
Journal Pre-proofs

A Multi-layered Bigraphical Modelling Approach for Context-Aware Systems

Ahmed Taki Eddine Dib, Ramdane Maamri

PII: S1319-1578(21)00211-1
DOI: https://doi.org/10.1016/j.jksuci.2021.08.008
Reference: JKSUCI 1081

To appear in: Journal of King Saud University - Computer and
Information Sciences

Received Date: 9 May 2021
Revised Date: 5 August 2021
Accepted Date: 8 August 2021

Please cite this article as: Taki Eddine Dib, A., Maamri, R., A Multi-layered Bigraphical Modelling Approach for
Context-Aware Systems, Journal of King Saud University - Computer and Information Sciences (2021), doi:
https://doi.org/10.1016/j.jksuci.2021.08.008

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.

https://doi.org/10.1016/j.jksuci.2021.08.008
https://doi.org/10.1016/j.jksuci.2021.08.008

A Multi-layered Bigraphical Modelling Approach for Context-Aware Systems
Ahmed Taki Eddine DIB
LIRE LABORATORY, UNIVERSITY OF CONSTANTINE II-ABDELHAMID MEHRI, ALGERIA

Ahmed.dib@univ-constantine2.dz

Ramdane MAAMRI,
LIRE LABORATORY, UNIVERSITY OF CONSTANTINE II-ABDELHAMID MEHRI, ALGERIA

RAMDANE.MAAMRI@UNIV-CONSTANTINE2.DZ

A Multi-layered Bigraphical Modelling Approach for Context-Aware Systems

Abstract

There exist several approaches proposed for building Context-Aware Systems (CAS). However, due to the
continually changing environment, the large number of interrelated components, complexity and diversity of
application domains make the modelling of context-aware systems a particularly challenging task. To address the
increasing complexity of the modelling: i) It is critical to take into account the importance of the environment
(operational context); and ii) rely on software engineering concepts such as abstraction and modularity in order
to reduce the level of complexity. Also, a context-aware system may require intelligence and autonomy. These
naturally lead us to apply intelligent agent-based engineering. This work introduces a formal layered design
approach that combines intelligent control of multi-agent systems and bigraph's rigor to model context-aware
systems. Bigraphical reactive systems are particularly compelling for their capacity to specify, simultaneously, the
physical and logical distribution of system components and their interconnections using two distinct structures;
that is: place graph and link graph. While the behaviour and dynamic evolution are expressed using defined
reaction rules, and as a last step, the bigraph specifications are coded in the Maude language to allow their
execution and the verification of their validity.

Keywords: Context-aware systems; Computing methodologies; Formal modelling; Multi-agent systems

Introduction

In today's world, context-aware systems (CAS) are everywhere, offering a diverse range of computing
capabilities and services at any time and in any place. Applications should be aware of their
environment and automatically adapt to evolving situations in order to provide adequate service to
users. This is known as context awareness. Any detail that can be used to describe an entity's condition
is referred to as context. An entity may be an individual, position, or thing that is considered important
to a user's interaction with an application, such as: their location; time; activities; and preferences. If
a system can adapt its behaviour to the actual context of use, it is context-aware. The most important
purpose of such systems is to provide adequate services to the specific individuals, place, time, and
event (Dey, 2001). The modelling and implementation of CAS in ubiquitous and pervasive
environments poses new challenges that go way beyond conventional design and development
methods. Context-aware systems may require a diverse set of resources that perform random tasks
using pre-determined or ad-hoc communication protocols. These systems must have flexible and
adaptive architectures to deal with continuous emerging requirements of the environment and users.
There exist many formal and semi-formal modelling approaches proposed in the literature. However,
these approaches do not address the environment as a modelling dimension at the design phase. This

results in a pre-established often-rigid solution where interactions, users, and changes are fixed.
Besides, they lack techniques and tools to validate the resulting design.

In this work, we consider a context-aware system as a multi-layered cyber-physical system. The
modelling of context-aware systems considers general systems theory concepts, namely hierarchy, and
emergence. Also, a context-aware system requires intelligence and autonomy. These naturally lead us
to apply agent-based engineering. So, context-aware systems require these components:
- A solid concepts layers (context and context-aware system).
- Proactivity and adaptability to facilitate the sharing, management, and inference of a given context.
- Formal basis to ensure the robustness and the correctness of the system.
Formal modelling becomes essential in the development of computer systems in general. Relying
heavily on mathematical definitions, formal methods may be applied in this context to provide a
precise model for context-aware systems and ensuring the high evaluation assurance level 'EAL7'
according to Common Criteria Standard (Common Criteria, 2021). Besides, it helps for the early
integration of verification at the design phase, facilitating the early detection of the design defects.
Further, formal methods are endowed with powerful tools used to automate various stages of the
verification.

In this work, we propose a modelling approach that combines intelligent control of multi-agent
systems and bigraph's rigor to model context-aware systems. Bigraphs are particularly appealing for
their ability to specify, at the same time, the physical and logical distribution of system components
and their interconnections using two distinct structures, namely the place and link graphs. While the
behaviour and the dynamic evolution are expressed using a set of defined reaction rules. Indeed, BRS
have shown their adequacy in several domain applications, such as context-aware systems (Sahnoun
et al., 2017), networking (Boucebsi and Belala, 2020), Fog computing (Benzadri et al., 2021), Further,
we rely on the Maude system to enable the autonomic executability and validation of the resulted
specifications (Benzadri et al., 2021). This approach gathers the features presented above and shows
how this model may be used in different scenarios and applications. The main features of the model
are validated by implemented application.

Section 2 describes our general approach to the issue, while Section 3 describes the system's
architecture, the implementation of context awareness, and the structure and behaviour. Section 4
lists the proof-of-concept applications and experiments that are parts of evaluating and validating the
modelled approach. The fifth section summarizes and compares similar fieldwork. The final section
ends with some suggestions for future research.

2- Our approach principle

A Context-aware system (CAS) is considered as a multi-layered cyber-physical system that focuses on
explicit interaction and communication between the user, the system, and the external environment,
employing a number of modalities. A CAS is composed of all of the system's components as well as the
surrounding environment (sensors, actuators, intelligent appliances, smartphones and tablets,
workstations, and servers) where devices are interconnected through a ubiquitous network that uses
various protocols and mostly wireless transmission. The data is transferred from layer to layer in a
uniform format employing standard protocols. The applicative layer offers the context-aware system,
intelligent decision-making process, and interaction via a standard interface supporting
communication between different entities. Therefore, the modelling of CAS must consider some
additional aspects compared to classical software systems, making such systems hard to model and
manage through time. Our goal is to make the models we create more useful i) by proposing a
modelling approach to ease the process of model construction by bringing the solution that we offer
closer to its respective domain ii) by relying on advanced software engineering concepts such as
abstraction and modularity in order to reduce the level of complexity. Applying these principles

broadens the scope of systems engineering beyond classical solutions by identifying common
properties of hierarchical levels. In addition, to the SE concepts cited above. To address the increasing
complexity of the modelling. It is important to take into account the context as modelling dimension.
Further, it should explicitly and concisely describe operating environments. The environment layer
represents the operational context in which the designed system is used. It is critical to achieving the
desired goals. Advanced system performance is measured by understanding how both component
reliability and component interactions are influenced by the conditions, settings, and circumstances in
which they operate. The environment layer is a predominant endogenous modelling dimension in our
approach. Building on this, the interface layer plays an important role between the environment layer
and the software and hardware layers. It deals with both the operational context and system users by
ensuring information transfer and allowing for a bidirectional causality. The information (data) is
offered to the other layers in a uniform format and employing standard protocols. Engineered
solutions within real-world systems involve working with decision-makers. The software layer plays an
important role. First, it provides reactive behaviour through a domain-specific process for nominal user
requests. Second, it provides a proactive action as a response for operational context change
occurrences. This, independently from any human activity, promoting autonomy and preventing
component reliability and interactions. It finally acts on the environment through physical effectors
(the hardware layer). The aforementioned layer is built on agent technology as a building block. Where,
Agents provide autonomy, reactivity, and proactivity, introducing intelligent behaviour by allowing
anticipation. The interaction of the autonomous and cognitive agents collaborates as part of a multi-
agent system. This fits well with CAS properties, like Context awareness, distribution, collaboration,
and adaptation.

This study aims to create a bigraphical, multi-agent-based model to describe the configuration and
behaviour of a context-aware system based on a collection of factors such as the system's user, the
environment, the application, and the hardware. These parameters are intertwined and can affect one
another. As a result, the system must adjust to its operational context to achieve its end objective. The
system would satisfy pre-defined and desired requirements such as context-awareness, adaptation,
usability, reliability, and robustness. The modelling of context-aware systems considering general
systems theory concepts, namely hierarchy, and emergence. Which assumes a context-aware system
as a multi-layered cyber-physical system composed of the factors cited above (the user of the system,
the environment, the software, and the hardware). These factors represent the layers of our CAS.
Where each layer contains several sublayers that constitute the local context of the actual layer.
Besides, we introduce a second modelling dimension that operates across the sublayers of the main
layers (the user of the system, the environment, the application, and hardware). This interleaving of
layers and sublayers forms a micro/meso level of modelling (see Fig. 1.), representing a local context
while the overall represents the global context of the system.

Figure 1. Micro/meso level of modelling

3- Formal specification of a context-aware system

The specification of the CAS system is achieved by the definition of the structure and behaviour of the
layers described in section 2 (see Fig. 2.). The specification of the context-aware system we build

provides mechanisms to manage the specific information of the global context in a hierarchical
manner. The proposed approach is structured as follows; Each layer that constitutes our context-aware
system is modelled as a bigraph. Bigraphical Reactive Systems were introduced by Milner (Milner,
2008) to provide a graphical, intuitive formal model capable of representing at the same time
connectivity and locality concepts of distributed and highly dynamic systems such as Context-Aware
System. Moreover, they provide a unification of existing process calculi for concurrency and mobility
(such as π-calculus, Petri nets, λ calculus, and so on) (Milner, 2008).
Definition 1: A bigraph is formally defined by:

G = (V,E,ctrl,GP,GL):I→J,I = < m,x > ,J =< n,y >

Where: and represent finite sets of nodes and edges respectively, ctrl ∶ V → K is a control 𝑉 𝐸 ctrl: V→K
map that assigns control to each node. The signature K is a set of controls. 𝐺𝑃 = (𝑉, 𝑐𝑡𝑟𝑙, 𝑝𝑟𝑛𝑡):𝑚→𝑛
is the place graph of which represents the forest where is the acyclic parent map 𝐺 𝑝𝑟𝑛𝑡 :𝑚⨄𝑉→𝑉 ⨄𝑛
associating with each node its hierarchical parent. and are both finite ordinal numbers that 𝑚 𝑛
represent sites and regions respectively, is the link graph of G which 𝐺𝐿 = (𝑉, 𝐸, 𝑐𝑡𝑟𝑙, 𝑙𝑖𝑛𝑘):𝑋→𝑌
represents the hypergraph where is the link map, and represent respectively 𝑙𝑖𝑛𝑘 :𝑋⨄𝑃→𝐸 ⨄𝑌 𝑋 𝑌
inner names and outer names, and is the set of ports of . The interfaces and 𝑃 𝐺 𝐼 = 〈𝑚,𝑋〉 𝐽 = 〈𝑛, 𝑌〉
represent respectively the inner and outer faces of the bigraph . 𝐺
The structural evolution of each layer is done using the composition of bigraphs. The CAS overall
structure is the result of the juxtaposition of the bigraphs of the different layers. While the dynamic
evolution and system behaviour is modelled using bigraphical reaction rules.

Figure 2. Context-aware system modelling

3.1 Bigraphical specification of a context-aware system structure

3.1.1 Bigraphical specification: environment layer

We start our specification with the environment layer. This layer represents a significant source of
information. It is also shared and substituted in various heterogeneous systems like services, sensors,
etc. To encode the environment layer, we use Milner's standard bigraph definition. Each node
represents a specific entity of our environment (operational context), while edges and hyperedges
represent the connections between these entities. This choice is driven by the genericity (abstraction)

and the expressiveness of this conventional definition to encode many aspects of context-aware
systems application domains and features. Our context model is based on the aim to model a specific
set of upper-level entities that can help in adding specific concepts in different application domains. In
this work, we consider the context representation as Illustrations with high-level concepts (Dey, 2001).
For that purpose, we provide a mapping approach based on a domain-specific ontology. This choice is
motivated by the fact that an ontology is a systematic representation of the information within a
specific domain by a set of concepts and the relationships between those concepts (Lüddecke et al.,
2014). Besides, there is an ascendant number of practical ontologies for CAS operational context like
Context-Driven Adaptation of Mobile Services (CoDAMoS) (Preuveneers et al., 2004), Smart Space (Qin
et al., 2007), and CACOnt (Xu et al., 2013). Further, we provide flexibility for the CAS designer to define
the bigraph representing the environment layer (operational context) by i) relying on an existing
ontology or ii) defining by extension the concepts of the current environment (see Table 1).

Table 1. Mapping between context-aware system, bigraph, and ontology concepts.

Context-aware system Formally Conceptually
Environment layer Bigraph Ontology
Component/parts Nodes Concepts
Interconnection Edges, hyper-edges Links

Definition 2: formally the environment layer is defined by the bigraph .𝐺𝐸𝑁𝑉

 Where:GENV = (VENV,EENV, ctrl,GENV
P ,GENV

L): I→N
- represents the set of entities. These entities constitute the operational context of a specific V𝐸𝑁𝑉

domain; they can be virtual like (virtual machines, services, etc.), or physical parts such as (home
architectural elements, roads, rails, sensors, etc.);
- represents the set of relations between the concepts defined by the set of entities ; E𝐸𝑁𝑉 V𝐸𝑁𝑉

- represent the topology and the interconnections between the concepts of the GENV
P and GENV

L
operational context.
- and are the interfaces of the operational context and the context-aware 𝐼 = 〈𝑚,𝑋〉 𝐽 = 〈𝑛, 𝑌〉
system other layers.

3.1.2 Bigraphical specification: interface layer

After defining the environment layer, we now turn to the second step to make our context-aware
system. To be precise, we describe the interface layer. It constitutes the information transfer interface
between the user, the system (application and hardware), and the operational context. As promoted
in the new generation cybernetic system wave, the user and the operational context are constituent
parts within a system. There is a need to relax traditional assumptions of the boundary between the
system and its operational context, making it merely a prolongation of the context-aware system. The
need to better account for the importance of context is a crucial enabler for this strategic shift. The
interface layer offers communication mechanisms and strategies to collect information from multiple
sources, make it available to operators and decision-makers. The implementation of the interface layer
is done through a linking () that represents a node-free bigraph with no places. Linkings are generated 𝜆

using two primary bigraphical forms: elementary substitutions and elementary closures .𝑦
𝑋 𝑥

Definition 3: the interface layer represented by linking () is a map from inner names to outer names 𝜆
and edges to and from the environment layer bigraph, the user and the hardware and application
layers. This is generated by the composition, product, and identities of the bigraphs of the different
layers. The interface layer is a linking , where a substitution from X to Y is a tensor product of 𝜆 𝜎
elementary substitutions.

 / ⊗ · · · ⊗ , where ⊎ · · · ⊎ and 𝜎 ≝ 𝑦0 𝑋0 𝑦𝑛 ― 1/𝑋𝑛 ― 1 𝑋 = 𝑋0 𝑋𝑛 ― 1 𝑌 = { 𝑦 }

First, the interface layer plays a key role as a bidirectional communication medium between the
different context-aware systems parts (from the local to the global context and vice versa). Secondly,
it provides a minimal common set (inner names and outer names) to construct and evolve the
bigraphical context-aware system specification. Finally, through bigraphical composition and
juxtaposition, making significant bigraphs from smaller ones.

3.1.3 Bigraphical specification: hardware layer

The hardware layer represents the physical parts of the context-aware system following the traditional
view (i.e., excluding the operational context physical parts). It is defined as the containers (servers,
terminals, smartphones, tablets, etc.), effectors, sensors, and wired communication medium. Effectors
and sensors can be electronic and mechanical. The evolution in the hardware layer is a predominant
factor. These parts can evolve through time (deployment of new devices) or due to change in
technology. At the design time, the system is represented by a bigraph . GH

Definition 4: formally the bigraph is defined as follows,GH

 where:GH = (VH,EH, ctrl,GH
P,GH

L): N→Z
- is the set of devices of the CAS.VH

- is the set of edges connecting the different devices. EH

- the place graph represents the topology (physical distribution) and location while represents 𝐺𝐻
𝑃 𝐺𝐻

𝐿
the interconnection schema of the devices of our context-aware system.
- The interfaces and represent the means of communication with the other 𝑁 = 〈𝑚,𝑋〉 𝑍 = 〈𝑛, 𝑌〉
layers by putting one bigraph on top of another (composition) or side-by-side (juxtaposition).

3.1.4 Bigraphical specification: Software layer

The software layer plays an important role. First, it provides reactive behaviour through a domain-
specific process for nominal user requests. Second, it provides a proactive action as a response for
operational context change occurrences. It finally acts on the environment through physical effectors
(the hardware layer). The aforementioned layer may be built on agent technology as a building block
(Dib et al., 2016) but not necessarily; It can possibly be based on cloud or fog computing services.
Agents provide autonomy, reactivity, and proactivity, introducing intelligent behaviour by allowing
anticipation. The interaction of the autonomous and cognitive agents collaborates as part of a multi-
agent system. This fits well with CAS properties, like Context awareness, distribution, collaboration,
and adaptation.

Definition 5: A bigraph modelling the software layer of our context-aware system over a signature 𝐺𝐴

K takes the form:
 Where GA = (VA,EA,ctrlA,GA

P,GA
L): Z→J

is the set of abstract bigraphical nodes. Each node represents a computational entity (i.e., an object, V𝐴
a web service, or an agent). The set of nodes is identified over a signature K using a new control 𝑉𝐴
map K, assigning to each node a control k K with ctrl𝐴: 𝑉𝐴→ 𝑣𝑖 ∈ 𝑉𝐴 ∈ 𝑃𝐴 =

 is the set of ports. Node's ports are communication points between the {(𝑣│ 𝑖)│ 𝑖 ∈ 𝑎𝑟(𝑐𝑡𝑟𝑙𝐴(𝑣))}
local context (computational entity) and the global context (hardware and the operational context
layers). This abstraction allows the designer to choose the desired paradigm (oriented object, service-
based or agent-oriented). is the set of links between the computational entities . The 𝐸𝐴 𝑣𝑖 ∈ 𝑉𝐴

semantic associated with the nodes and links are defined using bigraphical sorting.

Definition 6: formally, a bigraph modelling a context-aware system is defined by 𝐺

where and are respectively the abstract bigraphs that continue our 𝐺 ≝ GA ∘ GH ∘ GENV GA, GH GENV

context-aware system layers. Where are bigraphs with GENV :𝐼 →𝑁, GH :𝑁→ 𝑍 𝑎𝑛𝑑 GA :𝑍 →𝐽 | GA| ⋕
 are disjoints. The context-aware system (bigraph) is the result of the juxtaposition | GH| ⋕ | GENV| 𝑮

of the bigraphs of the different layers by layering one bigraph on the top of another. The bigraph 𝑮
is defined by:

 GA ∘ GH ∘ GENV ≝ 〈GA
P ∘ GH

P ∘ GENV
P ,GA

L ∘ GH
L ∘ GENV

L 〉 :𝐼→𝐽

We define an extended signature K defined by a set of elements called controls. For each control, the
signature provides a finite set of ports and a finite set of attributes, where: port (K) denotes the control
ports' names, and attribute (K) denotes the attributes of control. An attribute takes the form <name,
type, value>; attributes are useful for describing the CAS devices. It can help to specify many device's
features. For example, <Role, Group, identifier>, <protocol, specification, null>, etc. Based on these
attributes and using tools, we can perform analysis and some manipulations. Finally, a signature K
determines atomic and non-atomic controls and which control is active or passive. The sorting
discipline over the abstract bigraphs is a tree attribute structure ∑ = {𝛩, 𝐾, 𝛷} GA, GH 𝑎𝑛𝑑 GENV

where is a set of formation rules, K is a signature and is a set of sorts on places and links. Since 𝛷 𝛩
we define a domain-specific modelling language for formal specification of context-aware systems. We
adopt a sorting discipline over the abstract bigraphs . Such a discipline imposes GA, GH 𝑎𝑛𝑑 GENV

structural constraints that make the bigraphs represent the model's formal entities. Example:
bigraphical sorting of Petri nets (Milner, 2004) makes it possible to model Petri nets using bigraphs.
Thus, each model is represented in bigraphs by three parameters: (i) defines processes syntactically
(sorting); (ii) defining a signature K; (iii) and then presents its rules of interaction. The only bigraphs
permitted are those that satisfy the defined sorting discipline.

3.2 Bigraphical specification of a context-aware system dynamics

A context-aware system (CAS), have to manage local context (the system) and global context (context
of use; environment) to be aware of their state and the state of the environment. To this end, these
systems require more adaptive features to deal with usually open-ended, highly parallel, and
interactive components that often operate in a highly changing environment. The proposed
conceptual framework defines mechanisms to deal with context-aware system dynamics at the local
and global context based on bigraphical reaction rules. System behaviour and the environment
changes constitute the local and global context dynamics. Besides, modelling context-aware systems
consider the process of determining a system's actions as a result of its internal goals resolution or as
an environmental change. To provide context-aware system key features such as self-awareness and
self-adaptation. Self-awareness refers to the state (information) that a system has about its own
behaviour and the environment, it can be distributed or held locally. Furthermore, self-adaptation
provides capabilities for flexible adaptation and reconfiguration. To tackle these issues, we an
engineering approach based on bigraphical reactive systems (bigraphs + reaction rules). To present the
dynamics of processes by means of reactions of the form on a bigraph . Iff 𝑟 →𝑟′ 𝐺 𝐺: 〈𝑚, 𝑋〉 → 〈𝑛, 𝑌〉
is active at if every ancestor node of site is active. These reactions define the behaviour 𝑖 ∈ 𝑚 𝑖
and the structural evolution. A BRS above the sorting discipline consists of enriched with a ∑ ′𝑩𝑮(∑)
set of reaction rules. We denote the BRS by .′𝑹 ′𝑩𝑮 ≝ ′𝑩𝑮(∑, ′𝑹)

4- Case Study

Nowadays, ubiquitous computing has become essential in our daily life as well as in the automotive
world. Today's cars are endowed with safety and driver assistance systems that make it easier for
drivers to make journeys. These systems are distributed and based on the technology of sensor and
camera networks, which intercept danger and therefore reduce the accident rate. Such systems

demand runtime capabilities for flexible adaptation and continuous reconfiguration. The purpose of
this section is to apply our approach (presented previously) to an intelligent vehicle (driver assistance
system) as a case study. But first, we describe the Intelligent driving assistance systems. Then, we
present the resulted modelling using our BRS-based approach.

A driver assistance system is a complex system that contains several subsystems based on sensor
networks and centralized IT. It is made up of a large number of heterogeneous and distributed physical
devices. The system perceives the signals from distributed sensors that differ in their operation (line
sensor, obstacle sensor, etc.) and works on a dynamic and changeable environment which aims to:

- Avoid a dangerous situation that could lead to an accident;
- Free the driver from many tasks that could reduce his vigilance;
- Assist the driver in his perception of the environment (overtaking detector, freezing risk

detector, etc.).
One of the principles of context-aware systems is to provide services that focus on the ability to
interact with the operational environment, as defined in (Dey, 2001) "a system is context-aware if it
uses the context to provide relevant information and/or services to a user. Relevance, depends on the
task of the user ". We can deduce that a driver assistance system is a perfect example of a context-
aware system because the latter perceives information from its environment thanks to its sensors,
then adapts its behaviour to its environment according to its intelligence (decision-making process).
We have designed an intelligent driver assistance system to decrease the accident rate on urban roads
and expressways. Our smart vehicle is equipped with a set of sensors, control modules, and actuators
to analyse information from the environment and react by adapting its behaviour, on the traffic and
on the car itself. The behaviour is presented as an action or maneuverer (set of actions), which may be
the best or the least expensive.

4.1 Intelligent driving assistance system specification

In this section, we apply the bigraphical proposed approach to model our intelligent driving assistance
system. We model the structural aspect of our driving assistance system using the Bigraph-CAS. We
define the different possible scenarios of our intelligent vehicle system, which manages the different
cases to avoid collusion and facilitate the driver's tasks. We instantiate a set of reaction rules on the
Bigraph-CAS to model these scenarios.

4.1.1 Smart car assistant system structure

First, we specify the operational context using the bigraph which represents the set of contextual GENV
entities of our operational environment and their logical and physical location. Then, we model the
intelligent driving assistance system hardware components through the bigraph . Afterward, the GH

bigraph is used to model the intelligent decision-making process. In this case study, we rely on GA

multi-agent systems to implement the application layer. Finally, the edges, hyperedges, and interfaces
represent a middleware permitting (i) interaction and communication between the different entities
and (ii) composition of the bigraphs to form our Bigraph-CAS. The contextual bigraph of our GENV

system is presented in Fig. 3. The nodes' description is classified in Table 2. As you can see, the nodes
represent the contextual entities interconnected with edges and hyperedges, the root (0) represents
the operational environment of our system, the sites represent the abstract elements. The nodes of
type R are the plots of road, these plots contain lines for the trajectory; these lines can be continuous
or discontinuous, O represents an obstacle, and V the intelligent vehicle. We present two contextual
bigraph scenarios on this level of abstraction, the first one is on an "urban" road and the second on a
"fast lane" represented in Fig 4.

Table 2. Classification of the contextual nodes bigraph GENV

Node Description Control Arity Graphic form

V Vehicle V 1

O Obstacle O 1

LG Road Line L 1

R Road R 4

Figure 3. Contextual bigraph: "urban" road scenario

Figure 4. Contextual bigraph: " fast lane " road scenario

 is a bigraph modelling the operational environment of the diver assistance system over a GENV

signature K, it takes the form:
GENV = (VENV,EENV, ctrl,GENV

P ,GENV
L): I→N

 represents the set of contextual nodes {R1, R2, R3, R21, R22, R23, R31, R32, R33, V, L1, L2, L3, VENV
L21, L22, L23, L31, L32, L33, O} .

 represents the set of links = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12}.  EENV

 the set of controls = {R, R2, R3, V, LG {L, L2, L3}, O}.
 = (, ,):  .GENV

P VENV ctrl𝐸𝑁𝑉 𝑝𝑟𝑛𝑡𝐸𝑁𝑉 𝑚 𝑛
 =  . It is a transformation function that assigns to each node its parent 𝑝𝑟𝑛𝑡𝐸𝑁𝑉 𝑚 ⊎ VENV VENV ⊎ 𝑛
node.
 = () .GENV

L VENV,EENV,ctrl𝐸𝑁𝑉, link 𝐸𝑁𝑉 : I→N
 = .link 𝐸𝑁𝑉 : I ⊎ EENV→EENV ⊎ N
 Set of inner names = {x}.
 Set of outer names= {} .
 = 20; sites number. 𝑚
 = 1; region number.𝑛
Then, we start with the specification of the hardware layer of the system through the bigraph . This GH

bigraph represents a lower level of abstraction (a Meso level). It specifies the hardware components
of the smart car and their interconnections. The vehicle node (V), this bigraph is represented in Fig 5,
where Table 3 represents the description of the nodes of the graph and their graphical forms:GH

Table 3. Classification of the hardware nodes bigraph GH

Node Description Control Arity Graphic form
GE Event manager GE 2

GM Engine manager GM 2

U Obstacle sensor U 2

UG Obstacle sensor
left

UG 2

UD Obstacle sensor
Right

UD 2

LDG Discontinuous
line sensors left

LDG 2

LDD Discontinuous
line sensors right

LDD 2

SG Line sensors left SG 2

SD Line sensors right SD 2

CG Flashing lamps
left

CG 2

CD Flashing lamps
right

CD 2

S Stoplights S 2

Each node represents a physical element of the intelligent vehicle in the bigraph , here is a GH

description of the roles of each physical element:
(GE) Event manager: this element manages the different incoming signal flows from the sensors and
outgoing towards other elements like engine, lamps, etc.; in our vehicle, this element plays the role of
the driver assistance system memory.
(U, UD, UG) Obstacle sensors: these elements detect objects on the road; these sensors are based on
the principle of "ultrasound," reflecting on an obstacle and returning to its starting point by producing

an echo. In our vehicle, these sensors (U, UD, UG) are located in the front of the vehicle, right mirror,
and left mirror.
(LDG, LDD) Discontinuous line sensors: represents the elements that detect the state of the two
parallel lines (right and left) that form the trajectory of the road; these sensors are based on the
principle of "phototransistors" they will illuminate the ground to catch the lines. In our vehicle, these
sensors (LDG, LDD) are located respectively in the middle of the vehicle's right and left edges.
(SLG, SLD) Line sensors: same principle as discontinuous line sensors (LDG, LDD) except that they
perceive a trajectory exit. These sensors are located in the front left and front right corners of the
vehicle.
(CG, CD) Flashing lamps: located at the corners of the vehicle both light up during emergency braking,
to the right when passing to the right, and the left when passing to the left.
(S) Stoplights: which comes on when braking. It is located at the back.
(GM) Engine manager: responsible for braking, acceleration, and also steering of the vehicle.

Figure 5. Bigraphical representation of the hardware layer (bigraph)GH

The bigraph represented in Fig. 6., models the multi-agent level structure of our driver assistance GA

system. The description of the bigraph nodes are classified in Table 4. The agents are represented GA

with a set of nodes. Arcs represent the interconnection links representing the communication between
the agents, the root (0) models the SMA environment. In contrast, the sites represent the most
abstract elements:

Table 4. Description of the bigraph for driving assistance systems and graphical forms 𝐆𝐀

Node Description Control Arity Graphic form
AGOB Obstacle Agent O 2

AGSL Line Following
Agent

S 2

AGD Overtaking
agent

DG 2

AGP Pilot Agent P 2

In our multi-agent system, the agents are distributed according to their roles. Here are the role
descriptions of each agent in our system. See Fig. 6.

 (AGOB) Obstacle Agent: the role of this agent is to perceive the emergence of an obstacle during the
movement of our intelligent vehicle. When an obstacle is detected, the latter evaluates the obstacle's
distance and then communicates it to the pilot agent. This agent is qualified as a reactive agent.
(AGSL) Line Following Agent: its role is to perceive the two lines which form the trajectory of a parcel
of road, so the vehicle will move forward by following these lines when the latter tilt to the right or the
left the agent will Inform the pilot agent so he can adjust the trajectory of the vehicle. The type of this
agent is reactive
(AGDD) Overtaking agent: its role is to collect information so that the vehicle can overtake on the right
or the left. This information is the state of the left or right line, is it discontinuous, and the 180 ° left
field or the 180 ° right field is free, that is to say, that there is an object or a vehicle in the right or left
lane. Then the agent will choose the free lane, which allows him to confirm the overrun action (if the
two lanes are free, the priority is for overtaking on the right). The result of the perception and the
union of all this information will be communicated with the pilot agent. This agent is cognitive.
(AGP) Pilot Agent: this agent communicates with all the previous agents to decide (decision) what
action to choose (reaction). This agent is cognitive.

Figure 6. Assistance driving system, Bigraph . GA

In what follows, and using bigraphical composition. We deploy the software agents (multi-agent
system) of the application layer specified by the bigraph on the hardware layer defined by the GA

bigraph . The resulted bigraph is represented in Fig. 7.GH

Figure 7. Bigraphical representation of the composition of the hardware and software bigraphs
The algebraic specification is as follows:

𝐺 𝐶𝐴𝑆 = (𝑉𝐶𝐴𝑆, 𝐸𝐶𝐴𝑆,𝑐𝑛𝑡𝑟𝑙𝐶𝐴𝑆 ,𝐺𝐶𝐴𝑆
𝑃 , 𝐺𝐶𝐴𝑆

𝐿): (𝑚 ,𝑍) → (𝑛 , 𝐽)

 Set of agent Nodes = {AGP, AGOB, AGSL, AGDGE, U, UG, UD, SLG, SLD, LDG, LDD, CG, CD, GM, 𝑉𝐶𝐴𝑆

S, V}. It represents the union of a disjoint set of the bigraphs.
 Set of arcs = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14}.
 set of controls = {P, OB, SL, D, GE, U, UG, UD, SLG, SLD, LDG, LDD, CG, CD, GM, S}.
 = (, ,):  G𝐶𝐴𝑆

P V𝐶𝐴𝑆 ctrl𝐶𝐴𝑆 𝑝𝑟𝑛𝑡𝐶𝐴𝑆 𝑚 𝑛
 =  . It is a transformation function that assigns to each node its parent 𝑝𝑟𝑛𝑡𝐶𝐴𝑆 𝑚 ⊎ V𝐶𝐴𝑆 V𝐶𝐴𝑆 ⊎ 𝑛
node.
 = () G𝐶𝐴𝑆

L V𝐶𝐴𝑆,E𝐶𝐴𝑆,ctrl𝐶𝐴𝑆, link 𝐶𝐴𝑆 : Z→J
 = .link 𝐶𝐴𝑆 : I ⊎ E𝐶𝐴𝑆→E𝐶𝐴𝑆 ⊎ N
 is a set of 𝑍 = {𝑥𝑃, 𝑥𝐷, 𝑥𝐴𝑂, 𝑥𝐿, 𝑥𝐸, 𝑥𝑀, 𝑥𝐺𝑂, 𝑥𝐷𝑂 ,𝑥𝑂 ,𝑥𝐷𝐿 ,𝑥𝐺𝐿 ,𝑥𝐿𝐷𝐺 ,𝑥𝐿𝐷𝐷 ,𝑥𝐶𝐷 ,𝑥𝐶𝐺, 𝑥𝑆}
inner names
 is a set of 𝐽 = { 𝑦𝑃, 𝑦𝐷, 𝑦𝐴𝑂, 𝑦𝐿, 𝑦𝐸, 𝑦𝑀, 𝑦𝐺𝑂, 𝑦𝐷𝑂 ,𝑦𝑂 ,𝑦𝐷𝐿 ,𝑦𝐺𝐿 ,𝑦𝐿𝐷𝐺 ,𝑦𝐿𝐷𝐷 ,𝑦𝐶𝐷 ,𝑦𝐶𝐺, 𝑦𝑆}
outter names.
 = 18; site number. 𝑚
 = 1; region number.𝑛

We mentioned previously that a CAS bigraph is the composition of tree bigraphs; operational context
 , the hardware and decision making (application) bigraphs which results in our smart GENV GH GA

driving assistance system.

4.1.2 Smart car assistant system dynamics

The smart car assistant system dynamics are given as bigraphical reactive rules that express the
dynamicity and reconfiguration of the system. In this section, we define a set of reaction rules at
different levels of reconfiguration. Table 5 gives the defined reaction rules expressing a set of possible
actions that can be applied over a smart car assistant system part. An applied reaction rule, defines a
redex bigraph to be transformed into a reactum bigraph. As both redex and reactum bigraphs respect
the formation rules ΦCS, the reaction rules continuously create setups that are structurally correct by
definition. Reactions will not execute if a bigraph is distorted.

Table. 5. Smart car assistant system dynamics, reaction rules description

Layer Rule Algebraic description

RL1: Lines
detection

R.(L.(𝑑1)|V.(𝑑2)| 𝑑0)→ R.(𝐿𝑒0 .(𝑑1)|V𝑒0 .(𝑑2)| 𝑑0)

RL2: Move
forward
(vehicle)

𝑅.(𝐿𝑒0 .(𝑑1)|𝑉𝑒0 .(𝑑2)|𝑑0)|𝑅2.(𝐿2 (𝑑4)|𝑑3)→ 𝑅.(𝐿.(𝑑1)|𝑑0)|𝑅2.(𝐿2𝑒0 (𝑑4)|𝑉𝑒0 .(𝑑2) |𝑑3)

Environment
level

RL3: obstacle
detection
(frontal)

R.(𝐿𝑒0 .(𝑑1)|𝑉𝑥 𝑒0 .(𝑑2)|O.(𝑑3)│𝑑0)→ R.(𝐿𝑒0 .(𝑑1)|𝑉𝑥 𝑒0 𝑒13 .(𝑑2)|O𝑒13.(𝑑3)│𝑑0)

RL4: obstacle
detection
(side)

R.(𝐿𝑒0 .(𝑑1)||𝑉𝑥 𝑒0 .(𝑑2)|𝑑0)|𝑅𝑗.(O.(𝑑3)| 𝐿𝑗.(𝑑4)|𝑑5) →R.(𝐿𝑒0 .(𝑑1)||𝑉𝑥 𝑒0 𝑒13 .(𝑑2)|𝑑0)|𝑅𝑗.(O𝑒13.(𝑑3)| 𝐿𝑗.(𝑑
4)|𝑑5)

RL5: overtake
on the left

𝑅𝑖.(𝐿𝑖 𝑒0 .(𝑑1)|𝑉𝑥 𝑒0 𝑒13 .(𝑑2)|𝑂𝑒13 .(𝑑3)|𝑑0)|𝑅𝑖 + 1 .(𝐿𝑖 + 1 (𝑑5)|𝑑4)→ 𝑅𝑖.(𝐿𝑖 .(𝑑1)|𝑂𝑒13 .(𝑑3)|𝑑0)|𝑅𝑖 + 1 .(𝐿𝑖 + 1 (𝑑5
)|𝑉𝑥 𝑒0 𝑒13 .(𝑑2)|𝑑4)

RL6: overtake
on the right

𝑅𝑖.(𝐿𝑖 𝑒0.(𝑑1)|𝑉𝑥 𝑒0 𝑒13.(𝑑2)| 𝑂𝑒13.(𝑑3)|𝑑0| 𝑅𝑖 ― 1.(𝐿𝑖 ― 1.(𝑑5)|𝑑4)→𝑅𝑖.(𝐿𝑖.(𝑑1)|𝑂𝑒13.(𝑑3)|𝑑0| 𝑅𝑖 ― 1.(𝐿𝑖 ― 1 𝑒0.(𝑑5)|𝑉
𝑥 𝑒0.(𝑑2)|𝑑4)

RL7: Stop the
vehicle

|𝑅𝑖.(𝐿𝑒0.(𝑑1)|𝑉𝑥 𝐸0.(𝑑2)|𝑑0)) | 𝑅𝑗.(𝑑4)→ 𝑅𝑖.(𝐿𝑒0.(𝑑1)|𝑉𝑥 𝑒0 𝑒13 𝑒14.(𝑑2)|𝑂𝑒13.(𝑑3)│𝑑0)|𝑅𝑗.(𝑂2𝑒14.(𝑑5)|𝑑4)

RL 8: brake
lights (on)

𝑉.(𝐴𝐺𝑃𝑥𝑦.(𝑑1)|𝑆𝑥𝑦.(𝑑2)|𝑑0)→𝑉.(𝐴𝐺𝑃𝑥 𝑦 𝑒7.(𝑑1)|𝑆𝑥 𝑦 𝑒7.(𝑑2)|𝑑0)

RL 9: Blinker
(on)

𝑉.(𝐴𝐺𝑃𝑥𝑦.(𝑑1)|𝐶𝑁𝑥𝑦.(𝑑2)|𝑑0)→𝑉.(𝐴𝐺𝑃𝑥 𝑦 𝑒4.(𝑑1)|𝐶𝑁𝑥 𝑦 𝑒4.(𝑑2)|𝑑0)

RL 10: Blinker
(off)

𝑉.(𝐴𝐺𝑃𝑥 𝑦 𝑒4.(𝑑1)|𝐶𝑁𝑥 𝑦 𝑒4.(𝑑2)|𝑑0)→ 𝑉.(𝐴𝐺𝑃𝑥𝑦.(𝑑1)|𝐶𝑁𝑥𝑦.(𝑑2)|𝑑0)

RL 11: turn on
the engine

𝑉.(𝐴𝐺𝑃𝑥𝑦.(𝑑1)|𝐺𝑀𝑥𝑦.(𝑑2)|𝑑0)→𝑉.(𝐴𝐺𝑃𝑥𝑦𝑒6.(𝑑1)|𝐺𝑀𝑥𝑦𝑒6.(𝑑2)|𝑑0)

Hardware-level

RL 12: Turn off
the engine

 𝑉.(𝐴𝐺𝑃𝑥𝑦𝑒6.(𝑑1)|𝐺𝑀𝑥𝑦𝑒6.(𝑑2)|𝑑0)→ 𝑉.(𝐴𝐺𝑃𝑥𝑦.(𝑑1)|𝐺𝑀𝑥𝑦.(𝑑2)|𝑑0)

RL13 : : Lines
detection

𝑉.(𝐴𝐺𝑃𝑥𝑦.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦.(𝑑3)|𝐴𝐺𝐷𝑥𝑦.(𝑑4)|𝑑0)→𝑉.(𝐴𝐺𝑃𝑥𝑦𝑒1.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦𝑒1.(𝑑3)|
𝐴𝐺𝐷𝑥𝑦.(𝑑4)|𝑑0)

RL14: obstacle
detection
(SMA)

𝑉.(𝐴𝐺𝑃𝑥𝑦.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦.(𝑑3)|𝐴𝐺𝐷𝑥𝑦.(𝑑4)|𝑑0)→𝑉.(𝐴𝐺𝑃𝑥𝑦𝑒3.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦𝑒3.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦.(𝑑3)|
𝐴𝐺𝐷𝑥𝑦.(𝑑4)|𝑑0)

RL15: No
obstacle
detected

𝑉.(𝐴𝐺𝑃𝑥𝑦𝑒1.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦𝑒1.(𝑑3)|𝐴𝐺𝐷𝑥𝑦.(𝑑4)|𝑑0)→𝑉.(𝐴𝐺𝑃𝑥𝑦𝑒1𝑒2.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦𝑒1.(𝑑3
)|𝐴𝐺𝐷𝑥𝑦𝑒2.(𝑑4)|𝑑0)

RL16: obstacle
detected

𝑉.(𝐴𝐺𝑃𝑥𝑦𝑒1𝑒2.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦𝑒1.(𝑑3)|𝐴𝐺𝐷𝑥𝑦𝑒2.(𝑑4)|𝑑0)→𝑉.(𝐴𝐺𝑃𝑥𝑦𝑒1.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦𝑒1.(
𝑑3)|𝐴𝐺𝐷𝑥𝑦.(𝑑4)|𝑑0)

MAS level

RL17: No
obstacle
detected

𝑉.(𝐴𝐺𝑃𝑥𝑦𝑒3.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦𝑒3.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦.(𝑑3)|𝐴𝐺𝐷𝑥𝑦.(𝑑4)|𝑑0→ 𝑉.(𝐴𝐺𝑃𝑥𝑦.(𝑑1)|𝐴𝐺𝑂𝐵𝑥𝑦.(𝑑2)|𝐴𝐺𝑆𝐿𝑥𝑦.(𝑑3)|
𝐴𝐺𝐷𝑥𝑦.(𝑑4)|𝑑0)

RLCi: agent /
sensors
communication

𝑉.(𝐴𝐺𝑖𝑥𝑦.(𝑑1)|𝐶𝑖𝑥𝑦(𝑑2)|𝑑0)→𝑉.(𝐴𝐺𝑖𝑥𝑦 𝑒𝑖.(𝑑1)|𝐶𝑖𝑥𝑦 𝑒𝑖(𝑑2)|𝑑0)MAS/Hardware
level

RLD-Ci:
agent/sensors
communication

𝑉.(𝐴𝐺𝑖𝑥𝑦 𝑒𝑖.(𝑑1)|𝐶𝑖𝑥𝑦 𝑒𝑖(𝑑2)|𝑑0)→ 𝑉.(𝐴𝐺𝑖𝑥𝑦.(𝑑1)|𝐶𝑖𝑥𝑦(𝑑2)|𝑑0)

Finally, we will apply all the rules defined in Table 5 to some scenarios of our driving assistance system.
Here are some scenarios of our system modelled by the application of rules on the bigraph CAS.

Scenario 1 (following lines/trajectory): the vehicle will pick up the parcel lines of road, then the vehicle
moves forward on this parcel. To achieve this scenario, you need to apply the following rules:

SC1 = 𝐶𝐴𝑆0
𝑅𝐿1

 𝐶𝐴𝑆1
𝑅𝐿𝐿𝐹𝑅

𝐶𝐴𝑆2
𝑅𝐿𝐿𝐹𝐿

𝐶𝐴𝑆3
𝑅𝐿13

𝐶𝐴𝑆4
𝑅𝐿11

𝐶𝐴𝑆𝐹

The initial state of our CAS bigraph is represented in Fig. 8. and Fig. 9.

Figure 8. CAS_0 initial state of scenario 1 (urban road level)

Figure 9. CAS_0 initial state of scenario 1 (vehicle level)

The vehicle will detect the road parcel lines. In this case, we will apply the RL1 rule at the road level
and RLSLG, RLSLD rules. The resulted bigraphs are depicted in Fig. 10. and Fig. 11.

Figure 10. CAS_1 state of scenario 1 (urban road level)

Figure 11. CAS_3 state of scenario 1 (vehicle level).

The AGSL line follower agent will then establish communication with the agent. AGP pilot, therefore,
rule RL13 must be applied. This results in the bigraph of Fig. 12.

FIGURE. 12. CAS_4 state of scenario 1 (vehicle level)

Finally, the pilot agent will communicate with the GM engine manager agent. The latter makes the
vehicle move forward, we will apply the rule RL11 to obtain the bigraph .𝐶𝐴𝑆𝐹

Scenario 2 (Overtaking an obstacle):
The vehicle is in running mode. It will perceive an obstacle in front. It checks if he can pass; the
overtaking can be done either to the right or to the left (priority is set to the left). Therefore, the vehicle
will move from a road parcel to the right or left parcel and switch on the left or right flashing lights.
This scenario dynamic is specified by the following set of reaction rules:

𝑆𝐶2
= 𝐶𝐴𝑆0

𝑅𝐿3
𝐶𝐴𝑆1

𝑅𝐿𝑈
𝐶𝐴𝑆2

𝑅𝐿14
𝐶𝐴𝑆3

𝑅𝐿9
𝐶𝐴𝑆4

𝑅𝐿5
𝐶𝐴𝑆5

𝑅𝐿𝐷 ― 𝑈
𝐶𝐴𝑆6

𝑅𝐿17
𝐶𝐴𝑆7

𝑅𝐿𝐷 ― 𝐿𝐷𝐺
𝐶𝐴𝑆8

𝑅𝐿𝐿𝐷𝐷

𝐶𝐴𝑆9
𝑅𝐿4

𝐶𝐴𝑆10
𝑅𝐿𝑈𝐷

𝐶𝐴𝑆11
𝑅𝐿16

𝐶𝐴𝑆12
𝑅𝐿2

𝐶𝐴𝑆13
𝑅𝐿𝐷 ― 𝑈𝐷

𝐶𝐴𝑆14
𝑅16

𝐶𝐴𝑆16
𝑅𝐿2

𝐶𝐴𝑆13
𝑅𝐿𝐷 ― 𝑈𝐷

𝐶𝐴𝑆14
𝑅𝐿15

𝐶𝐴𝑆15
𝑅𝐿6

𝐶𝐴𝑆16
𝑅𝐿𝐷 ― 𝐿𝐷𝐷

𝐶𝐴𝑆17
𝑅𝐿𝐿𝐷𝐺

𝐶𝐴𝑆18
𝑅𝐿10

𝐶𝐴𝑆𝐹

4.2. Executability and formal verification of smart car assistance system

Software verification becomes essential in the development of computer systems in general. To verify
and validate the correctness of the proposed BRS-based model. It is necessary to choose the
appropriate verification technique along with the corresponding automated tool. There are many
formal verification techniques in the literature, and model-checking is the most popular one. Its main
benefit is providing a counter-example whenever the desired property does not hold in the actual
system model. BigraphER (Sevegnani and Calder, 2016), BPL Tool (Gassara et al., 2017), and BigMC
(Perrone et al., 2012) are some of the verification tools build around BRS. However, none of these tools
meet our expectations, as they are limited and only suitable for some specific application domains.
Also, possible verifications rely on limited pre-defined predicates.

In this work, we choose the Maude LTL model-checker to verify and validate the correctness of the
proposed BRS-based model. The Maude programming language (Manuel Clavel et al., 2007) is used to
implement the obtained CAS bigraphical models. Maude is a high-level programming language and
high-performance system that supports executable specifications. It will be used to define formal
specifications for the case study scenarios that are executable, analysable and verifiable. The
verification process is fulfilled through the case study (scenario 1). As a first step, we encode the
structural aspect (i.e., nodes and their signature and outer and inner interfaces) then the dynamic
aspect (i.e., reaction rules) of our BRS-based model into Maude language (Listing 1). Secondly, we
formulate the properties that we would like to verify. Finally, we will analyse and validate the resulted
output given by Maude.

Listing 1. The Maude implementation of the bigraph CAS concepts.

mod BigraphCAS is

 protecting BOOL .
 protecting NAT .

----///////////////////////// ----//Interface Level2
sort Big .

 sort Edge .

 op e_ : Nat -> Edge [ctor] .
 op - : -> Edge [ctor] .
 op _|_ : Big Big -> Big [ctor assoc comm id: null] .
 op _||_ : Big Big -> Big [ctor assoc comm id: null] .

op null : -> Big [ctor] .

----////////////////////----//Environment Level1

op V_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op O_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op L_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op R_[_].{ _ } : Nat Edge Big -> Big [ctor] .

----/////////////////////////////----//Hadware Level3

op GE_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op GM_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op U_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op UG_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op UD_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op LDG_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op LDD_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op SLG_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op SLD_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op CG_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op CD_[_].{ _ } : Nat Edge Big -> Big [ctor] .

op S_[_].{ _ } : Nat Edge Big -> Big [ctor] .

----//////////////// ----//Application(MAS) Level4

 op AGOB_[_].{ _ } : Nat Edge Big -> Big [ctor] .
 op AGSL_[_].{ _ } : Nat Edge Big -> Big [ctor] .

op AGD_[_].{ _ } : Nat Edge Big -> Big [ctor] .
op AGP_[_].{ _ } : Nat Edge Big -> Big [ctor] .

 ------////////////// ------///Reaction Rules

vars d0 d1 d2 d22 d222 d2222 d3 d11 d12 d711 d700
d011 d0117 : Big .

rl [LinesDetection] :
R 1[-].{ L 1[-].{ d11 } | V 1[-].{ d2 } | d0}
 =>
R 1[-].{ L 1[e 0].{ d11 } | V 1[e 0].{ d2 } | d0} .

rl [AgentSensorsCommunication1] :
V 1[e 0].{ AGSL 1[-].{ d1 } | SLG 1[-].{ d2 } | d0} | d3
 =>
V 1[e 0].{ AGSL 1[e 14].{ d1 } | SLG 1[e 14].{ d2 } | d0}
| d3 .

rl [AgentSensorsCommunication2] :
V 1[e 0].{ AGSL 1[e 14].{ d1 } | SLD 1[-].{ d22 } | d0} |
d3
 =>
V 1[e 0].{ AGSL 1[e 13].{ d1 } | SLD 1[e 13].{ d22 } |
d0} | d3 .

rl [LinesProcessing] :

V 1[e 0].{ AGSL 1[e 13].{ d1 } | AGD 1[-].{ d22 } |
AGOB 1[-].{ d222 } | AGP 1[-].{ d2222 } | d0} | d3
 =>
V 1[e 0].{ AGSL 1[e 1].{ d1 } | AGD 1[-].{ d22 } | AGOB
1[-].{ d222 } | AGP 1[e 1].{ d2222 } | d0} | d3 .

rl [NoObsDetected] :
V 1[e 0].{ AGSL 1[e 1].{ d1 } | AGD 1[-].{ d22 } | AGOB
1[-].{ d222 } | AGP 1[e 1].{ d2222 } | d0} | d3
 =>
V 1[e 0].{ AGSL 1[e 1].{ d1 } | AGD 1[e 2].{ d22 } |
AGOB 1[-].{ d222 } | AGP 1[e 12].{ d2222 } | d0} | d3 .

rl [TurnOnEngine] :

V 1[e 0].{ AGSL 1[e 1].{ d1 } | AGD 1[e 2].{ d22 } |
AGOB 1[-].{ d222 } | AGP 1[e 12].{ d2222 } | d0} | GM
1[-].{ d12 } | d3
 =>
 V 1[e 0].{ AGSL 1[e 1].{ d1 } | AGD 1[e 2].{ d22 } |
AGOB 1[-].{ d222 } | AGP 1[e 6].{ d2222 } | d0} | GM
1[e 6].{ d12 } | d3 .

rl [MoveForwardVehicle] :
R 1[-].{ L 1[e 0].{ d11 } | V 1[e 0].{ AGSL 1[e 1].{ d1 } |
AGD 1[e 2].{ d22 } | AGOB 1[-].{ d222 } | AGP 1[e 6].{
d2222 } | d0} | GM 1[e 6].{ d12 } | d0} | R 2[-].{ L 2[-].{
d711 } | d700}
 =>
R 2[-].{ L 2[e 0].{ d11 } | V 1[e 0].{ AGSL 1[e 1].{ d1 } |
AGD 1[e 2].{ d22 } | AGOB 1[-].{ d222 } | AGP 1[e 6].{
d2222 } | d0} | GM 1[e 6].{ d12 } | d0} | R 1[-].{ L 1[-].{
d711 } | d700} .

 endm

Listing 2 represents the initial stat of the case study (scenario 1). The Maude command red
modelCheck(initial1, <> [] ~ GoalNotAcheiv) as transcribed here states that there will be a future state
reachable by a step of reaction rule from the current one where a goal will always be achieved. The
result of the execution is depicted in Fig. 13. It shows that after 13 steps, the Maude model checker
has used all the reaction rules and successfully reached the desired state. (The car moved forward and
arrived at the desired destination) without reporting any violation, which makes the model free of non-
compliant execution.
 Listing 2. Initial state and property check of the case study (scenario 1) encoded in Maude language.

mod BigraphCAS_check is
 protecting BigraphCAS_Prop .
 including MODEL-CHECKER .
 including LTL-SIMPLIFIER .

 ops initial1 : -> Big .

 vars d0 d1 d2 d3 d22 d222 d2222 d11 d12 d711 d700 d011 d0117 : Big .

 eq initial1 = R 1[-].{ V 1[-].{ AGSL 1[-].{ d1 }

| SLG 1[-].{ d2 } | AGD 1[-].{ d22 } | AGOB 1[-].{ d222 } | AGP 1[-].{ d2222 }
| SLD 1[-].{ d22 } | d0} | L 1[-].{ d11 } | GM 1[-].{ d12 } | d3 }

 | R 2[-].{ L 2[-].{ d711 } | d700} .
 endm

red modelCheck(initial1, <> [] ~ GoalNotAcheiv) .

Figure 13. Execution results of the case study (scenario 1).
5- Discussion and related works

Context-aware computing helps establish smart ecosystems in Ambient Intelligence, Internet of
Things, Mobile Computing, Pervasive and Ubiquitous Computing. However, context-aware system
design is a significant issue. There exist several context modelling approaches that are worth
considering. For a systematic review, this section investigates context-aware systems according to
context representations and system modelling. In (Bettini et al., 2010) the authors gave a general
viewpoint and categorised state of the art according to the scheme of exchange of contextual
information: graphic-based, logic-based and ontology-based models. Besides, the authors highlighted
that except for the ontological approaches that provide logical reasoning, the other approaches draw
a general modelling schema of the context-aware system without making any distinction between the
context representation and the system modelling.

In (Rakib and Faruqui, 2021), the authors proposed an ontology-based approach for the specification
and verification of multi-agent systems in which processes are represented as agents while a message-
passing technique performs communication. For the specification of the behaviour, the authors
proposed an abstract model based on strategies. The resulting specification is translated into LTL
formulas that enable verification of system properties using a model checking tool.

In (Hsieh, 2021), the authors proposed a multi-agent system workflow for context-aware systems. The
proposed solution focuses on designing context-aware workflow management systems for CPS in an
IoT-enabled manufacturing environment where the system is divided into two parts, the physical world
and the cyber world. The Cyber World is modelled by agents specified using discrete timed Petri nets
while the physical world is reduced as contextual information. To validate the correctness of the
proposed approach, a series of experiments (simulations) have been conducted.

In (Mahfooz Ul Haque et al., 2021), the authors suggested a specific context-aware framework for
modelling and verifying smart parking systems in urban cities. The proposed approach promotes
flexible decisions and a decentralized environment to find parking slots dynamically while moving
and/or arriving at a given destination. The Uppaal model checker is used to analyse and verify system
properties formally.

In (van Engelenburg et al., 2019), the authors suggested a method for designing a context-aware
system dedicated to information sharing in the container shipping domain. The modelling is specified
using predicate logic. To illustrate the proposed system handling, the authors provided several
definitions and steps to guide designers in their tasks.

Among the formal approaches proposed in context-aware systems using bigraphs, we cite (Cherfia et
al., 2016), (Sahnoun et al., 2017). In these approaches, concepts like hierarchy and modularity are the
keys concepts used to reduce the design complexity. The work in (Sahnoun et al., 2017) represents the
most recent approach combining multi-agent systems and BRS for the formal modelling of context-
aware systems. In this work, a CAS comprises two bigraphs representing the contextual part and the
operational part of the system. The structure and the behaviour of each part are defined
independently, and their composition is modelled as a BRS. To validate the soundness of the approach,
the authors used a Bigraphical Model Checker (BigMC) (Perrone et al., 2012).

To summarise, our work adds to the current works a generic and clear methodology for modelling
context-aware systems. On the other hand, approaches as (Mahfooz Ul Haque et al., 2021) and (van
Engelenburg et al., 2019) are dedicated to a specific application domain. Further, in (Rakib and Faruqui,
2021) and (Hsieh, 2021), the environment and hardware parts and their relation with the system are
not addressed, and no details are provided.

The proposed approach introduced in this work represents an extension of our previous work
(Sahnoun et al., 2017). We precisely focus on the structural aspect by proposing multi-layered
modelling (the environment, interaction, application, and hardware layers). We note the integration
of the global context (the environment layer) and local context as an essential modelling dimension by
explicitly specifying the relationship between the environment and the system reaction, in contrast
with the existing works. This is done using sorted bigraphs. Sorts are utilized to recognize node types
for structural purposes and constraints, whereas controls distinguish states and parameters a node
can have. The proposed specifications allow the designer to specify the adequate CAS in conformity
with its application domain. Further, the dynamic behaviour and the reconfiguration of the CAS are
modelled by a set of defined reaction rules. We strictly seek to meet three conditions: (i) Reduce
complexity by providing solid concept layers, (ii) ensure proactivity and adaptability, and (iii) safety. To
that, we have chosen bigraphs as an underlying theory in our approach. It fits well with the conditions
mentioned above. Bigraphs provides rigor through mathematical equations to ensure robustness and

correctness. So, we can easily model the intrinsic hierarchical nature of the system. Besides, CAS
requires intelligence. This naturally leads us to apply intelligent agent-based systems. It also provides
a way to validate the designed CAS before the implementation using the model checking tool.
Table 6 summarises a small comparative study, organised according to the following features (i) the
used formalism or formal model, (ii) the provided modelling features in terms of environment, hard
and soft system, relationships and dependencies of context and context-aware system, dynamicity and
(iii) the provided verification and evaluation of the modelling approach.

Table 6. Comparison of context-aware systems modelling approaches

CAS modelling features Approach Formalism/formal
model Environment Hard /soft

system
Dependencies Dynamicity

Verification

(Rakib and
Faruqui,

2021)

Ontology - Soft system - - Covered

(Hsieh,
2021)

Discrete timed
Petri nets

- Hard /soft
system

- Partially
Covered

Not covered

(Mahfooz Ul
Haque et
al., 2021)

Resource-
bounded logic

- Hard /soft
system

- Partially
Covered

Covered

(van
Engelenburg
et al., 2019)

First-order logic - Soft system - Partially
Covered

Not covered

(Cherfia et
al., 2016)

Bigraphs Not covered Hard system Partially
Covered

Partially
Covered

Covered

(Sahnoun et
al., 2017)

Bigraphs Not covered Hard /soft
system

Partially
Covered

Partially
Covered

Covered

Our
approach

Ontology + sorted
bigraphs +BRS

Covered Hard /soft
system

Covered Covered Covered

Conclusion

In this study, we provided a view of context-aware systems, including all modelling features
(Environment, interaction, software and hardware) involved in the development of such systems.
Structural and behavioural aspects of context-aware systems have been modelled using the BRS
formalism. Precisely, we used bigraphs (sorted bigraphs) to explicitly define the different layers of our
CAS. Each layer has been considered as a subsystem of our CAS. It has been specified by a bigraph
along with its sorting discipline (sorts, signature, and formation rules).
Further, bigraphical reaction rules are used to model the behaviour and reconfiguration of the
different layers of our context-aware system. Furthermore, the bigraph specifications have been
coded in the Maude language to allow their execution. We also check the correctness of the resulted
behaviours utilizing a state-based model-checker, relying on LTL. In this present work, we took a first
step towards the modelling of the context-aware system by proposing:

- A Multi-layered modelling, identifying what generates, separates, and links hierarchical levels
- A solid formal foundation that, ensures the robustness and the correctness of the system and

its evolution using execution and verification tools.
In the next step, we plan to enlarge our specifications to provide more adaptation capabilities. Finally,
our objective is to provide a complete automated executable and verifiable environment for
developing context-aware systems. Going even further, we are currently building prototypes from the
resulting specifications.

References

Benzadri, Z., Bouheroum, A., Belala, F., 2021. A Formal Framework for Secure Fog Architectures. International Journal of
Organizational and Collective Intelligence 11. https://doi.org/10.4018/IJOCI.2021040103

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D., 2010. A survey of context
modelling and reasoning techniques. Pervasive and Mobile Computing 6. https://doi.org/10.1016/j.pmcj.2009.06.002

Boucebsi, R., Belala, F., 2020. A Bigraphical Reactive Systems with Sharing for modeling Wireless Mesh Networks. Journal of
King Saud University - Computer and Information Sciences 32. https://doi.org/10.1016/j.jksuci.2018.10.016

Cherfia, T.A., Belala, F., Barkaoui, K., 2016. A bigraph-based framework for specification and analysis of context-aware
systems. International Journal of Critical Computer-Based Systems 6. https://doi.org/10.1504/IJCCBS.2016.081808

Common Criteria, 2021. https://commoncriteriaportal.org/cc/ [WWW Document].
Dey, A.K., 2001. Understanding and Using Context. Personal and Ubiquitous Computing 5.

https://doi.org/10.1007/s007790170019
Dib, A.T.E., Barkaoui, K., Sahnoun, Z., 2016. Specification and verification of reconfigurable multi-agent system

architectures. Multiagent and Grid Systems 12. https://doi.org/10.3233/MGS-160246
Hsieh, F.-S., 2021. A Dynamic Context-Aware Workflow Management Scheme for Cyber-Physical Systems Based on Multi-

Agent System Architecture. Applied Sciences 11. https://doi.org/10.3390/app11052030
Lüddecke, D., Bergmann, N., Schaefer, I., 2014. Ontology-Based Modeling of Context-Aware Systems.

https://doi.org/10.1007/978-3-319-11653-2_30
Mahfooz Ul Haque, H., Zulfiqar, H., Ahmed, A., Ali, Y., 2021. A context-aware framework for modelling and verification of

smart parking systems in urban cities. Concurrency and Computation: Practice and Experience 33.
https://doi.org/10.1002/cpe.5401

Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, Carolyn Talcott, 2007. All
About Maude - A High-Performance Logical Framework. Springer Berlin Heidelberg, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-71999-1

Milner, R., 2008. Bigraphs and Their Algebra. Electronic Notes in Theoretical Computer Science 209.
https://doi.org/10.1016/j.entcs.2008.04.002

Milner, R., 2004. Bigraphs for Petri Nets. https://doi.org/10.1007/978-3-540-27755-2_19
Perrone, G., Debois, S., Hildebrandt, T.T., 2012. A model checker for Bigraphs, in: Proceedings of the 27th Annual ACM

Symposium on Applied Computing - SAC ’12. ACM Press, New York, New York, USA.
https://doi.org/10.1145/2245276.2231985

Preuveneers, D., van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., de
Bosschere, K., 2004. Towards an Extensible Context Ontology for Ambient Intelligence. https://doi.org/10.1007/978-
3-540-30473-9_15

Qin, W., Shi, Y., Suo, Y., 2007. Ontology-based context-aware middleware for smart spaces. Tsinghua Science and
Technology 12. https://doi.org/10.1016/S1007-0214(07)70179-7

Rakib, A., Faruqui, R.U., 2021. Model checking ontology-driven reasoning agents using strategy and abstraction.
Concurrency and Computation: Practice and Experience 33. https://doi.org/10.1002/cpe.5205

Sahnoun, A., Dib, A.T.E., Maamri, R., 2017. A multi-agent based approach for modelling context-aware systems. Multiagent
and Grid Systems 13. https://doi.org/10.3233/MGS-170276

van Engelenburg, S., Janssen, M., Klievink, B., 2019. Designing context-aware systems: A method for understanding and
analysing context in practice. Journal of Logical and Algebraic Methods in Programming 103.
https://doi.org/10.1016/j.jlamp.2018.11.003

Xu, N., Zhang, W.S., Yang, H.D., Zhang, X.G., Xing, X., 2013. CACOnt: A Ontology-Based Model for Context Modeling and
Reasoning. Applied Mechanics and Materials 347–350. https://doi.org/10.4028/www.scientific.net/AMM.347-
350.2304

