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Creating a robust synthetic surface that repels various liquids would have broad technological 

implications for areas ranging from biomedical devices to fuel transport to architecture but has 

proven to be extremely challenging.1  Inspirations from natural nonwetting structures,2-6 

particularly the lotus, surged the development of liquid-repellent microtextured surfaces that rely 

on the formation of a stable air-liquid interface.7-9  Despite over a decade of intense research, these 

surfaces are, however, still plagued with problems that restrict their practical applications: they 

show limited oleophobicity with high contact angle hysteresis;9 fail under pressure10-12 and upon 

any physical damage;1,7,11 cannot self-heal, and are expensive to produce.1,11  To address these 

challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surfaces 

(SLIPS) with exceptional liquid- and ice-repellency, pressure stability, and enhanced optical 

transparency.  Our approach—inspired by Nepenthes pitcher plants13—is conceptually different 

from the lotus effect in that we use nano/microstructured substrates infused with a lubricating fluid.  

We define the materials requirements for which the lubricant is locked in place by the substrate 

and forms a stable, defect-free, inert “slippery” interface.  This surface outperforms its natural 

counterparts2-6 and state-of-the-art synthetic surfaces8,9,14-16 in its capability to repel various simple 

and complex liquids (water, hydrocarbons, crude oil, and blood); maintain low contact angle 

hysteresis (<2.5o); restore liquid-repellency after physical damage rapidly (within 0.1-1 s); resist ice 

adhesion; and function at high pressures (up to ~676 atm).  We show that these properties are 

insensitive to the precise geometry of the underlying substrate, making our approach applicable to 

various inexpensive, low-surface-energy structured materials (e.g. porous Teflon membrane) that 

can be turned into robust omniphobic surfaces.  We envision that the slippery surfaces can find 

important applications in fluid handling and transportation, optical sensing, medicine, and as self-

cleaning and anti-fouling surfaces operating in extreme environments.    
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Cutting-edge development of synthetic liquid-repellent surfaces is inspired by the lotus effect:2 water 

droplets are supported by surface textures on a composite solid/air interface that enables them to roll off 

easily.17,18 However, this approach, while promising, suffers from inherent limitations that severely 

restrict its applicability. First, trapped air is a largely ineffective cushion against organic liquids or 

complex mixtures that, unlike water, have low surface tension that strongly destabilizes suspended 

droplets.19 Moreover, the air trapped within the texture cannot stand up against pressure, so that liquids, 

particularly those with low surface tension, can easily penetrate the texture under even slightly elevated 

pressures or upon impact,10 conditions commonly encountered with driving rain or in underground 

transport pipes. Furthermore, synthetic textured solids are prone to irreversible defects arising from 

mechanical damage and fabrication imperfections;1,11 since each defect enhances the likelihood of the 

droplet pinning and sticking in place, textured surfaces are not only difficult to optimize for liquid 

mobility but inevitably stop working over time as irreparable damages accumulate. Recent progress in 

pushing these limits with increasingly complex structures and chemistries remains outweighed by 

substantial tradeoffs in physical stability, optical properties, large-scale feasibility, and/or difficulty and 

expense of fabrication.8,9,14,15   

Nature, however, offers a remarkably simple alternative idea that has nothing to do with the lotus 

effect yet again capitalizes on microtextures: instead of using the structures to repel impinging liquids 

directly, systems such as the Nepenthes pitcher plant use them to lock-in an intermediary liquid that then 

acts by itself as the repellent surface.13 Well-matched solid and liquid surface energies, combined with the 

microtextural roughness, create a highly stable state in which the liquid fills the spaces within the texture 

and forms a continuous overlying film.20 In pitcher plants, this film is aqueous and effective enough to 

cause insects that step on it to slide from the rim into the digestive juices at the bottom by repelling the 

oils on their feet.21  
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Inspired by this idea, we report a synthetic liquid-repellent surface—which we name Slippery 

Liquid-Infused Porous Surface (SLIPS)—that consists of a film of lubricating liquid locked in place by a 

micro/nanoporous substrate (Fig. 1a).  The premise for our design is that a liquid surface is intrinsically 

smooth and defect-free down to the molecular scale; provides immediate self-repair by wicking into 

damaged sites in the underlying substrate; is largely incompressible; and can be chosen to repel 

immiscible liquids of virtually any surface tension. We show that SLIPS create a smooth, stable interface 

that nearly eliminates pinning of the liquid contact line for both high- and low-surface-tension liquids, 

minimizes pressure-induced impalement into the porous structures, self-heals and retains its function 

following mechanical damage, and can be made optically transparent.     

We designed the SLIPS based on three criteria: 1) the lubricating liquid must imbibe into, wet, and 

stably adhere within the substrate, 2) the solid must be preferentially wetted by the lubricating liquid 

rather than by the liquid one wants to repel, and 3) the lubricating and impinging test liquids must be 

immiscible. The first requirement is satisfied by using micro/nanotextured, rough substrates whose large 

surface area, combined with chemical affinity for the liquid, facilitates complete wetting by, and adhesion 

of, the lubricating fluid (Fig. S1).22,23 To satisfy the second criterion—the formation of a stable lubricating 

film that is not displaced by the test liquid (Fig. 1b)—we determine the chemical and physical properties 

required for working combinations of substrates and lubricants. We compare the total interfacial energies 

between textured solids that are completely wetted by either an arbitrary immiscible liquid (EA), or a 

lubricating fluid with (E1) or without (E2) a fully wetted immiscible test liquid floating on top of it. To 

ensure the solid is wetted preferentially by the lubricating fluid one should have ΔE1 = EA – E1 > 0 and 

ΔE2 = EA – E2 > 0. The equations can be expressed as (see Supplementary Discussion):24  

ΔE1 = R(γBcosθB – γAcosθA) – γAB > 0,   (eq.1) 

ΔE2 = R(γBcosθB – γAcosθA) + γA – γB > 0,    (eq.2) 
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where γA and γB are the surface tensions for the test liquid to be repelled and the lubricating fluid, γAB is 

the interfacial tension at the liquid-liquid interface, θA and θB are the equilibrium contact angles of the 

immiscible test liquid and the lubricating fluid on a flat solid surface, and R is the roughness factor, i.e., 

the ratio between the actual and projected surface areas of the textured solids.22 

Based on these principles, we fabricated a set of SLIPS designed to repel liquids spanning a broad 

range of surface tensions. To generate roughness, we tested two types of porous solids, periodically 

ordered and random: (i) arrays of nanoposts functionalized with a low-surface-energy polyfluoroalkyl 

silane,25 and (ii) a random network of Teflon nanofibres distributed throughout the bulk substrate (Fig. 

1c).  For the lubricating film, we chose low-surface-tension perfluorinated liquids (e.g. 3M™ Fluorinert™ 

FC-70, γB = 17.1 mN/m; or Dupont™ Krytox® oils) that are non-volatile and are immiscible with both 

aqueous and hydrocarbon phases and therefore able to form a stable, slippery interface with our solid 

substrates (i.e., ΔE1 > 0 and ΔE2 > 0) for a variety of polar and non-polar liquids including water, acids 

and bases, alkanes, alcohols, and ketones (Fig. 1d, 2a, b). The SLIPS were generated through liquid 

imbibition into the porous materials,23 resulting in a homogeneous and nearly molecularly smooth surface 

with a roughness of ~1 nm (Fig. S2).  

Each of these SLIPSs exhibits extreme liquid repellency as signified by very low contact angle 

hysteresis (CAH, Δθ < 2.5o, Fig. 2a, b) and by very low sliding angles (α ≤ 5o for droplet volume ≥ 2 

μL, Fig. S3) against liquids of surface tension ranging from ~17.2 ± 0.5 mN/m (i.e., n-pentane) to 72.4 

± 0.1 mN/m (i.e., water). CAH, the difference between the advancing and receding contact angles of a 

moving droplet, and sliding angle, the surface tilt required for droplet motion, directly characterize 

resistance to mobility;26 the low values therefore confirm a lack of pinning, consistent with a nearly 

defect-free surface.27 Based on the measured CAH and droplet volume (~4.5 μL), the estimated liquid 

retention force28 on SLIPS is 0.83 ± 0.22 μN, n = 6.  This performance is nearly an order of magnitude 
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better than the state-of-the-art lotus-leaf-inspired omniphobic surfaces, whose liquid retention forces are 

of the order of 5 μN for low-surface-tension liquids (i.e., γA < 25 mN/m) at similar liquid volumes.9  

Moreover, the liquid-repellency of SLIPS is insensitive to texture geometry (Fig. 2b), provided that the 

lubricating layer covers the textures (Fig. S4).  This further confirms that liquid repellency is primarily 

conferred by the lubricating film, with the porous solid playing a secondary, but critically important role 

of immobilizing the film.  Additionally, unlike lotus-based omniphobic surfaces where CAH depends on 

liquid surface tension and increases dramatically upon decrease of surface tension (Fig. 2b), such a 

dependence is absent for SLIPSs due to the chemical homogeneity and physical smoothness of the liquid-

liquid interface.   

Experiments performed in a pressurized nitrogen environment show that SLIPS are capable of 

repelling water and liquid hydrocarbons both at and while transitioning to a pressure of ~676 atm (the 

highest available pressure in our setup).  This is equivalent to the hydrostatic pressure at a depth of ~7 km 

(Fig. 2c, Movie S1).  To our knowledge, the highest recorded pressure stability of a superhydrophobic 

surface for water is ~7 atm.16 However, it is important to note that pressure stability for structured 

surfaces decreases drastically for liquids with low surface tension.  For example, recent pressure stability 

studies of omniphobic surfaces based on impacting hexadecane droplets and evaporating octane droplets 

demonstrated stability up to only 400 to 1400 Pa (i.e., 4× 10-3 to 1.4× 10-2 atm).9,10 While the reported 

omniphobic surfaces fail upon dynamic impact of low-tension liquids,10 SLIPS effectively repel 

impacting droplets for a wide assortment of liquid hydrocarbons (Fig. S5). 

The lubricating film also serves as a self-healing coating to rapidly restore the liquid-repellent 

function following damage of the porous material by abrasion or impact. Due to the fluidic nature of the 

lubricating layer, the liquid simply flows toward the damaged area by surface energy-driven capillary 

action,29 and spontaneously refills the physical voids.  As observed by high-speed camera imaging, the 
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measured self-recovery time for a ~50 μm fluid displacement of the FC-70 lubricating layer on an epoxy-

resin-based SLIPS is ~150 ms (Fig. 3a).15 Even more impressively, SLIPS can repeatedly restore their 

liquid-repellent function upon recurring, large-area physical damage (Fig. 3b, Fig. S6, Movie S2).      

We further demonstrate that, by choosing substrate and lubricant materials with matching 

refractive indices, SLIPS can be engineered for enhanced optical transparency in visible and/or near-

infrared wavelengths (Fig. 3c-e).  Optical transparency is challenging to achieve through 

superhydrophobic surfaces, as they require nanostructures with dimensions under the sub-diffraction limit 

(< ~100 nm)30; the large difference in refractive index at the solid/air interface of these structured surfaces 

results in significant light scattering that reduces light transmission (Fig. 3c-e).   

In addition to repelling liquids in their pure forms, SLIPS effectively repel complex fluids, such as 

crude oil (Fig. 4a, Movie S3) and blood (Fig. 4b, Movie S4), that rapidly wet and stain most existing 

surfaces. SLIPS also repel ice (Fig. 4c, Movie S5) and can serve as anti-sticking, slippery surfaces for 

insects (Fig. 4d, Movie S6) – a direct mimicry of pitcher plants.  The omniphobic nature of our SLIPS 

also helps to protect the surface from a wide range of particulate contaminants by allowing self-cleaning 

by a broad assortment of fluids that collect and remove the particles from the surface (Fig. S7, Movie S7).  

Any of these capabilities could be compromised over time if the lubricant evaporates or is lost due to 

shearing under high flow conditions; choosing a lubricant with a minimal evaporation rate or an enhanced 

viscosity, or integrating the SLIPS with a fluid reservoir that enables continual self-replenishing (Fig. S8), 

enables prolonged operation.          

No synthetic surface reported to date possesses all the unique characteristics of SLIPS: negligible 

contact angle hysteresis for low-surface-tension liquids and their complex mixtures, low sliding angles, 

instantaneous and repeatable self-healing, extreme pressure stability, and optical transparency. Our bio-

inspired SLIPS, which are prepared simply by infiltrating low-surface-energy porous solids with 
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lubricating liquids, provide a straightforward and versatile solution for liquid repellency and resistance to 

fouling. Since low-surface-energy porous solids are abundant and commercially available, and the 

structural details are irrelevant to the resulting performance, one can turn any of these solids into highly 

omniphobic surfaces without the need to access expensive fabrication facilities.  Since any liquid film is 

inherently smooth, self-healing, and pressure resistant, the lubricant can be chosen to be either 

biocompatible, index-matched with the substrate, optimized for extreme temperatures, or otherwise 

suitable for specific applications. With a broad variety of commercially available lubricants that possess a 

range of physical and chemical properties, we are currently exploring the limits of SLIPS’s performance 

for long-term operation and under extreme conditions, such as high flow, turbulence, and high or low 

temperature environments. It is anticipated that SLIPS can be developed to serve as omniphobic materials 

capable of meeting emerging needs in biomedical fluid handling, fuel transport, anti-fouling, anti-icing, 

self-cleaning windows and optical devices, and many more areas that are beyond the reach of current 

technologies. 
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METHODS SUMMARY 

The lubricating fluids used for the experiments were perfluorinated fluids (e.g., 3M™ Fluorinert™ FC-70, 

Dupont™ Krytox® 100 and 103). Two types of porous solids were used in the experiments, periodically 

ordered epoxy-based nanostructured surfaces and random network of Teflon nanofibrous membranes. 

Specifically, Teflon membranes with average pore size of ≥ 200 nm and thickness of ~60 – 80 μm were 

purchased from Sterlitech Corporation, WA, USA. These membranes were used as received without 

further modification (SLIPS 1 sample). For the epoxy-based nanostructured surfaces, they were made 

from silicon masters through replica molding method25. The resulting dimensions of the nanostructures in 

epoxy replica were diameter of ~300 nm, height of 5 µm, and pitch of 2 µm for the SLIPS 2 sample, and 

diameter of ~300 nm, height of ~500 nm to 2 µm, and pitch of ~900 nm for the SLIPS 3 sample, 

respectively. The epoxy replicas were further rendered hydrophobic by putting the samples in a vacuum 

desiccator overnight with a glass vial having 0.2 mL heptadecafluoro-1,1,2,2-

tetrahydrodecyltrichlorosilane (available from Gelest, Inc.). To prepare SLIPS, lubricating fluid was 

added onto the porous solids to form an over-coated layer. With matching surface chemistry and 

roughness, the fluid will spread spontaneously onto the whole substrate through capillary wicking. The 

thickness of the over-coated layer can be controlled by the fluid volume given a known surface area of the 

sample.  Further details of the methods are available in Supplementary Information. 
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FIGURE LEGENDS 

Figure 1. Design of SLIPS.  a, Schematics showing the fabrication of a SLIPS by infiltrating a 

functionalized porous/textured solid with a low-surface-energy, chemically inert liquid to form a 

physically smooth and chemically homogeneous lubricating film on the surface of the substrate (see 

Methods Summary).  b, Schematics and time-lapse images showing the stability and displacement of 

lubricating films on silanized and non-silanized textured epoxy substrates, respectively.  Dyed pentane 

was used to enhance visibility.  c, Scanning electron micrographs showing the morphologies of 

porous/textured substrate materials: an epoxy resin-based nanofabricated post array (left) and a Teflon-

based porous nanofiber network (right).  d, Optical micrographs demonstrating the mobility of a low-

surface-tension liquid hydrocarbon, hexane (γA = 18.6 ± 0.5 mN/m, volume ≈ 3.6 μL), sliding on a 

SLIPS at a low angle (α = 3.0o).   

Figure 2. Omniphobicity and high pressure stability of SLIPS.  a, Time sequence images comparing 

mobility of pentane droplets (γA = 17.2 ± 0.5 mN/m, volume ≈  30 μL) on a SLIPS and a 

superhydrophobic, air-containing Teflon porous surface. While pentane is repelled on the SLIPS, it wets 

and stains the traditional superhydrophobic surface.   b, Comparison of contact angle hysteresis as a 

function of surface tension of test liquids (indicated) on SLIPS and on an omniphobic surface reported in 

Ref. 9.  In the inset, advancing and receding contact angles of a liquid droplet are denoted as θadv, and θrec, 

respectively.  SLIPS 1, 2, and 3 refer to the surfaces made of 1) Teflon porous membrane, 2) array of 

epoxy posts of geometry 1 (pitch = 2 μm; height = 5 μm; and post diameter = ~300 nm), and 3) array of 

epoxy posts of geometry 2 (pitch = ~900 nm; height = ~500 nm to 2 μm; and post diameter = ~300 nm), 

respectively.  c, A plot showing the high pressure stability of SLIPS, as evident from the low sliding angle 

of a decane droplet (γA = 23.6 ± 0.1 mN/m, volume≈ 3 μL) subjected to pressurized nitrogen gas in a 
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pressure chamber (Supplementary Methods, Movie S1).  Error bars indicate standard deviations from at 

least seven independent measurements.   

 

Figure 3. Self-healing and optical transparency of SLIPS.  a, Time-lapse images showing self-healing 

capability of SLIPS from a ~50 μm-wide physical damage on a time scale on the order of 100 ms.  b, 

Time-lapse images showing the restoration of liquid repellency of a SLIPS after physical damage, as 

compared to a typical hydrophobic flat surface on which oil remains pinned at the damage site (Movie S2).  

c, Optical images showing enhanced optical transparency of an epoxy-resin-based SLIPS (left) as 

compared to significant scattering in the non-infused superhydrophobic nanostructured surface (right) in 

the visible light range.  d, Optical transmission measurements for epoxy-resin-based SLIPS in the visible 

light range (400–750 nm). e, Optical transmission measurements for a Teflon-based SLIPS in the near-

infrared range (800–2300 nm).   

 

Figure 4. Repellency of complex fluids, ice, and insects by SLIPS.  a, Movement of light crude oil on a 

substrate composed of SLIPS, superhydrophobic Teflon porous membrane (S.H.), and a flat hydrophobic 

surface.  Note slow movement on and staining of the latter two regions (Movie S3). b, Comparison of the 

ability to repel blood by SLIPS, superhydrophobic Teflon porous membrane, and a flat hydrophilic glass 

surface.  Note slow movement on and staining of the latter two regions (Movie S4). c, Ice mobility on a 

SLIPS (highlighted in green) as compared to strong adhesion to epoxy-resin-based nanostructured 

superhydrophobic surface (highlighted in yellow, see also Movie S5). The experiments were performed 

outdoor (note snow on the background) when temperature and relative humidity were –4 oC and ~45%, 

respectively. Note also the reduced frosting and the resulting transparency of the SLIPS. d, Demonstration 

of the inability of a carpenter ant to hold on to a SLIPS.  The ant (and a drop of fruit jam it is attracted to) 
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slide along the SLIPS when the surface is tilted (Movie S6). Note that the ant can stably attach to regular 

flat hydrophobic surfaces, such as Teflon.  All scale bars represent 10 mm.             
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