are fixed, (n − 1)(n − 2)/2 of them remain, i.e. the triangular number
of side n − 2. I find it reasonable that Pappus was actually drawing the more general
statement(s) above from some source. He appears in fact to slightly misunderstand the
statement he is reporting,70 to the extent of transforming a side remark about the num-
ber of residual intersections into a further hypothesis in the enunciation. He is directly
providing an “accidental” feature of the result, very likely connected with the manner
of calculation. I am thus inclined to consider the above passage as a beautiful indirect
evidence of a well defined combinatorial statement, with related calculation, in ancient
sources.

In general, the content of some of the treatises Pappus is providing lemmas for in
book VII of the Collectio is very well suited to give rise to combinatorial speculations.
Apart from Apollonius’ Tangencies and Euclid’s Porisms, other works such as the
Cutting off of a Ratio (and Cutting off of an Area) and the Determinate Section display a
subtle cases and subcases structure induced by the several reciprocal positions of points
and/or lines.71 Take the latter treatise; it deals with the following general problem: given
four points A, B, �, � on a straight line, to find a point E on the same straight line such
that the rectangle between AE, BE and the one between �E, �E have a given ratio. Some
of the given points are allowed to coincide, some rectangles becoming hence squares,
and one of the variable segments is furthermore allowed to be replaced by a fixed one.
Pappus summarizes the content of the treatise and proves many lemmas useful to it:72

it is clear that Apollonius dealt with all possible cases, as Simson’s reconstruction
nicely shows. The case structure is generated both by the reciprocal position of the given
points and by the possible positions of the point E with respect to them, a little problem
whose solution can be worked out by direct enumeration but which, I strongly believe,
has raised combinatorial questions in Apollonius or others.

The second set of testimonies comes from some Aristotelian works.
Contrary to what could be expected given the commentaries discussed above,

passages of combinatorial interest are absent from the Categoriae.
In Analytica priora A 25, 42b5–26 a long stretch of text deals with syllogisms

(“deductions” in the translation below) with more than two premisses. It is worthwhile
to report the entire passage:

And when the conclusion is reached by means of prior deductions or several continuous
middle terms (for instance if premise AB is concluded through terms C and D), then the
number of terms will likewise exceed the premises by one (for the term inserted will be
put either outside or in the middle; but in both ways it results that the intervals are one
fewer than the terms, and the premises are equal to the intervals). However, the premises
will not always be even and the terms odd; rather, in alternation, when the premises are

70 A further indication in this sense is that the general form of the theorem is, as it stands, false.
See Pappus 1986, p. 393 on this.

71 See the analyses, containing also details on past reconstructions, in Pappus 1986,
pp. 510–569.

72 Collectio VII.68–119.
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even, the terms will be odd, and when the terms are even, the premises will be odd. (For a
single premise is added at the same time as a term, no matter from what side the term may
be added, so that since the premises were even and the terms odd, this will necessarily
alternate when the same addition has been made.)

But the conclusions will never have the same arrangement either in relation to the
terms or in relation to the premises. For when one term is added, conclusions will be added
one fewer in number than the terms which were already present: for only in relation to
the last term does it fail to produce a conclusion, while it produces one in relation to all
the rest. For example, if D is added to A, B, and C, then two conclusions are also added
immediately, the one in relation to A and also the one in relation to B (and similarly in the
other cases). It will also be the same way if the term is inserted into the middle (for it will
only fail to produce a deduction in relation to one term). Consequently, the conclusions
will be much greater in number than either the terms or the premises.73

Scholars have seen here the best evidence that Aristotle actually envisaged a dia-
grammatic representation of syllogisms:74 to be sure, the use of “interval” (diavsthma)
as a synonymous of “premiss” is well attested in the Analytica and must probably be
ascribed to cross-fertilization with other fields,75 but here it is supplemented by a series
of spatial determinations that make one suspect a diagrammatic counterpart is really
understood.

Contrary to the belief shared by all modern commentators, it is not so immediate to
compute the number of conclusions resulting from Aristotle’s remarks. The standard
result n(n − 1)/2 reported in all modern commentaries is in my opinion not well suited
to the text of the Analytica and must be ascribed to acritical acceptance of a remark by
Waitz: “It is clear that from three propositions [. . .] three conclusions result, from four
six result, from five ten: for from propositions AB, BC, CD, DE, EF the conclusions AC,
AD, AE, AF; BD, BE, BF; CE, CF; DF are collected. Thus, the number of conclusions
grows according to triangular numbers (Trigonalzahlen). Let the number of propositions
be = n, the number of terms = n + 1, the number of conclusions will be n(n − 1)/2”.76

Waitz’s calculation is performed supposing that the new term is added on the right of the
last term of the given sequence (in Waitz’s instance, F is placed after E of the sequence

73 Translation from Aristotle 1989, pp. 40–41. Cfr. also the similar, although less precise,
claim in Analytica posteriora A 32, 88b3–5, where it is stated that the premisses cannot be much
fewer than the conclusions. Ross regards the claim as “a careless remark” and argues that “A.
Pr. i. 25 must be later than the present chapter” [viz. An Post. i. 32] (Aristotle 1949, p. 603).
In Mendell 1998, pp. 201–202 it is argued instead in favour of the plausibility of Aristotle’s
statement.

74 See e.g. Mendell 1998, p. 202 note 78. Cfr. the early remarks in Einarson 1936,
pp. 165–169.

75 Other loci in the Analytica are at 35a12,31, 38a4, 82b7, 84a35, 84b14. See Einarson 1936
on the issue of the borrowing of the term from proportion/musical theory.

76 “Apparet autem ex tribus propositionibus, quae soritem constituant, fieri tres conclusiones,
ex quattuor fieri sex, ex quinque decem: colliguntur enim ex propositionibus AB, BC, CD, DE,
EF conclusiones AC, AD, AE, AF; BD, BE, BF; CE, CF; DF. Crescit igitur numerus conclusio-
num secundum numeros triangulos (Trigonalzahlen). Sit numerus propositionum = n, numerus
terminorum = n + 1, erit numerus conclusionum n(n − 1)/2” (Waitz 1844–46, vol. I, p. 441, ad
42b25).
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A, B, C, D, E). But this is only a portion of Aristotle’s reasoning: as he explicitly says,
one must also take into account the cases in which the new term is added in the middle, or
beforeA.77 The latter case is actually enough to provide for all new conclusions (FB, FC,
FD, FE in the example at issue). As it is easily seen, the m − 1-th step would contribute
thus with 2(m−1) conclusions to the total number, and the latter would be equal, if there
are n+1 terms, to n(n−1), i.e. to the double of the triangular number of side n−1. But this
is true only when the series of premisses to which the new term is added is one among the
possible series obtained by repeated applications – starting from a single premiss (which
in turn can be either AB or BA)78 – of Aristotle’s patently recursive prescription. Tak-
ing into account all possible series instead, the final result is equal to all possible ordered
arrangements of n+1 objects (namely the terms) taken two at a time, i.e. to n(n+1). The
same result can be obtained in a recursive way, very much in the style ofAristotle’s rea-
soning: the step in which one passes from m−1 premisses to m premisses, i.e. the m−1-th
step, adds 2m conclusions (resulting from combining the new term with the m preceding
ones, both on the left and on the right of each of them); summing up to n premisses, i.e.
to n + 1 terms, one gets n(n + 1) again. The summation-procedure just described was
well known since before Aristotle’s times: starting from the dyad, the successive even
integers are added as gnomons, generating the so-called heteromecic numbers: precisely
those of the form m(m + 1) for some integer m.79 The only possible drawback in such
an approach is that what is stated as a premiss at a certain stage is obtained as a con-
clusion at the same stage, although the identical premiss and conclusion never figure in
the same syllogism, a fact which would render the inference unsyllogistic (in Peripatetic
sense).80 Maybe such complications were responsible for the formulation of the conclu-
sionAristotle draws from his argument, a conclusion which focusses on the single step
of adding one term, without considering the possibility of calculating the total number
of conclusions obtained by successively adding terms up to a fixed number of them. In
any case, both the kind of reasoning required to prove whichever of the above results
and the (conjectural) associated diagrammatic representation are very much like those in
Boethius’ second passage above. In particular, it is interesting that complex syllogisms
could be actually constructed by successive addition of terms, i.e. by a sort of recursive

77 Alexander (In An. pr., p. 285.18–28 (Wallies)) suggests also the alternative interpretation
that Aristotle, when speaking of inserting the new term externally, is actually referring to the
second and third syllogistic figures.

78 Actually, the series of conclusions obtained starting from AB or from BA coincide. The
same result obtains if three terms are taken as starting point.

79 See e.g. Nicomachus, Introductio arithmetica, p.108.8 (Hoche) and Theon Smyrnaeus,
Expositio rerum mathematicarum ad legendum Platonem utilium, p. 26.21–22 (Hiller). Knorr
convincingly argued for the Pythagorean (late fifth century B.C.) origin of computation techniques
based on figured numbers, in particular heteromecic numbers (Knorr 1975, p. 142 ff.). The latter
are named in Plato’s Theaetetus, 148a–b and in Aristotle’s Metaphysics, 986a26 (the context
is arithmetic; cfr. Met. 1093b6); their generation by means of gnomons added to the dyad is usually
seen as being hinted at in Phys. 203a11–15.

80 The very definition of syllogism in An. pr. 24b19 expressly rules out such a possibility. Cfr.
also Alexander, In An. pr., pp. 18.12–19.3 (Wallies), where the author is referring to the fact
that in Stoic logic inferences of this sort are not unsyllogistic.
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procedure, and that specific attention had been paid to the problem (significant in this re-
spect are the remarks about the irrelevance of the place – outside or in the middle – where
the new term is added). Investigations about the structure of complex syllogisms were
pursued by later logicians, as an interesting testimony by Alexander confirms us.81

In De generatione et corruptione B 3, 330a30–b1 the exposition of the ways the
“elements of bodies” (hot, cold, dry, and moist) combine begins thus: “Since the ele-
ments are four, the combinations (suzeuvxei") of four [terms] are six, and the nature of
the contraries does not allow for their pairing (sunduavzesqai) [. . .], it is clear that the
combinations of the elements will be four”. Just two remarks:

(i) The second sentence is stated in general terms, as in Pappus’ extract above, and
appears to refer to a well-established mathematical fact.

(ii) Aristotle’s noun for “combinations” (suzeuvxei") has the same root as that of the
term we find in the scholium to the Data (suzugiva), but at 332b3, where the sentence
is repeated, suzugiva is employed, so that the two terms are in fact synonymous.82

Several other Aristotelian passages connected with the above display the latter word
with a clear combinatorial meaning.83 The most important of them, and very likely
their common ancestor, is the general discussion in Topica B 7 of the ways the contraries
combine. The passage begins (112b27–28) by asserting that “[. . .] the contraries conjoin
(sumplevketai) with one another in six ways, but the conjoined ones (sumplekovmena)
give rise to contrariety in four ways”; then, after the six conjunctions have been enumerat-
ed, it is stated of some of them which should be object of choice and which of avoidance:
the general conclusion that “in each combination (kaq’ejkavsthn suzugivan)” one is to be
chosen and one to be avoided is finally reached. It is interesting to see which kind of con-
traries Aristotle is actually considering, and which kind of conjunction is introduced.
There are two objects, let us say friends (let us denote the term with F) and enemies (K)
and two verbs, to do good (f) and to do harm (k). One can form object-predicate pairs in
four ways, and then conjoin pairwise all the resulting combinations; the results sound like
“to do good to friends and to do harm to enemies”. The latter is the conjunctionAristotle
is referring to, being hence intented in the restricted sense. A diagrammatic representa-
tion of the above procedure is nearly obvious: put the four pairs as vertices of a square

Ff Fk

Kf Kk

and then draw all possible sides or diagonals. By employing the same metonymy as
Pappus in Collectio VII.16, one could observe that the result of six as the combinations
of four objects two at a time can easily be obtained as a particular case of the general
problem of finding the triangular number of given side.

81 In An. pr., pp. 283.3–284.18 (Wallies). Compare also a scholium to Ammonius’ In An. pr.
(Wallies, ix–x) concerning investigations about complex syllogisms carried out by Galen. The
scholium is presented and discussed in Lukasiewicz 1957, § 14.

82 LSJ (sub voce suzugiva) actually records the two terms as synonymous.
83 See also Meteorologica � 1, 378b11, De sensu et sensato i, 436a13, De incessu animalium

ii, 704b19.
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The lexical congruences just seen,84 together with the above mentioned one between
Pappus’ passage and those of Porphyry and Boethius, support the contention that the
main technical terms were already fixed at early stages of research; the slight variation in
the Aristotelian wording is very likely tied to lexical fluctuations typical of initial stages.

4.3. Symbols – conjectures

The last point to be stressed is that Hipparchus could hardly have done without
using a diagrammatic or “symbolic” representation. Concerning the way of representing
the string of assertibles, it is enough to think of the very old tradition of figured numbers
stemming from Pythagorean psêphoi-arithmetic.85 It could also have been useful to rep-
resent the couplings among the several representatives of the assertibles. A sort of tree
diagrams were used in antiquity in order to represent simple coupling relations among
series of terms: they are mainly attested in (and implicit in some passages of) treatises
dealing with musical theory, arithmetic ratios theory, or Aristotelian syllogistic (which
is not a surprise, since those fields of research were strictly intertwined).86 The problem
is that no text up to much later than Hipparchus’ times makes any explicit reference
to such representations, and many texts do not seem to presuppose them. Moreover,
several occurrences in later commentators provide us with no indications about whether
the diagrams were present in the original text or have been introduced at a later stage
of the manuscript tradition. Despite the frustrating evidence, one could be reasonably
confident that “the arithmeticians” had reduced the problem to a form more manage-
able for them both by operating by way of abstraction and by introducing a series of
combinatorial and diagrammatic computing devices. This is the more interesting since
the definiteness requirements in the scope of the connectives can be construed, as we
have seen above, as being correlated to (and maybe in part a consequence of) the use

84 Cfr. also Sextus Empiricus, Adv. Math. viii.175. Recall moreover that suzugiva and
the related adjective find their place in the mathematical and astronomical lexicon in a va-
riety of meanings. Cfr. the “conjugate” diameters and sections in Apollonius’ Conica (e.g.
definitiones primae 6 and props. I.60, II.17), the “conjugate terms” in Hypsicles’ Ascensiones
(De Falco-Krause 1966, pp. 35.40–46, 36.53, 39.147), the standard sense of “pair”, “coupling”
in Iamblichus, In Nichom. arithm. introd. (see the index in Pistelli’s edition, sub voce), and of
course the astronomical syzygies.

85 The primary reference, with analysis of the extant evidence, is Becker 1936. A more recent
discussion, proposing several reconstructed theorems, is in Knorr 1975, chap. V. The diagrams
in Theon Smyrnaeus (II century of our era), Expositio rerum mathematicarum ad legendum
Platonem utilium (see e.g. pp. 31–33, 39–40, Hiller), represent the figured numbers as arrays of
letters.

86 Cfr. e.g. Theon Smyrnaeus, ibidem, pp. 57, 58, 64, 68, 69, 87 (Hiller). Some acquaintance
with hierarchical structures is presupposed in the Porphyrean scala praedicamentalis, which cod-
ifies the Aristotelian doctrine of subordinations among the various genera and species, even if in
Porphyry’s Isagoge no explicit reference is made to diagrammatic structures. A diagram similar
to those attested in Theon Smyrnaeus is attached to Boethius’ passage quoted in point 4.2.2,
item b) above.
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of a “symbolic”/diagrammatic representation. “Symbolic” reasoning could in fact have
forced some details of the translation of Chrysippus’ claim into mathematical language,
and remnants of such a reasoning could be read behind the slightly strained interpretation
of the connectives expounded in Sect. 3.2: in particular, the idea of letting the negation
step over some of the initial kai; can present itself as “natural” once a sort of “symbolic”
representation is employed.

We could wonder whether we are allowed to skip the quotation marks in the above
term “symbolic”, and regard Hipparchus’ strategy, as reconstructed above, as truly rep-
resentative of a symbolic approach. In fact, his calculations entail a move of abstraction
unprecedented in ancient Greek mathematics, a step further than those abstractions un-
derlying e.g. the representation of general magnitudes or of numbers by line segments,
or the geometric models employed in mathematical astronomy. Hipparchus’ practice
of astronomical modelling must nevertheless have played a role in his setting up what
we would call an isomorphic model of the process of conjoining assertibles. The gist of
the model was its strikingly syntactical character: as its sole objects mere entia rationis
– deprived of any extensional, i.e. geometrical, or linguistic or numerical reference –
remained, and the operations on them. Hipparchus’ combinatoric calculations were in
fact performed on the following “objects”:

(a) representatives, very likely letters, of the ajxiwvmata, the basic entities of the prob-
lem;

(b) operations on the representatives unambiguously corresponding to the operations
on the basic entities, i.e. some device, analogous to our brackets, identifying the sev-
eral conjunctions among the assertibles (the ambiguities in the Stoic prescriptions
pointed out above were already resolved at this stage).

The presence of representatives of the operations on the basic representatives is crucial:
symbols are best characterized by their being anything that can be acted upon, and by
the deplacement of the focus of interest from them to the operations on them. The latter
acquire such an “ontological” dignity as to be represented on the same footing as the
basic symbols. A further step of abstraction is required to reach the result: to move to a
purely arithmetical environment, i.e. to manipulations of numbers, forgetting symbols.
After all, a number was sought for. The last step was routine, and has to do with the
essence of arithmetic as a science. The step before it is of course the most important in
our perspective.

To appreciate how far are Hipparchus’ representatives removed from the data of
the problem, consider the steps of abstraction that are necessary as preliminaries to the
calculation of the right numbers. First, the Stoics had to extract the general concept of
ajxivwma, considering it as an independent object of investigation. Recall in fact that for
the Stoics the ajxiwvmata, as particular lektav, are incorporeal entities.87 Second, the Sto-
ics themselves invented the “modes” as generic representatives of particular arguments.
The assertibles within the modes were denoted by ordinals according to their order of
apparition in the argument. The same ordinals were used for assertibles appearing more
than once in the same argument, and it is clear that the choice of ordinals was dictated

87 Diogenes Laertius, Vitae Phil. vii.57. See also Sextus Empiricus, Adv. Math. x.218.
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by requirements of univocal denotation, of ordering conservation, of repeatability of
the assertibles, and by the need of expressing the arguments in natural language. The
stenographic character of the ordinals in the modes is clear from the so-called “mode-ar-
guments”, as e.g. “If Plato is alive, Plato breathes. But the first. Therefore the second”.88

Hipparchus was thus provided by his very logical sources with a first step towards
using a syntactical representation of the assertibles involved in the problem.89 Third,
from mathematics Hipparchus knew how to use letters to represent geometric entities
or monads, and he could have been induced to give up the Stoic ordinals by the simple
observation that all ten assertibles in Chrysippus’problem are allowed to be represented
by the same representative repeated 10 times, since problems of ordering and of univocal
identification of the assertibles are irrelevant there. To be sure, he could have made use
of natural language, by taking “the first”, “the second”, . . . and the conjunction “and” as
a sort of abstract representatives of themselves, but a better choice was dictated by the
nature of the problem and by a long-standing mathematical practice. The question is:
were the representatives intended as true symbols? or better said, could they have been
intended as such?90

Clearly, the present discussion is strictly related to the one concerning the “algebra-
ic” character of some pieces of ancient mathematics, e.g. the Old Babylonian corpus or
Diophantus’Arithmetica. It is useful to resume the terms of the debate, also because of
recent, renewed interest in the issue.91 I take as reference a number of criteria proposed
by Mahoney, and recently resumed and supplemented by Høyrup, in order to assess
the algebraic character of Old Babylonian mathematics. Mahoney’s criteria,92 with
Høyrup’s supplement, for a truly algebraic approach are as follows:

(i) the use of “a symbolism for the purpose of abstracting the structure of a problem
from its non-essential content”; for instance, the symbolism must be unambiguous;

(ii) the search for “the relationships (usually combinatory operations) that characterize
or define that structure or link it to other structures”;

(iii) being “totally abstract and free of any ontological commitments”;
(iv) moreover, the approach should be analytical (Høyrup’s supplement).93

The above discussion should have shown that any syntactical representation Hippar-
chus had adopted refining Stoic ordinals completely fulfils requirements (i) and (iii);
for instance, the representation was clearly free of ambiguities, and the representatives
were removed several steps of abstraction away from the “objects” they were intended

88 Diogenes Laertius, Vitae Phil. vii.77. Hence, the ordinals in the modes act both as sche-
matic letters and as mere abbreviations of particular assertibles (see the discussion in Bobzien
1999, pp. 129–131).

89 Recall also that the Stoics put syntactical features at the very heart of their systematization
of dialectics.

90 This question is of course connected with the use of the so-called “arguments by impossi-
bility” in history of science. Negative, and in my opinion definitive, assessments of arguments of
this kind can be found in Høyrup (forthcoming) and in Netz (forthcoming).

91 See Høyrup 2002, Ch. VII.
92 Mahoney 1971, p. 372.
93 Høyrup 2002, p. 279.
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to represent. As for (iv), it is apparent that the idea behind formula (*) is purely ana-
lytical, namely to represent the solution, considered as already done, as a combination
of previous, factually well-defined steps. An analytical approach is made easier by the
recursive character of the problem, and by the fact that the recursive chain going back
from s(i), with n > 2 fixed, to s(2) is finite. Hipparchus’ own conceptualization of what
(*) expresses in modern symbolic form must have been of this kind. The related synthesis
consists in performing the steps of calculating the successive s(i), i ≤ n, in succession.
Concerning (ii), observe that the procedure solves at least one class of problems, name-
ly those obtained by replacing the 10 assertibles in Chrysippus’ claim with a generic
number of assertibles. Moreover, the combinatorial procedures underlying, as we have
seen, the calculations are applicable to, and indeed were used to solve, several problems
coming from disparate fields, in particular from dialectics.

The crucial point with (i), and this brings us back to our initial question, is the mean-
ing of the term “symbolism”. Nesselmann proposed in 1842 a distinction between
rhetorical, syncopated, and symbolic algebra, according to the nature of the abbrevia-
tions employed (if any).94 Rhetorical algebra has no abbreviations, syncopated algebra
has them, but they are merely stenograms that can be (and actually must be for a complete
understanding) expanded in natural language expressions. Symbolic algebra employs,
as modern algebra does, abbreviations enjoying a completely independent ontological
status and which are well-defined once the operations to be performed on them are
specified – i.e. it deals with objects such as those described under items (a) and (b)
above. If we accept this, it is difficult not to conclude that a truly symbolic approach
was developed by Hipparchus to solve Chrysippus’ problem. But we cannot suppose
that Hipparchus was aware of the extent of his move if such an approach was circum-
scribed to the solution of one single “combinatorial” problem. It is necessary that such
a habit of reasoning had been applied to solve other problems, and possibly transferred
to different fields of research (in case creating those fields).

Hipparchus is recorded by the Fihrist to have written a mysterious work On the
Subdivision of Numbers (could this treatise have dealt with partitions of integers?). The
same source ascribes to him “On the art of algebra, known by the title of the Rules”.95

Could these works have contained the calculations leading to the numbers? could they
have contained more general combinatorial prescriptions, or applications to other fields?
Maybe. I suspect that a general symbolic approach, conflating his high-level refine-

94 Nesselmann 1842, p. 302, quoted e.g. in Klein 1968, p. 146, Heath 1921, vol. 2,
pp. 455–456, and Høyrup 2002, p. 298.

95 Ibn An-Nadim 1871–72, p. 269. Both treatises were commented at the end of the X century
by Abu’l-Wafa’ Al-Buzajani (see Ibn An-Nadim 1871–72, p. 283 and Abu’l-Wafa’ 1971,
p. 126). The text of the Fihrist is in a bad status at that point, and it has been suggested that those
treatises should be ascribed to Diophantus, who follows Hipparchus in the catalogue (cfr. note
97 on pp. 54–55 in Suter 1892). In view of the existence of the above commentaries, and con-
sidering the arguments developed in the present paper, it is in my opinion unreasonable to deny
the Hipparchian authorship of the treatises. In Sesiano 1998 it is suggested that some Mesopota-
mian techniques for solving problems algebraic in character could have been introduced in Greek
mathematics by Hipparchus’ “algebraic” treatises. Hipparchus’ borrowings from Babylonian
astronomical data are well known (see e.g. Toomer 1978).
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ments of combinatorial techniques with Mesopotamian “algebraic” procedures, could
have been deployed by Hipparchus in those and possibly other treatises. The concep-
tions and the mathematical techniques needed to achieve the combinatorial calculations
explained above seem to be more conducive to the elaboration of a general symbolic
perspective than the kind of quasi-algebraic proofs, characterised by suggesting rules by
means of numerical examples, typical of Old Babylonian mathematics.96 On the other
hand, the problems constituting the bulk of the Mesopotamian tradition are the ideal field
where a symbolic approach to mathematics can find its applications.A crucial point must
have been, as we have seen, using symbols to represent also the operations performed on
the basic objects of interest, allowing second-order concepts to creep into mathematical
practice.

Combinatorics would hence have been only a facet of a general project, though an
important facet insofar as providing a founding habit of reasoning for the whole pro-
ject. That facet was apparently not developed by later mathematicians, contrary to what
happened to the cognate field which took its canonized form in Diophantus’ Arith-
metica.97 The real conceptual revolution underlying Hipparchus’ strategy, namely the
truly symbolic character of his representation, was lost in the subsequent developments,
leaving as only residues Diophantus’ stenograms.98 It must be stressed that this is a far
cry from asserting that Hipparchus had developed a form of symbolic algebra, that left
no traces other than shadows of a conjectured existence. What I think can be reasonably
maintained is that, with the general strategy underlying Hipparchus’ calculations, the
germs of a new approach were all there, but that, maybe, he was placed too high, sitting
on the shoulders of himself: he was the only one allowed to catch dim glimpses of the
new continent.

5. Conclusions

I am inclined to regard as very likely that Hipparchus’ calculations have not been
merely an episodical performance of a great mathematician. They suggest instead the ex-
istence in his times of a reasonably large supply of combinatorial techniques. To be sure,
I am not maintaining that specific written expositions had existed devoted to the latter;
rather, such techniques are very likely to have been included in the general background a
mathematician had to master with complete ease. The evidence presented above supports

96 Reservations on the use of a true symbolism in Babylonian mathematics are expressed in
Høyrup 2002, pp. 281, 298–299 (cfr. also the very sharp – negative – position on the subject of
Old Babylonian “algebra” in Mahoney 1971).

97 General principles underlying the process of selection in the transmission of ancient math-
ematical practices are proposed in Netz (forthcoming).

98 But recall that the Arabic text of the Arithmetica contains no abbreviations (it is rhetorical
algebra), even if this is usually taken to be a translator’s choice, and that it is at all unclear the
extent of the use of abbreviations in the original redaction of the Arithmetica. It is interesting to
observe that Klein, on the basis of Neugebauer’s findings on Old Babylonian mathematics,
already conjectured that “[t]he Arithmetic of Diophantus may [. . .] itself refer back to a pre- and
non-Greek, perhaps even a “symbolic”, technique of counting” (Klein 1968, p. 147).
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at least the plausibility of the assumption that Hipparchus had grasped the recursive
character of the calculations, and that he was absolutely confident with the “concept” of
calculating combinations of objects and with the related computing techniques (possibly
employing plane and solid numbers as working tools in the first steps and subsequently
letting the machine of recursive proofs turn, as we have seen above). Assuming such a
background the numbers reported by Plutarch are not difficult to calculate, even in the
case in which no combinatorial shortcut is set up in order to reduce the number of terms
in the summation (*) from 511 to 41 (but I am strongly convinced that combinatorial
factors have actually been used). I calculated with paper and pencil s(2), s(3), . . . up
to s(11), using combinatorial factors to pass from unordered partitions to ordered ones,
but otherwise doing computations in the dullest possible way: it took half an afternoon,
checking included. Even without using combinatorial factors, I estimate the calculations
could have been worked out in a few days. Of course, the real problem lies in the time
needed to understand what one has to do, but my contention is precisely that Hipparchus
knew it, since combinatorics had been developed to some extent before him, and that
the real point had been to formulate a well-defined problem out of Chrysippus’ claim.

A very interesting picture is thus emerging of the interactions between dialecticians
and mathematicians, exponents of fields of research considered widely separated and
substantially uncommunicating. Such a picture is confirmed by Plutarch’s words:
“Chrysippus is refuted by all the arithmeticians, among them Hipparchus himself who
proves that his error in calculation is enormous [. . .]”. My interpretation of the sentence
is that different arithmeticians had given the problem different solutions, in any case
grounded on some combinatorial analysis, presumably tied to the several interpreta-
tions/extensions Chrysippus’ words can be provided with. Such a quick and plenary
answer suggests a protracted interaction between arithmeticians and dialecticians about
the subject at issue.99 In fact, although not mathematically enlightening, the Aristotelian
texts presented above attest to the fact that combinatorial reasoning was a matter of
course in his times, and suggest that the first steps in the field of combinatorics, stem-
ming from problems which naturally arise in a logical context, can be traced back to
his times. After this, the Stoics, with their general conception of logic and, most nota-
bly, their attention to syntactical problems and to ambiguities of expression, created the
ideal humus where combinatorics could spontaneously grow up. Moreover, I conjecture
that a distinguished mathematician could have been interested in the subject, thereby
giving it a powerful impulse. We have encountered the name of Apollonius at several
places and seen how some of his minor works actually attest to their author as being
interested in researches in which combinatorial manipulations have a relevant part. I
could add to the above items the treatise on Unordered Irrationals, in which problems
of classification were very likely at issue.100 Hipparchus could then have constituted a

99 Contra this picture, Reviel Netz suggested me that the expression “all the arithmeticians”
could have been a rethorical expedient by Plutarch in order to denote “the science of arithme-
tics”. Such a view could be supported by the fact that the reference to “all the arithmeticians” is
absent in the version of the passage contained in Quaestiones Conviviales.

100 See e.g. Junge-Thomson 1930, p. 119. Investigations of a combinatorial kind are advocated
by Vitrac (Euclide 1998, see especially pp. 51–62 and 64–67) as underlying the classificatory
effort in book X of the Elements. The fact that ancient sources report no investigations on this issue,
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point of synthesis of two independent mainstreams interested in combinatorial results,
the geometrical side stemming from Apollonius’ refined researches and the dialectical
side, going back to Aristotle’s logical works but receiving a decisive spur from the
Stoics. After that, rain has begun: the selection in the course of textual tradition has been
so strong as to convince some of us that “the Greeks took no interest in these matters”.

Acknowledgments. I owe to Lucio Russo the first contact with the problem. I am heavily indebted
to Paolo Fait for a series of insightful comments and for many long discussions. I am grateful to
Susanne Bobzien, Alexander Jones, and Richard P. Stanley for the suggestions, and to Henk Bos
for the careful editing and for some important observations. The paper was presented at the Sixth
International Conference on Ancient Mathematics (Delphi, July 2002): I am especially grateful
to Henry Mendell, Reviel Netz, and Jacques Sesiano for their observations, some of which I have
embodied in the final text.

This research was accomplished when the author was holding a research fellowship from the
Dipartimento di Matematica, Università di Roma “Tor Vergata”.

Sources and works cited

Abu’l-Wafa’ 1971, The Arithmetic of Abu al-Wafa’ al-Buzajani, ed. A. S. Saidan. Amman.
Acerbi F. 2000, Plato: Parmenides 149a7–c3.A Proof by Complete Induction? Archive for History

of Exact Sciences 55, pp. 57–76.
Alexander of Aphrodisias, In Aristotelis analyticorum priorum librum I commentarium, in

Commentaria in Aristotelem Graeca, vol. II.1, ed. M. Wallies. Berlin (Academia litterarum
regia borussica), G. Reimer 1883 (reprint ed.: Berlin, De Gruyter 1957).

Aristotle 1989, Prior Analytics. Translated, with introduction, notes, and commentary, by
R. Smith. Indianapolis/Cambridge, Hackett Publishing Company.

Aristotle 1949, Aristotle’s Prior and Posterior Analytics. A Revised Text with Introduction and
Commentary by W. D. Ross. Oxford, Oxford University Press.

Aulus Gellius, Noctes Atticae, ed. P. K. Marshall, 2 vols. Oxford, Oxford University Press 1968.
Barnes J. 1982, Medicine, Experience and Logic, in Science and Speculation, ed. J. Barnes,

J. Brunschwig, M. F. Burnyeat, M. Schofield. Cambridge, Cambridge University Press,
pp. 24–68.

Becker O. 1936, Die Lehre vom Geraden und Ungeraden im Neunten Buch der Euklidischen
Elemente, Quellen und Studien zur Geschichte der Mathematik, Astronomie, und Physik B3,
pp. 533–553.

Biermann K.-R., Mau J. 1958, Überprüfung einer frühen Anwendung der Kombinatorik in der
Logik, The Journal of Symbolic Logic 23, pp. 129–132.

Biggs N. L. 1979, The roots of combinatorics, Historia Mathematica 6, pp. 109–136.
Bobzien S. 1996, Stoic Syllogistic, Oxford Studies in Ancient Philosophy 14, pp. 133–192.
Bobzien S. 1999, The Stoics, in The Cambridge History of Hellenistic Philosophy, part II, Logic

and Language, ed. K. Algra, J. Barnes, J. Mansfeld, M. Schofield. Cambridge, Cambridge
University Press, pp. 92–157.

as well as on the combinatorial aspects underlying e.g. Menelaus’ theorem is a further indication
that the interest in such problems had faded very quickly. The residual interest was apparently tied
to commentaries on dialectical treatises, as most of our later testimonies attest.



500 F. Acerbi

Boethius, Porphyrii Isagoge a Boethio translata, in Commentaria in Aristotelem Graeca, vol.
IV.1, ed. A. Busse. Berlin (Academia litterarum regia borussica), G. Reimer 1887 (reprint ed.:
Berlin, De Gruyter 1957).

Boethius, In Porphyrium Commentariorum libri V, in Patrologiae cursus completus, Manlii
Severini Boethii Opera Omnia, accurante J.-P. Migne, Patrologiae Latinae Tomus 64. Paris
1847 (reprint ed.: Turnhout (BE), Brepols 1979).

Boethius, In Categorias Aristotelis libri IV, in Patrologiae cursus completus, Manlii Severini
Boethii Opera Omnia, accurante J.-P. Migne, Patrologiae Latinae Tomus 64. Paris 1847
(reprint ed.: Turnhout (BE), Brepols 1979).

Boethius 1969, De hypotheticis syllogismis. Testo, traduzione, introduzione e commento di L.
Obertello. Brescia, Paideia Editrice.

Bonitz H. 1870, Index Aristotelicus, in Aristotelis Opera, vol. V, ex recensione I. Bekker. Berlin
(Academia litterarum regia borussica), G. Reimer (reprint ed.: Berlin, De Gruyter 1961).

Busard H. L. L. 1983, The First Latin Translation of Euclid’s Elements Commonly Ascribed to
Adelard of Bath. Toronto, Pontifical Institute of Mediaeval Studies.

Busard H. L. L. 1984, The Latin translation of the Arabic version of Euclid’s Elements commonly
ascribed to Gerard of Cremona. Leiden, Brill.

De Falco V., Krause M. (eds.) 1966, Hypsikles. Die Aufgangszeiten der Gestirne. Abhandlun-
gen der Akademie der Wissenschaften in Gottingen, Philologisch-Historische Klasse, Dritte
Folge, Nr. 62. Göttingen, Vandenhoek & Ruprecht.

Dexippus, In Aristotelis categorias commentarium, in Commentaria in Aristotelem Graeca, vol.
IV.2, ed. A. Busse. Berlin (Academia litterarum regia borussica), G. Reimer 1888 (reprint ed.:
Berlin, De Gruyter 1957).

Diogenes Laertius, Vitae Philosophorum, ed. H. S. Long, 2 vols. Oxford, Oxford University
Press 1964.

Einarson B. 1936, On Certain Mathematical Terms in Aristotle’s Logic, The American Journal
of Philology LVII, pp. 33–54; 151–172.

Euclide 1998, Les Éléments. Traduction et commentaires par Bernard Vitrac. Paris, Presses
Universitaires de France. Vol. 3, livre X.

Euclides, Elementa. Post I. L. Heiberg edidit E. S. Stamatis. 5 vols. Leipzig-Stuttgart, B. G.
Teubner, 1969–1977.

Euclides 1916, Euclidis Phaenomena et Scripta Musica. Edidit H. Menge. Fragmenta. Colle-
git et disposuit I. L. Heiberg. in Euclidis Opera Omnia, vol. VIII, ediderunt I. L. Heiberg et
H. Menge. Leipzig, B. G. Teubner.

Frede M. 1974, Die stoische Logik.Abhandlungen derAkademie der Wissenschaften in Göttingen
Philologisch-Historische Klasse, Dritte Folge, Nr. 88. Göttingen, Vandenhoek & Ruprecht.

Galenus, Institutio logica, ed. K. Kalbfleisch. Leipzig, B. G. Teubner 1896.
Habsieger L., Kazarian M., Lando S. 1998, On the Second Number of Plutarch, The American

Mathematical Monthly 105, p. 446.
Hardy G. H., Wright E. M. 1979, An Introduction to the Theory of Numbers. 5th ed. Oxford,

Oxford University Press.
Heath T. L. 1921, A History of Greek Mathematics. 2 vols. Oxford, Oxford University Press

(reprint ed.: New York, Dover 1981).
Heiberg J. L. (ed.) 1927, Theodosius Tripolites Sphaerica. Abhandlungen der Gesellschaft der

Wissenschaften zu Göttingen, Philologisch-Historische Klasse, Neue Folge bd. XIX, 3. Berlin,
Weidmannsche Buchhandlung.

Heron 1903, Heronis Alexandrini opera quae supersunt omnia. Volumen III. Rationes Dimetiendi
et Commentatio Dioptrica. Edidit H. Schoene. Leipzig, B. G. Teubner (reprint ed.: Stuttgart
and Leipzig, Teubner 1976).

Hilbert D., Ackermann W. 1950, Principles of Mathematical Logic. New York, Chelsea
Publishing Company.



Ancient Greek Combinatorics 501

Høyrup J. 2002, Lenghts, Widths, Surfaces. A Portrait of Old Babylonian Algebra and Its Kin.
New York/Berlin/Heidelberg, Springer-Verlag.

Høyrup J. (forthcoming), Conceptual Divergence – Canons an Taboos – and Critique. Reflections
on Explanatory Categories, paper presented at the Sixth International Conference on Ancient
Mathematics, Delphi 2002.

Hülser K. (ed.) 1987–1988, Die Fragmente zur Dialektik der Stoiker. 4 vols. Stuttgart/Bad
Cannstatt, Frommann-Holzboog.

Iamblichus, In Nichomachi arithmeticam introductionem liber, ed. H. Pistelli. Leipzig, B. G.
Teubner 1894 (reprint ed.: Stuttgart and Leipzig, B. G. Teubner 1975).

Ibn An-Nadim 1871–72, Kitab al-Fihrist, ed. G. Fülgel, J Rödiger, A Müller, 2 vols. Leipzig, B.
G. Teubner.

Junge G., Thomson W. 1930, The Commentary of Pappus on Book X of Euclid’s Elements.
Cambridge (Mass.), Harvard University Press.

Klein J. 1968, Greek Mathematical Thought and the Origin of Algebra. Cambridge (Mass.), MIT
Press. (English translation of: Die griechische Logistik und die Entstehung der Algebra, Quel-
len und Studien zur Geschichte der Mathematik, Astronomie, und Physik B3 (1934–1936),
pp. 18–105; 122–235)

Kneale W. C., Kneale M. 1971, The Development of Logic. 2nd ed. Oxford, Oxford University
Press.

Knorr W. R. 1975, The Evolution of the Euclidean Elements. Dordrecht/Boston, Reidel.
LSJ, Liddell H. G., Scott R., Jones H. S., A Greek-English Lexicon. With a revised supple-

ment 1996. Oxford, Clarendon Press.
Lukasiewicz J. 1957, Aristotle’s Syllogistic. Oxford, Oxford University Press (reprint ed. 1998).
Mahoney M. S. 1971, Babylonian Algebra: Form vs. Content, Studies in History and Philosophy

of Science 1, pp. 369–380.
Mates B. 1953, Stoic Logic. Berkeley/Los Angeles, University of California Press.
Mendell H. 1998, Making Sense of Aristotelian Demonstration, Oxford Studies in Ancient

Philosophy 16, pp. 161–225.
Nesselmann G. H. F. 1842, Versuch einer kritischen Geschichte der Algebra. Nach den Quellen

bearbeitet. Erster Theil, Die Algebra der Griechen. Berlin, G. Reimer.
Netz R. (forthcoming), It’s not that they couldn’t.
Neugebauer O. 1975, A History of Ancient Mathematical Astronomy. 3 vols. New York/Ber-

lin/Heidelberg, Springer-Verlag.
Nicomachus, Introductio arithmetica, ed. R. Hoche. Leipzig, B. G. Teubner 1866.
Pappus 1876–78, Collectionis quae supersunt. Edidit F. Hultsch. 3 vols. Berlin, Weidmann (reprint

ed.: Amsterdam, Hakkert 1965).
Pappus 1986, Book 7 of the Collection. Edited with Translation and Commentary by Alexander

Jones, 2 vols. New York/Berlin/Heidelberg/Tokio, Springer-Verlag.
Plutarch 1938, Quaestionum convivialium libri IX, in Plutarchi moralia, vol. IV, ed. C. Hubert.

Leipzig, B. G. Teubner.
Plutarch 1976, Moralia, vol. XIII, part II, with an English translation by Harold Cherniss, Loeb

Classical Library 470. London, Cambridge (Mass.), Harvard University Press.
Porphyry, Isagoge sive quinque voces, in Commentaria in Aristotelem Graeca, vol. IV.1, ed.

A. Busse. Berlin (Academia litterarum regia borussica), G. Reimer 1895 (reprint ed.: Berlin,
De Gruyter, 1957).

Rome A. 1930, Procédés anciens de calcul des combinaisons. Annales de la Societé scientifique
de Bruxelles A 50, pp. 97–104.

Schröder E. 1870, Vier combinatorische Probleme, Zeitschrift für Mathematik und Physik, 15,
pp. 361–376.

Sesiano J. 1998, An Early Form of Greek Algebra, Centaurus 40, pp. 276–302.



502 F. Acerbi

Sextus Empiricus, Pyrrhoneion Hypotyposeon libri tres, in Opera, vol. I, ed. H. Mutschmann,
J. Mau. 2nd and corrected ed. Stuttgart and Leipzig, B. G. Teubner 1958.

Sextus Empiricus, Adversus Dogmaticos libri quinque (Adv. math. VII–XI), in Opera, vol. II,
ed. H. Mutschmann. Leipzig, B. G. Teubner 1914 (reprint ed.: Stuttgart and Leipzig, Teubner
1958).

Simplicius, In Aristotelis physicorum libros quattuor priores commentaria, in Commentaria
in Aristotelem Graeca, vol. IX, ed. H. Diels. Berlin (Academia litterarum regia borussica),
G. Reimer 1882 (reprint ed.: Berlin, De Gruyter 1957).

Stanley R. P. 1997, Hipparchus, Plutarch, Schröder, and Hough, The American Mathematical
Monthly 104, pp. 344–350.

Suter H. 1892, Das Mathematiker-Verzeichniss im Fihrist des Ibn Abî Ja’kûb an-Nadîm
(Muhammad Ibn Ishak), Abhandlungen zur Geschichte der Mathematik 6, pp. 1–87.

Theon Smyrnaeus, Expositio rerum mathematicarum ad legendum Platonem utilium, ed.
E. Hiller. Leipzig, B. G. Teubner 1878 (reprint ed.: Stuttgart and Leipzig, B. G. Teubner
1995).

Toomer G. J. 1978, Hipparchus, in Dictionary of Scientific Biography, ed. C. C. Gillispie, 16
vols. New York, C. Schribner’s Sons 1970–1980, XV, supplement I, pp. 207–224.

Waitz TH. 1844–46, Organon graece, novis codicum auxiliis adiutus recognovit, scholiis ineditis
et commentario instruxit Th. Waitz, 2 vols, Leipzig (reprint ed.: Aalen 1965).

Ziegler K. 1951, Plutarchos, in Paulys Real-Encyclopädie der classischen Altertumswissens-
chaft, 2nd ed., ed. G. Wissowa et al., 24 vols in 43. Stuttgart, J. B. Metzler 1894–1963, XXI 1,
cc. 636–962.

via Portis 3
Portis 33010 Venzone (UD)

Italy
fabioacerbi@libero.it

(Received June 25, 2002)
Published online April 24, 2003 – © Springer-Verlag 2003


