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A B S T R A C T

In recent years, the importance of electric mobility has increased in response to climate change. The fast-
growing deployment of electric vehicles (EVs) worldwide is expected to decrease transportation-related 𝐶𝑂2
emissions, facilitate the integration of renewables, and support the grid through demand–response services.
Simultaneously, inadequate EV charging patterns can lead to undesirable effects in grid operation, such
as high peak-loads or low self-consumption of solar electricity, thus calling for novel methods of control.
This work focuses on applying deep reinforcement learning (RL) to the EV charging control problem with
the objectives to increase photovoltaic self-consumption and EV state of charge at departure. Particularly,
we propose mathematical formulations of environments with discrete, continuous, and parametrized action
spaces and respective deep RL algorithms to resolve them. The benchmarking of the deep RL control against
naive, rule-based, deterministic optimization, and model-predictive control demonstrates that the suggested
methodology can produce consistent and employable EV charging strategies, while its performance holds a
great promise for real-time implementations.
1. Introduction

1.1. Background and motivation

In recent years, the importance of electric mobility has increased
in response to climate change, volatile prices of fossil fuels, and energy
dependencies between countries. The transportation sector accounts for
27% of global greenhouse gas emissions in the EU, 72% of which are
contributed by road transport [1]. Therefore, electric vehicles (EVs)
are regarded as an effective way to reach emissions reduction targets
and alleviate the current energy crisis. With fast-growing EV deploy-
ment around the world (+40% in 2019), where China and Europe
account for 54% and 20% of the global fleet respectively [2], ad-
ditional challenges arise coupled with inherent advantages of green
mobility. Notably, increasing electrification of transport is expected to
reshape the electricity load curve with the most pronounced effects for
evening peak loads. Although EVs are unlikely to drastically drive up
the overall electricity demand, the increase in peak-loads can impose
significant threats on the secure and stable operation of power sys-
tems due to capacity issues of grid infrastructures. Therefore, efficient
control strategies are required to manage the charging processes of
EVs to avoid significant grid investments and guarantee the stability
of the electricity supply. Additionally, as driving patterns demonstrate,
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the EVs are parked more than 80% of the time [3], which gives the
potential to intelligently shift the charging load, thus deploying smart
energy management techniques. On the bright side of the increasing
penetration of electric mobility is the opportunity to offer grid ancillary
services to support the grid’s various objectives. For example, using EVs
can reduce energy costs, contribute to peak shaving, improve system
balancing, and integrate a larger share of renewables into power pro-
duction. However, the trade-off is to combine demand–response with
seamless availability of EVs, such as the primary purpose of enabling
mobility is served in a reliable and timely manner.

1.2. Control methods

To effectively manage the charging processes of EVs, one has to
choose between various control strategies. The three main broad classes
of control methods include rule-based control (RBC), model predictive
control (MPC), and reinforcement learning control (RLC) [4]. Indeed,
there are certain advantages and disadvantages associated with each
of these control techniques. Therefore, one has to choose an appro-
priate approach based on the trade-off between the complexity of the
problem, control objectives, and available computational resources.
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1.2.1. Rule-based control
RBC is the simplest control method that consists of a knowledge base

and an inference engine. The prior defines the set of rules that govern
the operations, and the latter takes actions based on the input data
and the corresponding rules. Although RBC requires domain-specific
expertise and knowledge to define the decision-making criteria, a rule-
based nature is easy to understand as it provides transparent links
between causes and effects. Therefore, solutions generated by RBC
can be easily interpreted and justified. However, rule bases do not
scale efficiently; thus, RBC becomes inadequate for large and complex
problems. In practice, solving complicated matters with RBC results
in conflicting and overlapping rules that require significant human
supervision. Moreover, RBC is not good at handling incomplete or
incorrect data and can strangle creativity and knowledge discovery.
Indeed, only the known rules can be applied, while detecting unusual
relations between the elements of the system might be hindered by the
RBC nature.

1.2.2. Model predictive control
MPC is a control approach based on solving a constrained optimiza-

tion problem iteratively at each time step for a finite time horizon. The
family of MPC methods includes deterministic and stochastic control,
with the latter being able to handle uncertain disturbances without
performance degradation and violation of constraints. The MPC con-
sists of a system model, a set of constraints, an objective function,
predictive trajectories of future disturbance inputs, and an optimization
algorithm. The model-based nature of MPC poses significant demands
to the quality and precision of the system’s model while exhibiting
limited generalization capabilities. Difficulties in handling nonlinear
systems represent another major shortcoming of MPC. The method is
not guaranteed to converge to a global optimum, nor is it guaranteed to
provide a solution on time. Moreover, MPC is computationally complex,
which makes it inappropriate for online use.

1.2.3. Reinforcement learning control
RLC is a powerful tool for decision-making that applies to nonlinear

and stochastic systems. As shown in Fig. 1, the RLC consists of an
agent that interacts with the environment through actions similar to
how a controller influences a technical system through control sig-
nals. Optimal control problems to be solved by RLC are formulated
as Markov decision processes (MDPs). An MDP (𝑆,𝐴, 𝑃 ,𝑅) consists
f the following elements: a finite set of states 𝑆, a finite set of
ctions 𝐴, state transition probability matrix 𝑃 , and rewards function
. Therefore, the agent receives active feedback in the form of rewards
hen it changes the system’s state by executing specific actions in

he environment. The ultimate goal of the agent is to maximize the
xpected cumulative reward. Therefore, using reward engineering, one
an define the objectives of different complexity to be achieved by the
ontrol process. Being potentially model-free is the main advantage
f RLC, making it well generalizable and applicable to systems with
nknown dynamics or affected by significant uncertainties. However,
eing a data-driven approach, RLC requires large volumes of training
ata, which are not always available or easy to collect from specific
ystems. Moreover, training demands high computational resources and
ong times, although a trained agent is fast and can be easily deployed
nline.

In the current work, we aim to explore the application of RLC to
he problem of EV charging control for three main reasons. First, the
ast-pace development of a connected world, thanks to the internet of
hings, artificial intelligence (AI), and digital transformation, coupled
ith increased penetration of EVs, provides conditions to generate an
bundance of domain-specific data. Therefore, data-driven approaches
hrive in such circumstances enabling better understanding and man-
gement of physical systems around us. Second, the model-free nature
f RLC permits not only high generalization but also flexible config-
2

rations of environments. Third, extension of RLC towards deep RLC
allows scalability of decision-making problems that were previously
intractable. For these reasons, the following literature review focuses
explicitly on the RLC methods that can be applied to the energy
management of battery-powered EVs. Charging of hybrid EVs is out of
the scope in the current work.

1.3. Related works

RLC applications to energy systems is a relatively new, though fast
progressing field with the majority of works completed over the five-
year preceding timeframe. Researchers in [5] conducted an extensive
review of reinforcement learning (RL)-enabled demand–response, while
authors in [6] looked at building energy management through the
prism of RL algorithms. Both of these reviews included research on
EV-related energy exchanges. In our study, we particularly highlight
contributions that demonstrate a variety of objective functions, MDP
formulations, and RL methods applied to the EV charging control
problem. Some of the research pieces selected do not include EVs but
deploy battery storage. Although availability is the crucial difference
between the two, one can reuse the methodology for EV management.
We divided all works into two main categories according to the action
space used: discrete or continuous. We did not find any studies that deal
with parametrized action spaces, which are hybrid between discrete
and continuous.

Discrete action spaces are characterized by a finite number of avail-
able actions that an agent can choose from. Researchers in [7] looked
at the energy storage system (ESS) and photovoltaic (PV) generation
through temporal difference (TD) learning to minimize the electricity
bill of residential customers. The authors in [8] applied the Q-learning
algorithm, an instance of TD(𝜆), to the energy system composed of PV,
a utility grid, an ESS, a single home, and controllable home appliances.
The RLC delivered a 14% reduction of electricity bill compared to
the optimization approach. The same methodology was implemented
in [9] with the additional inclusion of EVs and the vehicle-to-grid (V2G)
concept. Another attempt at Q-learning was demonstrated in [10] to
determine cost-efficient EV charging schedules with an emphasis on the
battery degradation cost. However, no renewable energy sources were
taken into account. Researchers in [11] deployed fitted Q-iteration
batch RL to reduce the long-term cost of EV charging. Although they
did not consider renewable generation, an effort was made to pre-
dict electricity prices using an artificial neural network (ANN). The
action was defined by the amount of energy charged in the battery
and was discretized into several equal levels ranging from 0 to bat-
tery capacity. The same algorithm in a similar problem setting was
used by [12] with the demand–response goal of load flattening. The
suggested MDP formulation is scalable to any number of charging
stations. The authors in [13] combined the peak-shaving and the cost
minimization objectives while implementing a deep Q-network (DQN)
approach. Researchers in [14] pursued the same goal for a PV, EV, and
building appliances energy system using DQN and deterministic policy
gradient algorithms. In [15] both neural fitted Q-iteration and DQN
were deployed to reduce long-term operating costs of a home energy
management system coupled with ESS, PV, a utility grid, and an EV.

In a continuous action space, an action is some real-valued number
usually bounded by the defined range. Often, such actions exist in
multiple dimensions. The majority of the studies apply a deep deter-
ministic policy gradient (DDPG), the most well-known RL technique to
solve MDPs with continuous actions. The authors in [16] used DDPG
for EV charging control to maximize user’s satisfaction with charging
requirements while minimizing the charging expense. Specific grid-
level constraints, such as power flow, voltage region, and capacity
limits of the equipment, were examined in [17] to maximize the profit
of a distribution system operator in a scheme of multiple EVs. An ESS
with home loads was studied in [18] to reduce total electricity costs
through the actor–critic RL. However, none of these works considered

renewable generation. In [19], no EVs were involved in a system of
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Fig. 1. Reinforcement learning concept.
ESS and PV generation under the energy cost minimization objective.
Researchers in [20] proposed an extension of DDPG with a prioritized
experience replay. Their energy system model included a utility grid,
PV, ESS, heat pump, boiler, and thermal energy storage. A different
approach using proximal policy optimization was demonstrated in [21]
to deal with critical, shiftable, and controllable appliances, where EVs
were enclosed in the latter category.

The works mentioned above were concerned with a single-agent RL,
while few studies investigate the application of multi-agent reinforce-
ment learning (MARL) approaches. The energy system in a multi-agent
environment is represented by multiple actors that compete, cooper-
ate or do both towards achieving a specific goal. Therefore, MARL
finds application in the game-theoretical context. The authors in [22]
considered PV, ESS, and EV charging stations to compute optimal
charging schedules in a distributed manner. To reduce operational
costs, they applied the CommNet algorithm on a discrete set of actions.
An equilibrium-based MARL algorithm was used in [23] to determine
the energy charging and discharging scheduling of a residential micro-
grid composed of multiple EVs and both solar and wind generation.
The double objective of increasing average profits and reaching max-
imum autonomy from the utility grid was framed as a Markov game.
The authors in [24] combined batch RL with function approximators
and a market-based multi-agent system in a model-free manner. The
system comprised of EVs and PV was studied under peak shaving and
valley filling objectives. The results demonstrated a 50% reduction in
grid’s peak power. Although MARL is attractive for demand–response
problems due to its distributed nature, experience sharing possibilities
between agents, and potential speedup of learning using parallel com-
puting, certain shortcomings might limit its application. Despite the
curse of dimensionality problem and exploration–exploitation trade-
off, which are also common for single-agent algorithms, the biggest
challenge in MARL arises from the difficulty of specifying a learning
goal. Moreover, the simultaneous learning of multiple agents leads
to nonstationarity and an increased need for coordination between
actors [25]. Thus, the methodology proposed in the current study
focuses on a single agent approach.

1.4. Contribution

In light of the conducted literature review, we noticed that single-
agent approaches prevail in EV charging control problems. Addition-
ally, we concluded that albeit the high diversity of considered energy
systems, which often include EVs, building loads, PV generation, a
utility grid, and ESS, the diversification in methodology and objectives
is feeble. Moreover, few works use the advent of deep RL despite
its success in robotics, transportation, and healthcare. Therefore, our
aim is three-fold. First, we want to fill the gap in the literature by
demonstrating how the same EV charging problem can be formulated in
different ways mathematically, thus triggering the application and the
3

comparison of a variety of deep RLC algorithms. Second, we want to ex-
tend the EV control beyond the cost minimization objective as detailed
below. Third, we want to show how the performance of RLC compares
with other control methods such as RBC and MPC. To fulfill these goals,
we focus on a simple energy system composed of a utility grid, building
load, PV generation, and a single EV. Our particular contribution and
the novelty of the current work lie within the following points:

• The three different mathematical formulations are proposed in
the form of MDPs for the energy system of choice that enable
RLC with discrete, continuous, and parametrized types of action
spaces.

• The pool of EV charging control objectives is extended by focusing
on maximizing PV self-consumption and EV state of charge (SOC)
at departure at the same time.

• The customized OpenAI gym environments [26] are built to
facilitate the development and testing of the RLC applications for
the energy system of choice while being potentially exploitable
for adding other energy actors, such as ESS, heat pumps, boilers,
etc.

• The deep RL algorithms such as double deep Q-networks learn-
ing (DDQN), DDPG, and parametrized deep Q-networks learning
(P-DQN) are applied to the problem of EV charging control.
Moreover, a comprehensive benchmarking against naive, RBC,
deterministic optimization, and MPC deterministic and stochastic
approaches is provided.

• The application of novel techniques in the RL field, such as
hindsight experience replay (HER) [27] and learning from expert
demonstrations, is demonstrated to the problem of EV charging
control.

The remaining of this paper is organized as follows. Section 2 describes
the problem formulation, and Section 3 introduces the methodology. In
Section 4, we set up the case study and present benchmark algorithms.
The results are provided in Section 5 together with the discussion, while
Section 6 concludes the paper with suggestions for future work.

2. Problem statement

The energy system in consideration consists of the following el-
ements shown in Fig. 2. A utility grid and PV generation represent
energy sources, while an EV and a building constitute energy demands.
One has to note that in this work, we do not consider the V2G concept
and we exploit EV as the only controllable load. In this context,
we aim to control EV charging to reach two overarching objectives.
Particularly, we want to increase PV self-consumption of the energy
system and to achieve as high SOC at the EV departure as possible.
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Fig. 2. Representation of the energy system used in the current study.
2.1. Objectives and constraints

Let 𝑃𝑉𝑡 denote the PV production at time 𝑡, while 𝐿𝑡 and 𝐸𝑉𝑡 are
the building load demand and the EV charging demand at time 𝑡,
respectively. The 𝐿𝑡 can be supplied by both the utility grid and PV,
resulting in corresponding quantities of 𝐿𝐺

𝑡 and 𝐿𝑃𝑉
𝑡 at time 𝑡, thus:

𝐿𝑡 = 𝐿𝐺
𝑡 + 𝐿𝑃𝑉

𝑡 (1)

On the contrary, according to our modeling choice, the concurrent
supply to the EV from multiple sources is forbidden by the charging
station:

𝐸𝑉 𝐺
𝑡 𝐸𝑉 𝑃𝑉

𝑡 = 0 (2)

where 𝐸𝑉 𝐺
𝑡 and 𝐸𝑉 𝑃𝑉

𝑡 represent the power supplied to EV from the
grid and PV, respectively. Following the definition in [28], the PV
self-consumption objective can be formulated as follows:

max Self-consumption =

∑𝑡𝑒
𝑡=𝑡𝑠

(𝐿𝑃𝑉
𝑡 + 𝐸𝑉 𝑃𝑉

𝑡 )
∑𝑡𝑒

𝑡=𝑡𝑠
𝑃𝑉𝑡

(3)

where the nominator is the self-consumed part of PV, while the de-
nominator is the total PV production. One has to note that we use 𝑡𝑠
and 𝑡𝑒 to denote the corresponding start and end of the time period,
which in RLC is equivalent to the length of an episode. In our problem
formulation, as EV is the only controllable load, an episode starts at the
arrival of EV to the charging station at 𝑡𝑎𝑟𝑟 and ends with its departure
at 𝑡𝑑𝑒𝑝. Therefore, 𝑡𝑠 = 𝑡𝑎𝑟𝑟 and 𝑡𝑒 = 𝑡𝑑𝑒𝑝. The time resolution 𝛥𝑡
chosen is hourly. According to proposed notations, we formulate the
maximization of the SOC at departure objective in the following way:

max 𝑆𝑂𝐶𝑡,where 𝑡 = 𝑡𝑑𝑒𝑝 (4)

In addition to building and EV simultaneity of power supply con-
straints, we formulate other constraints that are necessary to respect
for EV charging control problem:

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (5)

0 ≤ 𝐸𝑉 𝐺
𝑡 , 𝐸𝑉 𝑃𝑉

𝑡 ≤ 𝑃𝑚𝑎𝑥 (6)

𝑆𝑂𝐶𝑡+1 = 𝑆𝑂𝐶𝑡 + 𝜂𝐸𝑉 (𝐸𝑉 𝐺
𝑡 + 𝐸𝑉 𝑃𝑉

𝑡 )𝛥𝑡
𝐶𝑏𝑎𝑡

(7)

where Eq. (5) bounds the EV SOC. The upper bound 𝑆𝑂𝐶𝑚𝑎𝑥 = 1
is imposed by the battery capacity, and the lower bound 𝑆𝑂𝐶𝑚𝑖𝑛 is
determined by the advised discharging policy. As most rechargeable
batteries are not meant to be fully discharged for lifetime reasons, a
minimum allowed SOC is set to avoid battery damage. In this research
we assume 𝑆𝑂𝐶𝑚𝑖𝑛 = 0.2, following [29]. One has to note that 𝑆𝑂𝐶𝑡
denotes the SOC at the beginning of time 𝑡. Eq. (6) imposes the upper
4

limit on the EV charging power 𝑃𝑚𝑎𝑥, which is conditioned by the
type of the charging station. Eq. (7) determines the continuity of the
SOC within an episode, where 𝜂𝐸𝑉 is the efficiency of the EV charging
process, and 𝐶𝑏𝑎𝑡 is the EV battery capacity in Wh.

2.2. MDP formulation

To solve the EV charging problem using RLC, one has to formulate it
according to MDP formalism, thus define 𝑆,𝐴, 𝑃 , and 𝑅. As mentioned
earlier, the model-free property is the advantage of RLC compared to
other control methods. Therefore, we do not need to define 𝑃 as this
would be equivalent to modeling the full dynamics of the environment.
Instead, we deal with incomplete knowledge and let the next state 𝑠′ be
determined by the environment depending on the current state 𝑠 and
the action 𝑎 taken.

2.2.1. State space
State space 𝑆 contains all possible states 𝑠 that an agent can have

when interacting with a given environment. The system state 𝑠 at time
𝑡 is continuous and is defined as a vector 𝑠𝑡 = (𝑃𝑉𝑡, 𝐿𝑡, 𝐷𝑡, 𝑆𝑂𝐶𝑡),
where in addition to PV generation, building load demand, and EV SOC,
the parameter 𝐷𝑡 denotes the time to EV departure from the charging
station.

2.2.2. Action space
Action space 𝐴 includes all possible actions 𝑎 that an agent can

perform in the environment. The definition of 𝐴 determines the appro-
priate RL algorithm to solve an MDP. In the case of EV charging control
problem, we suggest three different ways to formulate 𝐴:

Discrete action space. Given the state 𝑠𝑡, action 𝑎𝑡 represents the charg-
ing power of the EV bounded by Eq. (6). In addition, 𝑎𝑡 should reflect
the source of power, either grid or PV. Thus, 𝑎𝑡 ∈ {0, 𝛥𝑒𝑔 ,… , 𝛥𝑒𝑃𝑚𝑎𝑥𝑔 ,
𝛥𝑒𝑃𝑉 ,… , 𝛥𝑒𝑃𝑚𝑎𝑥𝑃𝑉 }, where both grid and PV power supplies are dis-
cretized according to 𝛥𝑒𝑔 and 𝛥𝑒𝑃𝑉 , respectively, resulting in total of
21 actions.

Continuous action space. The action 𝑎𝑡 is specified as a real-valued
number within [−1, 1] bounds. The negative part [−1, 0) corresponds
to the power supply from the grid, while the positive part (0, 1] is
equivalent to the power supply from PV. To obtain the quantity of
power supply, one has to multiply the action 𝑎𝑡 by the maximum
allowed power 𝑃𝑚𝑎𝑥 from the charging station.

Parametrized action space. The definition of a parametrized, discrete-
continuous hybrid action space 𝐴, is depicted on Fig. 3. The action 𝑎𝑡
is constructed as a tuple. The discrete part of the action specifies the
source, either PV or grid, while the parameter part defines the amount
of power supply within a [0, 1] continuous range, identical for both
sources. The value 1 of a parameter is equivalent to the power supply
of 𝑃 .
𝑚𝑎𝑥
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Fig. 3. Representation of parametrized action space.

For all the types of action spaces proposed, an additional PV pro-
uction constraint has to be satisfied:

𝑉 𝑃𝑉
𝑡 ≤ max(𝑃𝑉𝑡 − 𝐿𝑡, 0) (8)

here the right-hand side of Eq. (8) represents the PV surplus after
upplying the building load. Thus, the priority of the PV power supply is
iven to satisfy the 𝐿𝑡, while the EV charging from a renewable source
omes secondarily.

.2.3. Rewards
The reward function 𝑅 is the most challenging part of the MDP

ormulation, which usually requires careful engineering. Essentially,
mmediate reward 𝑅(𝑠, 𝑎) is a form of feedback the agent receives
rom the environment on the quality of its decision-making process.
ltimately, the shaping of the reward function 𝑅 should lead the agent

owards achieving the objective in a fast and optimal way. Therefore,
fficient reward functions facilitate the speed of convergence of RL
lgorithms and help the agent avoid being stuck in the local minima.
he 𝑅 can be mainly grouped into two categories: dense and sparse.
ense rewards are given almost at every state transition, while sparse

ewards are infrequent. An example of a sparse reward is a terminal
eward given at the end of an episode. Dense rewards are more difficult
o define as they require expertise and domain knowledge. Moreover,
hey are prone to limiting the agent’s behavior from the discovery of
reative solutions and to facilitating strange behaviors learned uninten-
ionally [30]. Sparse rewards, instead, are easier to formulate, such as

binary signal indicating task completion or reaching the objective.
owever, they demand long training processes as most of the time, the
gent does not receive any feedback from the environment. Additional
omplications arise in the case of multi-objective RLC.

ulti-objective rewards. In this paragraph we define the multi-objective
parse reward function 𝑅 that helps the agent to maximize PV self-
onsumption while achieving the highest SOC possible at the EV’s de-
arture. To start, we define a notion of a maximum PV self-consumption
𝐶𝑚𝑎𝑥 achievable during an episode as follows:

𝐶𝑚𝑎𝑥 =
𝐿𝑃𝑉
𝑚𝑎𝑥 + 𝐸𝑉 𝑃𝑉

𝑚𝑎𝑥
∑𝑡𝑒

𝑡=𝑡𝑠
𝑃𝑉𝑡

(9)

𝐿𝑃𝑉
𝑚𝑎𝑥 =

𝑡𝑒
∑

𝑡=𝑡𝑠

min(𝑃𝑉𝑡, 𝐿𝑡) (10)

𝐸𝑉 𝑃𝑉
𝑚𝑎𝑥 = min(

𝑡𝑒
∑

max(𝑃𝑉𝑡 − 𝐿𝑡, 0), [𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑡𝑎𝑟𝑟 ]𝐶𝑏𝑎𝑡) (11)
5

𝑡=𝑡𝑠
g

Therefore, Eq. (11) is essentially a trade-off between the available
PV surplus after satisfying the building demands and the available
charge capacity in the EV battery. Indeed, the value of 𝑆𝐶𝑚𝑎𝑥 can only
be calculated retrospectively, as the RLC agent has no knowledge about
future values of 𝑃𝑉𝑡 and 𝐿𝑡. Therefore, the 𝑅 function should provide
the rewards at the end of the episode.

To design the multi-objective 𝑅 we took inspiration from chal-
lenging robotics environments [31]. The goal is 2-dimensional and
describes the desired PV self-consumption and SOC at the end of the
episode in the form of a tuple. Therefore, the reward function 𝑅 can be
defined as follows:

𝑅 =

⎧

⎪

⎨

⎪

⎩

1, 𝑖𝑓 (𝑆𝐶𝑚𝑎𝑥 − 𝑆𝐶𝑡𝑑𝑒𝑝 ) ≤ 𝜖𝑃𝑉
𝑎𝑛𝑑 (𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑡𝑑𝑒𝑝 ) ≤ 𝜖𝑆𝑂𝐶

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12)

here 𝜖𝑆𝑂𝐶 and 𝜖𝑃𝑉 are the desired tolerance values and 𝑆𝐶𝑡𝑑𝑒𝑝 is
he PV self-consumption achieved at 𝑡𝑑𝑒𝑝. One has to note that such a
ormulation of 𝑅 equally prioritizes the PV self-consumption and SOC
t departure. In practice, however, one would give higher importance
o SOC at departure as it directly impacts the EV’s usability, while PV
elf-consumption only results in financial benefits. The sparse reward
unction 𝑅 alleviates the burden of tuning the weights in case of
ombining multiple objectives using a dense function. Moreover, it
llows defining a unique expression for calculating rewards, which is
nterchangeable between discrete, continuous, and parametrized envi-
onments. On the downside, sparse 𝑅 requires specific techniques to
peed up the training process and aid the exploration, especially when
ultiple objectives are combined. The HER [27] is introduced in the

ollowing section as a method that makes learning possible even if the
ewards are sparse and binary.

. Methodology

Following the formulation in Section 2, we have an EV charging
ontrol problem stated as an MDP with following characteristics:

• continuous state space 𝑆
• discrete, continuous or parametrized action space 𝐴
• sparse reward function 𝑅

n this section, we introduce RL techniques and particular algorithms
hat can handle the specific properties of the MDP. To create a rep-
esentation of a continuous state space, we use ANNs as function
pproximators, which implies switching to a deep RL domain. To deal
ith discrete, continuous, and parametrized action spaces, we choose

he DDQN, DDPG, and P-DQN model-free algorithms, respectively. To
acilitate training in the environment with sparse rewards, we apply
ER and learning from expert demonstrations techniques.

.1. DDQN for discrete action space

The DDQN value-based algorithm [32] is meant to solve the Q-
alues overestimation problem of the DQN [33] by decoupling action
election from action evaluation using two separate estimators, the
nline network and the target network. Algorithm 1 shows the pseudo-
ode of the DDQN implementation. The DDQN training procedure is
terated over a specified number of episodes, where each episode lasts
rom 𝑡𝑎𝑟𝑟 to 𝑡𝑑𝑒𝑝 of the EV.

At the beginning of the algorithm, we need to create a replay buffer
nd to initialize online and target ANNs, where the target network is
nstantiated as a copy of the online network with the same weights. The
irst for-loop, lines 4–10, represents the interaction of the agent with
he environment, where the action 𝑎𝑡 is selected using the exploration
olicy 𝜋 based on the current state 𝑠𝑡. The DDQN algorithm uses an 𝜖-

reedy exploration policy, where the 𝜖 parameter decays to some value
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Algorithm 1 Double Deep Q-Networks Learning (DDQN)
1: Initialize: online network 𝑄𝜃 and replay buffer ,

target network 𝑄𝜃′ with weights 𝜃′ ← 𝜃
2: for each episode do
3: observe current state 𝑠𝑡
4: for each step in the environment do
5: select action 𝑎𝑡 ∼ 𝜋(𝑄𝜃(𝑠𝑡)) according to policy 𝜋
6: execute action 𝑎𝑡
7: observe next state 𝑠𝑡+1 and reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)
8: store (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡) in replay buffer 
9: update current state 𝑠𝑡 ← 𝑠𝑡+1

10: end for
11: for each update step do
12: sample minibatch 𝑁 of experiences:

𝑒𝑖 = (𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1, 𝑟𝑖) from replay buffer 
13: compute expected Q-values:

𝑄∗(𝑠𝑖, 𝑎𝑖) ≈ 𝑟𝑖 + 𝛾𝑄𝜃′ (𝑠𝑖+1, argmax
𝑎′

𝑄𝜃(𝑠𝑖+1, 𝑎′))

14: compute loss 𝐿 = 1
𝑁

∑

𝑖(𝑄∗(𝑠𝑖, 𝑎𝑖) −𝑄𝜃(𝑠𝑖, 𝑎𝑖))2

15: perform stochastic gradient descent step on 𝐿
16: update target network parameters:

𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′

17: end for
18: end for

𝜖𝑚𝑖𝑛 either linearly or exponentially. The second for-loop, lines 11–
17, describes the learning procedure, enabled by the experience replay
concept. The replay buffer  serves as memory storage that holds
all transactions between the agent and the environment in the form
of tuples (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡), thus allowing the agent to reuse accumulated
experience for the sake of better data efficiency. When the  is full,
the oldest experience is deleted to make space for the new one. Every
𝑛 steps, the minibatch 𝑁 of past transactions is sampled randomly
from , thus breaking temporal relations between experiences and
improving the stability of training. The learning process is three-fold.
First, the expected Q-value 𝑄∗(𝑠𝑖, 𝑎𝑖), line 13, is calculated using the
Bellman equation based on the action chosen and evaluated by the
online network 𝑄𝜃 and the target network 𝑄𝜃′ , respectively. Second, the
mean squared error loss is calculated between an expected 𝑄∗(𝑠𝑖, 𝑎𝑖) and
an actual 𝑄(𝑠𝑖, 𝑎𝑖) Q-value and a gradient descent step performed using
Adam optimizer with selected learning rate 𝛼. Last, the parameters of
the online network are slowly copied to the parameters of the target
network using the rate of averaging 𝜏 ∈ (0, 1]. In the case of hard-
copying, the hyperparameter 𝜏 = 1 and the update of the weights is
conducted every 𝑛 steps.

In Table 1, we summarize our choice of hyperparameters compared
o the values of the original paper [32]. For all algorithms presented in
he current study, the values of hyperparameters have been determined
mpirically by tuning originally reported values to achieve better al-
orithms’ performance during training. Particularly, to help the agent
xplore the environment, we use 𝜖-greedy policy with exponential
ecay from 0.9 to 0.1. The ANN configuration has two hidden layers
f 32 nodes each with Rectified Linear Unit (ReLU) activations. The
utput layer size is equal to the size of the action space, and the
ctivation is a softmax.

.2. DDPG for continuous action space

The DDPG is a model-free off-policy algorithm for learning contin-
ous actions [34]. Contrary to DQN-like algorithms, DDPG can handle
ontinuous action spaces without discretization, thus alleviating the
urse of dimensionality problem. As seen in the pseudo-code of the
lgorithm 2, DDPG has an actor–critic architecture. The actor network
(𝑠|𝜃𝜇) is the policy network that maps states to actions in a deter-
6

inistic way. Thus it proposes the action to be executed. The critic
Table 1
Hyperparameters of the DDQN algorithm.

Hyperparameter Symbol Original value Our value

Replay buffer size  1 × 106 5 × 105

Minibatch size 𝑁 32 32
Discount factor 𝛾 0.99 0.99
Averaging rate 𝜏 1 1
Learning rate 𝛼 0.00025 0.001
Update every 𝑛 1000 32

network 𝑄(𝑠, 𝑎|𝜃𝑄), instead, is the value network that judges the quality
of the state–action pair and thus evaluates the policy. Both networks
are initialized randomly. The target critic 𝑄′ and the target actor 𝜇′

networks, instead, are created as copies of original networks, which
can be seen in line 1. The purpose of target networks is to add stability
to the training process.

Algorithm 2 Deep Deterministic Policy Gradient (DDPG)

1: Initialize: critic network 𝑄(𝑠, 𝑎|𝜃𝑄) and actor network 𝜇(𝑠|𝜃𝜇), target
critic network 𝑄′ and target actor network 𝜇′ with weights 𝜃𝑄′

←
𝜃𝑄, 𝜃𝜇′ ← 𝜃𝜇 , replay buffer 

2: for each episode do
3: observe current state 𝑠𝑡
4: initialize random process  for action exploration
5: for each step in the environment do
6: select action 𝑎𝑡 ∼ 𝜇(𝑠𝑡|𝜃𝜇) +𝑡
7: execute action 𝑎𝑡
8: observe next state 𝑠𝑡+1 and reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)
9: store (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡) in replay buffer 
0: update current state 𝑠𝑡 ← 𝑠𝑡+1
1: sample minibatch 𝑁 of experiences:

𝑒𝑖 = (𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1, 𝑟𝑖) from replay buffer 
2: Train critic:

compute 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇
′ )|𝜃𝑄′ )

compute loss 𝐿 = 1
𝑁

∑

𝑖(𝑦𝑖 −𝑄(𝑠𝑖, 𝑎𝑖|𝜃𝑄))2

perform stochastic gradient descent step on 𝐿
3: Train actor:

∇𝜃𝜇𝐽 ≈ 1
𝑁

∑

𝑖 ∇𝑎𝑄(𝑠𝑖, 𝜇(𝑠𝑖)|𝜃𝑄)∇𝜃𝜇𝜇(𝑠𝑖|𝜃𝜇)
4: update target actor and critic networks parameters:

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

5: end for
6: end for

Although the interaction of the agent with the environment is
similar to DDQN, the exploration in continuous action space is more
challenging as the number of possible actions is infinite. The DDPG al-
gorithm uses temporally correlated noise generated using the Ornstein–
Uhlenbeck process  as the exploration technique [35]. In line 6, the
noise value 𝑡 is added to the action itself, while the process  is reset
at the beginning of every episode. The critical difference of the DDPG
algorithm from the DDQN lies in its training process as both actor and
critic networks have to be trained. In line 12, the update of the critic
network 𝑄 is based on the Bellman equation, where Q-values of the next
state 𝑠𝑖+1 are calculated with the target actor network 𝜇′ and the target
critic network 𝑄′. Afterward, mean-squared loss 𝐿 is minimized using
Adam optimizer with a learning rate 𝛼𝑐 . Therefore, the critic training
process is similar to the training process of the DDQN algorithm. The
actor training, which is done successively, aims at maximizing the Q-
values predicted by the critic based on the actions suggested by the
actor itself. According to line 13, the gradients of the critic network 𝑄
output computed with respect to input actions are fed back to the actor
network 𝜇 using the chain-rule to update the parameters of the actor
network 𝜇. Once the training is performed, the weights of the target
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Table 2
Hyperparameters of the DDPG algorithm.

Hyperparameter Symbol Original value Our value

Replay buffer size  1 × 106 5 × 105

Minibatch size 𝑁 64 64
Discount factor 𝛾 0.99 0.99
Averaging rate 𝜏 0.001 0.01
Learning rate actor 𝛼𝑎 10−4 10−4

Learning rate critic 𝛼𝑐 10−3 10−3

networks 𝜃𝑄′ and 𝜃𝜇′ are slowly updated based on the weights of the
main networks, as seen in line 14, according to the averaging rate 𝜏.

Table 2 presents the original and empirically chosen hyperparame-
ers of the DDPG algorithm. The Ornstein–Uhlenbeck process used for
xploration is deployed with the following parameters: 𝜎 = 0.2, 𝜇 =
, 𝜃 = 0.15, which are identical to those in the original paper [34]. The
etworks’ configuration in our implementation is 32–32 for both critic
nd actor networks. One has to note that the learning rate of critic 𝛼𝑐
s always bigger than the learning rate of the actor 𝛼𝑎. Moreover, a
revious study [36] on the RL for EV management has indicated that
he DDPG algorithm is susceptible to the choice of hyperparameters and
requently, even a single wrongly chosen parameter can sabotage the
earning process.

.3. P-DQN for parametrized action space

Parametrized action spaces are usually either discretized into ap-
roximate finite sets or relaxed into continuous sets. However, several
ttempts were made to develop RL algorithms specifically for hybrid
ction spaces. These works include Q-PAMDP algorithm presented
n [37], hybrid actor–critic architecture demonstrated in [38], extended
DPG shown in [39], and the P-DQN algorithm suggested in [40].
e have chosen the latter algorithm for solving the parametrized EV

harging control problem due to its intuitive implementation, as it
ncompasses the properties of both DQN and DDPG techniques and
ff-policy nature.

Algorithm 3 describes the P-DQN implementation according to [41],
here the original methodology was enhanced with target networks to

mprove stability during training. The action 𝑎𝑡 in parametrized action
pace 𝐴 is defined as a tuple (𝑘𝑡, 𝑥𝑘𝑡 ). The prior 𝑘𝑡 ∈ 𝐾 represents
he discrete action from the set of all discrete actions 𝐾, while the
atter 𝑥𝑘𝑡 represents the continuous parameters associated with this
pecific discrete action. The P-DQN algorithm is based on two main
etworks: action value network 𝑄 and action parameter network 𝜇.
hese networks, together with their target copies and a replay buffer
, are initialized in line 1. The 𝜇 network takes the current state 𝑠𝑡

s input and produces the parameters 𝑥𝑘 for all actions 𝑘 ∈ 𝐾. The 𝑄
etwork outputs the Q-values for all actions 𝑘 while taking the state 𝑠𝑡
nd the parameters 𝑥𝑘 as an input. Afterward, the desired action 𝑎𝑡 is
etermined by the 𝜖-greedy policy, as it can be seen in line 8. Notably,
he P-DQN algorithm deploys two different exploration techniques. In
ddition to the 𝜖-greedy that helps explore the discrete part of the
ction space, the noise process  is used to explore the continuous
art. In our implementation, we use Ornstein–Uhlenbeck process noise,
imilar to the DDPG algorithm. Lines 14 and 15 show the training
rocess of the action value 𝑄, and the action parameter 𝜇 networks,
hich is similar to the training process of the DDPG. Once the training

s complete, the weights are slowly copied from the main networks to
arget networks 𝑄′ and 𝜇′, as depicted in line 16.

The hyperparameters are collected in Table 3. The network config-
rations are 32–32 and 32–32 for the action value 𝑄 and the action
arameter 𝜇 networks, respectively. The parameters of the Ornstein–
hlenbeck exploration process are identical to those of the DDPG
lgorithm. The 𝜖-greedy exploration process starts with 𝜖 value of 0.5
7

nd decays exponentially until 0.01. p
Algorithm 3 Parametrized Deep Q-Networks Learning (P-DQN)

1: Initialize: action value network 𝑄(𝑠, 𝑥𝑘|𝜃𝑄) and action parameter
network 𝜇(𝑠|𝜃𝜇), target action value network 𝑄′ and target action
parameter network 𝜇′ with weights 𝜃𝑄′

← 𝜃𝑄, 𝜃𝜇′ ← 𝜃𝜇 , replay
buffer 

2: for each episode do
3: observe current state 𝑠𝑡
4: initialize random process  for action parameter exploration
5: for each step in the environment do
6: compute action parameters 𝑥𝑘 ← 𝜇(𝑠𝑡|𝜃𝜇) +𝑘
7: compute action values 𝑄𝑘 ← 𝑄(𝑠𝑡, 𝑥𝑘|𝜃𝑄)
8: select action 𝑎𝑡 = (𝑘𝑡, 𝑥𝑘𝑡 ) according to the 𝜖-greedy policy
9: execute action 𝑎𝑡
0: observe next state 𝑠𝑡+1 and reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)
1: store (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡) in replay buffer 
2: update current state 𝑠𝑡 ← 𝑠𝑡+1
3: sample minibatch 𝑁 of experiences:

𝑒𝑖 = (𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1, 𝑟𝑖) from replay buffer 
decompose 𝑎𝑖 into 𝑘𝑖 and 𝑥𝑘𝑖

4: Train 𝑄:
compute 𝑦𝑖 = 𝑟𝑖 + 𝛾 max

𝑘𝑖∈[𝐾]
𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇

′ )|𝜃𝑄′ )

compute loss 𝐿 = 1
𝑁

∑

𝑖(𝑦𝑖 −𝑄(𝑠𝑖, 𝑥𝑘𝑖 |𝜃
𝑄))2

perform stochastic gradient descent step on 𝐿
5: Train 𝜇:

compute loss 𝐿 = − 1
𝑁

∑

𝑖 𝑄(𝑠𝑖, 𝜇(𝑠𝑖|𝜃𝜇)|𝜃𝑄)
perform stochastic gradient descent step on 𝐿

6: update target action value and target action parameter
networks parameters:
𝜃𝑄′

← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇′ ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

7: end for
8: end for

Table 3
Hyperparameters of the P-DQN algorithm.

Hyperparameter Symbol Original value Our value

Replay buffer size  1 × 106 5 × 105

Minibatch size 𝑁 64 32
Discount factor 𝛾 0.99 0.99
Averaging rate 𝜏 0.01 0.001
Learning rate action value 𝛼𝑎 10−4 10−3

Learning rate action param 𝛼𝑎𝑝 10−5 10−4

3.4. Hindsight experience replay (HER)

To enable sample-efficient learning from sparse and binary rewards,
we apply the HER technique developed in [27]. On the one hand,
unlike humans, the model-free off-policy algorithms presented have
difficulties learning from failures. On the other hand, the sparse reward
structure makes successes rare, thus complicating the training process.
The HER technique aims to extract useful information from past envi-
ronment transactions using the notion of goals. At the beginning of each
episode, the desired goal 𝑔𝑑 is sampled along with the observation of
the current state 𝑠𝑡. In our case, 𝑔𝑑 can be the requested SOC at the EV
departure, the desired level of PV self-consumption, or both if the 𝑔𝑑
is formulated in the form of a tuple. The whole episode 𝑠𝑡0 , 𝑠𝑡1 ,… , 𝑠𝑇 ,

here 𝑠𝑇 is the state at the episode’s terminal, is stored in the form
f experiences 𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡 in the transaction buffer . At the end of
he episode, the agent arrives to some achieved goal 𝑔𝑎, which can be
dentical to 𝑔𝑑 , if the episode was a success, or can be different if it
as a failure. Here the HER technique comes into play to efficiently
tilize the experiences of the episode even if 𝑔𝑑 was not achieved. We
se the information stored in the  buffer to replay the whole episode

retending that the achieved goal 𝑔𝑎 was our desired goal from the
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beginning. Therefore, our failure episode becomes a success episode,
where the agent acquires the knowledge, learns to achieve the goal 𝑔𝑎,
nd obtains the reward for successful completion of the task. The newly
eplayed episode is stored in the replay buffer , where it serves as a
ositive example to train the agent. In our implementation of the HER
echnique that follows the original paper [27], we used the strategy
inal, which compares the achieved and desired goals at the terminal
tate of the episode. The addition of HER technique requires the specific
mplementation of the environment where the goal is concatenated to
he state. More details on how one can achieve it in practice are given
n Section 4.4.

.5. Expert demonstrations

The inclusion of expert demonstrations is another technique suited
or facilitating the training process by improving the exploration of the
nvironments with sparse rewards. In our work, we aim to use expert
emonstrations to enhance the learning and speed up the convergence
f the DDPG algorithm in particular. The main reasons include the
edious exploration of infinite continuous action space and the diffi-
ulty of tuning the DDPG algorithm’s hyperparameters, which were
reviously mentioned in Section 3.2. Moreover, previous successful
mplementations of the DDPG algorithm leveraging expert demonstra-
ions in robotics [30,42] and in the field of autonomous driving [43]
otivate our choice.

The main idea to combine expert demonstrations with RL is to aid
he agent’s training by providing experiences where the outcome was
uccessful. The practical implementation of DDPG with expert demon-
trations consists of three main steps. First, the second replay buffer 
s created to store the demonstration data in addition to the original
eplay buffer  that holds the self-generated data. Both data are stored
n the form of experience tuples (𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1, 𝑟𝑖). Second, during the
raining, the minibatch 𝑁 of previous transactions is sampled from both
eplay buffers  and  according to the predefined proportion. Third,
he loss 𝐿 computed during the actor’s training is augmented with the
ehavior cloning loss 𝐿𝐵𝐶 according to [42]. The additional loss is
pplied only on demonstration samples and is calculated as follows:

𝐵𝐶 =
𝑁𝐷
∑

𝑖=1
‖(𝜇(𝑠𝑖)|𝜃𝜇) − 𝑎𝑖‖

2 (13)

here 𝑁𝐷 is the amount of demonstration samples in the minibatch 𝑁 ,
𝑖 is the action taken by the expert and 𝜇(𝑠𝑖)|𝜃𝜇 is the action produced
y the agent’s policy. Therefore, behavior cloning loss 𝐿𝐵𝐶 is combined
ith the loss of the actor using 𝜆1 and 𝜆2 weights:

= 𝜆1∇𝜃𝜇𝐽 − 𝜆2∇𝜃𝜇𝐿𝐵𝐶 (14)

. Case study

To validate the proposed methods for solving the EV charging
ontrol problem, we created a case study based on the green e-mobility
roject [44] conducted within the research framework of the SCCER
URIES [45]. The project, established as part of activities related to the
wiss National Action Plan on Digitalization [46], integrates a network
f EVs and charging stations available to guests staying in the hotels
f Val d’Hérens alpine region in Switzerland. Each of the eight partner
otels owns one charging station and at least one EV, allowing guests to
xplore the region with maximum independence and minimum harm to
he environment. The EVs, the majority of them being a Citroen C-Zero
odel, are rented to the hotels’ guests daily free of charge.

The agent is an EV defined by its battery capacity and the upper
imit on the charging power 𝑃𝑚𝑎𝑥. In our case study, the Citroen C-Zero
odel of the EV has 16 kWh battery and 3700 W maximum power

nput [47]. In addition, to simplify the calculations, we assume the
𝐸𝑉
8

fficiency of the EV charging process 𝜂 = 1.
.1. Datasets

The test dataset was collected from one of the hotels participating
n the project. The dataset spans over a period of 2 months from the 9th
f September to the 9th of November 2020. The building load demand
𝑡 and the PV production 𝑃𝑉𝑡 measurements were down-sampled to
ourly resolution. Due to the absence of the real-world recordings of the
V-related part of the dataset, we simulated EV usage patterns. The SOC
t arrival, time of arrival at the charging station, and time of departure
rom the charging station were sampled from uniform distributions in
he following way:

• 𝑆𝑂𝐶(𝑡 = 𝑡𝑎𝑟𝑟) ∼  (0.2, 0.5)
• 𝑡𝑑𝑒𝑝 ∼  (7, 19)
• 𝑡𝑎𝑟𝑟 ∼  (𝑡𝑑𝑒𝑝 + 1, 23)

ccording to chosen distribution boundaries, we assume a minimum
rip duration of one hour and EV return to the hotel on the day of
eparture. The time to EV departure from charging station 𝐷𝑡, which
s necessary for defining the state 𝑠𝑡, was computed as the number of
ours between the EV arrival at 𝑡𝑎𝑟𝑟 and the next departure 𝑡𝑑𝑒𝑝.

Due to the limited availability of data from the hotel, the training
ataset for RLC algorithms was synthesized based on another hotel
n the area. The smart meter measurements were scaled to reflect
he test hotel’s size, while the PV production of a virtual installation
as simulated using relevant recordings from a nearby meteorological

tation. The EV driving scenario was generated using the same uniform
istributions as shown above. The length of a training dataset is one
ear.

.2. Performance evaluation

The performance of DDQN, DDPG, and P-DQN algorithms is eval-
ated in two phases. First, we present the results obtained during
raining in Section 5.1. Following the established goals, we report
oth the PV self-consumption (Eq. (3)) and SOC at departure (Eq. (4))
etrics. To enhance comprehension of the results, the optimal PV self-

onsumption is computed, according to Eq. (9). The addition of this
etric gives better judgment on the PV usage by the EV charging pro-

ess. To ensure fairness of reporting deep RL algorithms’ performance,
e use the guidelines indicated in [48]. Thus, we run five experiments

or each of the algorithms using the same set of random seeds. Further,
e summarize the DDQN, DDPG, and P-DQN algorithms’ performance
y reporting the evolution of mean and standard deviation through-
ut the training process for each of the objectives across five seeds.
oreover, to provide judgment on the complexity of suggested deep
L algorithms and the computational resources required, we report the
uration of the training process.

In the second phase, both benchmark and deep RLC algorithms
re executed on the held-out test set of historical data consisting of
0 episodes. For all algorithms we report the performance metrics,
amely PV self-consumption and SOC at departure, in the form of
box-plot visualization that provides a five-number summary: the
inimum, the maximum, the sample median, and the first and the third

uartiles across 60 episodes. Moreover, we report the amount of energy
urchased from the grid in the same format along with its distribution.
o highlight the differences in the EV charging approaches suggested
y the algorithms, we additionally compare the evolution of the SOC
cross episodes with the same SOC at arrival and across episodes with
inned duration. Lastly, we give information on the execution time of
he algorithms on the test set to understand the suitability for online
mplementations.
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4.3. Benchmark algorithms

To understand the quality of the solutions provided by RLC meth-
ods, we compare them among themselves and other classic approaches
used in the EV charging control problem. In this section, we present
several algorithms used to benchmark the proposed methodology. Im-
portantly, all benchmark solutions have to respect the SOC (Eq. (5))
and the power limit (Eq. (6)) constraints introduced in Section 2.

4.3.1. Naive EV charging
The naive algorithm reflects the conventional charging attitude of

the majority of EV drivers nowadays. The EV starts to charge as soon as
it is plugged to the charging station at 𝑡𝑎𝑟𝑟. If there is any PV surplus, the
EV draws the available PV power 𝐸𝑉 𝑃𝑉

𝑡 , otherwise the power supply
𝐸𝑉 𝐺

𝑡 comes from the grid and is equal to 𝑃𝑚𝑎𝑥.

4.3.2. RBC EV charging
Whenever there is an excess of PV production, the EV uses the

renewable power to charge. If the PV is not available, the algorithm
evaluates the possibility of drawing power from the grid based on
the EV’s 𝑆𝑂𝐶𝑡 and the time left before departure from the charging
station 𝐷𝑡. Based on the following expression, the EV compares the
leftover energy to be charged in the battery with the maximum possible
transmittable energy during the remaining time.

(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑡)𝐶𝑏𝑎𝑡 ≤ (𝐷𝑡 − 𝑡𝑙𝑎𝑔)𝑃𝑚𝑎𝑥 (15)

The time parameter 𝑡𝑙𝑎𝑔 tunes how shortsighted the algorithm is. A
large value of 𝑡𝑙𝑎𝑔 helps the control to anticipate the EV’s departure,
however, it should not exceed the time required to fully charge the EV
from 𝑆𝑂𝐶𝑚𝑖𝑛 to 𝑆𝑂𝐶𝑚𝑎𝑥 using 𝑃𝑚𝑎𝑥 from the grid. As a result, the EV
draws 𝑃𝑚𝑎𝑥 from the grid at time 𝑡 if the EV departs rather soon and
chooses not to charge otherwise.

4.3.3. Deterministic optimization EV charging
The deterministic optimization of EV charging, aimed to provide the

optimal solution, is formulated with the following objective function
that encompasses both, maximization of the PV self-consumption and
SOC at departure (where 𝑘1 and 𝑘2 are respective weights for the two
objectives, such as 𝑘1 + 𝑘2 = 1):

max
⎛

⎜

⎜

⎝

𝑘1
⎛

⎜

⎜

⎝

∑𝑡𝑒
𝑡=𝑡𝑠

(𝐸𝑉 𝑃𝑉
𝑡 + 𝐿𝑃𝑉

𝑡 )
∑𝑡𝑒

𝑡=𝑡𝑠
𝑃𝑉𝑡

⎞

⎟

⎟

⎠

− 𝑘2
(

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑡𝑑𝑒𝑝

)
⎞

⎟

⎟

⎠

(16)

ubject to constraints for 𝑡 = 𝑡𝑠,… , 𝑡𝑒:

⊳ 𝑃𝑉𝑡 + 𝑦𝐺𝑡 𝑃
𝐵
𝑡 − (1 − 𝑦𝐺𝑡 )𝑃

𝑆
𝑡 − 𝐸𝑉𝑡 − 𝐿𝑡 = 0,

where 𝑃𝐵
𝑡 is the power bought from the grid, 𝑃 𝑆

𝑡 is the power sold
back to the grid, and 𝑦𝐺𝑡 ∈ {0, 1} is the binary variable that forbids
the simultaneous purchasing and selling of the power from and to
the grid

⊳ 𝑃𝑉𝑡 = 𝐸𝑉 𝑃𝑉
𝑡 + 𝐿𝑃𝑉

𝑡 + 𝑃 𝑆
𝑡

⊳ 𝑃𝐵
𝑡 = 𝐸𝑉 𝐺

𝑡 + 𝐿𝐺
𝑡

⊳ 𝐸𝑉𝑡 = 𝑦𝐸𝑉
𝑡 𝐸𝑉 𝐺

𝑡 + (1 − 𝑦𝐸𝑉
𝑡 )𝐸𝑉 𝑃𝑉

𝑡 ,
where 𝑦𝐸𝑉

𝑡 ∈ {0, 1} is the binary variable that governs the
simultaneity of power supply to EV according to Eq. (2), such as
𝑦𝐸𝑉
𝑡 ≤ 𝑦𝐺𝑡

⊳ 𝑆𝑂𝐶𝑡𝑎𝑟𝑟 = 𝑆𝑂𝐶𝑎𝑟𝑟

⊳ Load satisfaction constraint (Eq. (1))
⊳ SOC limits (Eq. (5))
⊳ EV charging power limit (Eq. (6))
⊳ SOC continuity (Eq. (7))
9

t

4.3.4. Deterministic MPC EV charging
The deterministic formulation of MPC is iterative, thus the algo-

rithm takes charging decisions at every time step 𝑡. The episode 𝑡𝑠 to 𝑡𝑒
is separated into two successive stages: the decision stage , where the
actual time step 𝑡 = 𝑡𝑑 , and the prediction stage 𝑡𝑓 = 𝑡𝑑+1 to 𝑡𝑒. At the
decision stage the PV production 𝑃𝑉𝑡𝑑 and the load consumption 𝐿𝑡𝑑
values are known, while at the prediction stage the Long Short-Term
Memory (LSTM) neural network and the Auto Regressive Integrated
Moving Average (ARIMA) model are used to predict the 𝑃𝑉𝑇 and 𝐿𝑇
values for 𝑇 = 𝑡𝑓 ,… , 𝑡𝑒 respectively. Therefore, the objective function,
though similar to Eq. (16), is transformed in the following way to reflect
the two-stage formulation:

max
(

𝑘1
⎛

⎜

⎜

⎝

𝐸𝑉 𝑃𝑉
𝑡𝑑

+ 𝐿𝑃𝑉
𝑡𝑑

𝑃𝑉𝑡𝑑
+

∑𝑡𝑒
𝑡=𝑡𝑓

(𝐸𝑉 𝑃𝑉
𝑡 + 𝐿𝑃𝑉

𝑡 )
∑𝑡𝑒

𝑡=𝑡𝑓
𝑃𝑉𝑡

⎞

⎟

⎟

⎠

−𝑘2
(

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑡𝑑𝑒𝑝

)

)

(17)

The constraints applied to the model are identical to those for deter-
ministic optimization stated in Section 4.3.3. However, all constraints
are formulated for both decision and prediction stages.

4.3.5. Stochastic MPC EV charging
The stochastic formulation of MPC differs from the deterministic

formulation during the prediction stage, as LSTM and ARIMA models
forecast confidence intervals for 𝑃𝑉𝑇 and 𝐿𝑇 . Therefore, one can draw
an 𝛺 set of 𝑁 scenarios from predicted distribution, where each sce-
nario 𝑤𝑖 ∈ 𝛺 consists of 𝑃𝑉 𝑤𝑖

𝑇 and 𝐿𝑤𝑖
𝑇 forecast values. All constraints

stated in Section 4.3.3 hold true for the stochastic MPC and require
two-stage formulation. To take into account all possible scenarios from
𝛺 set, the objective function has to be reformulated in the following
way, assuming that each 𝑤𝑖 ∈ 𝛺 scenario is equally probable:

max
(

𝑘1
⎛

⎜

⎜

⎝

𝐸𝑉 𝑃𝑉
𝑡𝑑

+ 𝐿𝑃𝑉
𝑡𝑑

𝑃𝑉𝑡𝑑
+ 1

𝑁

𝑁
∑

𝑖=0

∑𝑡𝑒
𝑡=𝑡𝑓

(𝐸𝑉 𝑃𝑉 ,𝑤𝑖
𝑡 + 𝐿𝑃𝑉 ,𝑤𝑖

𝑡 )
∑𝑡𝑒

𝑡=𝑡𝑓
𝑃𝑉 𝑤𝑖

𝑡

⎞

⎟

⎟

⎠

−𝑘2
1
𝑁

𝑁
∑

𝑖=0

(

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑤𝑖
𝑡𝑑𝑒𝑝

)

)

(18)

4.4. Implementation

To apply RLC for the EV charging control problem, we imple-
mented both the environments and the algorithms using Python pro-
gramming language. Custom discrete, continuous, and parametrized
environments were created using the OpenAI Gym toolkit [26]. A
specific gym.GoalEnv class was chosen to build goal-based environments
to enable the HER technique. The RL algorithms were developed using
tensorflow 2.0 library. The deterministic optimization and both stochas-
tic and deterministic MPC algorithms were implemented using Gurobi
olver. All the experiments were conducted using a personal laptop
Intel i7- 7600, 16 GB RAM).

. Results

.1. Training phase

Fig. 4 depicts DDQN, DDPG, and P-DQN algorithms’ performance
uring the training phase of 2000 episodes on a one-year dataset. All
lgorithms deploy the HER technique to facilitate the training. The
DPG algorithm’s learning process is also enhanced by 100 episodes
f expert demonstrations.

The bold line and the shaded region on each subplot show the
ean and the standard deviation of 5 runs, each corresponding to
different seed. The evaluation of algorithms with various seeds is

mportant to understand the models’ robustness, validate the choice of

he hyperparameters, and compare the algorithms among themselves.
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Fig. 4. Training performance of deep reinforcement learning algorithms.
lthough seeding can fix the random processes to get reproducible
esults in controlled experiments, one has to note that randomness
s an inherent feature of machine learning models. Therefore, when
ommissioning models in production, one should remove the fixed seed
alue. During the training process, we have identified the following
ajor parts of the reinforcement learning workflow that introduce

andomness:

• Arrival SOC initialization at the beginning of each episode
• Weight initialization in neural networks
• Adam optimizer
• Ornstein–Uhlenbeck and 𝜖-greedy exploration policies
• Minibatch sampling from replay buffer 

As shown in Fig. 4, the P-DQN algorithm converges to higher op-
imal PV self-consumption, followed by DDPG and DDQN, with a sub-
tantial share of episodes reaching the maximum PV self-consumption
ossible. The same metric for DDPG stabilizes to 0.9 with a very low
tandard deviation, which can be explained by the inclusion of behavior
loning loss from expert demonstrations along the training process. The
DQN algorithm shows interesting behavior, as PV self-consumption

ignificantly changes its variance and starts to fluctuate between 0.8
nd 0.95 from approximately 1100 episodes. The turning point cor-
esponds to the 𝜖-value of 0.3 in the 𝜖-greedy policy, which decays
xponentially throughout the training process. The same behavior of
he DDQN algorithm can be noted for the SOC at departure metric.
he standard deviation across runs increases, while the mean SOC at
eparture decays to an average of 85%. However, during the whole
raining process, a substantial share of the episodes achieves 𝑆𝑂𝐶𝑚𝑎𝑥
t departure. The P-DQN algorithm exhibits high variance as well, with
he mean SOC at departure at 80%. The DDPG algorithm converges to
he highest SOC at departure of 95% among all algorithms with very
ow variance. Moreover, the DDPG demonstrates the fastest speed of
earning due to facilitation through expert demonstrations. The training
esults overall confirm that deep RLC algorithms are capable of achiev-
ng multiple objectives simultaneously. The maximization of the PV
elf-consumption is more pronounced for DDQN and P-DQN algorithms,
lthough the SOC at departure values show a decaying trend. However,
he mean values of SOC at departure for these algorithms are exceeding
he 80% limit, which is considered acceptable SOC before departing for
he majority of EV drivers.

Fig. 5 depicts the training duration of deep RLC algorithms. The
DQN algorithm is shown twice as the averaging rate 𝜏 and the update
very 𝑛 hyperparameters influence the training duration differently.
10

ith 𝜏 = 0.01, the online neural networks are trained at every step
Fig. 5. Training duration of reinforcement learning algorithms.

𝑛 = 1, and the weights are slowly copied to the target networks. With
𝜏 = 1, the training is performed every 𝑛 = 32 steps; thus, the overall
process takes considerably less time.

There are three key observations that one can make from Fig. 5.
First, the training duration is the linear function of the number of
episodes, which is useful to estimate required time resources before
engaging in training. Second, the execution time varies for the same
number of episodes for the same algorithm as each episode’s du-
ration is different, and the environment is reset at the beginning
of each episode. Third, the DDPG algorithm requires almost twice
longer training time than other algorithms due to the complexity of
its neural networks framework, larger minibatch size, and additional
computation of behavior cloning loss.

5.2. Testing phase

During the testing phase, the deep RLC algorithms are compared
with benchmark algorithms chosen in Section 4.3 on a held-out test
dataset of 60 episodes. The current section presents the results in
ascending order of time granularity, starting with observations per
episode and following with comparison across the whole test dataset.

Fig. 6 depicts the EV charging strategies for all algorithms on three
sample episodes. The episodes were chosen to demonstrate the diversity
of PV production and load consumption profiles. The deterministic
algorithm demonstrates the optimal performance in terms of both, the
amount of PV consumed for EV charging and the 𝑆𝑂𝐶 . Despite the
𝑡𝑑𝑒𝑝
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Fig. 6. Examples of benchmark and RLC algorithms on selected episodes of test data.
Naive algorithm always supplying the grid power for EV charging, as
the arrival times of the EV are outside the PV production hours, the
algorithm can guarantee the 𝑆𝑂𝐶𝑡𝑑𝑒𝑝 = 𝑆𝑂𝐶𝑚𝑎𝑥. The RBC algorithm ex-
hibits the charging strategy similar to the optimal performance, though
some of the grid power inputs are shifted in time. Both deterministic
and stochastic MPC algorithms show good usage of PV generation and
achieve rather high 𝑆𝑂𝐶𝑡𝑑𝑒𝑝 for all three episodes. However, the sudden
load consumption peaks, such as at the end of the episode 1, are not
handled well to provide 𝑆𝑂𝐶𝑚𝑎𝑥 at departure. The deep RLC algorithms
demonstrate tendency towards using the most PV power possible and
in two out of three episodes reach high 𝑆𝑂𝐶𝑡𝑑𝑒𝑝 . However, the absence
of the PV power production period in the episode 3 prevents all
RLC algorithms from ending the episode with high SOC, while the
short duration of the episode leaves less time for decision-making. The
DDPG algorithm demonstrates a different grid power supply strategy
from all other algorithms. Particularly, the DDPG takes lower risks by
purchasing electricity early and in small quantities, thus anticipating
potential future disturbances in PV power production.

The boxplots in Fig. 7 summarize the algorithms’ performance
across all episodes in the test dataset. The deterministic algorithm,
11
indeed, serves as the baseline for comparison as it provides the op-
timal performance. The Naive algorithm demonstrates the lowest PV
self-consumption values among algorithms while it guarantees the
𝑆𝑂𝐶𝑡𝑑𝑒𝑝 = 𝑆𝑂𝐶𝑚𝑎𝑥. The RBC algorithm performs closely to the op-
timal solution, though with almost twice higher variance in PV self-
consumption than the deterministic algorithm. The stochastic MPC
outperforms the deterministic MPC in PV self-consumption, while in
some cases it does not reach the 𝑆𝑂𝐶𝑚𝑎𝑥 at departure. The deep RLC
algorithms vary significantly in their 𝑆𝑂𝐶𝑡𝑑𝑒𝑝 levels from all other algo-
rithms, with the DDPG having the highest 𝑆𝑂𝐶𝑡𝑑𝑒𝑝 values among RLC
algorithms. The DDQN algorithm demonstrates mediocre performance
for both objectives. The P-DQN algorithm achieves a higher median
for PV self-consumption than for 𝑆𝑂𝐶𝑡𝑑𝑒𝑝 ; however, the algorithm
is characterized by very high variance across episodes. The median
values of energy purchased from the grid are very similar among all
algorithms, with DDQN and DDPG using less grid energy. However,
marginal increases of the purchased energy amounts for these algo-
rithms would possibly compensate for lower 𝑆𝑂𝐶𝑡𝑑𝑒𝑝 . Therefore, one
can conclude that major discrepancies between EV charging strategies
result primarily from differences in the usage of PV generation.
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Fig. 7. RLC and benchmark algorithms’ comparison across episodes.
Fig. 8. Comparison of grid power usage across algorithms.
Fig. 8 shows density histogram plots of grid power usage for EV
harging among the algorithms. Although the flattening of the grid-
upplied part of the EV charging curve was not specified as one of
he control objectives, we can observe the difference in grid power
tilization among algorithms. Particularly, one can notice that both
aive and RBC algorithms rely heavily on 𝑃𝑚𝑎𝑥 injections to the EV.

nstead, the power of smaller magnitudes is used occasionally and is
ore probable to appear closer to the end of the charging process as the

OC increases. The deterministic and the stochastic MPC have similar
rid power usage patterns, with the prior supplying higher power more
requently. On the contrary, the deterministic MPC has a more balanced
rofile of EV supply from the grid, with minimal and substantial power
alues being equally probable. Although the DDQN’s grid power usage
attern is similar to that of non-RLC algorithms, the DDPG and P-DQN
emonstrate different approaches to drawing power from the grid for
V charging. Particularly, the DDPG algorithm relies only on small and
requent grid power quantities and does not induce any high power
12
peaks during the charging process. Such behavior can be explained by
the DDPG’s anticipation and risk minimization strategy. Similarly, the
P-DQN algorithm uses small-magnitude grid power values while rarely
injecting 𝑃𝑚𝑎𝑥 to the EV.

Fig. 9 depicts the SOC evolution across episodes with the same
𝑆𝑂𝐶𝑡𝑎𝑟𝑟 ∈ {20%, 30%, 40%, 50%}, where the speed of SOC changing
and the differences between the charging approaches undertaken by
considered algorithms can be observed. The lengths of the episodes
were normalized to provide the possibility to compare the SOC profiles
across charging processes with various duration. The Naive algorithm
shows a steep profile of SOC evolution reaching 𝑆𝑂𝐶𝑚𝑎𝑥 within initial
20% of the charging time regardless of the 𝑆𝑂𝐶𝑎𝑟𝑟. Instead, the RBC
algorithm starts to charge the EV closer to the end of the charging
process. The deterministic approach and both MPC algorithms have
less steep SOC evolution profiles, with the charging process starting
later for EVs arriving with 𝑆𝑂𝐶𝑎𝑟𝑟 = 50% than for EVs with lower
𝑆𝑂𝐶 . However, one can notice that with 𝑆𝑂𝐶 = 30% almost the
𝑎𝑟𝑟 𝑎𝑟𝑟
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Fig. 9. Comparison of SOC evolution across episodes with equal SOC at arrival.
hole duration of the episode is used to charge the EV. The DDPG
lgorithm stands out with its linear SOC profile and effective usage
f the whole episode for charging. Moreover, one can notice that the
ases of not achieving the 𝑆𝑂𝐶𝑚𝑎𝑥 at departure are more common for
𝑂𝐶𝑎𝑟𝑟 = 20%. The P-DQN algorithm increases its waiting time before
harging according to 𝑆𝑂𝐶𝑎𝑟𝑟 increases, while the same feature does
ot appear in the DDQN’s SOC evolution profile.

Fig. 10 shows the SOC evolution, PV generation, and load demand
rofiles across episodes with binned duration. One can notice that
onger episodes feature two peaks of PV generation and load consump-
ion. While the EV charging strategies of Naive and RBC algorithms
o not exhibit noticeable changes with increased episode’s length,
he deterministic and both MPC algorithms demonstrate interesting
hanges in the SOC profile. The variance during the initial 20% of
he charging time can be explained by the spread of the 𝑆𝑂𝐶𝑎𝑟𝑟. The

SOC profiles for short episodes below 14 h exhibit logarithmic growth,
while the episodes with 19–26-hour duration show exponential growth.
The latter can be explained by weak PV generation profiles during the
13

a

initial 50% of the charging time. The shape of the SOC curve for long
episodes changes to accommodate a double-period of PV generation;
thus, the SOC increases initially and at the end of an episode, with the
middle part being relatively steady. A similar double-curvature feature
can be noticed for the P-DQN algorithm at very long episodes, while
everywhere else, the SOC profile resembles a mixture between linear
and exponential. The DDPG algorithm demonstrates a stable linear
charging trend regardless of the episode’s duration. The DDQN’s SOC
profile shows efficient usage of PV generation for episodes with 23–26-
hour duration. However, for other episodes, the small slope of rather a
linear trends results in low 𝑆𝑂𝐶𝑑𝑒𝑝.

After looking at the algorithms’ performance across episodes, we
summarize the results on the whole test dataset in the remainder of this
section. Table 4 expresses the SOC at departure satisfaction levels for
each algorithm. The low level of satisfaction corresponds to 𝑆𝑂𝐶𝑑𝑒𝑝 ≤
50%, which makes the EV unsuitable for usage by the hotel’s guests.
The high level of satisfaction conforms with 𝑆𝑂𝐶𝑑𝑒𝑝 ≥ 80% and is

chieved by all non-RLC algorithms on 100% of test episodes. The
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Fig. 10. Comparison of SOC evolution across episodes with binned charging duration.
RLC algorithms obtain less 𝑆𝑂𝐶𝑑𝑒𝑝 satisfaction, whereas 15% of DDQN
episodes and 21% of P-DQN episodes make the EV unsuited for driving
purposes. Instead, the DDPG algorithm does not exhibit any episodes
with low SOC satisfaction. However, the 70% share of high satisfaction
episodes is lower than for non-RLC algorithms. The 𝑆𝑂𝐶𝑑𝑒𝑝 for DDQN
lies primarily in the middle-satisfaction zone, while for P-DQN in the
high-satisfaction zone.

Table 5 lists the total PV self-consumption and total energy pur-
chased from the grid for all algorithms on the whole test dataset,
with a deterministic algorithm setting the baseline for comparison.
The Naive algorithm confirms the need for deploying EV charging
14

control by showcasing the lowest PV self-consumption value and the
Table 4
Share of episodes with various SOC at departure satisfaction levels.

Algorithm Low [%] Medium [%] High [%]

Naive 0 0 100
Rule-based 0 0 100
Deterministic 0 0 100
MPC deterministic 0 0 100
MPC stochastic 0 0 100
DDQN 15 52 33
DDPG 0 30 70
P-DQN 21 32 47
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Table 5
Total PV self-consumption and total energy purchased from the grid.

Algorithm PV self-consumption Energy purchased [MWh]

Naive 0.664 3.359
Rule-based 0.808 3.115
Deterministic 0.829 3.084
MPC deterministic 0.778 3.170
MPC stochastic 0.817 3.100
DDQN 0.762 2.860
DDPG 0.727 3.123
P-DQN 0.774 2.878

Table 6
The algorithms’ execution time on test dataset.

Algorithm Time [s]

Naive 0.21
Rule-based 0.22
Deterministic 21.04
MPC deterministic 772.48
MPC stochastic 3670.66
DDQN 2.16
DDPG 2.27
P-DQN 2.57

highest amount of energy purchased from the grid. Despite its non-
sophisticated nature, the RBC algorithm demonstrates near-optimal
performance, thus justifying its wide-spread usage in control applica-
tions nowadays. The MPC stochastic exhibits the closest to the optimal
performance by leveraging the power of both PV and load demands
forecasts. The MPC deterministic performs in-line with RLC approaches.
The P-DQN and DDQN algorithms demonstrate the highest total PV self-
consumption among RLC algorithms, while the total purchased energy
is the lowest. Therefore, despite the obvious potential for higher PV
self-consumption, one can hypothesize that more energy could have
been purchased to increase 𝑆𝑂𝐶𝑑𝑒𝑝. Instead, the DDPG algorithm did
ot realize its full potential to harvest all available PV generation.

Table 6 summarizes the execution time of the algorithms on the test
ataset. The pre-training duration of the RLC algorithms is not consid-
red as part of the execution time. Once the algorithm is trained offline,
t can be efficiently utilized for decision-making. The Naive, RBC, and
LC algorithms execute within seconds, while the MPC deterministic
nd MPC stochastic require approximately 12 min and 1 h to execute.
he latter’s execution time makes it unsuitable for online applications,
s the chosen time resolution of the problem is equal to 1 h. The MPC
eterministic can be deployed online; however, it requires significantly
ore computational power than RLC algorithms.

To summarize the results described in this section, we highlight
he key takeaways on the algorithms’ performance on the EV charging
ontrol problem:

• The Naive, conventional charging attitude of the majority of the
EV drivers nowadays leads to low PV self-consumption due to
extensive charging using the grid-supplied power. Although the
latter results in high EV charging costs, the Naive algorithm guar-
antees 𝑆𝑂𝐶𝑚𝑎𝑥 at departure, thus alleviating the range anxiety
problem.

• The deterministic optimization algorithm, despite providing the
optimal charging strategy, cannot be considered realistic as it
assumes complete knowledge of the future PV generation and
load demand values. Therefore, it can be used as a baseline
to compare other algorithms’ performances but should not be
considered a standalone EV charging strategy.

• The RBC algorithm demonstrates near-optimal performance with
simple rule formulation, low execution time, and high PV self-
consumption and 𝑆𝑂𝐶𝑑𝑒𝑝 values, thus justifying its wide-spread
application for control problems nowadays. However, one should
carefully consider RBC for problems with increased complexity.
15
The addition of such features as V2G, multiple EVs, and dy-
namic pricing can result in difficulties in the formulation and
verification of the RBC rules.

• The MPC algorithms demonstrate their ability to achieve the PV
self-consumption and 𝑆𝑂𝐶𝑑𝑒𝑝 objectives efficiently. However, one
should keep in mind that MPC algorithms’ formulation requires
a full mathematical model of the physical system, development
and integration of forecasting instruments, high computational
resources, and long execution times to provide decisions. Fol-
lowing the increasing trend of instantaneous decision-making,
MPC algorithms’ utilization might not respond to the online im-
plementation’s future needs. Moreover, the growing complexity
of physical systems demands more complicated mathematical
models, which increase the execution times even further.

• The RLC algorithms prove their ability to be used for EV charg-
ing control despite the varying performance among considered
models. With the increasing abundance of data and facilitated
access to computing power, one can argue to improve the RLC
algorithms’ performance in the future significantly. Almost in-
stantaneous decision-making of RLC algorithms leaves a great
promise for real-time applications and poses a serious challenge to
MPC algorithms with their lengthy execution times. Besides, the
increasing complexity of future mobility systems can be efficiently
handled by RLC through the utilization of collected big data for
learning. Moreover, the model-free nature of RLC method will
remain an advantage, eliminating the need for extremely complex
and tedious to formulate mathematical models.

. Conclusion

In this work, we have demonstrated the application of reinforce-
ent learning to the EV charging control problem, focusing on a

imple energy system composed of a utility grid, building load, PV
eneration, and a single EV. Particularly, we have proposed three
athematical formulations of the problem in the form of MDPs that
iffer by the type of action space. Moreover, we have extended the pool
f EV charging control objectives by focusing on maximizing PV self-
onsumption and EV state of charge at departure simultaneously. To
esolve the suggested MDP formulations, we have deployed the double
eep Q-networks learning, deep deterministic policy gradient, and
arametrized deep Q-networks learning RLC algorithms for discrete,
ontinuous, and parametrized action spaces, respectively. Throughout
comprehensive benchmarking procedure conducted on a held-out test
ataset, we have compared the RLC method with naive, RBC, determin-
stic optimization, and MPC deterministic and stochastic approaches.
he comparison has shown that despite a slightly lesser performance
f RLC algorithms on the chosen objectives, the RLC approach has
xhibited its consistency in delivering applicable EV charging con-
rol strategies. Moreover, the reinforcement learning methodology has
emonstrated a great potential for efficient online implementations
nd a natural fit to the growing complexity of future energy systems
haracterized by the abundance of data.

Future work to enhance the application of deep RL to the EV
harging control should be conducted in four main directions:

• Additional sources of flexibility, such as heat pumps, energy
storage systems, and boilers, should be included in the energy
system’s representation to reflect the complexity of real-world
microgrids. The OpenAI Gym environments developed in this
work can serve as a basis for successfully implementing these
components, while the proposed algorithms can still be applica-
ble. However, one would need to redefine the notion of an episode
for better usage of additional flexibility sources.

• The EV’s vehicle-to-grid capability has to be considered to utilize
the EV parking time better and provide the demand–response ser-

vices. The suggested parametrized implementation of the action
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space would be the best fit for incorporating the vehicle-to-grid
option while considering the necessary constraints on simulta-
neous purchasing and selling of the electricity from and to the
grid.

• The suggested deep RL approach has to be extended to mul-
tiple EVs and potentially multiple hotels and PV installations.
Moreover, one can choose to switch from single-agent to multi-
agent methodology to explore how RL agents cooperate towards
common or competitive goals.

• The search for other reinforcement learning methods that can
successfully merge multiple, sometimes conflicting, objectives has
to be continued. Particularly, one can analyze various reward
schemes and focus on specific methodology to determine ap-
propriate weights when fusing several objectives in continuous
rewards and deciding on their prioritization. Alternatively, the ap-
plication of Pareto reinforcement learning for the multi-objective
EV charging problem has to be tested.
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