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The aim of this workshop was to bring together experts andestts from pure and applied mathematics,
computer science, and engineering, who are working oneelptoblems in the areas of matroid theory,
combinatorial optimization, coding theory, secret shgrimetwork coding, and information inequalities. The
goal was to foster exchange of mathematical ideas and toati€an help tackle some of the open problems
of central importance in coding theory, secret sharing,r@td/ork coding, and at the same time, to get pure
mathematicians and computer scientists to be interestdteikind of problems that arise in these applied
fields.

1 Introduction

Matroids are structures that abstract certain fundamgmégderties of dependence common to graphs and
vector spaces. The theory of matroids has its origins intgtiagory and linear algebra, and its most successful
applications in the past have been in the areas of combiabtgtimization and network theory. Recently,
however, there has been a flurry of new applications of tresrhin the fields of information and coding
theory.

It is only natural to expect matroid theory to have an infleean the theory of error-correcting codes, as
matrices over finite fields are objects of fundamental ingure in both these areas of mathematics. Indeed,
as far back as 1976, Greene [7] (re-)derived the MacWilliatestities — which relate the Hamming weight
enumerators of a linear code and its dual — as special casas ioentity for the Tutte polynomial of a
matroid. However, aside from such use of tools from matroébty to re-derive results in coding theory that
had already been proved by other means, each field has hatsgly little impact on the other, until very
recently.

Matroid-theoretic methods are now starting to play an irtgrdrrole in the understanding of decoding
algorithms for error-correcting codes. In a parallel andédy unrelated development, ideas from matroid
theory are also finding other novel applications within thedoler realm of information theory. Specifically,
they are being applied to explore the fundamental limitseafst sharing schemes and network coding, and
also to gain an understanding of information inequaliti&s.outline some of these recent developments next.

2 Background and Recent Developments

Our workshop covered four major areas within the realm obrimation theory — coding theory, secret
sharing, network coding, and information inequalities —iakhhave seen a recent influx of ideas from



matroid theory and combinatorial optimization. We brieflgaliss the applications of such ideas in each of
these areas in turn.

2.1 Coding Theory

The serious study of (channel) coding theory started withnbn’s monumental 1948 paper [9]. Shannon
stated the result that reliable communication is possiblat@s up to channel capacity, meaning that for
any desired symbol or block error probability there existhannel code and a decoding algorithm that can
achieve this symbol or block error probability as long as e of the channel code is smaller than the
channel capacity. On the other hand, Shannon showed thwt ifte is larger than capacity, the symbol and
the block error probability must be bounded away from zero.

Unfortunately, the proof of the above achievability ressilhonconstructive, meaning that it shoargly
the existencef such channel codes and decoding algorithms. Therefimes the appearance of Shannon’s
theorem, the quest has been on to find codes with practicaldemy and decoding algorithms that fulfill
Shannon’s promise.

The codes and decoding schemes that people have come uawithaadly be classified into two classes:
“traditional schemes” and “modern schemes.” In “traditibechemes,” codes were proposed that have some
desirable properties like large minimum Hamming distarciyfical example of such codes being the Reed-
Solomon codes). However, given a code, it was usually untiea to decode it efficiently. Often it took
quite some time until such a decoding algorithm was fourgl (he Berlekamp-Massey decoding algorithm
for Reed-Solomon codes), if at all. In “modern schemes,sthetion is reversed: given an iterative decoding
algorithm like the sum-product algorithm, the question ietwcodes work well together with such an iterative
decoding algorithm.

“Modern schemes” took off with the seminal paper by Berrolguvigu, and Thitimajshima in 1993 on
turbo coding schemes [2]. Actually, codes and decodingrihgo in the spirit of “modern schemes” were
already described in the early 1960s by Gallager in his Rhd3is [5]. However, these schemes were, besides
the work by Zyablov, Pinkser, and Tanner in the 1970s and 4,98@ely forgotten until the mid-1990s. Only
then people started to appreciate Gallager’s revolutioapproach to coding theory.

Gallager proposed to define codes in terms of graphs. Suphgjeae now known as Tanner graphs: they
are bipartite graphs where one class of vertices correspimncbdeword symbols and where the other class
of vertices corresponds to parity-checks that are imposeth® adjacent codeword symbols. Decoding is
then based on repeatedly sending messages with estimaigisté value of the codeword symbols along
edges, and to locally process these messages at verticegeinto produce new messages that are again
sent along the edges. Especially for sparse Tanner graphreshlting decoding algorithms have very low
implementation complexity.

In the last fifteen years, Tanner graphs and iterative degoaligorithms have been generalized to fac-
tor graphs and algorithms operating on them, and many ctionedo techniques in statistical mechanics,
graphical models, artificial intelligence, and combingtiooptimization were uncovered. The workshop talk
by Kashyap (see Section 3.1) surveyed the connection beta@aplexity measures for graphical models
for a code and the treewidth (and other width parameterd)efssociated matroid. On the other hand, the
workshop talks by Wainwright and Vontobel (see Section 8riiphasized the connections between message-
passing iterative decoding of codes and certain techniffoes combinatorial optimization. In particular,
they discussed the linear programming decoder by Feldmaimwyght, and Karger [4], which is a low-
complexity relaxation of an integer linear programmingnfiatation of the maximum likelihood decoder.
This linear programming decoder (and its variations) hagg@she way for the use of tools from combinato-
rial optimization and matroids in the design and analysidemfoding algorithms.

2.2 Secret Sharing

The second major application of matroid-theoretic ideaswhe mention here is with respect to secret-sharing
schemes. A secret-sharing scheme is a method to distribatessof a secret value among a certain number
of participants such thajualifiedsubsets of participants (e.g., subsets of a certain sineecaver the secret
from their joint shares, buinqualifiedsubsets of participants can obtain no information whatsoatout

the secret by pooling together their shares. Secret-ghacimemes were originally motivated by the problem



of secure storage of cryptographic keys, but have sincedfoumerous other applications in cryptography
and distributed computing.

It is not difficult to show that in a secret-sharing scheme,size of each of the shares cannot be smaller
than the size (information content) of the secret value.id&al secret-sharing scheme is one in which all
shares have the same size as the secret value. More geritjormation rateof a secret-sharing scheme
is the ratio of the size of the secret to the maximum share size

In a secret-sharing scheme, the collection of qualifiedestislasf participants is called tleecess structure
of the scheme. It is known that for any monotone increasirgction, I', of subsets of a finite set, one
can define a secret-sharing scheme with access structuree information ratep(I') is defined to be the
supremum of information rates among all secret-sharingrsels having access structiirel is said to be
anideal access structuriéit admits an ideal secret-sharing scheme.

Brickell and Davenport [3] began a line of work relating idsecret-sharing schemes to matroids. They
showed that any ideal access structure is induced by a matrai very specific sense. However, it is also
known that not every matroid gives rise to an ideal acceastsire; for example, the access structures induced
by the Vamos matroid are not ideal. Characterizing the matroidsgiva rise to ideal access structures has
remained an open problem.

There has been some very recent work on computing the infammiates of non-ideal access structures
using polymatroid techniques, linear programming, and8bannon information inequalities. For example,
it has been shown that for any access struciuirduced by the ¥mos matroidp(I') < 19/21, which
shows that such access structures are far from being idbad, 8nd other related results, were surveyed in
the workshop talks by Padliand Beimel (see Section 3.3).

Secret-sharing schemes have also been received some agtesion in the quantum domain, a topic
covered in the workshop talk by Sarvepalli (see Section 3.3)

2.3 Network Coding

Another novel application of matroid theory and combiniaiasptimization within the realm of information
theory is in the area of network coding [10]. Network codie@n elegant technique introduced at the turn
of the millennium to improve network throughput and perfamoe. Since then, it has attracted significant
interest from diverse scientific communities of engineemnputer scientists, and mathematicians in both
academia and industry. This workshop explored connectieteeen network coding and combinatorial
optimization, matroids, and non-Shannon inequalities.

The area started when the simple but far reaching obsemnvatis made that in communication networks,
(unlike in their transportation or fluid counterparts),alatreams that are separately produced and consumed
do not necessarily need to be kept disjoint while they anmesfrarted throughout the network [1]. (At the
network layer, for example, nodes can perform binary agiditf independent bit-streams.) Schemes that
employ processing at network nodes of incoming independatat (as opposed to only forwarding) are re-
ferred to as network coding. Naturally, the throughput echible by network coding is in general higher
than what can be achieved by schemes that allow only forwgrdiertain standard problems in combinato-
rial optimization have been crucial in understanding thtepiial benefits of network coding. Charikar and
Agraval as well as Chekuri, Fragouli, and Soljanin chardae the benefits for certain traffic scenarios and
throughput measures, as discussed by Chekuri in his wapkisifio(see Section 3.4).

Mathematically, data streams carried by network edgesraageid as sequences of symbols which are
elements over some finite field. Network nodes map the incominltiple data streams into a single stream in
a possibly different way for each of its outgoing edges. Tde & to choose these maps in way that will allow
the intended receivers to recover the original informatiorthe simplest case of network multi-cast (one in
which the source aims at communicating the same informatianset of receivers), it is sufficient that the
nodes forward linear combinations of the incoming symbole coefficients in these linear combinations can
even be chosen uniformly at random from a sufficiently largififield. In more complex traffic scenarios,
such linear network coding is not sufficient, and matroideetseen instrumental in demonstrating this fact. In
a series of recent papers, Dougherty, Freiling, and Zegeedaout an exploration of the fundamental limits
of network coding. They used matroids to systematicallystrtt various networks that demonstrated, for
example, the insufficiency of linear network coding and thechievability of network coding capacity. A
survey of these results was given by Sprintson in his wonsalx (see Section 3.4).



Finally, network coding problems give certain operatianakning to non-Shannon information inequali-
ties. Raymond Yeung, one of the inventors/pioneers in biathsabelieves that implications of non-Shannon-
type inequalities in information theory will be finally undéod in the context of network coding. He
declared in his talk that “Every constraint on the entropyction is useful in some multi-source network
coding problems!” These and other applications of non-8barinformation inequalities, as well as the
fundamentals, were addressed in a separate session of tkehap.

2.4 Information inequalities

As mentioned above, non-Shannon information inequaliti@g a key role in computing the information rates
of non-ideal secret-sharing access structures. Furthresrtfte results of Doughert al. in the context of
network coding also make heavy use of these inequalitiesb@éy give some background on information
inequalities here. The workshop talks of Yeung, #atand Dougherty (see Section 3.5) contain a more
comprehensive survey of this topic.

Constraints on the entropy function are sometimes refdoed the laws of information theory. It has
been known for a long time that the entropy function muss$athe polymatroid inequalities (non-negativity,
monotonicity, and submodularity), and indeed, that thesesguivalent to the non-negativity of the Shan-
non information measures. Inequalities that are impliedhgypolymatroid inequalities are referred to as
Shannon-type inequalitiet)ntil recently, Shannon-type inequalities were the omigwn linear constraints
on the entropy function.

A non-Shannon-type inequality a constraint on the entropy function which is not impligatie poly-
matroid inequalities. In the late 1990s, the discovery efasuch inequalities, starting with the Zhang-Yeung
inequality [11], revealed that Shannon-type inequalitilse do not constitute a complete set of constraints
on the entropy function.

Linear information inequalities correspond to the suppgrhyperplanes of the closed convex ccfﬁ@
obtained by taking the closure of the set of entropy vectefsdd byN random variables. By virtue of the
fact that entropy vectors satisfy the polymatroid inediesj the conef*N is a subset of the closed convex
conel' i defined by the polymatroid inequalities. It is a fact tﬁéﬁ =TIy for N <3, butT*N C I'y for
N > 4. Infact, Mati5 has shown that faV > 4, ff\, is not even polyhedrai.e., it cannot be characterized by
finitely many linear inequalities. This means that thereiafiaitely many distinct non-Shannon inequalities
satisfied by entropy vectors defined y> 4 random variables. M&¥’s study of the con@’;\, also involves
the use of matroid methods in a non-trivial way.

3 Presentation Highlights

We provide here brief descriptions of the talks presentetieatvorkshop. Slides from most of the talks are
available online aht t p: // robson. birs. ca/ ~09w5103/ .

James Oxleykicked off the workshop with a tutorial on matroid theoryshalk introduced the most com-
mon ways to define matroids and then presented some fundalregamples, some basic constructions, and
some of the main theorems of the subject. A more thorougbdnfrtion to matroids is contained in the survey
paper “What is a matroid?” availablelat t p: / / www. mat h. | su. edu/ ~oxl ey/ survey4. pdf .

3.1 Coding theory

Oxley’s tutorial was followed by a day-long session, cotiisgsof four talks, focusing on the use of matroid
theory and combinatorial optimization in coding theory.

Navin Kashyap gave an overview of the applications of matroid methods t study of graphical
models for codes, and to the analysis of decoding methods asithe sum-product algorithm and linear-
programming decoding. Among the topics covered were thefisede/matroid decomposition techniques,
and various “width” parameters (treewidth, branchwid$gaciated with graphs and matroids, in the analysis
of graphical models and decoding algorithms for linear sode

Martin Wainwright ’s talk began with an overview of the various hierarchiesrafar programming (LP)
relaxations, as well as related conic programming relarat{e.g., SOCP and SDP), that can be applied to



a given integer program. It then went to cover their on-ga@pglications in coding theory and other areas
of applied mathematics, and the connection between suchrbiiges and the hypergraph defined by the
underlying integer program. He also described some linkswéd®n these relaxations, and various types of
“message-passing” algorithms that are widely used in conication theory as well as many other domains
(e.g., statistical physics, computer vision, machineriegy, computational biology).

Pascal Vontobelfocused on pseudo-codewords, i.e., certain non-zerddredtvectors that play an im-
portant role in the performance characterization of iteeatnessage-passing decoders as well as linear pro-
gramming decoding. This is in contrast to classical codmepty where decoding algorithms are mostly
characterized by non-zero codewords. The talk gave an ievenf results about pseudo-codewords and
their influence on message-passing iterative decoding iardrlprogramming decoding. The topics that
were covered included: pseudo-codewords for cycle codeshair relationship to the graph zeta function;
pseudo-codewords for finite-geometry-based codes; psead®wvords obtained by canonical completion,
and how they upper bound the performance of linear prograigaécoding; the influence of redundant rows
in the parity-check matrix on the set of pseudo-codeworas;relationship of pseudo-codewords to other
concepts like stopping sets, near-codewords, trappirsg @etl absorbing sets.

The final talk in the coding theory session was giverThpmas Britz, who presented a brief overview on
what is presently known about the support and weight commebetween coding and matroid theory, and
gave applications of these connections to coding and gtreairy. The newest results included an interesting
variation of the Tutte polynomial as well as an interestingever-evolving dual identity.

3.2 The Matroid Minors Project

The morning of the second day of the workshop was devotedetd/troid Minors Project of Jim Geelen,
Bert Gerards, and Geoff Whittle. This project aims to extdraresults and techniques of the Graph Minors
Project of Robertson and Seymour (geg [8]) to matrices and matroids. One of the main goals of thesti

is to describe precisely the structure of minor-closedsgda®f matroids representable over finite fields. This
requires a peculiar synthesis of graphs, topology, coiviggtand algebra. In addition to proving several
long-standing conjectures in the area, the structure yhisa@xpected to help find efficient algorithms for a
general class of problems on matrices and graphs [6].

Bert Gerards presented an overview of the structure theorem (whose praofust recently been com-
pleted by Geelen, Gerards and Whittle) for minor-closedsela®f binary matroids. This theorem is a major
milestone of the Matroid Minors Project. One important iroglion of this theorem is that every minor-
closed class of binary matroids is characterized by a figt@texcluded minors.

Jim Geelenfollowed Gerards’ talk by surveying some of the applicasiofithe binary matroids structure
theorem. It follows from the theorem that there existsHm") algorithm for testing am-element binary
matroid for the presence of a fixed minor. An applicationiperit to coding theory is the interesting result
that proper minor-closed families of binary linear codears#t be asymptotically good. Geelen further
presented some open problems concerning minor-closeskslas binary matroids.

3.3 Secret sharing

The theme for the afternoon session on the second day wast-sbaring schemes. In a secret-sharing
scheme, a secret value is distributed into shares amongadd getticipants in such a way that the qualified
subsets of participants can recover the secret value, thigileon-qualified ones do not obtain any information
about it. In this situation, the size of every share is attld@s size of the secret. If all shares have the same
size as the secret, which is the best possible situationstheme is said to be ideal. Only a few access
structures admit an ideal secret sharing scheme. In gepnaels interested in finding schemes with optimal
share length for every given access structure. This is adliffproblem that has attracted the attention of
many researchers.

Carles Padro discussed several methods to find upper and lower boundsecshtre length. He pre-
sented the most important results and techniques that hese dbtained about this open problem from
combinatorics, specially from the use of matroids and palyoids. He also discussed some combinatorial
techniques to construct efficient linear secret sharingses.



Amos Beimel in a talk based on joint works with Noam Livne, Carles Badnd llan Orlov, presented
the use of non-Shannon information inequalities for prgMimwer bounds on the size of shares in secret-
sharing schemes. He described two results:

1. A proof, using non-Shannon information inequalities,l@fer bounds on the size of the
shares in every secret-sharing scheme realizing an actrasfuee induced by the &mos
matroid. This is the first result showing the existence of areas structure induced by a
matroid which is not nearly ideal.

2. A proof of the fact that all the information inequalitieadwn to date cannot yield a lower
bound ofQ2(n) on the share size.

Pradeep Kiran Sarvepalli talked about the applications of matroids quantum seceetraly which deals
with the problem of distribution of a quantum state amenglayers so that only authorized players can
reconstruct the secret. He presented the first steps towanratraidal characterization of quantum secret-
sharing schemes. This characterization allows one to earistfficient schemes from self-dual matroids
that are coordinatizable over a finite field. In the processalko provided a connection between a class of
guantum stabilizer codes and secret-sharing schemes.

Sarvepalli also briefly surveyed the use of matroids in quantomputation and quantum cryptography.
He reviewed a recent work by Shepherd and Bremner which sldiat even restricted models of quan-
tum computation, such as those consisting of abelian ggitesrise to probability distributions that cannot
be sampled efficiently by a classical computer. He sketcheil arguments that use the theory of binary
matroids to substantiate their claim.

Sarvepalli also considered an open problem related to #ssification of a class of quantum states called
the stabilizer states. A restricted version is to classifygquivalence classes of a subclass of stabilizer states
(namely, the CSS states) under the action of the local yniexup and a subgroup of the local unitary group,
called the local Clifford group. Specifically, the problemto find necessary and sufficient conditions for
when a CSS stabilizer state has distinct equivalence dasSarvepalli showed that CSS stabilizer states
whose equivalence classes are distinct must arise frormybimatroids which are neither graphic nor co-
graphic. In doing so, he arrived at a class of minor-closetioits whose excluded minors have not yet been
characterized.

3.4 Network Coding

Network coding was the theme for the third day of the worksheben a tutorial and two survey talks
were given, followed by a presentation of an open problemwiik coding was also discussed on the two
following days in connection with non-Shannon inequatditisome recent results in wireless networks, and
general hardness to find a network coding scheme that ashi@vapproximately achieves, capacity.

Emina Soljanin gave a tutorial talk on coding for network multicast (sinankously transmitting the
same information to multiple receivers in the network). ®kplained sufficient and necessary conditions
that the network has to satisfy to be able to support the cadtiat a certain rate. For the case of unicast
(when only one receiver at the time uses the network), suolditons have been known for the past fifty
years, and, clearly, we must require that they hold for eacieiver participating in the multicast. The
fascinating fact that the main network coding theorem Ixiisgthat the conditions necessary and sufficient
for unicast at a certain rate to each receiver are also rexgeasd sufficient for multicast at the same rate,
provided the intermediate network nodes are allowed to doerdind process different information streams.

Chandra Chekuri surveyed results that seek to understand the potentiafibémet network coding
offers over more traditional and simpler transmission sw®such as store and forward routing. This was
examined by asking the following question: what is the maximratio (over all networks) between the
rate achievable via network coding and via routing? He ictett his attention to the wireline setting. This
guestion has been answered to a large extent in the mulsetstg in both undirected and directed graphs.
In the multiple unicast setting, the benefit is known to be/Varge in some directed graph instances while the
case of undirected graphs is wide open. Combinatorial épdition plays an important role in understanding
this question. Steiner-tree packings and integrality gdpsear programming relaxations for Steiner trees
are the key tools in the multicast setting. Multicommodityficut gaps play a role in the multiple unicast
setting.



In his talk, Alex Sprintson gave an extensive survey of connections between matroahttend net-
work coding. He presented two ways of constructing new elas$ coding networks from matroids. These
constructions are instrumental for establishing sevengbirtant properties of coding networks, such as in-
sufficiency of scalar and vector linear network coding aratievability of network coding capacity. He
also explained the recently introduced problem of indexrapdand pointed out its role as an intermediate
step from a given matroid to a network whose dependencyigeiatatisfy the given matroidal constraints.
He presented recent results in this research area andemutlirections for future work.

The final talk of the session was given Bandall Dougherty, who outlined an approach that, if two
proof-holes in it can be filled or worked around, will yield eopf that the solvability problem for network
coding is undecidable. The idea was to try to represent graapisfying or not satisfying identities as
networks, in order to reduce Rhodes’ problem on finite grdapke network coding solvability problem.

3.5 Information inequalities

The penultimate day of the workshop was the last “themed’, ttay theme this time being information
inequalities. Information inequalities are inequalitibat must be satisfied by entropies of random variables.
Raymond Yeunds tutorial talk gave the necessary background on inforomaithequalities. It is well-

known that the entropy function must satisfy the polymatabaxioms. All information inequalities implied
by the polymatroidal axioms are called Shannon-type initgg In 1998, Zhang and Yeung discovered
a non-Shannon-type inequality, an information inequadliigt is independent of the polymatroidal axioms.
Since then, many more such inequalities have been foundcamuections between the entropy function
and a number of fields in information science, mathematitg,pdoysics have been established. Yeung gave
several examples of such connections to the fields of prbtyatiieory, network coding, combinatorics,
group theory, Kolmogorov complexity, matrix theory, ancagtum information theory.

Frantisek Mat (5 considered the problem of characterizing the closed cﬁ’fq,e,formed by taking the
closure of the set of entropic points évi random variables. He showed that this cone is not polyhedral
meaning that it cannot be characterized by finitely manyalineequalities, if and only ifV > 4. He also
discussed the problem of determining which matroids Iieh'wif*N, and mentioned that it remains an open
problem to identify the excluded minors for this class offiakt entropic” matroids.

The third talk of this session was given Bydreas Winter, and was mainly based on a joint paper
with N. Linden on quantum (van Neumann) entropy inequalitiippenger has initiated the generalization
of the programme to find all the “laws of information theorg’ quantum entropy. The standard quantum
information inequalities derive from strong subadditifiESA), which corresponds to the third polymatroidal
axiom. SSA of the von Neumann entropy, proved in 1973 by Lieth Ruskai (who was present at the
workshop), is a cornerstone of quantum information thedxly.other known inequalities for entropies of
guantum systems may be derived from it. In his talk, Wintewpd a new inequality for the von Neumann
entropy which is independent of strong subadditivity: i@ais inequality which is true for any four party
guantum state, provided that it satisfies three lineariogiatconstraints) on the entropies of certain reduced
states. He also discussed the possibility of finding an ustcaimed inequality (work with N. Linden and
B. Ibinson).

Randall Dougherty gave his second talk of the workshop in this session, tHidigihg on non-Shannon-
type information inequalities and linear rank inequaditiéle first gave an alternate proof of Zhang and Ye-
ung’s non-Shannon-type inequality in four random variablZhang and Yeung's original proof used the
technique of adding two auxiliary variables with speciaperties and then applying Shannon-type inequali-
ties to the enlarged list. Dougherty presented a derivatidhis inequality by adding just one auxiliary vari-
able. He then used the same basic technique of adding ayxibaiables to give many other non-Shannon
inequalities in four variables (which, surprisingly, atkeodithe same general form). He also derived rules for
generating new non-Shannon inequalities from old ones;iwtén be applied iteratively to generate infinite
families of inequalities such as the one used by(a&b show that the corﬁz is not polyhedral.

Dougherty further showed how a variant of this approachn@si different sort of auxiliary variable)
allowed one to derive inequalities which always hold forksof linear subspaces, but need not hold for
entropies of random variables. It is known that the Inglatmguality and the Shannon inequalities give a
complete list of the rank inequalities for four variablegk{spaces). Dougherty derived a list of 24 additional
inequalities in five variables which, together with the Sham inequalities and instances of the Ingleton



inequality, are complete for rank inequalities on five salegs. He also gave general many-variable families
of rank inequalities.

3.6 Short talk sessions

The remaining sessions of the workshop consisted of shid tan several different topics related to the
overall theme of the workshop.

Alex Grant presented his work with Terence Chan on quasi-uniform caddgheir applications. Quasi-
uniform random variables have probability distributiohattare uniform over their support. They are of
fundamental interest because a linear information inéfyualvalid if and only if it is satisfied by all quasi-
uniform random variables. In his talk, Grant investigatedperties of codes induced by quasi-uniform
random variables. He proved that quasi-uniform codes (whiclude linear codes as a special case) are
distance-invariant and that Greene’s Theorem holds inetteng of quasi-uniform codes. He also showed
that almost affine codes are a special case of quasi-unifodescin the sense that quasi-uniform codes are
induced by entropic polymatroids while almost affine codesiaduced by entropic matroids. Applications
of quasi-uniform codes in error correction and secret sigasiere also given.

Serap Savaripresented a combinatorial study of linear deterministeyraetworks. This network model
has gained popularity in the last few years as a means ofismithye flow of information over wireless com-
munication networks. This model considers layered dickgtaphs, and a node in the graph receives a linear
transformation of the signals transmitted to it by neighitmynodes. There is recent work extending the cel-
ebrated max-flow/min-cut theorem of Ford and Fulkersonigrttodel. This result was first established by a
randomized transmission scheme over large blocks of tritteshsignals. In joint work with S. Tabatabaei-
Yazdi, Savari demonstrated the same result with a simpleyménistic, polynomial-time algorithm which
takes as input a single transmitted signal instead of a ltoeklof signals. Their capacity-achieving transmis-
sion scheme requires the extension of a one-dimensional-Ratl transversal theorem on the independent
subsets of columns of a column-partitioned matrix into a-thraensional variation for block matrices. The
rank function arising from the study of cuts in their modes ha important difference from the rank functions
considered in the literature on matroids in that it is subuatadbut not monotone.

Eimear Byrne presented upper bounds for a particular model of errorectig codes for coherent
network coding. Versions of the Singleton, sphere-packamgl Gilbert-Varshamov bounds for this model
were previously given by Yang and Yeung. In her talk, Byrneveld how to extend the classical Plotkin and
Elias bounds for the same model.

The final session of the workshop began with a talkDiljon Mayhew on the excluded minors for
real-representable matroids. Rota conjectured théat i a finite field, then there is only a finite humber
of minor-minimal matroids that are ndt-representable. Such matroids are called excluded minorE-f
representability. Rota’s conjecture contrasts with theglestablished fact that there are infinitely many
excluded minors for representability over the real numb@ezlen (2008) conjectured a much stronger fact:
if M is any real-representable matroid, then there is an exdlodeor, N, for real-representability, such that
N containsM as a minor. Mayhew presented a proof of Geelen’s conjecjuirg vork with Mike Newman
and Geoff Whittle).

Michael Langberg discussed the algorithmic complexity of network coding;using on how "hard” it
is to find a network coding scheme that achieves, or apprdrisnachieves, capacity. He gave proofs of
the fact that deciding whether or not a given instance of awaorkt coding problem (acyclic network plus
communication requirements) has scalar linear capacity isfNP-complete. He further showed that it is
“hard” (in the sense of being reducible to an open problemraply colouring) to find a scalar linear code
that enables communication with any constant factor of cigpaThe same hardness result extends to the
problem of finding a vector linear code of a fixed dimension.

Olgica Milenkovic gave a talk which approached the problem of compressivergerg matroid the-
ory. Compressive sensing is a new sampling technique fossségnals that has the potential to significantly
reduce the complexity of many data acquisition technigisst compressive sensing reconstruction tech-
nigues are still prohibitively time-consuming, narrowithge scope of practical applications of this method.
Milenkovic, in joint work with Wei Dai and Vin Pham Hoa, proped a new method for compressive sens-
ing signal reconstruction of logarithmic complexity thatnebines iterative decoding methods with greedy
subspace pursuit algorithms. The performance of the malkpénds on certain characteristics of support



weight enumerators of the codes used for constructing thersg matrix, which can be described via matroid
theory.

The final talk of the workshop was given Byexander Barg on the subject of linear codes in the ordered
Hamming space. As is well known, the weight distribution oDBl codes in the Hamming metric can be
recovered easily from the rank function of a uniform matrdib such association has been established for
the ordered Hamming space (the Niederreiter-Rosenblosi@sinan space), although the weight distribution
of MDS codes is also easily found. The question becomes niakeaging when one considers codes with
distance even one less than the MDS distance. Barg predeistesrk with Punarbasu Purkayastha which
computes such weight distributions for an arbitrary posetrimand characterizes distributions of points in
the unit cube that arise from near-MDS codes in the orderddane

4 Outcome of the Meeting

The workshop achieved its stated goal of encouraging ictierss between researchers from several different
disciplines, for whom there is currently no other forum (fl@@ence or workshop) that could serve as a natural
meeting point. As a result, the workshop was extremely veslkived by all the participants, making it an
unqualified success. Here we list some of the feedback thategdved from the participants.

Thanks for organizing a beautiful workshop. | enjoyed myetiduring the workshop days no less than a
fantastic weekend of hikes. -Alexander Barg (University of Maryland, College Park)

Once again, many thanks for the invitation to Banff — it wagey\enlightening workshop.
— Eimear Byrne (University College Dublin)

It was very nice to be in Banff, thank you once again for thetation.
— Frantisek Mats (Institute of Information Theory and Automation Prague)

Thanks for your role in the workshop, it was very educational
— Dillon Mayhew (Victoria University of Wellington)

Thanks a lot for the invitation to Banff — was a great workshayst continue organizing more of these.
— Olgica Milenkovic (University of lllinois, Urbana-Chamiggn)

Thanks again for the great workshop! Michael Langberg (The Open University of Israel)

Thanks very much for putting together such an interestingkslmp. | have enjoyed it very much indeed and
am very glad | was invited to speak. James Oxley (Louisiana State University)

Thanks for organizing an interesting and stimulating wbdgs | also want to thank you for the opportunity
to present at the workshop. | personally benefited a lot fioenatorkshop especially in the sense of gaining
a big picture of the associations between various fields.slglad to have had some useful discussions with
some of the workshop participants. Pradeep Kiran Sarvepalli (University of British Columbia)

Thanks again for all of your work in organizing the workshop. — Serap Savari (Texas A&M University)

Thank you so much for letting me patrticipate in this workshidparned a lot and enjoyed it very much.
— Beth Ruskai (Tufts University)

Best workshop that I've attended for quite a while. Alex Vardy (University of California, San Diego)
Thanks again for organizing the workshop. Martin Wainwright (University of California, Berkeley)

It was indeed a very nice meeting, | learnt a lot of new mathd,enjoyed myself very much!
— Andreas Winter (University of Bristol)
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