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Abstract

Given a trained deep graph convolution network (GCN), how can we effectively compress it

into a compact network without significant loss of accuracy? Compressing a trained deep

GCN into a compact GCN is of great importance for implementing the model to environ-

ments such as mobile or embedded systems, which have limited computing resources.

However, previous works for compressing deep GCNs do not consider the multi-hop aggre-

gation of the deep GCNs, though it is the main purpose for their multiple GCN layers. In this

work, we propose MUSTAD (Multi-staged knowledge Distillation), a novel approach for com-

pressing deep GCNs to single-layered GCNs through multi-staged knowledge distillation

(KD). MUSTAD distills the knowledge of 1) the aggregation from multiple GCN layers as well

as 2) task prediction while preserving the multi-hop feature aggregation of deep GCNs by a

single effective layer. Extensive experiments on four real-world datasets show that MUSTAD

provides the state-of-the-art performance compared to other KD based methods. Specifi-

cally, MUSTAD presents up to 4.21%p improvement of accuracy compared to the second-

best KD models.

Introduction

Given a trained deep graph convolution network, how can we compress it into a compact network
without a significant drop in accuracy? Graph Convolution Network (GCN) [1] learns latent

node representations in graph data, and plays a crucial role as a feature extractor when a

model is jointly trained to learn node features and perform a specific task. GCN has attracted

considerable attention from research community because it enables researchers to easily and

effectively analyze graphs. Various GCN models [2–4] have been proposed to boost the perfor-

mance of tasks on real-world graphs such as node and graph classification [1], link prediction

[5], relation reasoning [6], etc.

Recently, the research on deep-layered GCNs is highly in progress to extract sophisticated

node features in large and complicated graphs [7–13]. Those deep GCN models have many

layers to understand patterns of large graphs better and improve their performance. However,
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as the number of layers increases, the number of parameters to be trained also increases, and

this leads to a non-negligible increase of model size. Therefore, it is difficult to use those large

models in environments having limited computing resources such as mobile or embedded

systems.

Model compression aims to learn compressed and lightweight deep networks for low-pow-

ered and resource-limited devices without a significant loss of predictive accuracy. For the pur-

pose, many researchers have proposed various strategies such as parameter pruning [14], low-

rank factorization [15], weight quantization [16], and knowledge distillation [17]. Among

them, Knowledge Distillation (KD) has been popular due to its simplicity based on a student-

teacher model; KD distills the knowledge from a large teacher model into a smaller student

model so that the student performs as well as the teacher [18–20]. In this context, Yang et al.

[21] have recently proposed a KD method called LSP (Local Structure Preserving) for com-

pressing GCN models. However, LSP deals with rather shallow models, and only distills lim-

ited knowledge on feature aggregation of a teacher while disregarding various aspects to be

considered when a network becomes deep. Specifically, LSP does not consider the teacher’s

knowledge on multi-hop feature aggregation although the process is essentially involved in a

deep-layered GCN; thus, its performance on preserving accuracy is limited, especially for com-

pressing a deep GCN.

In this paper, we propose MUSTAD (Multi-staged knowledge Distillation), a novel approach

for compressing deep GCNs to single-layered GCNs through multi-staged knowledge distilla-

tion (KD) while preserving the multi-hop feature aggregation of deep GCNs. Based on the

concept of knowledge distillation, MUSTAD aims to train a single-layered student GCN with

the same or even a lower feature dimension than that of a trained teacher GCN. The frame-

work of MUSTAD is illustrated in Fig 1. Our main idea is to distill the knowledge of multi-hop

feature aggregation from multiple GCN layers as well as that of task prediction. Specifically,

the single-layered student learns the knowledge of multi-hop feature aggregation of the teacher

by 1) matching hidden feature embeddings from the teacher, and by 2) imitating the multiple

GCN layers of the teacher with a single effective layer. The knowledge of task prediction is dis-

tilled to the student by transferring the probabilistic prediction vector of the teacher. These

multi-staged knowledge distillations guide the student to obtain similar aggregated features

and predictions to the deep-layered teacher with significantly less parameters.

Fig 2 depicts the overall performance of our MUSTAD compared to other KD-based meth-

ods. Our proposed method Student_MUSTAD shows the best performance among KD meth-

ods, especially for deep teachers.

Our contributions are summarized as follows:

• Method. We propose MUSTAD, a novel approach for compressing deep-layered GCNs

through distilling the knowledge of both the feature aggregation and the feature representa-

tion. We propose a simple but powerful method to preserve the multi-hop feature aggrega-

tion of the teacher with significantly less parameters.

• Theory. We provide theoretical analysis of the proposed MUSTAD, and show that the expres-

siveness of the student from MUSTAD is similar to that of a deep-layered GCN on a spectral

domain.

• Experiment. We validate MUSTAD on two trained deep GCN models in four datasets com-

pared to other distillation-based GCN compression methods. In particular, we improve the

accuracy by 3.95%p, 3.77%p, 4.21%p compared to the second-best KD models on Cora, Cite-

seer, and Pubmed, respectively. In ogbn-proteins, MUSTAD presents an 1.55%p improvement

in terms of AUC-ROC from the second-best KD model.
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The code and the datasets are available at https://github.com/snudatalab/MustaD.

Related work

Many complex and deep networks are proposed to solve real-world tasks such as text classifi-

cation [22], malware detection [23], in-vehicle intrusion attack detection [24], and web

Fig 1. Framework of MustaD. MUSTAD preserves the multi-hop feature aggregation of a teacher with a single effective layer in a student. Furthermore,

MUSTAD distills knowledge of 1) aggregation from multi-staged GCN layers as well as 2) task prediction. hi;t represents the teacher’s last hidden

embedding of node i, and ~h i;s corresponds to the student’s last hidden embedding of node i where the hidden dimension is matched to the teacher. pi;t

and ~p i;s denote the prediction probability vectors of node i of the teacher, and the student, respectively.

https://doi.org/10.1371/journal.pone.0256187.g001

Fig 2. Accuracy of student models for different number of GCN layers in a teacher model. Student_KD and Student_LSP represent the students

trained by distilling the knowledge of classes, and knowledge of the embedded topological structure of a teacher, respectively. Student_Base

corresponds to a model trained with the ground truth labels without the teacher. Note that our proposed MUSTAD (denoted as Student_MUSTAD)

provides the highest accuracy in most cases. We also observe that MUSTAD provides much better performance for deep GCN with many layers, unlike

competitors whose performances do not improve with more layers.

https://doi.org/10.1371/journal.pone.0256187.g002
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document classification [25]. In particular, several deep graph convolutional networks (GCNs)

are proposed to handle real-world graphs [7–13, 26, 27]. However, it is difficult to use these

models in environments with limited computing resources. Therefore, many Knowledge Dis-

tillation (KD) methods have been studied to compress a large teacher model to a smaller stu-

dent model by extracting compact and useful information [17, 18, 28–30]. Although those

methods improve the efficiency of compression, they are designed for the data in a grid

domain only; it is hard for them to be directly applied to the data in the non-grid domain such

as graphs.

In this section, we discuss related works on deep GCN and KD methods. Table 1 summa-

rizes the symbols used in this paper.

Deep graph convolution network

Since the first GCN has been proposed in [1], many convolution based graph neural networks

are proposed [2–4]. In GCNs, a convolution layer aggregates feature information from one-

hop neighbors, and multiple convolution layers aggregate feature information from multi-hop

neighbors. Recently, many deep GCNs are studied to consider the multi-hop feature informa-

tion [9–12, 27].

ResGCN [7] borrows residual/dense connections and dilated convolutions from CNNs,

and adapts them to GCN architectures. GEN [8] is a complementary version of [7]. The model

uses a modified graph skip connection which is a pre-activation version of residual connec-

tions in ResGCN.

Table 1. Table of symbols.

Symbol Definition

G ¼ ðV; EÞ input graph. V: node set, E: edge set.

N number of nodes.

d input feature dimension.

X 2 RN�d input feature matrix.

xi 2 R
d input feature vector for node i.

HðlÞ 2 RN�d
hidden feature embedding matrix of l-th GCN layer; vector hðlÞi 2 R

d of i-th row of H(l) represents

that for node i.

hi;t 2 R
d teacher’s hidden embedding of node i.

hi;s 2 R
d student’s hidden embedding of node i.

N i set of one-hop neighbors of node i in G.

Emb(�) learnable function that maps a given feature onto a new embedding space.

Aggregation

(�)

aggregation function that aggregates hidden features from one-hop neighbors.

K number of layers.

GCNs(�) single effective GCN layer in MUSTAD; shared in the student model.

Kð�Þ kernel function.

DKLð�Þ Kullback-Leibler divergence.

pi;s prediction probability vector of the student.

pi;t prediction probability vector of the teacher.

λemb hyperparameter for the embedding loss.

λpred hyperparameter for the prediction loss.

α hyperparameter for the initial residual.

β hyperparameter for the identity mapping.

https://doi.org/10.1371/journal.pone.0256187.t001
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GCNII [13] extends the vanilla GCN model to overcome the over-smoothing problem pro-

posed in [31]; [31] observes that given a renormalized graph convolution matrix ~P and an

input feature matrix X, a K-layer vanilla GCN simulates a fixed K-order polynomial filter ~PKX,

and the over-smoothing problem is caused when ~PKX converges to a distribution that does

not carry the information of X. To overcome the over-smoothing problem, GCNII introduces

initial residual and identity mapping techniques to the vanilla GCN. The initial residual con-

structs a skip connection from the input layer, thus ensuring that the final representation of

each node retains at least a fraction of X. The identity mapping merely transfers the aggregated

features to the next GCN layer without any parameterized embedding process. Each GCNII

layer is characterized as:

Hðlþ1Þ ¼ s ð1 � alþ1Þ
~D � 1

2 ~A ~D � 1
2HðlÞ þ alþ1X

� �
ðð1 � blþ1ÞIN þ blþ1W

ðlþ1ÞÞ
� �

ð1Þ

where H(l) corresponds to the lth hidden feature representation, ~A represents the normalized

adjacency matrix, ~D represents the degree matrix of ~A, IN denotes the identity matrix, and σ
denotes the activation function. αl+1 and βl+1 are two hyperparameters where αl+1 controls the

power of connection for the initial feature X to (l + 1)th GCN layer, and βl+1 controls the degree

of merely transferring the aggregated features to the next GCN layer without any parameter-

ized embedding.

Although many deep GCN models accelerate their performance by considering the multi-

hop features in graphs, it is difficult to use them in environments with limited computing

resources such as mobile or embedded systems due to their large model sizes. In this paper, we

concentrate on compressing a deep GCN into a shallow GCN while preserving the multi-hop

feature aggregation property of deep GCNs.

Knowledge distillation

Knowledge Distillation (KD) [17] transfers knowledge from a large teacher model into a

smaller student model so that the student performs as well as the teacher. In the method,

task predictions of a teacher is smoothed by the softmax function. Distillation of knowledge

is done by making task predictions of the student be similar to that of the teacher. Several

KD methods distill not only the output of teachers but also the information of intermediate

hidden layers [18, 19]. [20] introduces intermediate-level hints from hidden layers of a

teacher to guide a student to learn intermediate representations of the teacher. However,

those methods aims to compress a wide and shallow teacher model into a thin and shallow

student model; i.e., they do not focus on compressing a deep teacher GCN model into a shal-

low GCN model. Thus, they have limitations in compressing multiple GCN layers into few

GCN layers.

Recently, to our best knowledge, the first KD method on GCNs based on Local Structure

Preserving (LSP) module is proposed in [21]. In the module, topological semantics from both

the teacher and the student are extracted as distributions, and the topology-aware knowledge

transfer is done by minimizing the distance between these distributions. However, LSP only

transfers the intermediate knowledge not considering task predictions which is specially

designed for the objective task. Furthermore, LSP does not consider the teacher’s knowledge

on multi-hop feature aggregation in a student although the process is essentially involved in a

deep GCN. Therefore, its performance about preserving the accuracy is limited, especially for

compressing a deep GCN.
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Proposed method

In this section, we propose MUSTAD (Multi-Staged Knowledge distillation), a novel approach

for effectively compressing a deep GCN by distilling multi-staged knowledge from a teacher.

We summarize the challenges and our ideas in developing our distillation method while

preserving the multi-hop feature aggregation of the deep-layered teacher.

1. When compressing a deep teacher GCN model to a small student GCN model by distilling

knowledge from the teacher model, it is essential to conserve the multi-hop feature aggrega-

tion of the deep model as the aggregation is the key purpose of stacking multiple GCN lay-

ers. We propose to use a single effective layer that imitates the K GCN layers in the teacher

model by a single GCN layer in the student while preserving the multi-hop feature aggrega-

tion process and reducing the model size significantly.

2. It is also important to decide what knowledge to be distilled to preserve the performance of

the teacher model in the student model. We propose multi-staged knowledge distillation

that distills not only the knowledge of the teacher model’s task predictions but also its final

hidden embeddings to the student model. By distilling the knowledge of the final hidden

embeddings, the student model generates its final representation similar to that of the

teacher model; thus, the multi-staged knowledge distillation helps the single effective layer

imitate the multiple GCN layers.

Firstly, we describe how to preserve multi-hop feature aggregation of the teacher model in a

single effective student network based on the observation of the fundamental mechanism of

deep GCNs. Then we describe the knowledge distillation of embeddings as well as task predic-

tions, followed by the explanation of the final loss function for jointly training all of them for

the node classification task. At last, we give a spectral analysis of MUSTAD when distilling the

knowledge of GCNII teacher model to strengthen the theoretical background of our method.

Preserving multi-hop feature aggregation

We describe how MUSTAD preserves the feature aggregation procedure of deep GCN layers of

the teacher in a single GCN layer of the student. The main purpose of deep GCN is to consider

multi-hop neighbors using multiple GCN layers. Let G ¼ ðV; EÞ denote an input graph where

V and E denote the sets of nodes and edges, respectively. Given the graph G, a GCN layer is

expressed by

hðkþ1Þ

i ¼ GCN
ðkþ1ÞðhðkÞi Þ :¼ Aggregation

j2N i[i
ðEmbkþ1ðh

ðkÞ
j ÞÞ ð2Þ

where hðkÞi denotes the hidden feature embedding for node i in the k-th GCN layer, N i denotes

the set of one-hop neighbors of node i in G, and Embk(�) is a learnable function that maps a

given feature onto a new embedding space, which is used in the k-th GCN layer. According to

Eq (2), a GCN layer aggregates hidden features from one-hop neighbors to obtain new hidden

features by Aggregation(�). Thus, when a model uses K GCN layers, it aggregates hidden fea-

tures from up to K-hop neighbors.

Given a teacher model having K GCN layers, our MUSTAD preserves the process by imitat-

ing the teacher’s multi-hop feature aggregation in a single effective layer which is represented

by the following equation:

hðkþ1Þ

i ¼ GCNsðh
ðkÞ
i Þ for k ¼ 1; 2; � � � ;K ð3Þ

where GCNs(�) indicates a shared GCN layer in the student model, and hðkÞi denotes the hidden
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embedding of node i at k-th iteration in the student. In other words, MUSTAD repeats GCNs(�)

K times in the student model to imitate the teacher’s multi-hop aggregation as shown in Fig 1.

Thus, our model reduces the number of model parameters by compressing multiple GCN lay-

ers into a single layer while effectively considering multi-hop feature aggregation.

Distilling knowledge from trained deep GCNs

MUSTAD distills the teacher’s multi-staged knowledge of embeddings and task predictions to

the student as depicted in Fig 1.

Distilling knowledge of embeddings. MUSTAD distills the last hidden embeddings after

K-hop aggregations of the teacher into the student. This distillation guides the student to fol-

low the teacher’s behavior more carefully. The main idea for the distillation is to make embed-

dings of both the teacher and the student similar by minimizing the following loss function:

Lemb ¼ mean
i2V
ðKð~h i;s; hi;tÞÞ ð4Þ

where hi;t is the teacher’s last hidden embedding of node i, ~hi;s ¼Wshi;s where hi;s is the stu-

dent’s last embedding of node i, and Ws is a learnable weight matrix used to match the dimen-

sion between the teacher and the student. The matching layer is omitted if they have the same

hidden dimension. Kð�Þ is a kernel function to measure the distance between the two given

embedding vectors, and any distance metric can be used. In this work, we investigate the effect

of kernel functions among the following metrics:

Kð~h i;s; hi;tÞ ¼

k~h i;s � hi;tkp ðDistance � based kernelÞ

~h>i;shi;t ðLinear kernelÞ

ð~h>i;shi;t þ cÞd ðPolynomial kernelÞ

exp �
k~h i;s � hi;tk

2

2

2s2

 !

ðRBF kernelÞ

X

j

~h0 i;j;s log
~h0 i;j;s
h0i;j;t

 !

ðKL divergence � based kernelÞ

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð5Þ

where h
0

i,j;t and h
0

i,j;s denote the j-th element of h
0

i;t = Softmax(hi;t) and h
0

i;s = Softmax(hi;s),

respectively.

Distilling knowledge of predictions. Distilling the knowledge of task predictions follows

the process proposed in [17] that minimizes the following loss function:

Lpred ¼ mean
i2V
ðDKLðpi;sjjpi;tÞÞ ð6Þ

where DKLð�Þ is the Kullback–Leibler divergence, pi;s denotes the prediction probability vector

of the student after passing through a softmax function, and pi;t denotes that of the teacher

after passing through a softmax function conditioned with temperature T [17]. The distillation

of task prediction guides the student to obtain similar predictive outputs as the teacher.

Final loss function for node classification

The student model aims to solve the node classification task like the teacher model does.

Thus, the student model directly learns the task as well as the aforementioned distillations by
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minimizing the following cross entropy loss:

Lce ¼ �
X

i2V�

X

j2C

yij logpij;s ð7Þ

where V� is the set of nodes with labels, and C is the set of labels. yij is an indicator that is 1 if a

node i belongs to label j, and 0 otherwise. pij;s is the probability that the node i belongs to a

label j, which is predicted by the student. Note that Eq (7) assumes that each node belongs to

only one class. If a node has multiple labels (i.e., multi-labeled node classification), we use

binary cross entropy loss instead.

To jointly train for all of the aforementioned aspects, MUSTAD minimizes the following

final loss:

L ¼ Lce þ lembLemb þ lpredLpred ð8Þ

where λpred and λemb are hyperparameters to balance the proposed loss terms.

Spectral analysis of MustaD

Spectral graph methods have become fundamental tools in the analysis of large networks [32–

34]. GCN [1] has attracted a lot of attention due to its successful implementation of graph con-

volution defined on a spectral domain as a simple matrix multiplication, thus achieving supe-

rior performance compared to other models. In this section, we first give a brief interpretation

of K-layer GCN on the spectral domain. Then we give a spectral analysis of MUSTAD when dis-

tilling the knowledge of GCNII teacher model, comparing the expressiveness of our MUSTAD

to that of K-layer GCN on the spectral domain.

Consider an adjacency matrix ~A 2 RN�N of a graph with self-loop, and a graph signal

x 2 RN
which is a set of values residing on a set of nodes, where N is the number of nodes. A

polynomial filter of order K on the graph signal x is defined as

K � order polynomial filter on x ¼ ð
XK

k¼0

yk
~LkÞx: ð9Þ

where ~L ¼ IN � ~D � 1=2 ~A ~D � 1=2 is the normalized Laplacian matrix of ~A, and yl 2 R is the poly-

nomial coefficient. ~D and IN 2 R
N�N

represent the degree matrix of ~A and the identity matrix,

respectively. [31] proves that a K-layer GCN simulates a polynomial filter of order K with

dependent coefficients θl’s, which is the interpretation of K-layer GCN on the spectral domain.

We show that the student distilled by our proposed MUSTAD also simulates the K-order poly-

nomial filter with inter-dependent coefficients using only a linear transformation layer and a

single effective layer, therefore has a similar expressiveness to the K-layer GCN.

Each layer of a teacher that uses GCNII architecture is represented as follows:

Hðlþ1Þ ¼ s ð1 � alþ1Þ
~D � 1

2 ~A ~D � 1
2HðlÞ þ alþ1X

� �
ðð1 � blþ1ÞId þ blþ1W

ðlþ1ÞÞ
� �

ð10Þ

where X 2 RN�d
and σ denote the input feature matrix and the activation function (ReLU),

respectively. alþ1 2 R and blþ1 2 R are two hyperparameters. Wðlþ1Þ 2 Rd�d
represents a learn-

able weight matrix in the (l + 1)th GCN layer. HðlÞ 2 RN�d
corresponds to the lth hidden feature

representation; i.e., each node has a hidden feature vector of length d. The initial hidden repre-

sentation H(0) is obtained by a linear transformation of X, expressed by H(0) = X W(0). Note

that the dimensions of hidden representations for every GCN layers are the same as that of the

initial feature vector since there is a residual connection to the input feature matrix X.
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As we are dealing with a graph signal x 2 RN instead of the input feature matrix X, Eq (10)

changes to

hðlþ1Þ
¼ s ð1 � alþ1Þ

~D � 1
2 ~A ~D � 1

2hðlÞ þ alþ1x
� �

ðð1 � blþ1Þ þ blþ1wlþ1Þ
� �

¼ s ð1 � alþ1Þ
~D � 1

2 ~A ~D � 1
2hðlÞ þ alþ1x

� �
g0lþ1

� �
:

ð11Þ

where wlþ1 2 R is a learnable parameter, g0lþ1
¼ ð1 � blþ1Þ þ blþ1wlþ1, and hðlÞ 2 RN

represents

the lth hidden feature representation; i.e., each node has a hidden representation of length 1.

The initial hidden representation h(0) is obtained by a linear transform of x which is expressed

by h(0) = x w0.

Theorem 1 Consider a K-layer GCNII teacher model. A student of the teacher distilled by
MUSTAD expresses a K-order polynomial filter ð

PK
k¼0
yk

~LkÞ with inter-dependent coefficients θk’s
for k 2 {0, � � �, K} in the following simple form

yk ¼

(
gð� gÞ

k
�
PK

s¼kþ1
ysð

s
kÞ where k 2 f0; 1; � � � ;K � 1g

w0ð� gÞ
k where k ¼ K:

ð12Þ

Proof. We consider a weaker version of the teacher model used in [13], by assuming x of

the signal vector to be non-negative and αl+1 = 1/2. Furthermore, we remove the ReLU opera-

tion since the input feature x is non-negative as denoted in [13]. Thus, Eq (11) is simplified to

the following:

hðlþ1Þ
¼ s ~D � 1

2 ~A ~D � 1
2hðlÞ þ x

� �
glþ1

� �

¼ glþ1
~D � 1

2 ~A ~D � 1
2hðlÞ þ x

� �

¼ glþ1ððIN � ~LÞhðlÞ þ xÞ

ð13Þ

where glþ1 ¼ g
0
lþ1
=2, and ~L is a normalized Laplacian matrix of the adjacency matrix ~A. Since

MUSTAD uses the repeated single effective layer instead of the K discrete GCN layers, we set

γl+1’s to a single parameter γ for l 2 {0, � � �, K − 1}. Consequently, recursive computations of Eq

(13) yield h(K) of the final representation from the single effective layer as follows:

hðKÞ ¼ ð
XK

l¼0

ð
YK

k¼K� l

gkÞðIN � ~LÞlÞx ð14Þ

where γk = γ for k 2 {1, � � �, K}, and γ0 = w0.

On the other hand, a K-order polynomial filter of an adjacency matrix ~A on a graph signal

x is expressed by the equation below:

ð
XK

k¼0

yk
~LÞx ¼ ð

XK

k¼0

ykðIN � ðIN � ~LÞÞkÞx

¼ ð
XK

k¼0

ykð
Xk

l¼0

ð� 1Þ
l k

l

 !

ðIN � ~LÞlÞÞx

¼ ð
XK

l¼0

ð
XK

k¼l

ykð� 1Þ
l k

l

 !

ÞðIN � ~LÞlÞx:

ð15Þ
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To show that the student of a K-layer GCNII teacher distilled by MUSTAD expresses a K-

order polynomial filter with inter-dependent coefficients, we prove that all θk’s for k 2 {0, 1,

� � �, K} in Eq (15) are expressed by w0 and γ. Specifically, we show that all θk’s in the following

equation

YK

k¼K� l

gk ¼
XK

k¼l

ykð� 1Þ
l k

l

 !

ð16Þ

are expressed by w0 and γ for all k 2 {0, 1, � � �, K} where γk = γ for k 2 {1, � � �, K}, γ0 = w0, and

l 2 {0, 1, � � �, K}. When l = K, θK is expressed by w0 and γ as follows:

yK ¼ w0ð� gÞ
K
: ð17Þ

Recursive computations express all θk’s by w0 and γ as follows:

yK� 1 ¼ gð� gÞ
K� 1
� yK

K

K � 1

 !

yK� 2 ¼ gð� gÞ
K� 2
� yK� 1

K � 1

K � 2

 !

� yK
K

K � 2

 !

..

.

y0 ¼ g � y1 � y2 � � � � � yK :

ð18Þ

In conclusion, a general expression of θk in Eq (16) is expressed by

yk ¼

gð� gÞ
k
�
PK

s¼kþ1
ys

s

k

� �
where k 2 f0; 1; � � � ;K � 1g

w0ð� gÞ
k where k ¼ K

8
><

>:
ð19Þ

which is our desired objective.

Experiments

We perform experiments to answer the following questions.

Q1. Prediction Accuracy How well does our MUSTAD preserve the multi-hop feature aggrega-

tion of a deep teacher model compared to other KD methods?

Q2. Parameters vs. Performance What is the trade-off between the number of parameters

and the accuracy in student models?

Q3. Ablation Study How effectively do the multi-staged distillation and the single effective

layer help a student conserve teacher’s performance?

Experimental setup

Dataset. We use four graph datasets as summarized in Table 2. Cora, Citeseer, and

Pubmed are citation datasets where nodes and edges represent documents and citations,

respectively. Each node feature indicates whether a word is included in each document. The

ogbn-proteins dataset is an undirected and weighted graph where nodes represent proteins

and edges mean different types of biological associations between proteins. An edge in the
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graph has an 8-dimensional feature, and a node has an 8-dimensional one-hot feature indicat-

ing which species the corresponding protein comes from.

Teacher models. We perform the distillation from two different teacher models. The first

teacher model, GCNII [13] uses initial residual and identity mapping techniques and achieved

state-of-the-art performance in Cora, Citeseer, and Pubmed. We compress the trained GCNII

teacher in those three datasets. The second teacher model, GEN [8] proposes generalized mes-

sage aggregators and pre-activation residual connections; GEN achieves a good performance

in the ogbn-proteins dataset. We perform distillation from a trained GEN teacher in the ogbn-

proteins dataset. When reproducing the teacher model, experimental settings such as data

split, optimizer, regularization, activation functions, and hyperparameters follow those of [8,

13] unless explicitly stated.

Competitors. We compare MUSTAD with the following competitors:

• KD [17] is the model for knowledge distillation. It softens task predictions of the teacher and

distills the knowledge of classes to a student. We denote the student distilled by this method

as Student_KD. The final loss is:

L ¼ Lce þ lpredLpred ð20Þ

• LSP method [21] distills an embedded topological structure of a teacher and achieved the

best performance in graph-structured datasets. We denote the student trained by this

method as Student_LSP. The final loss function is computed by:

L ¼ Lce þ lLSPLLSP ð21Þ

All methods are implemented by PyTorch and PyTorch Geometric [38]. We use a machine

with Intel E5-2630 v4 2.2GHz CPU and Geforce GTX 2080 Ti for the experiments.

Semi-supervised node classification

Cora, Citeseer, and Pubmed. We perform distillation on trained GCNII models in Cora,

Citeseer, and Pubmed. In particular, we perform KD from teachers with varying numbers of

layers to show how well MUSTAD preserves the multi-hop feature aggregation of the teacher.

When reproducing teacher models, we use the same settings as [13]. When training students,

the early stopping patience is increased from 100 epochs to 200 epochs to get more stable

results. Student_Base is a model trained with the ground truth labels without the teacher.

Student_MUSTAD is our distilled student that has the same hidden feature dimension to the

teacher. We train Student_KD with λpred of 0.1, 0.1, and 100 on Cora, Citeseer, and Pubmed,

respectively. For Student_LSP, we set λLSP to 10 on both Cora and Citeseer. Student_LSP fails

to be trained in Pubmed as every training node has only one neighbor which means there is no

Table 2. Dataset statistics.

Dataset Classes Nodes Edges Features

Cora1 [35] 7 2,708 5,429 1,433

Citeseer1 [35] 6 3,327 4,732 3,703

Pubmed1 [35] 3 19,717 44,338 500

ogbn-proteins2 [36, 37] 112 132,534 39,561,252 8

1 https://linqs.soe.ucsc.edu/data
2 https://ogb.stanford.edu/docs/nodeprop/

https://doi.org/10.1371/journal.pone.0256187.t002
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local structure to be distilled [13]. Other hyperparameters for each competitor are tuned to

obtain the best results on the validation set. For our Student_MUSTAD, we set λpred to 1, 0.1,

and 100, λemb to 0.01, 0.01, and 10 in Cora, Citeseer, and Pubmed, respectively, and the kernel

function to KL divergence.

Table 3 shows the overall results on node classification in terms of mean accuracy after 50

runs. Note that our MUSTAD gives the best performance in terms of accuracy. In particular,

Student_MUSTAD presents 3.77� 4.21%p improvement to the second-best model with

3.00� 6.04× smaller model size than the best teacher. Furthermore, the performance of the

proposed MUSTAD increases as the number of layers in the teacher increases, unlike other KD

methods. It indicates that MUSTAD preserves the aggregation process successfully whereas oth-

ers do not. This also implies that MUSTAD gains more knowledge from the given input features

when more GCN layers are used in the teacher.

In Citeseer and Pubmed, MUSTAD achieves the best performance when the student imitates

64 GCN layers of the teacher. However, the performance of the teacher decreases when more

than 32 and 16 layers are stacked, respectively. It indicates that MUSTAD enables the student to

aggregate information from farther nodes than the teacher does. If the accuracy of the teacher

is too low, it is not easy for our student to show the remarkable performance consistently since

MUSTAD aims to preserve the accuracy of deep teachers. However, the ability of MUSTAD to

aggregate information from farther nodes than the teacher relieves the student’s strong depen-

dence on the performance of the teacher.

ogbn-proteins. We perform knowledge distillation using trained GEN teacher model in

the ogbn-proteins dataset. Since the ogbn-proteins dataset is dense and large, full-batch train-

ing is not easy. We apply a random node sampler to generate batches for both mini-batch

training and testing. Following [8], we set each batch size to one subgraph. Thus, as the num-

ber of batch increases, the size of the subgraph in each batch decreases and that leads to a

Table 3. Semi-supervised node classification accuracy for Cora, Citeseer, and Pubmed. We perform the distillation from trained teachers with various number of GCN

layers: 2, 4, 6, 8, 16, 32, and 64. Student_MUSTAD is our distilled student that has the same hidden feature dimension as the teacher. Note that MUSTAD consistently outper-

forms other KD methods while preserving the multi-hop feature aggregation of the deep teacher.

Data Model Number of Parameters Number of GCN Layers in the Teacher

2 4 8 16 32 64

Cora Teacher [13] 354K

(64 layers)

81.83 82.92 84.13 84.56 85.28 85.34

Student_Base [13] 96K 79.71 79.71 79.71 79.71 79.71 79.71

Student_KD [17] 96K 80.05 80.12 80.31 80.54 80.76 79.41

Student_LSP [21] 96K 80.02 79.88 79.96 79.99 80.02 80.33

Student_MUSTAD 96K 82.35 82.33 82.92 84.58 84.52 84.71

Citeseer Teacher [13] 3,047K

(32 layers)

67.62 68.13 70.77 72.87 72.89 72.71

Student_Base [13] 1,015K 67.82 67.82 67.82 67.82 67.82 67.82

Student_KD [17] 1,015K 68.21 68.03 68.35 68.92 68.87 69.06

Student_LSP [21] 1,015K 68.32 68.26 68.27 68.29 68.36 68.21

Student_MUSTAD 1,015K 67.10 66.72 66.45 69.55 71.79 72.83

Pubmed Teacher [13] 1,178K

(16 layers)

78.59 77.94 78.13 80.35 79.95 79.96

Student_Base [13] 195K 75.61 75.61 75.61 75.61 75.61 75.61

Student_KD [17] 195K 75.71 75.87 76.01 76.03 75.84 75.98

Student_LSP [21] 195K - - - - - -

Student_MUSTAD 195K 76.01 78.42 78.75 79.69 79.73 80.24

https://doi.org/10.1371/journal.pone.0256187.t003
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decreased performance. Through experiments, we increase the number of batches from 10 to

40 to fit the large graph in our GPU (GeForce GTX 2080Ti with 11GB of memory) whereas [8]

uses NVIDIA V100 with 32GB of memory. As a result, the reproduced teacher achieves the

best performance with 28 layers although [8] achieves that with 112 layers. Without loss of

generality, we perform the distillation on the reproduced teacher and validate our MUSTAD

compared to other methods.

We evaluate the performance of each method on a multi-labeled node classification task in

a semi-supervised setting. We train Student_KD with λpred of 0.1 and Student_LSP with λLSP
of 10. For competitors, every hyperparameters are tuned to obtain the best results on the

validation set. For our model, we set λpred to 0.1, λemb to 0.01, and the kernel function to KL

divergence.

Table 4 summarizes the results in terms of AUC-ROC. MUSTAD presents an 1.55%p

improvement in terms of AUC-ROC from the second-best KD model while requiring 11.41×
fewer parameters than the teacher. Tables 3 and 4 show that our MUSTAD achieves the state-of-

the-art performance with various teacher models.

Parameters vs. performance

We perform a parameter study to show the trade-off between the number of parameters and

accuracy. We vary the hidden feature dimension and the number of the effective layers in the

student to vary the number of parameters. Furthermore, we vary the kernel functions used for

distilling the knowledge of multi-hop feature representations and evaluate the performance.

We analyze Cora with the trained 64-layered GCNII teacher.

Hidden feature dimension. We set the student’s hidden feature dimensions to be the

same as that of the teacher in the previous section; it limits the degree of model compression.

We study the trade-off between the hidden feature dimension and the accuracy in Table 5. In

particular, we vary the feature dimension from 16 to 128.

The table shows that Student_MUSTAD with the hidden feature dimension of 64 achieves

the best performance. Note that setting the same feature dimension for the student as that of

Table 5. Trade-off between the hidden feature dimension and the accuracy. Note that the proposed MUSTAD with

the hidden feature dimension of 64 shows the best performance.

Hidden Feature Dimension 16 32 64 128

Number of Parameters 24K 49K 96K 193K

Accuracy (%) 79.13 83.01 84.71 84.42

https://doi.org/10.1371/journal.pone.0256187.t005

Table 4. Multi-labeled node classification performance (AUC-ROC) in ogbn-protein. The distillations are done from trained teachers with different numbers of GCN

layers: 3, 7, 14, 28, and 56. Note that the proposed method Student_MUSTAD provides the best performance among the student models.

ogbn-proteins Number of Parameters Number of GCN Layers in the Teacher

3 7 14 28 56

Teacher [8] 483K

(28 layers)

0.819 0.829 0.835 0.837 0.837

Student_Base [8] 42K 0.797 0.797 0.797 0.797 0.797

Student_KD [17] 42K 0.801 0.805 0.808 0.803 0.805

Student_LSP [21] 42K 0.798 0.799 0.798 0.799 0.798

Student_MUSTAD 42K 0.811 0.819 0.821 0.823 0.820

https://doi.org/10.1371/journal.pone.0256187.t004
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the teacher shows the best performance even when significantly smaller number of layers are

used. It is also noteworthy that Student_MUSTAD with the hidden feature dimension of 32 still

shows the best performance among KD methods shown in Table 3, while requiring 1.96×
fewer parameters than the competitors, and 7.22× fewer parameters than the teacher. When

the feature dimension is set to 128, MUSTAD shows a lower performance than MUSTAD with the

dimension of 64, due to overfitting.

Number of the effective layers. Our proposed MUSTAD compresses the hidden GCN lay-

ers of a teacher into a single effective layer in a student. We study how the accuracy of MUSTAD

changes as the number of the effective layer increases. However, to increase the number of the

effective layer, we have to set the number of teacher layers that each effective layer in the stu-

dent imitates. Let M denote the number of the effective layers in the student. We tune the set L
consisting of the number of teacher layers that each effective layer in the student imitates in

[{1, 63}, {32, 32}, {63, 1}] for M = 2, [{1, 22, 41}, {21, 22, 21}, {41, 22, 1}] for M = 3, and [{1, 11,

21, 31}, {16, 16, 16, 16}, {31, 21, 11, 1}] for M = 4.

Fig 3 shows that students having more than one effective layer shows a similar performance

to the student having a single effective layer. It indicates that a single effective layer in the stu-

dent is enough to conserve the multi-hop feature aggregation process of the teacher.

Kernel functions. MUSTAD uses various kernel functions (Eq 5) to distill the knowledge of

multi-hop feature representations from the teacher. We compare students with different ker-

nel functions in Cora and show the result in Table 6. We set p to 2 for the distance based ker-

nel. For the polynomial kernel, c and d are set to 2 and 0, respectively. For the RBF kernel, σ is

set to 1. In Table 6, ‘None’ represents the student model without the multi-staged knowledge

distillation; i.e., it distills only the task prediction, not the embedding.

Note that the ‘None’ student shows a worse performance than students which distill embed-

dings with kernel functions. Among the kernel functions, KL divergence shows the best

accuracy.

Fig 3. Accuracy of MustaD for different numbers of the effective layers in a student. M represents the number of effective layers in the

student, and L corresponds to the set consisting of the number of teacher layers that each effective layer in the student imitates; e.g., M = 2 and

L = {1, 63} denotes that the two effective layer in the student imitates a GCN layer, and 63 GCN layers of the teacher, respectively. Note that

MUSTAD, which has a single effective layer in the student, is enough to conserve the multi-hop feature aggregation of the teacher.

https://doi.org/10.1371/journal.pone.0256187.g003

Table 6. Accuracy with different kernel functions in the Cora dataset. Note that KL divergence-based kernel provides the best accuracy, and the student ‘None’ without

the embedding distillation shows a poor performance.

Kernel Function None L2 Norm Linear Poly RBF KL Divergence

Accuracy (%) 84.29 84.61 84.60 84.47 84.40 84.71

https://doi.org/10.1371/journal.pone.0256187.t006
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Ablation study

We provide ablation studies for the effect of multi-staged knowledge distillation of the teacher,

and the single effective layer in the student. The studies are done in three citation datasets;

Cora, Citeseer, and Pubmed.

Multi-staged knowledge distillation. MUSTAD distills a teacher’s knowledge in a multi-

staged manner to conserve the accuracy. We show the effect of multi-staged knowledge distil-

lation in Fig 4. Note that Student_MUSTAD (Without Multi-staged KD) is trained without dis-

tilling the knowledge of multi-hop feature representations; i.e., the teacher distills only the

knowledge of task prediction to the student.

If we distill only the knowledge of task prediction, the teacher’s error of prediction directly

propagates to the student. However, the distillation of multi-hop features compensates for the

error, and thus MUSTAD with the distillation presents a superior performance compared to

MUSTAD without it as depicted in Fig 4. In other words, the multi-staged knowledge distillation

takes a crucial role in acquiring proper knowledge from the teacher.

Single effective layer. MUSTAD imitates the multi-hop feature aggregation process of a

teacher by a single effective layer. We investigate the effect of the single effective layer by com-

paring the proposed MUSTAD to a student with a single naive GCN layer.

Fig 5 shows that MUSTAD without the single effective layer presents significantly lower

performance than the original MUSTAD. Furthermore, the accuracy of MUSTAD without the

Fig 4. Accuracy of MustaD without the multi-staged knowledge distillation. Note that Student_MUSTAD (Without Multi-staged KD)

is trained without distilling the knowledge of multi-hop feature representations; i.e., the teacher distills only the knowledge of task

prediction to the student. MUSTAD with the distillation consistently shows a better performance compared to MUSTAD without it.

https://doi.org/10.1371/journal.pone.0256187.g004

Fig 5. Accuracy of MustaD without the single effective layer. Note that the student without the single effective layer shows

significantly lower performance than the original MUSTAD.

https://doi.org/10.1371/journal.pone.0256187.g005
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effective layer does not improve as the number K of GCN layers in the teacher increases,

whereas the performance of MUSTAD with that improves as K increases. This is because the

method preserves the teacher’s multi-hop feature aggregation, which is the main purpose of

the multiple layers in the teacher, by a single effective layer.

Conclusion

In this work, we have proposed MUSTAD, an accurate method for compressing deep graph con-

volution networks (GCNs) by distilling multi-staged knowledge from a teacher. MUSTAD dis-

tills the teacher’s knowledge of multi-hop feature aggregation by imitating the multiple GCN

layers using a single effective layer in a student, which reduces the model size significantly, and

by transferring the final hidden feature embeddings of the teacher to the student. MUSTAD also

distills the knowledge of task prediction by transferring the prediction of the teacher. We give

a theoretical analysis of MUSTAD, comparing the expressiveness of the proposed method to

that of multi-layered GCN on a spectral domain. MUSTAD achieves the state-of-the-art perfor-

mance in four real-world datasets, preserving the multi-hop feature aggregation of the teacher,

compared to other distillation based GCN compression methods. Future works include

extending MUSTAD to consider the semantics of features.
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