
CoolAid: The Cool 2020 Reference Manual∗

1 Introduction

This manual describes the programming language Cool: the Classroom Object-Oriented Language. Cool
is a small language that can be implemented in a one semester course. Still, Cool retains many of
the features of modern programming languages including objects, static typing, and automatic memory
management. Cool 2020 is a new language differing from many versions of Cool. Indeed Cool 2020 is
a subset of Scala; in a ridiculous act of hubris, we will call Scala “Extended Cool.” Part of this class
involves learning to use a new language quickly.

Cool programs are sets of classes. A class encapsulates the variables and procedures of a data type.
Instances of a class are objects. In Cool, classes and types are identified; i.e., every class defines a type.
Classes permit programmers to define new types and associated procedures (or methods) specific to those
types. Inheritance allows new types to extend the behavior of existing types.

Cool is an expression language. Most Cool constructs are expressions, and every expression has a
value and a type. Cool is type safe: procedures are guaranteed to be applied to data of the correct type.
While static typing imposes a strong discipline on programming in Cool, it guarantees that no runtime
type errors can arise in the execution of Cool programs.

This manual is divided into informal and formal components. For a short, informal overview, the first
ten to eleven pages (through Section 9) suffices. The formal description begins with Section 10.

In this manual, $CLASSHOME is assumed to be /afs/cs.uwm.edu/users/classes/cs654/. We also
assume you have $CLASSHOME/cmd in your UNIX “path.”

2 Getting Started

The reader who wants to get a sense for Cool at the outset should begin by reading and running the
example programs in the directory $CLASSHOME/examples. Cool source files have extension .cool and
Cool assembly files have extension .s. The Cool compiler is $CLASSHOME/cmd/coolc. To compile a
program:

coolc [-o fileout] file1.cool file2.cool ... filen.cool

The compiler compiles the files file1.cool through filen.cool as if they were concatenated to-
gether. Each file must define a set of complete classes—class definitions may not be split across files. The
-o option specifies an optional name to use for the output assembly code. If fileout is not supplied, the
output assembly is named file1.s.

The coolc compiler generates MIPS assembly code. Because we don’t have a MIPS-based machine to
run them on, Cool programs are run on a MIPS simulator called spim. We need to include the runtime

∗Copyright c©1995–1996 by Alex Aiken. Copyright c©2000–2020 by John Boyland. All rights reserved.

1

system. For convenience, we provide a shell script coolspim that calls spim with the right arguments.
To run a cool program, type

% coolspim

(spim) load "file.s"

(spim) run

To run a different program during the same spim session, it is necessary to reinitialize the state of the
simulator before loading the new assembly file:

(spim) reinit

An alternative—and faster—way to invoke spim is with a file:

coolspim file.s

This form loads the file, runs the program, and exits spim when the program terminates. The spim

manual is available on the course Web page.
The following is a complete transcript of the compilation and execution of sort_list.cool from the

examples directory $CLASSHOME/examples/. This program is very silly, but it does serve to illustrate
many of the features of Cool.

% coolc sort_list.cool

% coolspim sort_list.s

SPIM Version 8.0 of January 8, 2010 (with STATS by jtb)

Copyright 1990-2010, James R. Larus.

All Rights Reserved.

See the file README for a full copyright notice.

Loaded: /afs/cs.uwm.edu/users/classes/cs654/lib/cool-runtime.s

How many numbers to sort? 5

0

1

2

3

4

COOL program successfully executed

3 Classes

All code in Cool is organized into classes. Each class definition must be contained in a single source file,
but multiple classes may be defined in the same file. Class definitions have the form:

class type(var-formals) [extends type(actuals)] {

feature-list
}

The notation [. . .] denotes an optional construct. All class names are globally visible. Class names
begin with an uppercase letter. Classes may not be redefined. The formal parameters are attributes (see
next section) initialized when instances are created.

2

3.1 Features

The body of a class definition consists of a list of feature definitions. A feature is either an attribute or
a method. An attribute of class A specifies a variable that is part of the state of objects of class A. A
method of class A is a procedure that may manipulate the variables and objects of class A. A special
method in each class is the constructor, which has the same name as the class (and no declared return
type). The constructor is used to initialize newly created objects of the class.

One of the major themes of modern programming languages is information hiding, which is the idea
that certain aspects of a data type’s implementation should be abstract and hidden from users of the
data type. Cool supports information hiding through a simple mechanism: all attributes have scope local
to the class, and all methods have global scope. Thus, the only way to provide access to object state in
Cool is through methods.

Feature names must begin with a lowercase letter. No method name may be defined multiple times in
a class, and no attribute name may be defined multiple times in a class, but a method and an attribute
may have the same name.

A fragment inspired by sort list.cool illustrates simple cases of both attributes and methods:

class Cons(var car : Int, var cdr : List) extends List() {

override def isNil() : Boolean = false;

override def head() : Int = car;

override def tail() : List = cdr;

}

In this example, the class Cons has two attributes car and cdr (both of which are initialized when
instances are created) and three methods isNil, head and tail, each of which is declared as overriding a
method in the parent class. The types of attributes, as well as the types of formal parameters and return
types of methods are explicitly declared by the programmer.

We can create an object of class Cons and set the car and cdr fields in the following example:

new Cons(1,new Nil())

An object can be thought of as a record that has a slot for each of the attributes of the class as well
as pointers to the methods of the class. This example creates a new cons cell and initializes the “car” of
the cons cell to be 1 and the “cdr” to be new Nil().1 There is no mechanism in Cool for programmers
to deallocate objects. Cool has automatic memory management; objects that cannot be used by the
program are deallocated by a runtime garbage collector.

Given an object c of class Cons, we can access the car field using the syntax:

c.head()

This notation is object-oriented dispatch. There may be many definitions of head methods in many
different classes. The dispatch looks up the class of the object c to decide which head method to invoke.
Because the class of c is Cons, the head method in the Cons class is invoked. Within the invocation, the
variables car and cdr refer to c’s attributes.

Attributes are discussed further in Section 5 and methods are discussed further in Section 6.
1In this example, Nil is a subtype of List.

3

3.2 Inheritance

If a class definition has the form

class A(. . .) extends B(. . .) { . . . }

then class A inherits the features of B. In this case B is the parent class of A and A is a child class of B.
The semantics of A inheriting from B is that A has all of the features defined in B in addition to its

own features. In the case that a parent and child both define the same method name, then the definition
given in the child class takes precedence. For type safety, it is necessary to place some restrictions on
how methods may be redefined (see Section 6). It is illegal to redefine attribute names.

A class may inherit only from a single class; this is aptly called “single inheritance.”2 The parent-child
relation on classes defines a graph. This graph may not contain cycles. For example, if A inherits from
B, then B must not inherit from A, directly or indirectly. Furthermore, if A inherits from B, then B
must have a class definition somewhere in the program.

There is a distinguished class Any. If some other class definition does not specify a parent class,
then the class inherits from Any by default. Because Cool has single inheritance, the inheritance graph
forms a tree with Any as the root. In addition to Any, Cool has several other basic classes: Unit, Int,
String, Boolean, ArrayAny, IO and Symbol. Of these additional basic classes, only IO may be used as
a superclass. The basic classes are defined in $CLASSHOME/lib/basic.cool and are documented there.

4 Types

In Cool, every class name is also a type. There are two built-in types that are not classes: Null and
Nothing. A value declaration has the form x:C, where x is a variable and C is a type. Every variable
must have a type declaration at the point it is introduced, whether it is an attribute, a var, a case, or
as the formal parameter of a method. The type must be one of the two built-in types or a declared class.

The basic type rule in Cool is that if a method or variable expects a value of type A, then any value of
type B may be used instead, provided that A is an ancestor of B in the class hierarchy. In other words,
if B inherits from A, either directly or indirectly, then a B can be used wherever an A would suffice. The
Nothing and Null types are handled specially.

When an object of class B may be used in place of an object of class A, we say that B conforms to
A or that B ≤ A. As discussed above, conformance is defined in terms of the inheritance graph.

Definition 4.1 (Conformance) Let A,B, and C be types.

• A ≤ A for all types A

• if A inherits from B, then A ≤ B

• if A ≤ B and B ≤ C then A ≤ C

Because Any is the root of the class hierarchy, it follows that A ≤ Any for all types A. The Nothing

type conforms to all types; hence Nothing ≤ A for all types A. The Null type conforms to all types
except the three value classes: Boolean, Int and Unit.

2Some object-oriented languages allow a class to inherit from multiple classes, which is equally aptly called “multiple
inheritance.”

4

4.1 Type Checking

The Cool type system guarantees at compile time that execution of a program cannot result in runtime
type errors. Using the type declarations for identifiers supplied by the programmer, the type checker
infers a type for every expression in the program.

It is important to distinguish between the type assigned by the type checker to an expression at compile
time, which we shall call the static type of the expression, and the type(s) to which the expression may
evaluate during execution, which we shall call the dynamic types.

The distinction between static and dynamic types is needed because the type checker cannot, at
compile time, have perfect information about what values will be computed at runtime. Thus, in general,
the static and dynamic types may be different. What we require, however, is that the type checker’s
static types be sound with respect to the dynamic types.

Definition 4.2 For any expression e, let De be a dynamic type of e and let Se be the static type inferred
by the type checker. Then the type checker is sound if for all expressions e it is the case that De ≤ Se.

Put another way, we require that the type checker err on the side of overestimating the type of an
expression in those cases where perfect accuracy is not possible. Such a type checker will never accept
a program that contains type errors. However, the price paid is that the type checker will reject some
programs that would actually execute without runtime errors.

5 Attributes

An attribute definition has the form

var id : type = initial;

(the type must not be the special type Nothing). An attribute is given a default initial value (see
below) when the object is first created; the specified initialization is performed in the constructor (see
Section 6.1).

Attributes may be accessed inside the class that defines them or in a class that inherits (perhaps
indirectly) from this class. Inherited attributes cannot be redefined.

5.1 Null

Attributes in Cool are pre-initialized to contain values of the appropriate type. The special value null is
used for attributes of all types except Boolean, Unit and Int. Attributes of the latter types are initialized
by default to false, (), and 0 respectively.

The value null (which is the only value of type Null) cannot be safely tested using ==, because this
operator is converted into a method dispatch (q.v.) which can then raise a null dispatch error. It can be
safely tested using match (q.v.). The predefined method IO.is_null uses this technique to test whether
its argument is null. Null may be passed as an argument, assigned to a variable, or otherwise used in any
context where any value is legitimate, except that a dispatch on null generates a runtime error.

There are no values of type Nothing.

5

6 Methods

A method definition has the form

[override] def id(id : type,...,id : type): type = expr;

There may be zero or more formal parameters. The identifiers used in the formal parameter list must
be distinct. The type of the method body must conform to the declared return type. When a method
is invoked, the formal parameters are bound to the actual arguments and the expression is evaluated;
the resulting value is the value of the method invocation. A formal parameter is allowed to shadow an
attribute of the same name, even though this is often an error.

To ensure type safety, there are restrictions on the redefinition of inherited methods. If a class
A inherits a method f from an ancestor class B, then A may override the inherited definition of f
provided the number of arguments, and the types of the formal parameters must be exactly the same in
both definitions, and the return type of the overriding method must conform to the return type of the
overridden method.

Additionally, A must signal its intention to override with the override keyword. It is an error to
unintentionally override a method (without override), or to claim to override a method when there is
no method to override.

To see why some restriction is necessary on the redefinition of inherited methods, consider the following
(incomplete) example:

class A() {

def f(): Int = 1;

}

class B() extends A() {

override def f(): String = "1";

}

Let a be an object with dynamic type A. Then

a.f() + 1

is a well-formed expression with value 2. However, we cannot substitute a value of type B for a, as it would
result in adding a string to a number. Thus, if methods can be redefined arbitrarily, then subclasses may
not simply extend the behavior of their parents, and much of the usefulness of inheritance, as well as
type safety, is lost.

6.1 Constructors

Each class has an implicit constructor that takes the class parameters as arguments, calls the superclass
constructor and then performs attribute initialization. Additionally, a class may be include initializers
of the form { ... }; in its body which are added to the (implicit) constructor. Initializers and attribute
initializations are executed in the order in which they appear.

A constructor cannot be called as an ordinary method; it can only be called in the context of an
allocation, such as

new Matrix(5,7)

6

7 Expressions

Expressions are the largest syntactic category in Cool.

7.1 Literals

The simplest expressions are literals. The unit literal is written (). The boolean literals are true and
false. An integer literal is either the single digit 0 or a string of digits not starting with zero. So 100 is
a legal integer, but 011 is not. String literals are sequences of characters enclosed in double quotes, such
as "This is a string." There are other restrictions on strings; see Section 10.

The literals belong to the basic classes Boolean, Int, Unit and String. The value of a literal is an
object of the appropriate basic class. Additionally, the value null has the type of any class except the
three value classes (Unit, Boolean and Int).

7.2 Identifiers

The names of local variables, formal parameters of methods, this, and class attributes are all expressions.
The identifier this may be referenced, but it is an error to assign to this or to bind this in a var, a
case, or as a formal parameter. It is also illegal to have attributes named this.

Local variables and formal parameters have lexical scope. Attributes are visible throughout a class
in which they are declared or inherited. The binding of an identifier reference is the innermost scope
that contains a declaration for that identifier, or to the attribute of the same name if there is no other
declaration. The exception to this rule is the identifier this, which is implicitly bound in every class.
Cool 2020 forbids some forms of “shadowing” in which an inner variable has the same name as an outer
variable. This avoids common programming errors.

7.3 Assignment

An assignment has the form

id = expr

Only attributes and local variables may be assigned. The static type of the expression must conform to
the declared type of the identifier. The value of an assignment is (): the unit value.

7.4 Dispatch

There are three forms of dispatch in Cool. The three forms differ only in how the called method is
selected. The most commonly used form of dispatch is

expr.id(expr,...,expr)

Consider the dispatch e0.f(e1,...,en). To evaluate this expression, we evaluate the subexpressions
in left-to-right order, from e0 to en. Next, the class C of e0 is noted (if e0 is null a runtime error is
generated). Finally, the method f in class C is invoked, with the value of e0 bound to this in the body
of f and the actual arguments bound to the formals as usual. The value of the expression is the value
returned by the method invocation.

Type checking a dispatch involves several steps. Assume e0 has static type A. (Recall that this type
is not necessarily the same as the type C above. A is the type inferred by the type checker; C is the class

7

of the object computed at runtime, which is potentially any subclass of A.) Class A must have a method
f , the dispatch and the definition of f must have the same number of arguments, and the static type of
the ith actual parameter must conform to the declared type of the ith formal parameter. If f has return
type B and B is a class name, then the static type of the dispatch is B.

The other forms of dispatch are:

id(expr,...,expr)
super.id(expr,...,expr)

The first form is shorthand for this.id(expr,...,expr).
The second form provides a way of accessing methods of parent classes that have been hidden by

overridings in child classes. Instead of using the class of this to determine the method, the method of
the current superclass is used. For example, if A overrides method f inherited (perhaps indirectly) from
B, then super.f() inside class A invokes the method f in class B on the this object.

7.5 Blocks

An explicit block has the form

{ block }

where block is an implicit block of the form

expr; ... expr

The expressions are evaluated in left-to-right order. The value of a block is the value of the last expression,
if any, or the unit value otherwise. The expressions of a block may have any static types. The static type
of a block is the static type of the last expression, if any, or Unit.

An occasional source of confusion in Cool is the use of semi-colons. Semi-colons are used to separate
expressions and local declarations in a block and to terminate features, but are not used elsewhere in
expressions, as seen in Section 11.

7.6 Local Variables

Any of the expressions inside a block (except the last) may be a local variable declaration of the form:

var id : type = expr;

The expression is an initialization. When a local declaration is evaluated, the expr is evaluated and
the result is bound to the id .

The binding of id is visible later in the block. A local variable may not “shadow” any other declaration
(attribute, formal, local or branch) currently in scope.

7.7 Conditionals

A conditional has the form

if (expr) expr else expr

8

The semantics of conditionals is standard. The predicate is evaluated first. If the predicate is true,
then the second expression is evaluated. If the predicate is false, then the third expression is evaluated.
The value of the conditional is the value of the evaluated branch. Despite their close syntactic resemblance
to C++’s if statements, Cool’s if expressions function more like C++’s ?: expressions because they
compute values. In particular, the “else” part is required in Cool.

Predicates must have static type Boolean. The branches may have any static types. To specify the
static type of the conditional, we define an operation ∨ (pronounced “join” or “lub” for “least upper
bound”) on types as follows. Let A,B be types. The least type of a set of types means the least element
with respect to the conformance relation ≤.

A ∨B = the least type C such that A ≤ C and B ≤ C

Let T , and F be the static types of the branches of the conditional without elsif’s. Then the static
type of the conditional is T ∨ F .

7.8 Loops

A loop has the form

while (expr) expr

The predicate is evaluated before each iteration of the loop. If the predicate is false, the loop terminates
and () is returned. If the predicate is true, the body of the loop is evaluated and the process repeats.

The predicate must have static type Boolean. The body may have any static type. The static type
of a loop expression is Unit.

7.9 Pattern Matching

A pattern match expression introduces an expression and gives multiple tests that depend on the exact
class of the expression:

expr match {

(case test => block)+

}

Each test has one of the two forms below:

id : class
null

(The type must be a declared class.) Pattern matching expressions provide runtime type tests on objects.
First, expr is evaluated and its dynamic type C noted. If expr evaluates to null, the null branch is
chosen, if any. Otherwise, the first branch classk such that C ≤ classk is selected. The identifier idk is
bound to the value of expr and the expression blockk is evaluated. The result of the case is the value of
blockk . If no branch can be selected for evaluation (for instance, if the expression is null and there is no
null branch), a run-time error is generated. Every pattern matching expression must have at least one
case branch.

Every case branch must be possible, that is, the branch must have a non-overlapping intersection with
the type of the expression being cased. Furthermore, it must not be subsumed by a previous branch (for
example, if that previous branches used the same class or a superclass of it).

9

For each branch, let Ti be the static type of blocki . The static type of a case expression is
∨

1≤i≤n+1 Ti.
The identifier id introduced by a branch of a case hides any variable or attribute definition for id visible
in the containing scope.

Pattern matching expressions have no special construct for a “default” or “otherwise” branch. The
effect is approximated by including a branch

case x : Any => ...

because every type is ≤ to Any, except that this does not handle null.
Pattern matching expression provides programmers a way to insert explicit runtime type checks in

situations where static types inferred by the type checker are too conservative. A typical situation is that
a programmer writes an expression e and type checking infers that e has static type A. However, the
programmer may know that, in fact, the dynamic type of e is always B for some B ≤ A. This information
can be captured using a case expression:

e match { case x : B => ... }

In the branch the variable x is bound to the value of e but has the more specific static type B.
Case (branch) variables may “shadow” an existing declaration of the same name, in which case the

latter binding is not visible in the block.

7.10 New

A new expression has the form

new type (expr,...,expr)

The value is a fresh object of the appropriate class. The static type is type, which must name a class.
The constructor for the type is called and passed the given arguments. The class must have the same
number of formals as expressions are given here and the types must match (as in a dispatch). Internally,
the constructor call is seen as a dispatch on a newly created object. You may not create an instance of
Any or Symbol, or of a value type in this way.

7.11 Arithmetic and Comparison Operations

Cool has four binary arithmetic operations: +, -, *, /. The syntax is e1 op e2. To evaluate such an
expression first e1 is evaluated and then e2. The result of the operation is the result of the expression.

The static types of the two sub-expressions must be Int. The static type of the expression is Int.
Cool has three comparison operations: <, <=, ==. For < and <= the rules are exactly the same as for

the binary arithmetic operations, except that the result is a Boolean.
The comparison == is syntactic sugar : e1 == e2 is parsed into an internal form equivalent to e1.equals(e2)

and thus will crash at runtime if e1 is null.
Finally, there is one arithmetic and one logical unary operator. The expression -expr is the negation

of expr . The expression expr must have static type Int and the entire expression has static type Int.
The expression !expr is the boolean complement of expr . The expression expr must have static type
Boolean and the entire expression has static type Boolean.

10

8 Basic Classes

There are several predefined classes that the compiler has special information for: Any, IO, Unit, Int,
Boolean, String, Symbol, and ArrayAny. The file $CLASSHOME/lib/basic.cool defines and documents
each of these classes. Please read this file for more details.

9 Main Class

Every program must have a class Main with zero parameters. A program is executed by evaluating new

Main().

The remaining sections of this manual provide a more formal definition of Cool. There are four sections
covering lexical structure (Section 10), grammar (Section 11), type rules (Section 13), and operational
semantics (Section 14).

10 Lexical Structure

The lexical units of Cool are integers, type identifiers, object identifiers, special notation, strings, com-
ments, keywords, and white space.

10.1 Integers, Identifiers, and Special Notation

Integer literals are non-empty strings of digits 0-9 not starting with zero, except that 0 is a valid integer
literal. Identifiers are strings (other than keywords) consisting of letters, digits, and the underscore
character. Type identifiers begin with a capital letter; object identifiers begin with a lower case letter.
The special syntactic symbols (e.g., parentheses, equal signs, etc.) are shown as they occur in the syntax
diagrams.

10.2 Strings

There are two forms for string literals. The simple version of string literals are enclosed in double quotes
"...". Within a string literal, a sequence ‘\c’ is illegal unless it is one of the following:

\0 NUL
\b backspace
\t tab
\n newline
\r return
\f form feed
\" double quote
\\ backslash

A newline character may not appear in the simple form of a string literal (even if escaped):

"This is not\

OK"

11

The other form of string literals starts with three double quotes and continues until ended by three
double quotes (again). Any characters, including backslashes and newlines are legal. The only thing
forbidden is three double quotes. Thus the following represents a string literal:

"""This starts a string literal

that continues on for several lines

even though it includes "’s and \’s and newline characters

in a "wild" profu\sion\\ of normally i\\egal t"ings.\"""

The string contains literally everything inside of it.

10.3 Comments

There is two forms for comments in Cool. Any characters after two slashes // and before the next newline
(or EOF, if there is no next newline) are ignored. Also, any characters excepting the sequence */ may
be enclosed in C-style comments: /*. . . */.

10.4 Keywords

The keywords of Cool are case class def else extends false if match native new null override
super this true var while and must be written in lowercase. The keyword native may only be used in
the special basic.cool file provided with the compiler. Additionally, the following words are reserved for
“Extended Cool” and cannot be used: abstract catch do final finally for forSome implicit import
lazy object package private protected requires return sealed throw trait try type val with
yield. (We call these the “illegal keywords.”)

10.5 White Space

White space consists of any sequence of the ASCII characters: HT, NL, CR, and SP. These characters
are represented by the following C/C++ character literals respectively: ’\t’, ’\n’, ’\r’, and ’ ’.

11 Cool Syntax

The grammar is specified here by a sequence of “railroad diagrams” which give grammatical possibilities
as paths through a network which do not make any sharp turns (as railway tracks don’t). Literal tokens
are written inside of ovals; subnetworks are given by a rectangular box naming the nonterminal (lowercase)
or terminal (UPPERCASE).

The first diagrams specify the form of a Cool program:

program

classdecl�
�

�

12

classdecl

class
�� �TYPE varformals �

�extends
�� � TYPE actuals�

�native
�� �

�

�

classbody

varformals

(
����

� var
�� �ID :

���TYPE�
� ,

���
�

�

)
���

classbody

{
����

� feature�
�

�

�

}
���

feature

�
�override

�� �
�

def
�� �ID formals :

���TYPE =
��� expr�

�native
�� �

�

;
����

�var
�� �ID =

���native
�� ��

� :
���TYPE =

���expr

�

;
���

� {
���block }

���;
���

�

formals

(
����

� ID :
���TYPE�

� ,
���

�

�

)
���

actuals

(
����

� expr�
� ,

���
�

�

)
���

13

block

�
��

� �
�var

�� �ID :
���TYPE =

���
�

expr ;
����

�
�

�

expr

�

expr

�
� =

���ID�
� !

���� -
����else
�� �expr)

���expr (
���if

�� ��)
���expr (

���while
�� �

�

�

primary �
� expr <=

�� ��
� <

����==
�� �� *
���� /
���� +
���� -
���

�

�

� cases match
�� ��actuals ID .

���

�

�

The parentheses for an “if” expression may look backwards, but if one looks carefully, they see that
the train will be traveling from right to left and thus will pass the open (left) parenthesis before the
closing (right) parenthesis. The same is true for “while.”

14

primary

�
�super

�� �.
���

�

ID actuals�
�new

�� �TYPE actuals

� {
���block }

���� (
���expr)

����null
�� �� (
���)

���� ID

� INTEGER

�STRING

�BOOLEAN

�this
�� �

�

cases

{
��� case

�� � ID :
���TYPE�

�null
�� �

�

=>
�� �block�

�
�

}
���

11.1 Precedence

The precedence of infix binary and prefix unary operations, from highest to lowest, is given by the
following table (where -# means unary minus):

.

! -#

* /

+ -

==

<= <

match

if while

=

All binary operations are left-associative.

15

12 Intermediate Form

The intermediate form of Cool is simpler than its surface syntax. In particular, all implicit blocks are
converted into explicit blocks.

We also convert constructors into regular methods, and change new to a simpler form: new C creates
an instance of class C with its attributes initialized to default values.

In theory, the following transformations are applied successively until none can be applied. As it
happens this system of rewrite rules is confluent which means that the same final result is achieved
regardless of the order in which rules are applied. In the rules, e is a meta-variable referring to some
expression and E is a meta-variable referring to one or more expressions separated by semicolons:

case null => E =⇒ case null:Null => E

case i:T => E =⇒ case i:T => { E } |E| > 1

{ e } =⇒ e optionally

{ } =⇒ () optionally

The following rules are also applied at the same time. Here A refers to a comma-separated list
of actuals, B refers to a block, F refers to a comma-separated list of formals, X refers to a list of
(unprocessed) Cool 2020 features, where Y refers to a list of cleaned up internal features, C refers to the
class, and C ′ refers to its superclass:

class C(F) { X } =⇒ class C(F) extends Any() { X }

class C(F) extends C ′(A) { X } =⇒ class C(F) extends C ′(A) { X { this }}

{ B1 }; { B2 } =⇒ { B1;B2 }

var i:T = E; { B } =⇒ { i = E; B } var i:T;

def i(A) : T ′ = E′; { B } =⇒ { B } def i(A) : T ′ = E′;

class C(F) extends C ′(A) {{ B } Y } =⇒
class C extends C ′ {
def C(F̄):C = { this.C ′(A); f = f̄; ...; B };

F; Y }

new C(A) =⇒ (new C).C(A)

In practice, these transformation rules are implemented by building the intermediate form directly in the
parser.

13 Type Rules

This section formally defines the type rules of Cool. The type rules define the type of every (intermediate)
Cool expression in a given context. The context is the type environment, which describes the type of
every unbound identifier appearing in an expression. The type environment is described in Section 13.1.
Section 13.3 gives the type rules.

13.1 Type Environments

To a first approximation, type checking in Cool can be thought of as a bottom-up algorithm: the type of
an expression e is computed from the (previously computed) types of e’s subexpressions. For example,

16

an integer 1 has type Int; there are no subexpressions in this case. As another example, if e2 has type
X, then the expression { e1; e2 } has type X.

A complication arises in the case of an expression v, where v is an object identifier. It is not possible
to say what the type of v is in a strictly bottom-up algorithm; we need to know the type declared for v
in the larger expression. Such a declaration must exist for every object identifier in valid Cool programs.

To capture information about the types of identifiers, we use a type environment. The environment
consists of two parts: a method environment M , and an object environment O. The method environment
and object environment are both functions (also called mappings). The object environment is a function
of the form

O(v) = T

which assigns the type T to object identifier v. The method environment is more complex; it is a function
of the form

M(C, f) = (t1, . . . , tn−1, tn)

where C is a class name (a type), f is a method name (or the constructor name, since we are using
the intermediate form), and t1, . . . , tn are types. The tuple of types is the signature of the method. The
interpretation of signatures is that in class C the method f has formal parameters of types (t1, . . . , tn−1)—
in that order—and a return type tn.

Two mappings are required instead of one because there may be a method and an object identifier of
the same name.

Every expression e is type checked in a type environment; the subexpressions of e may be type
checked in the same environment or, if e introduces a new object identifier, in a modified environment.
For example, consider the expression

var c : Int = 33;

...

The local declaration introduces a new variable c with type Int. Let O be the object component of the
type environment for the block. Then the rest of the block is type checked in the object type environment

O[c : Int]

where the notation O[v : T] is defined as follows:

O[v : T](v) = T

O[v : T](v′) = O(v′) if v′ 6= v

13.2 Type Operations

We define the ≤ and ∨ (LUB = least upper bound) operations formally as follows

17

S-Self

C ≤ C

S-Extends
class C(...) extends C ′(...) C ′ ≤ C ′′

C ≤ C ′′

S-Nothing

Nothing ≤ C

S-Null
C 6∈ {Nothing, Boolean, Int, Unit}

Null ≤ C

G-Compare
C ≤ C ′

C ∨ C ′ = C ′

G-Commute
C ∨ C ′ = C ′′

C ′ ∨ C = C ′′

G-Extends
C 6≤ C ′ class C ′(...) extends C ′′(...) C ∨ C ′′ = D

C ∨ C ′ = D

13.3 Type Checking Rules

The general form a type checking rule is:

Name
...

O,M ` e : T

The rule should be read: In the type environment for objects O, methods M , the expression e has type
T . The dots above the horizontal bar stand for other statements about the types of sub-expressions of
e. These other statements are hypotheses of the rule; if the hypotheses are satisfied, then the statement
below the bar is true.

The rule for object identifiers is simply that if the environment assigns an identifier v type T , then v
has type T .

Var
O(v) = T

O,M ` v : T

The rule for assignment to a variable is more complex:

ASSIGN
O(v) = T O,M ` e1 : T ′ T ′ ≤ T

O,M ` v = e1 : Unit

Note that this type rule—as well as others—use the conformance relation ≤ (see Section 3.2). The rule
says that the assigned expression e1 must have a type T ′ that conforms to the type T of the identifier v
in the type environment. The type of the whole expression is Unit. This rule omits the extra condition
that only attributes and local variables can be assigned.

The type rules for literals are all easy:

Unit

O,M ` () : Unit

True

O,M ` true : Boolean

18

False

O,M ` false : Boolean

Int
i is an integer literal

O,M ` i : Int

String
s is a string literal

O,M ` s : String

We use the special Null type for null:

Null

O,M ` null : Null

Dispatch expressions are the most complex to type check.

Dispatch
O,M ` e0 : T0

O,M ` e1 : T1 . . . O,M ` en : Tn M(T0, f) = (T ′1, . . . , T
′
n, Tn+1) Ti ≤ T ′i 1 ≤ i ≤ n

O,M ` e0.f(e1, . . . , en) : Tn+1

To type check a dispatch, each of the subexpressions must first be type checked. The type T0 of e0
determines which declaration of the method f is used. The argument types of the dispatch must conform
to the declared argument types. This rule implies that the type of the expression must be a class type
(not Null or Nothing).

SuperDispatch
O(super) = T0

O,M ` e1 : T1 . . . O,M ` en : Tn M(T0, f) = (T ′1, . . . , T
′
n, Tn+1) Ti ≤ T ′i 1 ≤ i ≤ n

O,M ` super.f(e1, . . . , en) : Tn+1

A super dispatch is similar except that we use the type of super (see below).
The type checking rule for new is simple, since the constructor call has been reduced to a regular

dispatch. But we still need to check against uninstantiable classes.

New
T is a class. T 6∈ {Any, Int, Unit, Boolean, Symbol}

O,M ` new T : T

The type checking rules for if expressions are straightforward. See Section 7.7 for the definition of
the ∨ operation.

If
O,M ` e0 : Boolean O,M ` ei : Ti, (1 ≤ i ≤ 2)

O,M ` if (e0) e1 else e2 : T1 ∨ T2

The condition must be exactly Boolean type (not Nothing).

19

For blocks, we have special cases for blocks of zero and one expressions respectively, and then rules
for when the first expression is a local variable declaration versus an expression evaluation.

Block-None

O,M ` {}: Unit

Block-One
O,M ` e : T

O,M ` { e } : T

Block-Expr
O,M ` e1 : T1 O,M ` {b} : Tn

O,M ` { e1; b } : Tn

Block-Local
O(x) undefined O,M ` e : T0 T0 ≤ T O[x : T],M ` {b} : T ′

O,M ` { var x : T = e; b } : T ′

First, the initialization e is type checked in an environment without a definition for x. Thus, the variable
x cannot be used in e. Then the rest of the block b is type checked in the environment O extended with
the typing x : T .

For pattern matching, recall that an null branch is converted into a branch using the pattern case

null:Null (NB: it is intentional that the identifier is a keyword, since a normal identifier would be
illegal).

Match
O,M ` e0 : T0

O[x1 : T1],M ` e1 : T ′1 . . . O[xn : Tn],M ` en : T ′n ∀0<i,j≤nTi ≤−S-Null Tj ⇒ i ≤ j
∀o<i≤nTi ≤ T0 or T0 ≤ Ti ∀0<i≤nTi is a class type or xi = "null"

O,M ` e0 match {case x1 : T1 => e1 . . . case xn : Tn => en } :
∨

1≤i≤n
T ′i

Each branch of a pattern matching expression is type checked in an environment where variable xi
has type Ti. The type of the entire expression is the join of the types of its branches. The three extra
side-conditions ensure that

• A more specific case is not shadowed by an earlier case; (Here we use ≤−S-Null which is the ≤
relation except that the rule S-Null cannot be used.)

• Each case is possible;

• Each type is a class type except for the special case null branch.

The first condition implies that a null branch (if any) must come first. This condition is not semantically
necessary since null will not be matched by any normal branch. You are permitted, but not required to
relax the condition slightly for null types to simply require Ti = Tj ⇒ i = j.

Loop
O,M ` e1 : Boolean O,M ` e2 : T2

O,M ` while (e1) e2 : Unit

20

The predicate of a loop must have type Boolean; the type of the entire loop is always Unit.
The type checking rules for the primitive logical, comparison, and arithmetic operations are easy.

None of the operands may be of Nothing type.

Not
O,M ` e1 : Boolean

O,M ` !e1 : Boolean

Compare
O,M ` e1 : Int O,M ` e2 : Int op ∈ {<, <=}

O,M ` e1 op e2 : Boolean

Neg
O,M ` e1 : Int

O,M ` -e1 : Int

Arith
O,M ` e1 : Int O,M ` e2 : Int op ∈ {+, -, *, /}

O,M ` e1 op e2 : Int

The final cases are type checking rules for attributes and methods. For a class C with superclass C ′,
let the object environment OC give the types of all attributes of C (including any inherited attributes).
More formally, if x is an attribute (inherited or not) of C, and the declaration of x is x : T , then

OC(x) = T

The method environment M is global to the entire program and defines for every class C the signatures
of all of the methods of C (including any inherited methods).

The rule for checking attribute definitions ensures that the attribute is not defined in a superclass
already:

Attr
T 6= Nothing OC(x) = T OC′(x) undefined OC ,M ` e : T ′ T ′ ≤ T

OC ,M ` var x : T = e;

The rule for typing methods checks that the parameters are the same and that the return type
conforms to that of any overridden method and also checks the body of the method in an environment
where OC is extended with bindings for the formal parameters, super and this. The type of the method
body must conform to the declared return type.

Method
M(C, f) = (T1, . . . , Tn, T0)

M(C ′, f) undefined OC [this : C][super : C ′][x1 : T1] . . . [xn : Tn],M ` e : T T ≤ T0

OC ,M ` def f(x1 : T1, . . . , xn : Tn) : T0 = e;

Method-Override
M(C, f) = (T1, . . . , Tn, T0) M(C ′, f) = (T1, . . . , Tn, T

′
0)

T0 ≤ T ′0 OC [this : C][super : C ′][x1 : T1] . . . [xn : Tn],M ` e : T T ≤ T0

OC ,M ` override def f(x1 : T1, . . . , xn : Tn) : T0 = e;

If the body of a method is native, then it does not need to be checked:

Native

O,M ` native : T

21

14 Operational Semantics

This section contains a mostly formal presentation of the operational semantics for the (intermediate
form of the) Cool language. The operational semantics define for every Cool expression what value it
should produce in a given context. The context has three components: an environment, a store, and a
“this” object. These components are described in the next section. Section 14.2 defines the syntax used
to refer to Cool objects, and Section 14.3 defines the syntax used to refer to class definitions.

Keep in mind that a formal semantics is a specification only—it does not describe an implementation.
The purpose of presenting the formal semantics is to make clear all the details of the behavior of Cool
expressions. How this behavior is implemented is another matter.

14.1 Environment and the Store

Before we can present a semantics for Cool we need a number of concepts and a considerable amount of
notation. An environment is a mapping of variable identifiers to locations. Intuitively, an environment
tells us for a given identifier the address of the memory location where that identifier’s value is stored.
For a given expression, the environment must assign a location to all identifiers to which the expression
may refer. For the expression, e.g., a + b, we need an environment that maps a to some location and b
to some location. We’ll use the following syntax to describe environments, which is very similar to the
syntax of type assumptions used in Section 13.

E = [a : l1, b : l2]

This environment maps a to location l1, and b to location l2.
The second component of the context for the evaluation of an expression is the store. The store maps

locations to values, where values in Cool are just objects. Intuitively, a store tells us what value is stored
in a given memory location. For the moment, assume all values are integers. A store is similar to an
environment:

S = [l1 → 55, l2 → 77]

This store maps location l1 to value 55 and location l2 to value 77.
Given an environment and a store, the value of an identifier can be found by first looking up the

location that the identifier maps to in the environment and then looking up the location in the store.

E(a) = l1
S(l1) = 55

Together, the environment and the store define the execution state at a particular step of the evaluation
of a Cool expression. The double indirection from identifiers to locations to values allows us to model
variables. Consider what happens if the value 99 is assigned variable a in the environment and store
defined above. Assigning to a variable means changing the value to which it refers but not its location.
To perform the assignment, we look up the location for a in the environment E and then change the
mapping for the obtained location to the new value, giving a new store S′.

E(a) = l1
S′ = S[99/l1]

The syntax S[v/l] denotes a new store that is identical to the store S, except that S′ maps location l to
value v. For all locations l′ where l′ 6= l, we still have S′(l′) = S(l′).

22

The store models the contents of memory of the computer during program execution. Assigning to a
variable modifies the store.

There are also situations in which the environment is modified. Consider the following Cool fragment:

{ var c : Int = 33;

c * c }

When evaluating this expression, we must introduce the new identifier c into the environment before
evaluating the rest of the block. If the current environment and state are E and S, then we create a new
environment E′ and a new store S′ defined by:

lc = newloc(S)
E′ = E[lc/c]
S′ = S[33/lc]

The first step is to allocate a location for the variable c. The location should be fresh, meaning that the
current store does not have a mapping for it. The function newloc() applied to a store gives us an unused
location in that store. We then create a new environment E′, which maps c to lc but also contains all
of the mappings of E for identifiers other than c. Note that if c already has a mapping in E, the new
environment E′ hides this old mapping. We must also update the store to map the new location to a
value. In this case lc maps to the value 33, which is the initial value for c as defined by the local variable
declaration.

The example in this subsection oversimplifies Cool environments and stores a bit, because simple
integers are not Cool values. Even integers are full-fledged objects in Cool.

14.2 Syntax for Cool Objects

Every Cool value is an object. Objects contain a list of named attributes, a bit like records in C. In
addition, each object belongs to a class. We use the following syntax for values in Cool:

v = X(a1 = l1, a2 = l2, . . . , an = ln)

Read the syntax as follows: The value v is a member of class X containing the attributes a1, . . . , an whose
locations are l1, . . . , ln. Note that the attributes have an associated location. Intuitively this means that
there is some space in memory reserved for each attribute.

For base objects of Cool (i.e., Ints, Strings, and Booleans) we use a special case of the above syntax.
Base objects have a class name, but their attributes are not like attributes of normal classes, because
they cannot be modified. Therefore, we describe base objects using the following syntax:

Unit()
Int(5)
Boolean(true)
String(length = 4, "Cool")

Strings contain two parts, the length and the actual sequence of ASCII characters.
Arrays are another special case, they have the following form

Array(length = n, l1, l2, . . . , ln)

The first value is an (immutable) integer, the rest of the values are locations that can be updated.

23

14.3 Class definitions

In the rules presented in the next section, we need a way to refer to the definitions of attributes and
methods for classes. Suppose we have the following Cool class definition:

class B() {

var s : String = "Hello";

def g (y:String) : String = y.concat(s);

def f (x:Int) : Int = x+1;

}

class A() extends B() {

var a : Int = 42;

var b : B = new B();

override def f(x:Int) : Int = x+a;

}

Three mappings, called class, implementation and super, are associated with class definitions. The
class mapping is used to get the attributes, as well as their types and default initialization, of a particular
class:

class(A) = (s : String = nil, a : Int = Integer(0), b : B = nil)

Note that the information for class A contains everything that it inherited from class B, as well as its own
definitions. If B had inherited other attributes, those attributes would also appear in the information for
A. The attributes are listed in the order they are inherited and then in source order: all the attributes
from the greatest ancestor are listed first in the order in which they textually appear, then the attributes
of the next greatest ancestor, and so on, on down to the attributes defined in the particular class. We
rely on this order in describing how new objects are initialized.

The general form of a class mapping is:

class(X) = (a1 : T1 = e1, . . . , an : Tn = en)

Note that every attribute has an initializing expression which is the default of its type. The default of Int
is Integer(0), the default of Unit is Unit(), the default of Boolean is Boolean(false), and the default of
any other type is nil. The default of type T is written DT .

The implementation mapping gives information about the methods of a class. For the above example,
implementation of A is defined as follows:

implementation(A,A) = (A, super.B(); a=42; b=(new B).B(); this)
implementation(A, f) = (A, x, x+a)
implementation(A, g) = (B, y, y.concat(s))

In general, for a class X and a method m,

implementation(X,m) = (X ′, x1, x2, . . . , xn, ebody)

specifies that method m when invoked from class X, has formal parameters x1, . . . , xn, and the body of
the method is expression ebody and that this body was given in class X ′.

The super mapping is used to compute the superclass of a class, for example:

super(A) = B

super(B) = Any

super(Any) = Any

24

14.4 Operational Rules

Equipped with environments, stores, objects, and class definitions, we can now attack the operational
semantics for Cool. The operational semantics is described by rules similar to the rules used in type
checking. The general form of the rules is:

...

C, so, S,E ` e1 : v, S′

The rule should be read as: In the context in class C, where this is the object so, the store is S, and the
environment is E, the expression e1 evaluates to object v and the new store is S′. The dots above the
horizontal bar stand for other statements about the evaluation of sub-expressions of e1.

Besides an environment and a store, the evaluation context contains the current class and a this object
so. The current class allows us to perform static dispatches. The this object is just the object to which
the identifier this refers if this appears in the expression. We do not place this in the environment
and store because this is not a variable—it cannot be assigned to. Note that the rules specify a new
store after the evaluation of an expression. The new store contains all changes to memory resulting as
side effects of evaluating expression e1.

The rest of this section presents and briefly discusses each of the operational rules. A few cases are
not covered; these are discussed at the end of the section.

Assign
C, so, S1, E ` e1 : v1, S2 E(v) = l1 S3 = S2[v1/l1]

C, so, S1, E ` v = e1 : Unit(), S3

An assignment first evaluates the expression on the right-hand side, yielding a value v1. This value is
stored in memory at the address for the identifier. The result is the unit value. (This rule neglects to
prevent assignment to formal parameters or branch identifiers.)

The rules for identifier references, this, and literals are straightforward:

Var
E(v) = l S(l) = v

C, so, S,E ` v : v, S

Unit

C, so, S,E ` () : Unit(), S

Null

C, so, S,E ` null : nil, S

This

C, so, S,E ` this : so, S

True

C, so, S,E ` true : Boolean(true), S

25

False

C, so, S,E ` false : Boolean(false), S

Int
i is an integer literal

C, so, S,E ` i : Int(i), S

String
s is a string literal l = length(s)

C, so, S,E ` s : String(length = l, s), S

Dispatch

C, so, S0, E ` e0 : v0, S1 C, so, S1, E ` e1 : v1, S2
... C, so, Sn, E ` en : vn, Sn+1

v0 = X(a1 = la1 , . . . , am = lam) implementation(X, f) = (X ′, x1, . . . , xn, en+1)
lxi = newloc(Sn+1), for i = 1 . . . n and each lxi is distinct Sn+2 = Sn+1[v1/lx1 , . . . , vn/lxn]

X ′, v0, Sn+2, [a1 : la1 , . . . , am : lam , x1 : lx1 , . . . , xn : lxn] ` en+1 : vn+1, Sn+3

C, so, S0, E ` e0.f(e1, . . . , en) : vn+1, Sn+3

StaticDispatch

C, so, S1, E ` e1 : v1, S2 C, so, S2, E ` e2 : v2, S3
... C, so, Sn, E ` en : vn, Sn+1

so = X(a1 = la1 , . . . , am = lam) implementation(super(C), f) = (C ′, x1, . . . , xn, en+1)
lxi = newloc(Sn+1), for i = 1 . . . n and each lxi is distinct Sn+2 = Sn+1[v1/lx1 , . . . , vn/lxn]

C ′, so, Sn+2, [a1 : la1 , . . . , am : lam , x1 : lx1 , . . . , xn : lxn] ` en+1 : vn+1, Sn+3

C, so, S1, E ` super.f(e1, . . . , en) : vn+1, Sn+3

The dispatch rules do what one would expect. The receiver object (if any) is evaluated and saved. The
arguments are evaluated and saved. Then (for Dispatch), the method is looked up using the dynamic
type (static type for StaticDispatch) and the method found is run.

A new expression in the simplified intermediate language only allocates an object and initializes the
attributes:

New
class(T0) = (a1 : T1 = v1, . . . , am : Tm = vm)

laj = newloc(S0), for j = 1 . . .m and each laj is distinct
v0 = T0(a1 = la1 , . . . , am = lam) S1 = S0[DT1/la1 , . . . , DTm/lam]

C, so, S0, E ` new T0 : v1, S1

If-True
C, so, S1, E ` e1 : Boolean(true), S2 C, so, S2, E ` e2 : v2, S3

C, so, S1, E ` if (e1) e2 else e3 : v2, S3

If-False
C, so, S1, E ` e1 : Boolean(false), S2 C, so, S2, E ` e3 : v3, S3

C, so, S1, E ` if (e1) e2 else e3 : v3, S3

26

There are no surprises in the if-then-else rules. Note that value of the predicate is a Boolean object, not
a boolean.

Block-None

C, so, S,E ` {} : Unit(), S

Block-One
C, so, S0, E ` e1 : v1, S1

C, so, S0, E ` { e1 } : v1, S1

Block-Expr
C, so, S0, E ` e1 : v1, S1 C, so, S1, E ` {b} : vn, Sn

C, so, S0, E ` { e1; b } : v, Sn

Block-Var
C, so, S1, E ` e1 : v1, S2

l1 = newloc(S2) S3 = S2[v1/l1] E′ = E[l1/v] C, so, S3, E
′ ` { b2 } : v2, S4

C, so, S1, E ` { var v : T = e1; b2 } : v2, S4

With a local, we evaluate any initialization code, assigns the result to the variable at a fresh location,
and then evaluate the rest of the block.

Case-not-null
C, so, S1, E ` e0 : v0, S2 v0 = X(. . .) Ti = first Ti where X ≤ Ti

l0 = newloc(S2) S3 = S2[v0/l0] E′ = E[l0/vi] C, so, S3, E
′ ` ei : v1, S4

C, so, S1, E ` e0 match { case v1 : T1 => e1 . . . case vn : Tn => en } : v1, S4

Note that the case rule requires that the class hierarchy be available in some form at runtime, so that
the correct branch of the case can be selected.

If the expression is null, this rule does not apply. We have a different rule for the case that the
expression is null:

Case-null
C, so, S1, E ` e0 : v0, S2 v0 = nil C, so, S2, E ` ei : v1, S3

C, so, S1, E ` e0 match { case v1 : T1 => e1 . . . case null => ei . . . case vn : Tn => en } : v1, S3

Loop-True
C, so, S1, E ` e1 : Boolean(true), S2

C, so, S2, E ` e2 : v2, S3 C, so, S3, E ` while (e1) e2 : Unit(), S4

C, so, S1, E ` while (e1) e2 : Unit(), S4

Loop-False
C, so, S1, E ` e1 : Boolean(false), S2

C, so, S1, E ` while (e1) e2 : Unit(), S2

There are two rules for while: one for the case where the predicate is true and one for the case where
the predicate is false. Both cases are straightforward.

27

The remainder of the rules are for the primitive arithmetic, logical, and comparison operations except
equality. These are all easy rules.

Not
C, so, S1, E ` e1 : Boolean(b), S2 v1 = Boolean(¬b)

C, so, S1, E ` ! e1 : v1, S2

Comp
C, so, S1, E ` e1 : Int(i1), S2

C, so, S2, E ` e2 : Int(i2), S3 op ∈ {≤, <} v1 =

{
Boolean(true), if i1 op i2
Boolean(false), otherwise

C, so, S1, E ` e1 op e2 : v1, S3

Neg
C, so, S1, E ` e1 : Int(i1), S2 v1 = Int(−i1)

C, so, S1, E ` −e1 : v1, S2

Arith
C, so, S1, E ` e1 : Int(i1), S2

C, so, S2, E ` e2 : Int(i2), S3 op ∈ {+,−, ∗, /} v1 = Int(i1 op i2)

C, so, S1, E ` e1 op e2 : v1, S3

Cool Ints are 32-bit two’s complement signed integers; the arithmetic operations are defined accordingly.
The operational rules do not specify what happens in the event of a runtime error. Execution aborts

when a runtime error occurs. The following list specifies all possible runtime errors.

1. A dispatch (static or dynamic) on null.

2. Execution of a case statement without a matching branch.

3. Division by zero.

4. index/size out of range for string or array

5. Heap overflow.

Finally, the rules given above do not explain the execution behavior for dispatches to native methods.
English descriptions of these methods are given in basic.cool.

15 Acknowledgments

Cool 2020 is a subset of Scala. The original Cool is based on Sather164, which is itself based on the
language Sather. Portions of this document were cribbed from the Sather164 manual; in turn, portions
of the Sather164 manual are based on Sather documentation written by Stephen M. Omohundro.

A number people have contributed to the design and implementation of Cool, including Daniel
Spiewak, Manuel Fähndrich, David Gay, Douglas Hauge, Megan Jacoby, Tendo Kayiira, Carleton Miyamoto,
Michael Stoddart, Steven Kowal, and Yu Wang.

28

