Reliable Computing 6: 193-203, 2000. 193
© 2000 Kiuwer Academic Publishers. Printed in the Netherlands.

Accelerated Shift-and-Add Algorithms

NATHALIE REVOL
Lab. ANO, Univ. de Lille 1, UFR IEEA, Bar. M3, 59655 Villeneuve d’Ascq Cedex, France,
e-mail: Nathalie. Revol@univ-lillel fr

and

JEAN-CLAUDE YAKOUBSOHN
Lab. d’Analyse Numérique et Optimisation, Univ. Paul Sabatier, 118 rte de Narbonne, 31062
Toulouse Cedex 4, France, e-mail: yak@cict,fr

(Received: 30 October 1998; accepted: 10 August 1999)

Abstract, The problem addressed in this paper is the computation of elementary functions {exponen-
tial, logarithm, trigonometric functions, hyperbolic functions and their reciprocals) in fixed precision,
typically the computer single or double precision. The method proposed here combines Shift-and-Add
algorithms and classical methods for the numerical integration of ODEs: it consists in performing
the Shift-and-Add iteration until a point close enough to the argument is reached, thus only one
step of Euler method or Runge-Kutta method is performed. This speeds up the computation while
ensuring the desired accuracy is preserved. Time estimations on various processors are presented
which: illustrate the advantage of this hybrid method.

1. Introduction

Nowadays, one is so accustomed to have a pocket calculator performing additions
and multiplications as well as square roots or exponentials that he does not wonder
how these operations are performed.

Arithmetic operations (+, —, #, /) are generally implemented according to meth-
ods learned at primary school. The complexity of an arithmetic operation (the
number of operations performed on digits) is linear for the addition/subtraction and
quadratic for the multiplication and division (even if division is much slower from
a practical point of view). Asymptotically faster algorithms have been derived for
the latter ones, but they supersede the “school” ones only for operands with much
more figures than a pocket calculator can usually cope with, and are therefore not
used.

If we now turn to so-called transcendental or elementary functions (exp, log, sin,
arctan, sinh, arccosh, ...}, it is not so obvious to decide how to compute them. There
is no way to compute them exactly with a finite number of arithmetic operations and
thus approximations are sought. These approximations are computed in different
ways, depending on the required accuracy for the result, If the number of figures
of the result is not fixed, but depends on the user’s needs, then solutions can be to

194 NATHALIE REVOL AND JEAN-CLAUDE YAKQUBSOHN

use a Taylor expansion, a Padé approximant or the algorithms developed by Brent
in [3].

In this paper we are interested with fixed precision, of the kind provided by
the “float” type on any computer. Of course, the previously listed methods can
be employed (and for instance Padé approximants, or rather continued fractions,
were used in early pocket calculators). However, since a fixed number of digits is
required, pre-computed tables can be used; these tables have a fixed (small) num-
ber of entries and these entries use the same fixed storage. Thus specific methods
have been developed for the fixed-precision computations of elementary functions.
Among such methods, we will be interested only in Shift-and-Add ones; for an
excellent introduction to the computation of elementary functions, see [9]. A Shift-
and-Add algorithm decomposes its argument into a number basis such that the
decomposition is performed by means of additions only. Furthermore, the func-
tion to be computed is computed along with the decomposition and requires only
additions and multiplications or divisions by 2, which are realized on a computer
by shifts. Since additions and shifts are very efficiently performed, the elementary
iteration is very efficient. Moreover, the number of iterations is small.

A Shift-and-Add computation looks like integrating the ODE the function sat-
isfies, with fixed, decreasing steps, until the argument is reached. In this paper we
propose a method which combines the advantages of Shift-and-Add and numerical
integration: it consists in performing the Shift-and-Add iteration until the reached
point is close enough to the argument to ensure the convergence of the numeri-
cal integration of the ODE satisfied by the computed function; when the distance
between these two points is close enough, only one step of a numerical integration
method suffices to reach the argument while ensuring the desired accuracy is pre-
served, and the remaining steps of the Shift-and-Add algorithm can be shunted.

It has to be mentioned that any of these methods (for infinite precision as well
as for fixed precision) requires that the argument belongs to a fixed interval [A; B].
Techniques have been developed to ensure that the argument belongs to it, they are
called argurment reduction and are the subject of many papers [4]-[6], [11]. It will
be assumed in the following that the argument is already reduced.

This paper is composed as follows: in a first part we recall explicit Euler and
Runge-Kutta-4 methods for the integration of an ODE [1] and we precise some
useful quantities. In a second part, Shift-and-Add methods will be introduced;
this name covers algorithms for exponential and logarithm as well as CORDIC
method for trigonometric functions. Then our “hybrid” method will be stated in a
general framework. It will then be specified for various elementary functions and
corresponding experimental results and estimated times for two different processors
will be presented. Finally, redundant Shift-and-Add methods will be introduced and
it will be shown that our method is suited to a redundant number system without
further work,

ACCELERATED SHIFT-AND-ADD ALGORITHMS 195

2. Numerical Integration of ODEs
2.1. PROBLEM

An QDE (of first-order, in explicit form) is an equation

¥y = f(t,y),

where ¥’ is the first derivative of y, y being a function of one (one-dimensional)
variable ¢ to R” and f is a given function defined on a domain D; c R x R” to R”.
Usually, an initial condition is specified: y(zy) = 1 € R”.

The corresponding Cauchy problem or initial value problem is the following:

Yo = @),
solve
(o) = n.

Let [o; 8] R with 7 € [a; 8], a Cl-function ¥ : t € [, B] = Y(@) € R” is a
solution if

(1. Y(n) € Dy Vt e o B],

Y(ig) = n,
Y6 = flr, Y1) vre o]
are fulfilled.

Cauchy-Lipschitz theorem states the existence of a solution if f is a continuous
function, and furthermore its uniqueness if f is also local Lipschitz relative to y.
These two conditions hold for the elementary functions addressed in this paper.

To integrate an ODE, numerical methods obtain approximate values of the
solution at a set of points #p < #; < -+ < f, < -+ < ty. The approximate value
yu of Y(¥,) is computed by using some of the values obtained in previous steps. In
what follows, only explicit Euler and Runge-Kutta of order 4 are considered.

For more definitions and results, see for instance [1], particularly to obtain
precise definitions of error and estimations for the following methods.

2.2, EXPLICIT EULER AND RK4 METHODS

Letus denote by Y (#) the solution of the initial value problem. Explicit Euler method
is a single-step method of order 1 defined on [#p; y] by

Yn+1
Yo

where i = y;{—m and forany 0 < n < N, f, =ty +nh.

A Runge-Kutta method aims at achieving a given order without evaluating any
derivatives of f (which can be cumbersome both to establish and to evaluate} and
involves the evaluation of f at intermediary points. Among these methods, RK4 is

yfl + hf(tn:yn)a
m

196 NATHALIE REVOL AND JEAN-CLAUDE YAKOUBSOHN

a most popular one since it is of order 4 and requires only 4 evaluations of f. It is
given by the following formulae

kl = f(thn),
ky = f(t, + g: Yu gkl)’
ky = fltn+ gs Ya + ng)s

ky = fty+h, yn t+ hks),

Ynil = Y+ 5ky + 2k + 23 + kg),
and

Yo = 1.

2.3, CHOICE OF 1 TO ACHIEVE A GIVEN PRECISION

In this paragraph we consider the computation of ¥(z) for any ¢ e [ty;7]. The
method we propose in Section 3 is based, on a first part, on Shift-and-Add methods
which compute exactly (up to rounding errors, which are not taken into account)
Y(t;) where £, is an intermediary point used to reach f. This explains why we
consider only the error y, — ¥Y(z,) in order to choose A. For Euler, & has to satisfy

< ﬁ (the maximum for ||. .. is taken on [ty;]} and for RK4 £ has to
satisfy a more complex inequality: & < | ﬂﬁ%ﬂrﬂ Table 1 sums up the
art oo

choice of # for a given precision ¢ in a first column, £ = 2~2* corresponding then
to the single precision in a second column and & = 273 for the double precision in
a third column, for each elementary function and for explicit Euler and RK4. For
calculations details, see [12].

(Trigonometric and hyperbolic sines and cosines have to be treated in pairs
since the derivative of a sine is (up to a sign) a cosine and vice-versa.) What
these bounds should put in evidence is the following fact: in order to compute
exp t with a precision 10™'® (which is roughly the double-precision accuracy on a
computer), even a “good” method such as RK4 requires about 10,000 steps. This
shows that numerical integration methods are not good candidates for computing
the elementary functions. However we will show how they can be used in order to
“shunt” some other methods’ iterations.

3. Shift-and-Add Algorithms

3.1. PRINCIPLE OF SHIFT-AND-ADD ALGORITHMS

In this section, we study methods for computing the elementary functions without
multiplications and divisions (thus only operations with linear complexity are per-
formed) and with a small number of iterations. These methods are very well suited
to hardware computations. Our presentation will follow [8] and [9].

ACCELERATED SHIFT-AND-ADD ALGORITHMS

Table 1. Choice of & in order to reach a precision e.

197

Funetion Euler RK4
on [; 71 £ single double £ single double
2 _ ~ 120 _ _
exp % 1.5810°* 683107 5$ﬂﬁﬁilwm25$w4
[0: 1.56]
In VZe 345107% 1491077 ff%%ﬁ 4301072 771 10~
[1:2[
int
s Ve 345107* 1491077 3/320e 43110972 72310
cost 129
T
[0; 51
arctan V3 345107 1491077 s % 4771072 85610~
[0; 1]
sinh ¢ 2e —4 pr i 5/320e 2 -4
(Coshl) I 178107 76810 ot A3 1141070 20510
[0:1]
i 2e —4 —8 s/ 30e -2 4
argtanh s L17107* 50810 = 1191072 21310
[0;0.76]

We will firstly illustrate the underlying principle with the computation of exp 1,
t € [0; 5] (b has to be precised). Since we can write £ as a sum Jrf diIn(1 +27%)
with the values In(1 + 275 being tabulated and either d; = 0 écrz 01, then expt =
ﬁj}(l + 2754 (For the proof of this assertion and the following ones about the

decomposition of a number as a sum or product of elements of a discrete basis,
see [8].) The computation of exp ¢ based on this formula involves only shifts and
additions, thus the inner statement is very efficiently performed on hardware.
Such a decomposition is a generalization of more familiar ones: on a computer,
one is accustomed to write a number z € [(;2] as z = ¥ dy2~*. Shift-and-
keN

€
add algorithms use bases that are well suited to the computation of elementary
functions.

3.2. EXPONENTIAL AND LOGARITHM

Using the results presented in the previous paragraph, the algorithm computing
expt can be derived as follows, the stopping criterion being based on the property
0<t—1p <274

198 NATHALIE REVOL AND JEAN-CLAUDE YAKOUBSOHN

input: t € [0;1.56...]; precision &
output: expt approximated (more and more) accurately by ey
tp:=0;¢:=10;k:=0;
while 27541 > ¢ do
4 { 1 if e +In(1+27%) <¢
0 otherwise
frat = b+ di In(1 +275)
ep+1 ‘=€ +dk2_k€k
=k+1
end loop

An invariant of this algorithm is that e; = exp#;, Vk.

This method is a step-by-step method, each step aiming at getting closer to
the argument. However, it is different from a numerical integration method since
the steps are imposed (they are the elements of the discrete basis). Moreover, to
compare this with the example at the end of the previous section, to get an accuracy
of 10716 ~ 2753 (which is the double precision accuracy on a computer), only 54
iterations are required instead of tens of thousands!

The same algorithm can be used to compute the logarithm, at the expense of a
slight modification: if 7 becomes the result and e the input, the invariant e = exp
can also be written # = Ine; and thus the logarithm can be computed. The only
problem arises when #, + In(1 + 275y is compated to ¢ since ¢ is now unknown.
However, this comparison is equivalent to ;{1 + 27k < EXpt = e since exp is an
increasing function.

3.3. TRIGONOMETRIC FUNCTICONS

The underlying idea to compute the sine or cosine of an angle 8 is to decompose it
as asum: € =), 6. Since the sine of the sum of two angles involves their cosine,
sine and cosine will be computed together and thus it corresponds to computing
a rotation of angle 8 as a succession of rotations of angles 6. To simplify the
formulae, (8)< is chosen as (arctan 2 %) .

The decomposition of 8 as > d, 8 with d; € { — 1;1} leads to an algorithm
which again involves only shifts and additions (and a final multiplication). It is
known as CORDIC algorithm (COecrdinate Rotation Digital Computer) and is due
to Volder [14]. It can also be used to compute the arctan function, See for instance
[9] for a detailed presentation.

Using the fact that arctan 2k < 2=k wk, it can be shown that &k + 1 steps are
necessary to obtain k digits of the result (the absolute error is bounded by 2%+
and again rounding errors are not taken into account).

ACCELERATED SHIFT-AND-ADD ALGORITHMS 199

3.4. HYPERBOLIC FUNCTIONS

Since trigonometric and hyperbolic formulae are very similar, it seems possible to
use the same kind of algorithm, replacing arctan 2—* by argtanh 2%, to compute the
hyperbolic functions. J. Walther in 1971 showed that the sequence {argtanh 275V e
does not satisfy the conditions enabling to compute a signed-digit decomposition.

He also discovered that if certain terms of the sequence are repeated (namely, the
3k+l -1
2

terms) then the resulting sequence is a discrete basis. With this basis, a slight

adaptation of CORDIC algorithm computes the cosh, sinh and argtanh functions.

4. Fast Computation of Elementary Functions
4.1. GENERAL IDEA

In the two previous sections we have recalled what numeric integration and Shift-
and-Add methods are. We will now combine them.

The advantage of a Shift-and-Add method is the small number of steps it requires
to obtain a given accuracy. Each step makes the current argument closer to the actual
one, and the main drawback is that the steps tend to be smaller and smaller, When the
distance between the current argument and the actual one is small enough to ensure
the convergence of a numerical integration method with the required accuracy, we
will drop off the Shift-and-Add method and go directly to the actual argument thanks
to the numerical integration method. This hybrid method still has a drawback: the
computations involved by the last step are no more shifts and additions. However,
the number of spared Shift-and-Add steps is usually so important that some time
can be lost in the computations of the last step.

More precisely, suppose Y () has to be computed with a required accuracy
27" At each step k of the Shifi-and-Add algorithm, the absolute error on ¢ is

k
't —#] < 2781 with 7, = 3. dywy and the value computed at step k, yy, is exactly
=0

equal to Y(#) {(again, rou111ding errors are not taken into account). It is possibie
to determine the step & of the numerical integration method corresponding to a
method error less than 27", Let M be the smallest integer such that i > 2~¥+1 If
the Shift-and-Add algorithm is stopped after the M-th iteration, giving f; and yas
and if one iteration of the numerical integration method is performed with a step
h" =1t — ty, then the error is bounded by lyp41 — Y(£)| < 27",

We precise in Table 2 the value of M corresponding to the single (32 bits) and
double (64 bits) IEEE floating-point numbers, for the various elementary functions
when the numerical integration method is either explicit Euler or RK4. Error has
to be less than 2~2* for the single precision type and less than 23 for the double
precision type. For instance, the hybrid algorithms to compute the exponential are
given on the following page.

Experimental times presented in Table 3 have been obtained with C codes for
the elementary functions. The hardware FPU is much faster than the software Shift-

200 NATHALIE REVOL AND JEAN-CLAUDE YAKQUBSOHN

Table 2. Number of Shift-and-Add steps required by the hybrid methods.

Function Eunler RK4
Mg Mg Mpga Mzxy
Single prec. Double prec. | Single prec. Double prec.
exp 14 25 7 12
In 13 24 6 12
sin f
(i) 13 24 6 12
cos ¢
arctan 13 24 6 12
inh
(Sm) 14 25 8 14
cosh ¢
argtanh 15 26 8 14

and-Add (with a factor ~ 50). The Euler-hybrid is faster, with a factor between 1.5
and 2, and the RK4-hybrid is faster than the software Shift-and-Add with a factor
between 2.5 and 4. The times are averaged times measured on a 166 MHz Pentium
processor, the average is taken over the computed f(x) where f is the elementary
function and x takes 15,000 different values).

Below are the hybrid algorithms to compute the exponential:

Enler-hybric] RK4-hybrid
to:=0vw:=1 =0y =1
fork=0toMeg — 1 do fork=0toMggs — 1 do
1 ifge+wy <t 1 ifge+we <t
dk = { . dk = { .
0 otherwise 0 otherwise
togr 1= b+ diwy teel = I+ diwy
Ves1 1= v + 2Ry Yiar 1= v+ de2 7ty
end for end for
W o= Iafg B o=r— IMageq
, 4 4 4
o= yug + R VMg y:=yMRK4[1+h’(1+§{1+?(1+T)])]

If we try to estimate the number of clock cycles for each method, on a hypo-
thetical processor such that an addition, a multiplication or a shift are performed
in one clock cycle whereas a division is five times longer, we observe that this is
in good concordance with the experimental times and also that our hybrid methods
supersede the Shift-and-Add ones by a multiplicative factor between 2 and 3.5. We
also estimate the number of clock cycles with a less favourable configuration, the
PA-8000 processor from HP, PA-RISC 2.0: it performs a shift in one clock cycle,
an addition or a multiplication in 3 clock cycles, a single precision division in 17
clock cycles and a double precision division in 31 clock cycles. For this processor,
our hybrid algorithms always improve the Shift-and-Add ones. Furthermore, the
hybrid RK4 is superior to the hybrid Euler except when the last step involves too

ACCELERATED SHIFT-AND-ADD ALGORITHMS 201

Table 3. Experimental times on a 166 MHz Pentium (software algo-

rithms).
Function Method Single precision Double precision
time in us time in us
FPU 1 2
exp Shift-and-Add 23 33
on [0;1.56] hybrid Euler 10 20
hybrid RK4 6 9
FPU 1 2
In Shift-and-Add 30 61
onil;2] hybrid Euler 19 28
hybrid RK4 10 18
sin FPU 1 2
cos Shift-and-Add 57 117
on [0; 7] hybrid Euler 31 55
hybrid RK4 17 30
FPU 1 2
arctan Shift-and-Add 51 O
on [0; 1] hybrid Euler 31 52
hybrid RK4 17 30
sinh FPU 2 4
cosh Shift-and-Add 55 120
on [0; 1] hybrid Euler 31 57
hybrid RK4 22 34
FPU 1 2
argtanh Shift-and-Add 57 116
on[(;3.76] hybrid Euler 36 62
hybrid RK4 22 35

many divisions (cf, the logarithm): when a division is very costly, in terms of time,
then the hybrid Euler should be preferred. In Table 4, times are indicated in clock
cycles.

5. Redundant Number Systems

In the previous sections, it has been shown that using a suitable number basis
enables to perform quickly various computations. Redundant number systems have
been introduced to enable the computation of an addition in constant time. We will
firstly define a (radix 2) redundant number system, sketch its main features and
the computation of the elementary functions with such a system. Finally it will be
shown how to adapt our hybrid methods to a redundant number system.

202 NATHALIE REVOL AND JEAN-CLAUDE YAKOUBSOHN

Table 4. Estimated number of clock cycles on two processors.

Fanction Method Single precision Double precision
hyp. proc. PA-B000 hyp. proc. PA-8000

exp Shift-and-Add 75 175 162 378
on [0; 1.56] hybrid Enler 45 107 90 212

hybrid RK4 37 o5 55 151
In Shift-and-Add 75 175 162 378
on [1;2] hybrid Euler 42 114 5 205

hybrid RK4 45 129 63 227
sin Shift-and-Add 125 275 270 594
cos hybrid Euler 69 155 124 276
on [0; 51 hybrid RK4 49 121 79 201
arctan Shift-and-Add 125 275 270 594
on [(; 1] hybrid Euler 78 186 133 333

hybrid RK4 53 139 83 247
sinh Shift-and-Add 125 275 270 594
cosh hybrid Euler 74 166 129 287
on [0; 1] hybrid RK4 43 103 3 183
argtanh Shift-and-Add 125 275 270 594
on [0;0.76] hybrid Euler 88 208 138 346

hybrid RK4 68 178 98 300

5.1. REDUNDANT NUMBER SYSTEMS

Redundant number systems have been introduced to enable fully parallel additions.
What prevents the addition from being parallel is the propagation of the carry. To
avoid this, Avizienis proposed to represent numbers with signed digits —1, 0 or 1.
For instance, the number 5 can be written as 101, 1101 or 1011 in radix 2, where
1 denotes —1. This variety of representations explains the name of this number
system. Actually, Avizienis [2] proposed redundant number systems for any radix,
but we will focus only on the radix-2 system.

Another kind of redundant system relies on the replacement of every digit by
two digits, the second one being a lazy representation of the carry, i.e. no carry is
propagated. Such a system is called a carry-save number system.

Redundant number systems are commeonly used by microprocessors in their
multipliers or dividers (cf. the Pentium divider). The main advantages of redundant
number systems is to enable constant time additions. Since a multiplication consists
i a series of additions, it can be performed in linear time. Divisions are also
performed in linear time in a redundant number system. However, it is difficult
to perform a comparison: since a given number can be written in different ways,

ACCELERATED SHIFT-AND-ADD ALGORITHMS 203

comparing the representations of two numbers does not suffice to state their identity
or their inequality. It is then necessary to write the arguments of a comparison in
a canonical way (which can be their “classical” representations) to be able to
compare them. For a more detailed introduction to redundant number systems and
the corresponding arithmetic operators, see [2], [7], [9], [10], [13].

5.2. COMPUTING THE ELEMENTARY FUNCTIONS

Let us present the principle of the algorithm for the computation of the exponential.
The “classical” Shift-and-Add algorithm is (here, L, =t — 1)

Lo:=t; Eg:=1.0

1 if Ly > In(1+27%)
dk = .

0 otherwise
Livi =L —In(l1 +d,275)
Era =E(l +d275)

In order to adapt this algorithm for a redundant number system, we have to avoid
the comparison 7 > In(1 +27%). Indeed, such a comparison can be performed in
linear time; since the aim here is to accelerate the Shift-and-Add algorithm, linear
time operations must be avoided. We thus allow the d; to belong to {—1,0;1}
and they have to be chosen so that L, tends to zero. This signed digit d;, can be
determined by performing an approximate comparison: since only four digits of Ly
have to be examined, this “comparison” is done in constant time.

The same kind of algorithm exists for every elementary function.

5.3. FAST REDUNDANT METHODS TO COMPUTE THE ELEMENTARY FUNCTIONS

To adapt this algorithm to our hybrid procedure, we only need to know when to
jump from this method to a numerical method for integrating an ODE, ie. we
need to know a bound for L;: this bound is given by —%2"‘ < Ly < 2%+ for
the exponential and by similar properties for the other functions [9, 10, 13]. It is
therefore straightforward to determine the number of iterations of the Shift-and-Add
algorithm to perform: for instance, to compute the exponential in double precision
with the hybrid RK4 method, to get {L,| < 5.55 1074 only N = 13 iterations of the
Shift-and-Add algorithm suffice.

We sum up in Table 5 the number of steps of the redundant Shift-and-Add
algorithm required to compute the exponential and logarithm in single and double
precision with our hybrid procedure.

6. Conclusion

In this paper, we have studied how to accelerate the Shift-and-Add algorithms
by substituting some iterations by one step of an ODE integration method. This

204 NATHALIE REVOL AND JEAN-CLAUDE YAKOUBSOHN

Table 5.
Function | Single precision | Double precision
Euler RK4 Euler RK4
exp 11 7 29 13
In 14 7 26 13

combines the advantages of the two kinds of methods, without suffering their
drawbacks: an ODE integration method performs small steps

whereas a Shift-and-Add method performs steps whose length is (roughly) divided
by 2 at each jteration

The idea is to jump from this method to an ODE integration method when the step
of the Shift-and-Add method becomes toc small.

The number of spared steps of the Shift-and-Add algorithm are given in this
paper, the formulae for the length of the unique step of explicit Euler or RK4 also:
to determine precisely what the gain is on a given processor, one has to compare
the number of clock cycles required by each method.

Even if we have conducted our experiments at a software level, this hybrid
algorithm is aimed at an hardware implementation. However, since the step we
introduce involves multiplications (and sometimes divisions), a fast multiplier has
to be used to preserve the gain in terms of time. Nevertheless, if a superfast multi-
plier is used, then the computation of elementary functions may be performed faster
using approximations by Jow degree polynomials on small subintervals, since the
coefficients of these polynomials and the bounds on the subintervals can be tabu-
lated. A closer study should be performed in order to decide which method is the
fastest with a given multiplier.

References

1. Atkinson, K.: An Introduction to Numerical Analysis, 2nd edition, Wiley, 1989.

2. Avizienis, A.: Signed-Digit Representations for Fast Parallel Arithmetic, IRE Transactions on
Electronic Computers 10, pp. 389-400. Reprinted in: Swartzlander, E. E., Computer Arithmetic,
vol. 2, IEEE Computer Society Press, 1990.

3. Brent, R. P.: Fast Multiple Precision Evaluation of Elementary Functions, Journal of the ACM
23 (1976), pp. 242-251.

ACCELERATED SHIFT-AND-ADD ALGORITHMS 205

H.

12.

13.

14.

. Cody, W. J.: Implementation and Testing of Function Software, in: Problems and Methodologies

in Mathematical Software Production (Lecture Notes in Computer Science 142), Springer-Verlag,
Berlin etc., 1982,

. Cody, W. J. and Waite, W.: Software Manual for the Elementary Funcrions, Prentice Hall, 1980,
. Daumas, M., Mazenc, C., Merrheim, X., and Muller, J.-M.: Modular Range Reduction: A New

Algorithm for Fast and Accurate Computation of the Elementary Functions, Journal of Universal
Computer Science 1 (3) (1995), pp. 162-175.

. Brcegovac, M. D, and Land, T.. Division and Square-Root: Digit-Recurrence Algorithms and

Implementations, Klower Academic Publishers, 1994.

. Muller, J.-M.: Arithmétique des ordinateurs, Masson, 1989 (in French).
. Muller, J.-M.: Elementary Functions, Birkhalser, 1997,
. Parahmi, B.: Generalized Signed-Digit Number Systems: A Unifying Framework for Redundant

Number Representations, IEEFE, Transactions on Computers 39 (1) (1990}, pp. 89-98.

Payne, M. and Hanek, R.: Radian Reduction for Trigonometric Fanctions, SIGNUM Newsleiter
18 (1983), pp. 19-24.

Revol, N. and Yakoubsohn, J.-C.: Accelerated Shift-and-Add algorithms, Research Report,
extended version, ftp://ano.univ-1illel.fr/pukb/1999/ano395.ps. 2.

Takagi, N., Asada, T., and Yajima, S.: Redundant CORDIC Methods with a Constant Scale
Factor, IEEE Transactions on Computers 40 (9) (1991}, pp. 989--995.

Volder, J.: The CORDIC Computing Technique, IRE Transactions on Electronic Computers
(1959), pp. 14-17. Reprinted in: Swartzlander, E. E., Computer Arithmetic, vol. 1, JEEE Computer
Society Press, 1990.

