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Abstract

Zero-shot semantic segmentation (ZSS) aims to classify pixels of novel classes
without training examples available. Recently, most ZSS methods focus on learning
the visual-semantic correspondence to transfer knowledge from seen classes to
unseen classes at the pixel level. Yet, few works study the adverse effects caused by
the noisy and outlying training samples of the seen classes. In this paper, we iden-
tify this challenge and address it with a novel framework that learns to discriminate
noisy samples based on Bayesian uncertainty estimation. Specifically, we model
the network outputs with Gaussian and Laplacian distributions, with the variances
accounting for the observation noise and uncertainty of input samples. Learning
objectives are then derived with the estimated variances playing as adaptive atten-
uation for individual samples in training. Consequently, our model learns more
attentively from representative samples of seen classes while suffering less from
noisy and outlying ones, thus providing better reliability and generalization toward
unseen categories. We demonstrate the effectiveness of our framework through
comprehensive experiments on multiple challenging benchmarks, and show that
our method achieves significant accuracy improvement over previous approaches
for large-scale open-set segmentation.

1 Introduction

Semantic image segmentation aims to recognize and group pixels of the same object or stuff classes
into segments [4, (16} 42| 164]]. As a fundamental problem in computer vision, this task has attracted a
lot of attention from the research community and achieved great success along with the development
of deep learning in recent years [[7, |8, [14} 15} 19, 124} 1381 145,150} 1511 157, 159 160, 163} [66]. Most of the
existing methods focus on addressing the task over small and close sets of class labels, which relies
on a large amount of training data to achieve effectiveness. Yet, due to the varying frequency of
different object and stuff categories in natural scenes, annotations and samples for some categories
may be difficult to acquire [46], thus posing the challenge in extending those conventional models to
address large and open sets of categories.

To achieve effective zero-shot semantic segmentation (ZSS), existing efforts have been made [2}
28,1311 1441 55 162] by treating each pixel as an independent classification problem. And the classic
zero-shot image recognition techniques [[1} 13} 16} |18} 29, 35,147, 152|154, 161} |65]] are directly applied
to learn from seen classes the visual-semantic mappings, which are then transferred to unseen ones.
Though achieving promising results, these methods may still suffer from several limitations. At first,
these methods learn from pixels independently. Yet in images, category-consistent regions are more
semantically meaningful than individual pixels. Thus learning with global information benefits the
effectiveness of learned visual-semantic mappings. Besides, a more critical challenge is that most of
the existing methods ignore the noisy and outlying samples of seen classes, which may cause adverse
learning effects. As shown in Fig.[l]|(a), closed-set learning with visual examples available for all
the classes typically results in balanced visual-semantic mappings. However in zero-shot learning,
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Figure 1: T-SNE visualization of visual feature encoded by ResNet [23]. Classes “A” and “B” are from
PascalContext [42]]. (a) Closed-set learning with “A” and “B”. As both classes always have sufficient visual
samples during training, the learnt visual-semantic mappings are balanced. (b) Zero-shot learning with seen class
“A” and unseen class “B”. Due to the lack of training samples for “B”, the mapping learnt on “A” is sensitive to
noisy and outlying samples, thus inferring biased mapping for the unseen class “B”. (c) In uncertainty-aware
zero-shot learning, noisy samples are attenuated during training. Thus visual-semantic mappings are learnt from
representative samples of “A”, and consequently infer a better mappings for unseen class “B”.

without training data for unseen classes, the visual-semantic correspondence learned on seen classes
is sensitive to the noisy and outlying samples. And consequently, as shown in Fig.[I] (b), sub-optimal
mappings for unseen classes will be inferred due to the biased learning on seen classes.

To address these challenges of ZSS, in this paper we propose a novel framework that learns the
visual-semantic mappings with global information, and leverages Bayesian uncertainty estimation [32|
37,143]] to automatically discriminate between representative samples and noisy ones during training.
The proposed framework has two output branches, with one for pixel-wise prediction and the other
learns to measure the overall segmentation quality. We model the output of each branch with a
probabilistic distribution, by letting the network simultaneously estimate the mean and variance. The
variance is related to the input sample’s uncertainty [37, 43|, thus allowing the model to explicitly
account for the observation noise of the training data. Uncertainty-aware learning objectives are
then derived with the estimated variances helping to adaptively strengthen representative training
samples and attenuate noisy ones. Consequently, as illustrated in Fig.|1|(c) the model learns effective
visual-semantic mappings from seen classes, which can be reliably transferred to unseen classes.

To the best of our knowledge, this is the first work that leverages uncertainty estimation based
on Bayesian modeling to address noisy training samples in zero-shot learning tasks. Our main
contributions are summarized as follows:

e We identify the problem of learning robust visual-semantic correspondence from noisy
training samples in zero-shot learning tasks, and provide an effective solution based on
data-dependent uncertainty estimation.

e We propose a novel deep probabilistic network for zero-shot semantic segmentation together
with uncertainty aware losses that learn at image level and pixel level.

e We conduct extensive experiments on multiple benchmarks with large open-set classes, and
show significant performance improvements over existing methods.

2 Related Work

Zero-shot Semantic Segmentation. Zero-shot learning is a highly active research area in computer
vision and machine learning [21} 56]. Along with the recent advances in semantic segmentation [[7, |8}
19,250 1261 3811391153157, 1591 163]], especially the fully convolutional network [39] that formulates the
semantic segmentation tasks as a per-pixel classification problem, zero-shot semantic segmentation
starts to attract attention from the community. Zhao ef al. [62] formulate open-vocabulary scene
parsing as a concept retrieval problem and utilize WordNet to build label relationships to segment
large open-set classes in a hierarchical way. Xian et al. [S5] propose a semantic projection network to
unify both zero-shot and few-shot segmentation task. Bucher et al. [2] and Kato ef al. [31] both apply
variational visual-semantic mappings to adapt the semantic embeddings to the diverse conditions in
the visual domain. Though achieving promising segmentation results, the aforementioned methods
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Figure 2: An overview of the proposed framework. A segmentation mask is generated from an image and a class
tag. The model is trained on seen classes, and tested with unseen classes. Training phase: 1) In pixel-level
learning, the network simultaneously estimates the mean 1, and variance o, to model the output as Gaussian
distribution, and learning with an uncertainty-aware objective Lp;qc;. 2) In image-level learning, we formulate
the DICE loss as a Bayesian regression problem L;, 4, and simultaneously estimating the mean (i, and diversity
op to parameterize a Laplacian distribution over DICE coefficient. Testing phase: Given an input image and a
class label, the estimated mean of logits 1, processed with a Sigmoid layer to be output.

often suffer from limitations like the neglect of segment-level segmentation quality, and the adverse
learning effect caused by noisy training data. In contrast, we propose an effective framework with
uncertainty-aware learning to address these challenges.

Data-dependent Uncertainty Estimation. Data-dependent uncertainty is also known as Het-
eroscedastic uncertainty [[12} 20, [32]] which models the observation noise of individual samples.
It has been applied in deep Bayesian learning to help deep networks make reliable decisions and
robust learning. Kendall et al. [32} 133] propose to account for the uncertainty with Gaussian
distribution and learn to estimate the uncertainty for robust scene understanding. Ilg ez al. [27]] model
uncertainty with a multiple hypothesis network for optical flow. Both Feng et al. [[17] and Choi et
al. [9] extend object detection frameworks to be probabilistic and learn to estimate the uncertainty
of detection results. Khan er al. [34] aim at balanced learning from training data with both model
and data uncertainty based on Monte Carlo sampling, which however incurs high computational
costs. Levas ef al. [36] extend the dropout variational inference with temperature scaling to calibrate
model uncertainty. Besides serving as prediction confidence as in the above methods, uncertainty
is also modeled in distributional feature representation for applications like person ReID [58]] and
facial recognition [} 49]] to achieve robust feature learning. Compared to these existing methods
that all focus on closed-set tasks, our work extends the Bayesian uncertainty estimation to a new and
challenging task of zero-shot semantic segmentation and presents an effective framework together
with derived uncertainty-aware objectives.

3 Uncertainty-Aware Zero-Shot Semantic Segmentation

3.1 Zero-Shot Semantic Segmentation

In the scenario of zero-shot segmentation (ZSS), we aim to transfer the pixel-level visual-semantic
mappings from seen classes to unseen ones. For simplicity, we formulate the task as an image
segmentation problem conditioned on given semantic concepts. Formally, we split the category space
into disjoint seen class set S and unseen class set U/. And consequently, the semantic embedding
space Y for all the categories is also divided into two parts )* and Y*. We assume a training dataset
with ns samples from the seen classes S is denoted as D* = {(x;, yi, 2;) 121, where x; is an image
in the image space X, y; represents an embedding for a seen class in J?, and z; is the corresponding
mask in the binary segmentation space Z. The goal for zero-shot semantic segmentation is to learn
from D? the conditional image segmentation model:

fzss: {X7y}_>z (1)



where Y = V° U Y* meaning that the model doesn’t only segment seen classes, but also need to be
generalized to unseen classes.

3.2 Framework

The overview of our proposed uncertainty based learning framework for zero-shot semantic seg-
mentation is illustrated in Fig.[2] To learn reliably and effectively from seen classes, we formulate
uncertainty-aware learning at both pixel level and image level. Given an image and a target class, we
first extract visual feature maps and semantic embedding vectors. Upon these, we apply concatenation
operation and learn to estimate visual-semantic correspondence. In the training phase, we optimize the
model with uncertainty at pixel level with stochastic Binary Cross Entropy (BCE) for the pixel-wise
logits, and at image level with Bayesian regression for the DICE coefficient [41], so as to explicitly
account for the noise and outlying samples in the training set.The two branches in the network are
optimized simultaneously during training,

L= ‘Cimg + A Epia:el (2)
where A is a weight, and Ly, and L, are the pixel level and image level uncertainty-aware losses
that will be introduced in the following subsections.

3.3 Pixel-level Learning with Stochastic Binary Cross Entropy

With the help of FCN [39], deep CNN based semantic segmentation is efficiently converted into
pixel-wise classification tasks. Given a training image, models typically learn equally from all the
annotated pixels. However, among these there may exist two types of uncertain pixels: 1) atypical
samples, whose features are less discriminative, e.g. pixels near boundaries; 2) label noise, which is
caused by incorrect annotations. In the context of ZSS, learning from these atypical pixels may drive
the model skew toward noisy and outlying samples, thus decreasing the generalization ability. In this
section, we propose an uncertainty-aware method that learns robustly by estimating the noise level of
pixels.

Given the visual feature maps and the semantic representation vector, we replicate the semantic vector
to be the same spatial size as the feature map, and concatenate them along the channel dimension.
Then, several 1 x 1 Conv layers are learned over the concatenated features to compare the visual-
semantic relationship. Given p, to be the logit output by the network for a pixel, the segmentation
probability is p = Sigmoid(u, ), and upon which the Binary Cross Entropy loss is applied as,

Ebce(pv Z) =—z-logp— (1 - Z) : 10g(1 _p) 3)
where z indicates the groundtruth label. This objective assumes the noise level is uniform through the
sample space, which may lead to sub-optimal visual-semantic mappings.

Instead, we formulate the prediction to be probabilistic so as to account for noise of training data in a
differentiable way. As shown in the lower branch of Fig. @ in addition to the logits y,, estimated on
the concatenated features, an uncertainty parameter o, is also estimated to quantify the noise level of
the data. Then, we place a Gaussian parameterized with (y,,,0,,) over the network output,

p; = Sigmoid(&), %; ~ N(ﬂpvgg) @

Since it is difficult to achieve an analytical solution for the expectation of loss in Eq. [3| with respect to
p, we adopt Monte Carlo integration to achieve an approximation. As a result, we learn the model
with stochastic Binary Cross Entropy (BCE) loss for each pixel,
1N
Lpivel = z; (=2 -log(p;) — (1 — 2) - log(1 = ps)) , o)
i=
where z is the groundtruth label, p; is sampled from Eq. 4, and N is the times of sampling. In
conventional methods, noisy and outlying samples always cause high loss value for Eq.|3] and the
optimization process tends to reduce the loss, thus those models are driven to learn uniformly from
the noisy and outlying data. Yet in the probabilistic prediction model, the optimization process can
drive the noisy samples to output a high variance of o, thus allowing the model to account for noise
and outliers. In such a way, the stochastic Binary Cross Entropy loss can be interpreted as learning
to attenuate loss for uncertain samples with high variance estimation. To ensure numerically stable
training, instead of directly predicting o, we let the network output: s = log ag. Then the oy, is
computed via an exponential mapping: o, = exp(5), which always generates a positive value.



3.4 Image-level Learning with Bayesian Regression

In natural images, semantic classes are typically defined over image regions on a global scale
rather than individual local pixels. In other words, a single pixel contains less information than a
semantically-consistent region in images. Therefore, treating each pixel independently may lose
global information, and lead to less effective models. In this part, we address this challenge by directly
optimizing the image-level segmentation quality. Moreover, to learn more reliable visual-semantic
mappings, we further formulate the image-level learning as a Bayesian regression problem, where the
influence of noisy training samples is automatically explained away with a probabilistic distribution.

Instead of simply averaging the prediction accuracy over an image, we adopt the DICE Coefficient [[13]]
as a quantitative measure for overall segmentation quality. Given a binary segmentation mask P and

the binary groundtruth mask G, the DICE Coefficient is computed as 2|f3|ﬁTé¥‘|, which equals to 1

when P perfectly segment the mask as in G. To process with outputs by deep CNN based models,
which are typically probabilities for each pixel belonging to a certain class, we utilize the soft DICE

N . .
Coefficient in the form ¢(P,G) = Q%i;}ﬁ’gg;, where N is the total number of pixels, p; and g; are
j=1P5T9;

the segmentation probability and the groundtruth respectively for the i-th pixel. Since we aim to
optimize the DICE Coefficient to be equal to 1, the objective for the overall segmentation quality can
be formulated as a L1 regression problem as below,

‘Cdice = |1 - ¢(P7 G)' (6)

where ¢(P, G) is the aforementioned soft DICE Coefficient, P and G are the network’s Sigmoid
predictions and Groundtruth respectively. This object can also be formulated with L2 distance, which
however is empirically found to be less effective.

Training the L. in Eq.[6helps the model to learn more effectively visual-semantic mappings with
global information. However, it is still vulnerable to noisy and outlying samples when training on
seen classes. To address this, we propose to formulate the overall quality optimization as a problem
of Bayesian regression, where estimated uncertainty helps to explicitly account for the observation
noise in data. During training, we place over the soft-DICE output with a Laplacian distribution
parameterized by (u;, 0;), which are simultaneously estimated by the network as shown in the upper
branch of Fig.[2] The o; indicates the uncertainty that reflects the noise level of training samples;
and p; = ¢(P, G) is the mean of DICE Coefficient computed with the predicted segmentation map
Sigmoid(f,) and the groundtruth mask G. Consequently, we can derive a Bayesian regression loss
which enables the model to learn to resist noisy samples

1
Limg = ;|1 — ¢(P,G)| + logo; @)

As we can see, this objective can be seen as an adaptive loss attenuation, helping the model focus
more on the representative samples while learning less from the noisy samples with high variance.

4 Experiments

4.1 Experimental details

Datasets. We adopt the two challenging benchmarks with large category sets and sufficient image
samples for experiments, which are ADE20K [64] and Pascal-Context [42]. The ADE20K dataset
contain 20K/2K/3K images for training/validation/testing respectively and provide a dense annotation
of 150 categories including both objects and stuff. The Pascal-Context dataset consisting of both
diverse indoor and outdoor images, which are split into 4998 training images and 5104 validation
images. This dataset is annotated with more than 400 object and stuff classes, and the most frequent
59 classes are always adopted for benchmark evaluations.

Settings and Evaluations. Following previous work [2,[31], we experiment with varying numbers
of unseen categories on these datasets. On ADE20K dataset, we randomly chose 25, 50, and 75
classes from the 150 categories set as unseen sets. On Pascal-Context dataset, we design two types of
settings. One is based on the 59-class task, we vary the unseen class set by randomly choosing 10, 20,

'See supplementary for more details.



K=10 K=20 K=30 K=156

Overall Unseen Overall Unseen Overall Unseen Unseen IMNT IMN™
DeVise 44.5 14.0 36.0 7.8 30.3 6.5 DeVise 2.6 2.0 4.1
GMMN 455 255 36.6  20.0 316 152 GMMN 9.8 10.6 9.1
CBN 44.3 16.3 38.9 8.4 34.0 8.0 CBN 3.0 2.4 3.2
Blank 15.1 149 15.1 15.0 15.1 13.4 Blank 7.6 8.6 6.9
Random 9.2 9.1 9.3 9.0 10.0 8.3 Random 5.1 5.7 4.8
Baseline 47.7 279 39.2 183 332 14.9 Baseline  11.7 12.1 114
+U-Loss 48.1 354 42.0 245 36.5 18.6 +U-Loss 13.3 14.8 12.9

Table 1: Comparison (mIoU) on Pascal-Context dataset. Left: performance for different number of unseen
classes in the 59-classes setting. Right: performance for the 156 unseen classes in the 215-classes setting.
“IMN™” represents the intersection between the 156 unseen classes and the Imagenet-1K class set. “IMN "¢
represents the rest classes in the 156 unseen classes. “Blank” means testing with all the pixels being foreground.
“Random” means testing with pixels being randomly predicted as foreground with probability 0.15.

and 30 from the 59 classes as unseen classes, and take the rest of them as seen classes. In the other
setting, we simulate the zero-shot semantic segmentation in practice by utilizing the 400+ densely
labeled classes on Pascal-Context dataset. We take all the categories with at least two samples in the
validation set, which results in 215 categories in total, where the most frequent 59 classes are used as
seen classes, and the other 156 classes as the unseen set. In all the experiments, we report the mean
Intersection over Union (mloU) for performance evaluation.

Baselines. We formulate the zero-shot semantic segmentation as a pixel retrieval task. To achieve
this, we concatenate visual features at each pixel and the semantic representation of a given class
label, and apply several more layers to learn to compare the relation. The architecture of our baseline
model is as in Fig. E], except for the two uncertainty paths for o; and o,,.

Implementation Details. We apply semantic segmentation models like DeepLabV3+ [8] upon
ResNet-50 [23] as fixed visual feature extractor, and adopt word embedding models like
word2vec [40] to convert class tags into semantic representations. In our experiments, we fix
the ResNet backbone with Imagenet [11] pretrained parameters, and randomly initializing all the
other layers [22]]. On both datasets, we set the weight A = 0.05 for the loss in Eq. 2| and adopt
Batchsize 8 and apply SGD [48] with learning rate 5 x 10~%, momentum of 0.9, and weight decay
5 x 10~ to optimize the model for 20K iterations. Data augmentation including random horizontal
flipping, random scaling (from 0.75 to 2), random cropping, and color jittering are applied in the
training process. During testing, we input images at resolution 513 x 513, and threshold (with 0.5)
the output to achieve binary output. We use Pytorch for model implementations and conduct all the
experiments on a Titan Xp GPU.

4.2 Zero-shot semantic segmentation

In this section, we compare our method with previous methods to demonstrate the effectiveness of our
framework. We summarize previous ZSS approaches and found that there are three types of methods
that are highly related, which are metric learning-based DeVise [18[55]], variational mapping based
GMMN [2,131]], and adaptive feature modulation based Conditional BatchNorm (CBN) [10]. For all
these methods, we adopt DeepLabV3+ [8] for visual feature extraction and word2vec [40] for word
embedding, and train with the same manner as ours. Moreover, since in our setting outputs are binary
segmentation mask, we also evaluate with cases that constantly predicts all the pixels as foreground
(denoted as Blank) or randomly predicts pixels as foreground (denoted as Random).

Pascal-Context. In the left part of Table[I} we vary the size of unseen classes (denoted as K) and
compare the performance. As we can see, in all the settings, our model (denoted as “U-Loss”)
achieves much better overall and unseen-class performance than the existing methods. In particular,
with 10 unseen categories, our method outperforms other methods by 10 percent. When testing with
a larger “K”, which means higher difficulty, our method still outperforms other methods by more than
3 percent. Compared to our baseline model (denoted as “Baseline”), the proposed uncertainty-aware
learning achieves consistent and substantial accuracy improvement for overall classes and unseen
classes, which validate the better generalization ability of visual-semantic mappings learned in our
framework. In the middle rows of the table, we report performance for “Blank™ and “Random”.



K=25 K=50 K=75 ] SN\llMN
Overall Unseen Overall Unseen Overall Unseen 7:50 ;gi\‘e“ne
DeVise 27.7 7.9 22.8 5.8 19.1 5.9 S m U-Loss
GMMN 23.9 8.5 19.8 5.1 18.0 7.3 Bas0
CBN 29.5 6.2 25.0 3.1 21.2 4.5 E | I
Baseline 32.0 12.7 274 10.1 247 135 e I - I
+U-Loss 319 154 28.7 144 258 15.2 K=25  K=50  K=75

Table 2: Comparison (mloU in%) on ADE20K validation set. Left: Performance with varying number of
unseen classes. Right: Performance for generalized dense semantic segmentation. K is the size of unseen
classes. The mloU of the unseen classes for Blank/Random settings is 11.2/ 5.8 (K=25), 9.3/ 5.1 (K=50), and
9.2/ 4.7 (K=75).

Compared to these two settings, our method performs much better with significant gaps, which
demonstrates that our method does make meaningful predictions (Qualitative results are shown in
Fig. [ (a)). In the right part of Table [} we show results for a more challenging setting, where the
model is trained on 59 seen classes and tested with 156 unseen ones, as shown in the first column,
our uncertainty based method achieves better performance than the baseline and previous methods.
To further analyze our method, we separate the 156 unseen classes into two groups based on whether
appearing in the 1K classes set of ImageNet[11]] dataset or not. As shown in the last two columns,
our network doesn’t only improve the performance on the overlapped classes (denoted as “IMN™”),
but also boost performance for the “Real” zero-shot classes that are unavailable even in the backbone
pretraining phase (denoted as “IMN™").

ADE20K. Tab. [2] shows performance with varying number (from 25 to 75) of unseen classes on
ADE20K dataset, which has 150 classes in total. Our model (denoted as “U-Loss”) achieves the
best mIoU for unseen classes in most of the settings in both overall and unseen classes. This again
demonstrates the effectiveness of our method for learning reliable semantic-visual embeddings in
zero-shot segmentation. To further evaluate the performance, we also consider the generalized
evaluation which is challenging as it requires to make dense and disjoint segmentation with both seen
and unseen classes. The results for unseen classes of different sizes are shown in the right of Tab. 2}
as we can see, our method performs better than other methods.

4.3 Method Analysis

Effects of different components. At first,

we analyze the effects of different compo- Limg Lpizer | PC-30 PC-156 ADE-75

nents of our framework in Tab.[3l The first X gg ?'187 Z39 s
row corresponds to our baseline model with- v 144 405) 115 02 131 o)
out uncertainty-aware learning. As we can v 16.1 (+2:2) 123 <+d.e> 14.3 (+0.,8)

see, both the image-level uncertainty (L;p,q) v v 186 w47 133 1) 15.2 417
and the pixel-level uncertainty (Lp;ze) in-
dividually helps to improve accuracy for
unseen classes in most cases. And when

Table 3: Unseen classes perfromance (mloU) with differ-
ent training loss. “x” indicates that the branch is removed
.. . from the model.“v"” means that the uncertainty-aware loss
gomblnlng the two losses together for train- is applied to the branch. “PC-30" and “PC-156" represents
ing, the performance can be further boosted.  pascal-Context with 30 and 156 unseen classes respectively.
This demonstrates the effectiveness of our “ADE-75” is ADE20K dataset with 75 unseen classes.
uncertainty-aware learning for reliable and

generalizable visual-semantic mappings in zero-shot segmentation.

Different backbone. We have shown that our method based on DeepLabV3+ [8] being visual
feature extractor achieves better performance than other methods and the baseline. In this section, we
will further validate the effectiveness of our method by adopting a different visual feature encoder,
which is PSPNet [63]]. In Fig. E] (a), we utilized the ResNet50 initialized PSPNet and compare our
uncertainty based method with the baseline. As we can see, our uncertainty based learning achieves
much better performance on all the three challenging settings. This demonstrates our method’s
effectiveness and robustness to different visual feature extractors.

Different word embedding. In previous experiments, we adopted word2vec [40] for encoding
semantic representations. In this part, we further validate our method by adopting the Fasttext [30]
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Figure 3: Method analysis. “PC-30" and “PC-156" represents Pascal-Context with 30 and 156 unseen classes
respectively. “ADE-75" is ADE20K dataset with 75 unseen classes.
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Figure 4: Qualitative results on PascalContext-60 dataset. (a) From left to right: unseen-class tag, input image,
segmentation result, groundtruth, and pixel-wise uncertatinty. (b) T-SNE visualizations of global uncertainty.
Each data point indicates an image-level sample. The circles represent samples for a given seen class and the
colors inside indicate the value (encoded by the colorbar) of the global uncertainty o;.

for word embedding. As shown in Fig. 3| (b), our uncertainty based learning can still achieve much
better accuracy over the baseline models. This shows that our method is effective and robust for
different types of language embedding models.

Learn without unseen class in the background. In semantic segmentation, each image is typically
annotated with multiple classes. Therefore, unseen classes may be still processed by models, even
though no supervisions are available. To exclude the influence of these unseen class samples existing
in the background, we also train our models only with images containing no pixels belong to unseen
classes. As reported in Fig.[3](c), our uncertainty-based learning constantly improves the performance
over the baseline. We surprisingly found that on Pascal-Context with 30 unseen classes, both
the baseline and the final model achieves a better result than learning with unseen classes in the
background. This may be because that excluding training images containing unseen classes leads to
less training samples for seen classes, thus relive the over-fitting effect. Yet, in PC-156 and ADE-75,
we find that too many samples are excluded, and consequently, the model performs worse.

Analysis of uncertainty. Finally, we provide an analysis of the uncertainty estimate in our model.
We show in Fig. [ (a) the estimated pixel-wise uncertainty map. As we can see, in most cases the
boundary pixels show high uncertainty, as their feature are less discriminative compared to region
center pixels. In Fig.[d] (b), we visualize the global uncertainty for a seen class against other unseen
classes. As we can see, representative samples that are close to the class centers show low uncertainty
(in darker colors). In contrast, noisy and outlying samples that are non-discriminative to unseen
classes are estimated with higher uncertainty (in lighter colors), which means higher noise level and
therefore are attenuated more in training.



5 Conclusion

In this paper, we propose a framework to learn reliable and robust visual-semantic mappings for zero-
shot semantic segmentation. To resist the noise in training data, we leverage Bayesian uncertainty
estimation to formulate the pixel-level and image-level accuracy prediction as a stochastic process,
which naturally accounts for noisy and outlying training samples at both image level and pixel level.
Therefore, the model learns attentively from representative samples, and suffers less from noisy
samples. The effectiveness of our method is validated with extensive experiments. On multiple
benchmarks, our method outperforms previous methods with a large gap.
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Broader Impact.

Our work aims to learn reliable models for zero-shot semantic segmentation. From the technical
perspective, our algorithm addresses the lack of training data in the open-set setting, thus benefiting a
lot of real-world applications like image editing, open-world scene understanding. From the social
responsibility perspective, our work aims for building machine learning algorithms with less training
data, thus helping save both financial and energy costs during the data annotation process. The failures
of our system may incur incorrect segmentation, which needs manual corrections from users before
performing downstream tasks. The negative impact of our work could be that making companies,
governments, or individuals more easily deploy these systems for unethical purposes.
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