
A Functional Approach to Border Handling in
Image Processing

Leonard G. C. Hamey
Department of Computing

Faculty of Science
Macquarie University

Sydney NSW Australia
len.hamey@mq.edu.au

Abstract—Domain Specific Languages for image processing
offer simplified programming and efficient execution on a variety
of platforms. These languages are particularly suitable for
implementing local image processing operators that produce each
output pixel by processing a corresponding window of input
pixels. Such operators are easily parallelised and vectorised for
efficiency. However, border handling is required to define the
results for pixels close to the image border where the input
window partially falls outside the bounds of the input image. We
propose a declarative approach to border handling in a functional
image processing Domain Specific Language called Halide*. The
compiler uses code analysis to infer the bounds of output images
and to optimise border padding implementations. Experimental
results demonstrate good execution efficiency for large images.

I. INTRODUCTION

Image processing and low-level image analysis operators are
computationally intensive. Local operators such as sharpening,
smoothing and edge detection involve performing the same
computation at every pixel location, yielding another image
or a list of extracted features. These local operators are easily
parallelised and suitable for graphics hardware. Programming
graphics hardware is more difficult than normal programming
and requires reprogramming as new GPU programming mod-
els arise. Domain Specific Languages (DSLs) simplify pro-
gramming and provide portability between different hardware
while still obtaining an efficient implementation.

A variety of DSL approaches have been proposed. Ap-
ply [1], [2] expresses the computation to be performed at a
single pixel in a language based on Ada. The Apply module is
compiled into hardware-specific code that efficiently processes
entire images. Brook [3] is a stream processing language that
similarly expresses per-pixel computation as kernel functions
in a language based on C and compiled to GPU code. ZPL [4]
is an array processing language that expresses image process-
ing using whole-array operations such as element-by-element
addition. In ZPL, local window operators are implemented
by translating the array coordinates to access neighbouring
pixels, and conditionals are implemented as an array select
operator. All of these DSLs are imperative languages based
on the traditional concept of sequences of statements.

Although not strictly programming languages, libraries such
as OpenCV [5] and HALCON [6] provide image processing
operators as primitives embedded in a general purpose lan-

guage. These libraries can be seen as Domain Specific Lan-
guages providing features including image data representations
and image processing operators. Such libraries support appli-
cations development but are not intended for the programmer
to express new image processing operators.

Functional languages offer a declarative programming
paradigm. The programmer defines functions that are eval-
uated to compute the desired outcome, but there is little or
no concept of explicit order of execution. Functional image
processing DSLs such as IMPEL [7] and Halide [8], [9]
express the computation as functions from one image to
another. In functional image processing, images are functions
and operators are higher-order functions that transform input
image functions into an output image function.

Our work aims to address some of the limitations of
functional image processing, especially in Halide. We remove
Halide’s assumption that the image functions are defined over
infinite domains. Real images are defined over finite domains,
so Halide’s assumption is unrealistic. Halide programmers
must specify the actual output image dimensionsand errors
in this specification produce unexpected runtime failures. We
introduce finite image domains as a solution to this problem.

The issue of image domains is related to border handling.
When a local image processing operator is applied, the output
is usually defined on the same domain as the input. However,
if the operator uses a neighbourhood of input pixels then the
output value is strictly undefined near the borders of the image.
Border handling is the process of modifying the algorithm or
its input data so as to compute approximate output values for
the border-dependent pixels. For example, a common border
handling method is to pad the input image by replicating the
border pixels.

As a concrete example of these ideas, this paper introduces
Halide*, a modified version of Halide that includes domain
inference and border handling. We discuss the programmer’s
view of this approach, along with issues of execution effi-
ciency. Our study shows that domain inference and functional
border handling extend the capabilities of Halide without loss
of execution efficiency.

Section II introduces functional image processing in
Halide*, explaining key aspects of the language. Section III
then introduces key ideas of border handling and discusses



Func sobel (Func in)
{
Func h("sobel_horiz"), v("sobel_vert");
Func sob("sobel");
Var x("x"), y("y");

h(x,y) = in(x+1,y-1) + 2*in(x+1,y) +
in(x+1,y+1) - in(x-1,y-1) -
2 * in(x-1,y) - in(x-1,y+1);

v(x,y) = -in(x-1,y+1) - 2*in(x,y+1) -
in(x+1,y+1) + in(x-1,y-1) +
2 * in(x,y-1) + in(x+1,y-1);

sob(x,y) = (abs(h(x,y)) +
abs(v(x,y))) / 4;

return sob;
}

Fig. 1: Halide implementation of Sobel

applying different padding methods to different dimensions of
an image. Domain inference is discussed in section IV and
execution efficiency is discussed in section V.

II. FUNCTIONAL IMAGE PROCESSING IN HALIDE*

Halide [8], [9] is a functional image processing DSL embed-
ded in C++. Halide modules are written using C++ syntax then
Just-In-Time (JIT) compiled for run time execution. The C++
embedding imposes some boilerplate on the program code,
such as C++ type declarations. C++ arithmetic operators are
overloaded to provide Halide semantics, and Halide library
functions and class methods provide additional semantics.
Halide*, as described in this paper, is a development branch
of Halide that includes domain inference and border handling
with relevant code optimisations.

For example, consider the well known 3 × 3 Sobel edge
detector which is defined with two convolution masks as
follows.

H =

 −1 0 1
−2 0 2
−1 0 1

 , V =

 −1 −2 −1
0 0 0
1 2 1


Here, H and V compute horizontal and vertical discrete
derivatives centered at the pixel under consideration. The So-
bel edge magnitude is a norm of the resulting gradient vector;
for speed of computation, the `1 norm is often used. This
computation can be expressed with three function definitions
as shown in figure 1.

The C++ objects in, h, v and sob are Halide image
functions where the parameters x and y are the column and
row indices respectively. The three function definitions of
h, v and sob are Halide’s functional representation of the
Sobel operator while the remainder of the body of sobel is
boilerplate resulting from the embedding in C++. In particu-
lar, C++ type declarations are required for Halide functions

Func sobel (Func in)
{
Func h("sobel_horiz"), v("sobel_vert");
Func sob("sobel");

h() = in[1][-1] + 2 * in[1][0] +
in[1][1] - in[-1][-1] -
2 * in[-1][0] - in[-1][1];

v() = -in[-1][-1] - 2 * in[0][-1] -
in[1][-1] + in[-1][1] +
2 * in[0][1] + in[1][1];

sob() = (abs(h) + abs(v)) / 4;
return sob;

}

Fig. 2: Basic Halide* implementation of Sobel

(Func) and index variables (Var). The C++ function sobel
itself is a higher-order Halide function that applies the Sobel
computation to the Halide image function parameter in and
returns a newly defined image function sob.

The three function declarations tidily define the Sobel oper-
ator without introducing explicit sequence of execution. This
makes it relatively easy for the Halide compiler to introduce
parallel and vectorised computation, or even to off-load the
computation to a Graphics Processing Unit (GPU).

For comparison, figure 2 shows the equivalent Halide*
implementation of the Sobel edge magnitude operator. Halide*
introduces a neighbourhood notation for expressing local
operators without the need of explicit index variables. This
notation is not only more compact and less error prone than the
standard Halide notation, but it also identifies the code as an
implementation of a local operator, information that is required
for domain inference. However, this Halide* implementation
of Sobel does not include any border handling — it is exactly
equivalent to the Halide implementation in figure 1.

III. BORDER HANDLING

Border handling is an important concept in image process-
ing, particularly for local operators. Border handling provides
approximate output pixels close to the borders of the image
where insufficient data is available to fully compute the local
operator. For example, the Sobel 3×3 operator (see section II)
requires the immediately adjacent pixels of each input pixel.
This operator cannot be computed in the normal manner at
the borders of the input image because the adjacent pixels are
not available. In general, local operators that use a non-trivial
input window require some form of border handling. For this
reason, border handling is commonly provided in libraries and
tools that support image processing; some example are shown
in table I.

There are many possible approaches to border handling.
The three main approaches are: cropping the output image
so as to eliminate the border-dependent pixels, padding the



TABLE I: Available border handlers in image processing environments

Environment Replicate Reflect Reflect101 Wrap Constant Zero
OpenCV[10] Replicate Reflect Reflect101 Wrap Constant
Matlab[11] Replicate Symmetric Circular
Scipy[12] Nearest Reflect Mirror Wrap Constant
Java Advanced Imaging[13] Copy Reflect Wrap Constant Zero
Intel IPP[14] Repl MirrorR Mirror Wrap Const Zero
Mathematica[15] Fixed Reversed Reflected Periodic by valuea

HALCON[16] Continued Mirrored Cyclic by valuea

aA constant pixel value for the Padding parameter specifies constant border padding.

input image(s) to approximate the missing input pixels, and
modifying the processing operator itself so that it computes
approximate results when the available data is limited. The
first two approaches are the most common and are considered
in the current work.

Cropping computes only the pixels where the local oper-
ator’s input window lies fully inside the input image. This
elimiinates the need for any approximation at the cost of
reducing the image size, so it is only appropriate when the size
reduction is acceptably small. For example, cropping is used
in the denoising and demosaicing algorithm employed by a
commercial camera [8] where the sensor size is considerably
larger than the desired final image size. Cropping is not a
viable solution when the processing operator uses a large
window, or when multiple stages or iterations combine to
produce a large effective window size. In these cases, it is
better to obtain approximate results for the border-dependent
pixels than to completely discard them.

Border padding is the most common way to compute
approximate results in the border-dependent region. Border
padding extrapolates the input image, providing synthetic input
pixels beyond the bounds of the image. The quality of the
approximate results will depend on the padding technique
employed, but it will also depend on the processing algorithm
and on the nature of the image data. This means that the
programmer needs a variety of padding methods from which
to choose and the ability to select the padding method to be
used in a particular operator.

There are five well known padding methods that are com-
monly provided in image processing environments. Table I
displays the support for each method in several environments
and table II demonstrates the implementation of each padding
method in a single dimension. The names vary, so we adopt
OpenCV’s names where appropriate.

"Replicate" copies the border pixels as padding beyond the
image bounds. For example, all row positions above the top of
the image are replications of the top row. Replicate padding
produces stripes radiating from the image.

"Reflect" and "Reflect101" mirror the pixels at the border
of the image. The difference between them is that "Reflect"
copies the border pixels producing two identical rows and
columns at the border, whereas "Reflect101" does not copy

TABLE II: Image Padding Methods

Example of padded pixels
Method Pad Image Pad
Replicate a a a a a b c d e f f f f f
Reflect d c b a a b c d e f f e d c
Reflect101 e d c b a b c d e f e d c b
Wrap c d e f a b c d e f a b c d
Constant m m m m m a b c d e f m m m m
Tile 2 a b a b a b c d e f e f e f

the border pixels. Reflection produces corner artifacts in visual
edges that cross the image boundary at an angle.

"Wrap" copies pixels from the opposite side of the image,
effectively mapping the image onto a torus. For example,
the wrapped row immediately above the top row of the
image is a copy of the bottom row. Although wrapping is
not typically useful for natural images, it is very appropriate
for computed images such as Fourier transforms and polar
coordinate transforms where pixels on opposite borders are
computationally adjacent.

"Constant" supplies a constant value for pixels outside the
borders of the image. "Zero" is a special case that pads
the image with constant zero pixels. Constant is typically
not suitable for natural images, but zero padding can be
appropriate for processed images such as edge magnitude
where zero would mean "no edge detected".

Halide*’s library contains an implementation of these five
padding methods, together with "Crop". The library also
includes "Tile", a novel method that pads the image by
replicating small tiles of pixels adjacent to the border as shown
in table II. A parameter specifies the size of the tiles. Tile
padding is particularly useful for Bayer coded colour images
because it preserves the Bayer colour pattern.

A. Declarative Border Handling

In libraries such as OpenCV [10], border handling is indi-
cated by a parameter to the image processing operator. This
declarative specification allows the programmer to select the
desired border handling method but avoids an extra processing
step by deferring processing of the border handler to the



Func sobel (Func in,
BorderFunc bdr = Border::replicate)

{
Func h("sobel_horiz"), v("sobel_vert");
Func sob("sobel"), b;

b = bdr(in);

h() = b[1][-1] + 2 * b[1][0] +
b[1][1] - b[-1][-1] -
2 * b[-1][0] - b[-1][1];

v() = -b[-1][-1] - 2 * b[0][-1] -
b[1][-1] + b[-1][1] +
2 * b[0][1] + b[1][1];

sob() = (abs(h) + abs(v)) / 4;
return Border::crop(sob);

}

Fig. 3: Halide* implementation of Sobel with Border Handling

operator. In Halide*, function applications are declarative so
multiple processing steps can be combined by the compiler
into a single pass through the image. In particular, border
padding could be applied explicitly by the programmer before
passing the input image for processing and the compiler
could inline the border padding into the subsequent processing
step. However, we prefer to specify the border handler as a
declarative parameter to a higher-order function. This approach
is easier to use, more consistent with existing approaches, and
it provides the opportunity for future expansion to include
more sophisticated border handlers that cannot be written as
modifications to the input image before processing.

Halide* implements border handlers as a special type of
higher-order function called BorderFunc. These functions
have additional capabilities including the ability to be applied
selectively to individual dimensions of an image as discussed
below. Advanced programmers can define novel border han-
dlers by writing a C++ subclass of BorderFunc with methods
that embody the Halide* code to implement the border handler.
The existing library supports all the methods shown in table II.

Figure 3 presents a Halide* module that implements the
3 × 3 Sobel operator with border handling. The parameter
bdr is optional and defaults to "Replicate" border padding
which is likely to be an appropriate choice for this operator
when applied to ordinary images. The application of the border
handler within sobel is straightforward and the implemen-
tation of the Sobel operator itself is essentially the same as in
figure 2.

The application of crop to the final result in figure 3
deserves explanation. This is a recommended boilerplate state-
ment that prevents other image processing operators from
accidentally exploiting sobel’s border padding.

B. Combined Padding

In some situations it is appropriate to apply different
padding methods to different dimensions of an image. For
example, an image in polar coordinates could be padded
with "Wrap" in the angle dimension and "Replicate" in the
distance dimension. In Halide* this capability is provided by
a higher-order function called border that accepts several
border padding functions and returns a border handler that
applies each padding method to a separate dimension. Thus,
border(wrap, replicate) returns a border handler
that applies "Wrap" to the first dimension of the image and
"Replicate" to the second dimension.

Since border applies different handlers to different dimen-
sions of the image, the padded result could potentially depend
on the order in which the padding methods are applied. In
particular, the padded corners may be computed in one of two
ways. If the rows are padded first, then the corners are column
padded from the previously padded rows. On the other hand, if
the columns are padded first, then the corners result from row
padding of the previously padded columns. If both methods
of computation always yield the same results then the padding
methods are said to commute.

Commuting padding methods benefit the programmer be-
cause they do not have to be concerned about dependencies
upon the order of application of the padding methods. For
example, when padding an image in polar coordinates, the
programmer can apply "Wrap" padding to the angle dimension
and "Replicate" to the distance dimension and the results will
be semantically identical irrespective of whether the angle
dimension is x or y.

Commuting padding methods also benefits the compiler
because it is free to apply the padding in any order it
chooses. Depending on the padding methods, this may allow
the compiler to simplify the computation.

Figure 4 explores the commutativity of different padding
methods. The figure shows the top-left corner of an image,
with three rows and columns of padding above and to the left.
Figure 4a shows the result of padding rows with "Replicate"
and columns with "Reflect". This padding commutes, because
the upper-left corner of the figure is consistent with padding
either the rows to the right or the columns below. Similarly,
figure 4b demonstrates that "Constant" padding commutes
with "Reflect". In this case, if the rows are padded first
then "Reflect" copies the constant into the corner, whereas
if the columns are padded first then "Constant" fills the corner
with the constant pad value. In constrast, figures 4c and 4d
demonstrate that padding with two different constants yields
different results depending on whether rows or columns are
padded first.

It can be shown that all the padding methods listed in
table II commute with each other, except that "Constant"
paddings with two different constants do not commute. Each of
the padding methods "Replicate", "Reflect", "Reflect101" and
"Wrap" is implemented by applying a particular range limiting
function to the index expressions used to access the underlying



g g g g h i
d d d d e f
a a a a b c
a a a a b c
d d d d e f
g g g g h i

(a) Replicate, Reflect padding

m m m g h i
m m m d e f
m m m a b c
m m m a b c
m m m d e f
m m m g h i

(b) Constant, Reflect padding

m m m n n n
m m m n n n
m m m n n n
m m m a b c
m m m d e f
m m m g h i

(c) Columns padded first

n n n n n n
n n n n n n
n n n n n n
m m m a b c
m m m d e f
m m m g h i

(d) Rows padded first

Fig. 4: Commuting and non-commuting padding

pixels. For example, "Replicate" is implemented by truncating
index values that are out of bounds to the nearest limit. With
these index limiting padding methods, each dimension’s index
expression is range limited independently of the others, so the
order of evaluation has no impact on the result. It follows that
all range limiting padding methods commute provided that the
range limits do not introduce dependencies between the index
expressions.

A similar argument shows that index limiting padding
methods commute with constant padding, as demonstrated in
figure 4b. If the constant is padded first, then the index limiting
method replicates the constant into the corners. On the other
hand, if the index limiting method is applied first then the
corners are directly filled by the constant padding method. In
both cases, the corners are filled with the constant pad value.
In contrast, constant padding methods do not commute with
each other unless the constant values are the same because
whichever constant is applied last will pad the corners as
shown in figures 4c and 4d.

The argument given here can be further generalized to
padding methods that compute weighted linear combinations
of pixels selected from the same row or column, provided that
the sum of the weights is one. For example, the "Extend"
padding method is defined as twice the "Replicate" pad
value minus the "Reflect101" pad value; this padding method,
adapted from Szeliski’s description [17], has weights summing
to one. The method is attractive because it is continuous in the
first derivative unlike the index limiting padding methods. It
is easy to show that such weighted linear padding methods
commute with others of the same kind because the corners
are padded with a linear combination of a linear combination
of pixels. Index limiting padding methods are a special case
of these weighted linear combinations so they also commute
with each other. Finally, with the weights summing to one,

the linear combination faithfully copies constant padding into
the corners if the constant padding is applied first, so these
padding methods commute with constant padding.

With this understanding of commuting padding operators,
the semantics of border is usually well-defined without
considering the order of application of padding methods. The
analysis highlights the case where different constants are used
to pad different dimensions as a potential problem where the
programmer should carefully consider how the corners are to
be padded.

IV. DOMAIN INFERENCE

In Halide, computations produce image functions that are
defined on infinite discrete domains. However, concrete images
are arrays of pixels values that are treated as functions defined
on finite discrete domains. This distinction between Halide
functions and concrete images presents a problem for border
handling because border handling is only applicable to finite
domains. Although Halide functions are conceptually infinite,
they are often actually partial functions that can only be
computed over the restricted domain where the concrete input
images are defined. Halide does not provide the programmer
with any information about these implied restrictions on the
function domain except that Halide detects a run time error if
an attempt is made to access outside the bounds of a concrete
image. The Halide programmer is responsible for ensuring that
their program will not cause such access violations, either by
padding the concrete input images, or by explicitly computing
the appropriate domain for the output image. Halide provides
no language support for the concept of image functions with
finite domains.

Halide* introduces finite rectangular domains for image
functions. This makes image functions and concrete images
equivalent — border handling can be applied to both kinds
of images. Thus, Halide* makes it possible to apply border
handling to each processing step. This means that the pro-
grammer can select the most appropriate border handler to
use at each stage of processing, whereas Halide only supports
border handling for the initial concrete images. An additional
benefit of Halide*’s support for finite domains is that the
compiled program can compute the dimensions of the result
image, relieving the programmer of this task.

Halide* defines two rectangular domains for each image
function. The valid domain represents the bounds of the mean-
ingful image data while the computable domain represents the
bounds of pixels that can be computed without causing an
access violation. Thus, the valid domain represents semantic
limits while the computable domain captures computational
limits. Because pixels that cannot be computed are certainly
not valid, Halide* also enforces a rule that the valid domain
cannot exceed the computable domain.

For concrete images, the two domains are identical and
represent the actual image bounds. For image functions, the
two domains may be different. In particular, padded images
have an expanded computable domain that is usually infinite,
but the valid domain is identical to the original image because



Domain of in Domain of h, v and sob

Fig. 5: Computable domains of sobel (fig. 1)

padding does not create additional meaningful image data.
Padding always expands on the valid domain, so if padding is
applied to an image that has already been padded, the previous
padding is overridden.

When a computation is applied to images (including both
concrete images and image functions), Halide* determines
the domain of the resulting image function using domain
inference. Domain inference involves examining the calls to
input image functions and symbolically computing the range
of pixel locations that are computable and valid for the result
image function.

The computable domain of a Halide* function is determined
by inspecting the index expressions that access the input image
functions. If the computable domain of the input image is
finite then computability implies that the index expressions
must fall within the domain of the input function. Since do-
mains are rectangular, the input function’s computable domain
constrains the range of the index expression. Solving each
constraint equation for the current function’s index variables
yields a range limit for the computable domain of the current
function. The computable domain of the function is obtained
by intersecting the relevant ranges. Trivially, if the computable
domain of the input image is infinite then it does not constrain
the computable domain of the result function.

For example, suppose a function contains the index expres-
sions x-1 and x+2 in separate references to an image that
is defined over the computable domain [0, 100]. In this case,
solving the constraints 0 ≤ x− 1 ≤ 100 and 0 ≤ x+2 ≤ 100
yields ranges of [1, 101] and [−2, 98] for x. The intersection
of these ranges yields [1, 98] as the computable domain of the
function.

As a further example of computable domains, figure 5 shows
the computable domain of the Sobel functions h, v and sob
relative to the input computable domain. The figure shows two
input windows that represent the limits of computability. The
relevant index expressions in figure 1 are x-1, x+1, y-1 and
y+1 in the definitions of h and v.

The valid domain of a Halide* function is obtained similarly
to the computable domain but with one significant difference:
The valid domain of a local operator is enlarged to the
intersection of the input domains when sufficient padding is
present. This captures the intent of border handling which is
to preserve the dimensions of the input image in the result.

To achieve this, Halide*’s domain inference ignores the local
operator index offsets when it is computing the valid domain,
whereas the computation of the computable domain includes
the offsets. For example, the functions h, v and sob in figure 3
have the same valid domain as the input when padding is
provided. In fact, Halide* computes the valid domain of a local
operator by intersecting the input valid domains together with
the computable domain of the result. If there is insufficient
padding, the computable domain will be smaller than the
intersection of the input valid domains and the valid domain
of the result will then be restricted to its computable domain.
In this way, Halide* correctly computes the valid domain of
local operators whether padding is absent, partial or complete.

Domain inference as defined by Halide* is well defined
for local image processing operators, even when they are
combined with image flips, rotations by multiples of 90
degrees and resizing. For general image warping operators, the
domain of the result may not be rectangular and therefore may
not be representable as one of Halide*’s rectangular domains.
In specific cases of image warping, it may not be possible
to solve the constraints that define the domain. In these
cases, Halide* ignores the unsolved constraints and provides
a domain that is no smaller than the actual domain together
with a flag indicating that the domain is inexact. In these cases,
the programmer may choose to explicitly compute the result
domain themselves. The partially solved domain is available
to the programmer and may be useful in this computation.

V. EFFICIENT BORDER HANDLING

Border handling introduces potential efficiency problems.
Padding an image requires computing the pad pixels, either
in a precomputation step or on demand. Precomputation of
padded pixels introduces an additional computational pass and
additional memory accesses, typically involving copying the
entire image to a larger memory buffer. On-demand padding
introduces conditional expressions that must be evaluated
during pixel accesses to return the pad values. These overheads
can dominate execution time and should be reduced as much
as possible.

By default, Halide in-lines function calls, eliminating pro-
cessing passes. However, in-lining can result in repeated com-
putation of the in-lined function, so Halide provides schedules
that can advise the compiler to buffer the intermediate compu-
tation results in memory and perform other optimisations [8].
Whether memory buffering is beneficial or not depends on
the computation and the target CPU, so scheduling Halide
functions is left to the programmer. In Halide*’s border
handling library, the same schedule capabilities can be used
to select between precomputation and on-demand padding.

A distinctive feature of image padding is that a large portion
of the computation of the output image does not require the
use of padded pixels. This border-independent region can be
computed in the same way irrespective of whether padding
is being applied or not. On the other hand, computation of
the border-dependent region is only possible with padding and
requires the computation of padded pixels. Efficiency can thus



be improved by using specialised code to compute the border-
independent region with the conditional expressions that result
from padding. This optimisation is known as loop splitting or
index-set splitting [18], [19].

Some existing image processing DSLs have included border
handling together with index-set splitting for efficiency. This
capability is easily implemented in DSLs where the dimen-
sions of the processing window are specified; for example,
the Apply compiler splits image processing into nine regions
where the border handling conditions are different [2]. In
functional languages, the dimensions of the processing win-
dow must be determined by analysis the index expressions in
function calls. IMPEL [7] uses index-set splitting to optimise
boundary conditions in local operators with simple integer off-
sets. Both of these DSLs apply index-set splitting to relatively
simple border padding in local operators with concrete images
as their input.

Halide* takes the idea of index-set splitting further. Halide*
applies index-set splitting to border padding where the input
image may itself be the result of other computations including
resizing, rotations by 90 degrees and flipping. In-lining these
image transformations yields complicated index expressions
that must be analysed to identify the border-independent
region. The Halide* compiler extracts the conditional ex-
pressions from these index expressions and simplifies them
to obtain bounds for the border-independent region. This is
similar to domain inference, and can use the same constraint
equation solver, but the equations to be solved are derived
from the conditional expressions that implement the border
handlers.

Having determined the border-independent region, Halide*
recursively splits the loops that process the image and then
optimises the code in each loop based on the loop bounds.
Using the known range of the loop variables, these optimisa-
tions eliminate the conditional expressions from the border-
independent region and also simplify the conditionals in the
border-dependent regions. Using index-set splitting in this way
improves the efficiency of both precomputed and on-demand
padding.

A. Performance Results

We tested the performance efficiency of Halide*’s border
handling optimizations by measuring execution time over
repeated runs of a collection of simple Halide* programs
with various schedule options. The schedules included pre-
computation of padding, code vectorization, parallelization and
index-set splitting (ISS) options in various combinations. The
test programs were separable 2D convolutions with different
window sizes, adding two diagonally separated pixels, and
Sobel edge detection. These programs are representative of
typical simple image processing operators.

Performance tests were performed on square images of dif-
ferent sizes. The experiments included 8, 16 and 32-bit integer
pixels, and 32-bit floating point pixels. The test environment
was an unloaded Intel Core-i7/870 2.93GHz system with
16GB RAM running Ubuntu 10.4.1. The CPU has an 8MB

Fig. 6: Halide* execution time comparison

level 3 cache that is dynamically split between the processors.
Each processor also has an individual 256KB level 2 cache.

As an overview of the ISS optimization results, figure 6
directly compares the execution times for a variety of paired
test cases with and without ISS. The 6000 plot points represent
12000 compiled modules — 2000 paired tests of each of the
convolution, diagonal and Sobel operators. In 19% of our
test cases, the ISS schedule was slower than the non-ISS
schedule by up to a factor of two, but in 81% of cases, ISS
improved execution time by a factor of up to 31 by reducing
the unnecessary computation of border padding conditionals.

Figure 7 shows the execution time per pixel for the Sobel
and 7× 7 convolution operators for different image sizes and
border handlers. Cropped border handling is included as a
baseline that has no border handling overhead because the
output image is computed only over the border-independent
region. We expect larger images to have less border handling
overhead per pixel because the border-dependent region is
a smaller portion of the result image. The figure supports
this, with an overhead of at most 16% for images at least
2048 × 2048. The increase in the baseline execution at the
image size 4096 × 4096 is believed to result from misses on
the level 3 cache when processing the 16MB images.

For comparison, without ISS the execution time per pixel is
consistent across all image sizes. The execution time for 7×7
convolution ranges from 37 ns per pixel for "Wrap" padding
to 61 ns for "Zero" padding. For Sobel, it ranges from 5.5 ns
per pixel for "Wrap" to 14.2 ns for "Reflect101". Thus, ISS
reduces execution time in these examples by a factor of up to
10 for large images.

VI. CONCLUSION

Border handling is important for local image processing
operators to avoid reducing the dimensions of the output
image. Libraries such as OpenCV provide border handling op-
tions that pad the input image to produce approximate output
values in the border-dependent regions. We have adapted the



Fig. 7: Effect of image size on processing time per pixel

same idea to functional image processing, showing how the
declarative style of functional programming naturally supports
border handling options for higher-order functions.

We have implemented these ideas as an extension to the
functional image processing language Halide. Because border
handling is only relevant for finite images, we added domain
inference to Halide* so that intermediate and output images
can have finite domains. This allows border handling to be
applied not only to concrete images but also to Halide* image
functions. Halide*’s domain inference uses two domains — the
valid domain represents the semantically meaningful portion of
the image while the computable domain represents the region
that can be computed without access violations. Using these
two domains makes it possible to infer the result domain for
local image processing operators whether or not the input
images are padded.

Border handling is potentially computationally expensive
due to introduced conditional expressions. Halide* addresses
this problem through code optimisation. Our experimental
results demonstrate that these optimisations are particularly
effective for larger image dimensions.

ACKNOWLEDGMENT

The author is grateful for discussion and suggestions from
Prof. Tony Sloane and Matthew Roberts and to the authors of
Halide who have developed it as an open source project.

REFERENCES

[1] L. G. C. Hamey, J. A. Webb, and I.-C. Wu, “An architecture independent
programming language for low-level vision,” Computer Vision, Graphics
and Image Processing, vol. 48, no. 2, pp. 246–264, Nov. 1989.

[2] L. Hamey, “Efficient image processing with the Apply language,” in
Digital Image Computing Techniques and Applications, 9th Biennial
Conference of the Australian Pattern Recognition Society on, 2007, pp.
533–540.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream computing on graphics
hardware,” ACM Trans. Graph., vol. 23, no. 3, pp. 777–786, Aug.
2004. [Online]. Available: http://doi.acm.org/10.1145/1015706.1015800

[4] B. Chamberlain, S.-E. Choi, C. Lewis, C. Lin, L. Snyder, and W. Weath-
ersby, “ZPL: a machine independent programming language for parallel
computers,” Software Engineering, IEEE Transactions on, vol. 26, no. 3,
pp. 197–211, 2000.

[5] OpenCV development team, “OpenCV 2.4.11.0 documentation,” 2015
(accessed July 7, 2015). [Online]. Available: http://docs.opencv.org/

[6] MVTec Software GmbH, “HALCON operator reference version
12.0,” 2014 (accessed July 7, 2015). [Online]. Available: http:
//www.mvtec.com/download/reference/

[7] T. L. Kay and L. I. Rudin, “IMPEL: a domain-specific image processing
environment, language, and compiler,” in Proc. SPIE 2277, Automatic
Systems for the Identification and Inspection of Humans, 1994, pp. 265–
274.

[8] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand, “Decoupling algorithms from schedules for easy optimization
of image processing pipelines,” ACM Trans. Graph., vol. 31, no. 4, pp.
32:1–32:12, Jul. 2012.

[9] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proceedings of the 2013 ACM Sigplan Conference on Programming
Language Design and Implementation, 2013.

[10] OpenCV development team, “OpenCV 2.4.11.0 documentation: Image
filtering,” 2015 (accessed July 7, 2015). [Online]. Available: http:
//docs.opencv.org/modules/imgproc/doc/filtering.html

[11] The MathWorks, Inc, “Pad array - MATLAB padarray,” 2013. [Online].
Available: http://www.mathworks.com.au/help/images/ref/padarray.html

[12] The Scipy community, “SciPy v0.12 reference guide
(DRAFT): scipy.ndimage.filters.convolve,” 2013. [Online]. Avail-
able: http://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.
filters.convolve.html

[13] Oracle, “Java advanced imaging: Class BorderExtender,” 2013.
[Online]. Available: http://docs.oracle.com/cd/E17802_01/products/
products/java-media/jai/forDevelopers/jai-apidocs/javax/media/jai/
BorderExtender.html

[14] Intel, “Intel integrated performance primitives for Intel architecture
reference manual 7.1: FilterGaussBorder,” 2012. [Online].
Available: http://software.intel.com/sites/products/documentation/doclib/
ipp_sa/71/ipp_manual/IPPI/ippi_ch9/functn_FilterGaussBorder.htm

[15] Wolfram Research, “Mathematica 9 documentation: Padding,”
2013. [Online]. Available: http://reference.wolfram.com/mathematica/
ref/Padding.html

[16] MVTec Software GmbH, “HALCON operator reference version 12.0:
convol_image,” 2014 (accessed July 7, 2015). [Online]. Available:
http://www.mvtec.com/download/reference/convol_image.html

[17] R. Szeliski, Computer Vision: Algorithms and Applications. Springer,
2011, pp. 101–102.

[18] R. Sakellariou, “Partitioning loop nests containing conditionals for
automatic parallelisation,” in Proceedings of the 3rd Hellenic-European
Conference on Mathematics and Informatics, E. A. Lipitakis, Ed.
Athens: Lea Press, September 1996, pp. 580–587.

[19] M. J. Wolfe, High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.


