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Abstract. We give some background information about the Cauchy-Schwarz

inequality including its history. We then continue by providing a number

of proofs for the inequality in its classical form using various proof tech-

niques, including proofs without words. Next we build up the theory of inner

product spaces from metric and normed spaces and show applications of the

Cauchy-Schwarz inequality in each content, including the triangle inequality,

Minkowski’s inequality and Hölder’s inequality. In the final part we present a

few problems with solutions, some proved by the author and some by others.
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2. Introduction

The Cauchy-Schwarz inequality may be regarded as one of the most impor-

tant inequalities in mathematics. It has many names in the literature: Cauchy-

Schwarz, Schwarz, and Cauchy-Bunyakovsky-Schwarz inequality. The reason for

this inconsistency is mainly because it developed over time and by many people.

This inequality has not only many names, but also it has many manifestations.

In fact, the inequalities below are all based on the same inequality.

(1)

(
n∑
i=1

aibi

)2

≤
n∑
i=1

a2i
n∑
i=1

b2i .

(2)
∣∣∣∫ 1

0
f (x) g (x)dx

∣∣∣2 ≤ ∫ 1

0
|f (x)|2dx

∫ 1

0
|g (x)|2dx.

(3) |〈u,v〉| ≤ ‖u‖ ‖v‖.

This versatility of its forms makes it a well-used tool in mathematics and it has

many applications in a wide variety of fields, e.g., classical and modern analysis

including partial differential equations and multivariable calculus as well as ge-

ometry, linear algebra, and probability theory. Outside of mathematics it finds

its usefulness in, for example, physics, where it plays a role in the uncertainty

relations of Schrödinger and Heisenberg [1].

Recently, there have been several extensions and generalizations of the C-S

inequality and its reverse in various settings such as matrices, operators, and

C∗-algebras, see e.g., [6, 14]. These topics are of special interest in operator

theory and matrix analysis; cf. [1, 4]. Understanding the classical results on C-S

inequality is definitely a starting point for doing some research in these research

areas.

This thesis is organized as follows. In chapter 3, we start up with a brief history

of the C-S inequality. Chapter 4 is devoted to classical proofs of the inequality,

both in real and complex case, with some additional proofs that don’t use any

words. In chapter 5, we look into some spaces and show different applications of

the inequality. Finally, in chapter 6, we provide a few examples of problems with

various difficulties.
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3. Historical perspectives

The Cauchy-Schwarz (C-S) inequality made its first appearance in the work

Cours d’analyse de l’École Royal Polytechnique by the French mathematician

Augustin-Louis Cauchy (1789-1857). In this work, which was published in 1821,

he introduced the inequality in the form of finite sums, although it was only writ-

ten as a note.

In 1859 a Russian former student of Cauchy, Viktor Yakovlevich Bunyakovsky

(1804-1889), published a work on inequalities in the journal Mémoires de l’Académie

Impériale des Sciences de St-Pétersbourg. Here he proved the inequality for infi-

nite sums, written as integrals, for the first time.

Figure 1. (From left) Augustin-Louis Cauchy, Viktor Yakovlevich

Bunyakovsky and Karl Hermann Amandus Schwarz.

In 1888, Karl Hermann Amandus Schwarz (1843-1921) published a work on

minimal surfaces named Über ein die flächen kleinsten flächeninhalts betreffendes

problem der variationsrechnung in which he found himself in need of the integral

form of Cauchy’s inequality, but since he was unaware of the work of Bunyakovsky,

he presented the proof as his own. The proofs of Bunyakovsky and Schwarz are

not similar and Schwarz’s proof is therefore considered independent, although of

a later date. A big difference in the methods of Bunyakovsky and Schwarz was in

the rigidity of the limiting process, which was of bigger importance for Schwarz.

The arguments of Schwarz can also be used in more general settings like in the

framework of inner product spaces [19].
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4. Some proofs of the C-S inequality

There are many ways to prove the C-S inequality. We will begin by looking at

a few proofs, both for real and complex cases, which demonstrates the validity

of this classical form. Most of the following proofs are from H.-H Wu and S. Wu

[24]. We will also look at a few proofs without words for the inequality in the

plane. Later on, when we’ve established a more modern view of the inequality,

additional proofs will be given.

4.1. C-S inequality for real numbers.

Theorem 4.1. If a1, . . . , an and b1, . . . , bn are real numbers, then(
n∑
i=1

aibi

)2

≤
n∑
i=1

a2i

n∑
i=1

b2i , (4.1)

or, equivalently, ∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

a2i

√√√√ n∑
i=1

b2i . (4.2)

First proof [24]. We will use mathematical induction as a method for the proof.

First we observe that

(a1b2 − a2b1)2 ≥ 0.

By expanding the square we get

(a1b2)
2 + (a2b1)

2 − 2a1b2a2b1 ≥ 0.

After rearranging it further and completing the square on the left-hand side, we

get

a21b
2
1 + 2a1b1a2b2 + a22b

2
2 ≤ a21b

2
1 + a21b

2
2 + a22b

2
1 + a22b

2
2

or, equivalently,

(a1b1 + a2b2)
2 ≤

(
a21 + a22

) (
b21 + b22

)
.

By taking the square roots of both sides, we reach

|a1b1 + a2b2| ≤
√
a21 + a22

√
b21 + b22, (4.3)



6 THOMAS WIGREN

which proves the inequality (4.2) for n = 2.

Assume that inequality (4.2) is true for any n terms. For n+ 1, we have that

√√√√n+1∑
i=1

a2i

√√√√n+1∑
i=1

b2i =

√√√√ n∑
i=1

a2i + a2n+1

√√√√ n∑
i=1

b2i + b2n+1. (4.4)

By comparing the right-hand side of equation (4.4) with the right-hand side of

inequality (4.3) we know that

√√√√ n∑
i=1

a2i + a2n+1

√√√√ n∑
i=1

b2i + b2n+1 ≥

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i + |an+1bn+1| .

Since we assume that inequality (4.2) is true for n terms, we have that

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i + |an+1bn+1| ≥
n∑
i=1

aibi + |an+1bn+1|

≥
n+1∑
i=1

aibi,

which proves the C-S inequality. �

Second proof [24]. We will use proof by induction again, but this time we deal

with sequences.

Let

Sn =

(
n∑
i=1

aibi

)2

−
n∑
i=1

a2i

n∑
i=1

b2i .
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We have

Sn+1 − Sn =

=

(
n∑
i=1

aibi + an+1bn+1

)2

−

(
n∑
i=1

a2i + a2n+1

)(
n∑
i=1

b2i + b2n+1

)

=

(
n∑
i=1

aibi + an+1bn+1

)2

−

(
n∑
i=1

a2i + a2n+1

)(
n∑
i=1

b2i + b2n+1

)
−

(
n∑
i=1

aibi

)2

+
n∑
i=1

a2i

n∑
i=1

b2i

= −b2n+1

n∑
i=1

a2i − a2n+1

n∑
i=1

b2i + 2an+1bn+1

n∑
i=1

aibi

= −
(
b2n+1

(
a21 + a22 + · · ·+ a2n

)
+ a2n+1

(
b21 + b22 + · · ·+ b2n

)
− 2an+1bn+1 (a1b1 + a2b2 + · · ·+ anbn)

)
= −

(
(bn+1a1 − an+1b1)

2 + (bn+1a2 − an+1b2)
2 + · · ·+ (bn+1an − an+1bn)2

)
= −

n∑
i=1

(bn+1ai − an+1bi)
2,

from which we get Sn+1 ≤ Sn. Hence Sn ≤ Sn−1 ≤ . . . ≤ S1 = 0, which yields

the C-S inequality. �

Third proof [24]. We start this proof by observing that the inequality

1

2

n∑
i=1

n∑
j=1

(aibj − ajbi)2 ≥ 0 (4.5)

is always true.

Expanding the square and separating the sums give us

0 ≤ 1

2

n∑
i=1

n∑
j=1

(aibj − ajbi)2

=
1

2

n∑
i=1

n∑
j=1

(
a2i b

2
j + a2jb

2
i − 2aibiajbj

)
=

1

2

n∑
i=1

n∑
j=1

a2i b
2
j +

1

2

n∑
j=1

n∑
i=1

a2jb
2
i −

n∑
i=1

n∑
j=1

aibiajbj

=
1

2

n∑
i=1

a2i

n∑
j=1

b2j +
1

2

n∑
j=1

a2j

n∑
i=1

b2i −
n∑
i=1

aibi

n∑
j=1

ajbj.

Renaming the indices and reshaping the formula give us

1

2

n∑
i=1

a2i

n∑
i=1

b2i +
1

2

n∑
i=1

a2i

n∑
i=1

b2i −
n∑
i=1

aibi

n∑
i=1

aibi ≥ 0,
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from where

n∑
i=1

a2i

n∑
i=1

b2i −

(
n∑
i=1

aibi

)2

≥ 0,

which yields the C-S inequality. �

Fourth proof [24]. For the quadratic equation

ax2 + bx+ c = 0 (4.6)

the solutions can be found using the well-known formula

x =
−b±

√
b2 − 4ac

2a
.

Inside the square root the expression b2 − 4ac determines when there are real

solutions to the quadratic equation. This expression is called the discriminant of

the quadratic equation and is denoted by ∆ = b2 − 4ac. If this discriminant is

positive there are two real roots, when it is negative there are no real roots, and

when it is zero there is a double root.

Now, let

f (x) =
n∑
i=1

(aix− bi)2.

Since f (x) ≥ 0 for all x ∈ R, and by the fact that the function is a quadratic

polynomial, the equation (4.6) cannot have two real solutions. Therefore, the

discriminant of f (x) is non-positive.

When we expand the square we get

f (x) =
n∑
i=1

(aix− bi)2 = x2
n∑
i=1

a2i − 2x
n∑
i=1

aibi +
n∑
i=1

b2i .

By comparing this with the quadratic equation in (4.6) we can do the following

substitutions:

a =
n∑
i=1

a2i , b = −2
n∑
i=1

aibi, and c =
n∑
i=1

b2i .

As a result, the discriminant can be written as

∆ =

(
−2

n∑
i=1

aibi

)2

− 4
n∑
i=1

a2i

n∑
i=1

b2i = 4

(
n∑
i=1

aibi

)2

− 4
n∑
i=1

a2i

n∑
i=1

b2i .
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Since ∆ ≤ 0,

4

(
n∑
i=1

aibi

)2

− 4
n∑
i=1

a2i

n∑
i=1

b2i ≤ 0,

which yields the C-S inequality. �

Fifth proof [24]. Let A =
n∑
i=1

a2i and B =
n∑
i=1

b2i .

When
n∑
i=1

a2i = 0 or
n∑
i=1

b2i = 0 we have that
n∑
i=1

aibi = 0, we can assume that A 6= 0

and B 6= 0.

Let

xi =
ai√
A

and yi =
bi√
B
.

As a result,

n∑
i=1

x2i =
n∑
i=1

y2i = 1.

Now, by observing that the inequality

0 ≤
n∑
i=1

(xi − yi)2

is always valid, we can expand the square and rearrange the inequality as

0 ≤
n∑
i=1

x2i +
n∑
i=1

y2i − 2

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣
or

2

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
n∑
i=1

x2i +
n∑
i=1

y2i .

Since
n∑
i=1

x2i =
n∑
i=1

y2i = 1,

we can write the inequality as ∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤ 1.

By change of variables we get that∣∣∣∣∣
n∑
i=1

aibi√
A
√
B

∣∣∣∣∣ ≤ 1,
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which can be arranged to ∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤ √A√B
or ∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

a2i

√√√√ n∑
i=1

b2i ,

which proves the C-S inequality. �

Sixth proof. This proof is from T. Andreescu and B. Enescu [3]. Let a and b ∈ R,

x > 0, and y > 0. After observing that the inequality (ay − bx)2 ≥ 0 is always

true, we expand and rearrange it as

a2y

x
+
b2x

y
≥ 2ab.

After completing the square and rearranging it further, we get that

a2y

x
+
b2x

y
+ a2 + b2 ≥ (a+ b)2.

Hence

(a+ b)2

(x+ y)
≤ a2

x
+
b2

y
. (4.7)

We replace b by b+ c and y by y + z in inequality (4.7) to get

(a+ b+ c)2

(x+ y + z)
≤ a2

x
+

(b+ c)2

y + z
≤ a2

x
+
b2

y
+
c2

z
.

Using this method n times, and by using a suitable notation, we get

(a1 + a2 + . . .+ an)2

(x1 + x2 + . . .+ xn)
≤ a21
x1

+
a22
x2

+ . . .+
a2n
xn
.

Now if we set ai = αiβi and xi = β2
i we get that(

n∑
i=1

αiβi

)2

≤
n∑
i=1

α2
i

n∑
i=1

β2
i ,

which yields the C-S inequality. �
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Seventh proof [24]. Consider the arithmetic-geometric means inequality

n∑
i=1

√
xiyi ≤

n∑
i=1

xi + yi
2

. (4.8)

Let A =

√
n∑
i=1

a2i and B =

√
n∑
i=1

b2i .

By choosing xi =
a2i
A2 and yi =

b2i
B2 in inequality (4.8) we get

n∑
i=1

aibi
AB
≤ 1

2

n∑
i=1

a2i
A2

+
b2i
B2

. (4.9)

Now, by observing that the right-hand side of inequality (4.9) is equal to 1, we

have

n∑
i=1

aibi ≤ AB =

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i ,

which proves the C-S inequality. �

Eighth proof [24]. Consider the arithmetic-geometric means inequality (4.8) in

the last proof. Let A =
n∑
i=1

a2i , B =
n∑
i=1

b2i , and C =
n∑
i=1

aibi.

By choosing xi =
a2iB

C2 and yi =
b2i
B

in inequality (4.8), we get

n∑
i=1

√
a2iB

C2

b2i
B
≤ 1

2

n∑
i=1

(
a2iB

C2
+
b2i
B

)
,

from which we reach
n∑
i=1

√
aibi
C
≤ 1

2

n∑
i=1

a2iB

C2
+
b2i
B
. (4.10)

The left-hand side in inequality (4.10) is 1 and we therefore get

2 ≤
n∑
i=1

a2iB

C2
+

n∑
i=1

b2i
B
. (4.11)

The second term on right-hand side in inequality (4.11) is 1, therefore

2 ≤
n∑
i=1

a2iB

C2
+1,

whence

1 ≤ AB

C2
,

which gives rise to the C-S inequality. �
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Ninth proof [24]. Consider the arithmetic-geometric means inequality (4.8). Let

A =

√
n∑
i=1

a2i and B =

√
n∑
i=1

b2i .

By choosing xi =
Ba2i
A

and yi =
Ab2i
B

in inequality (4.8) we get

n∑
i=1

|aibi| ≤
1

2

n∑
i=1

(
Ba2i
A

+
Ab2i
B

)

≤ 1

2

(
B

A

n∑
i=1

a2i +
A

B

n∑
i=1

b2i

)

≤ 1

2

(
B

A
A2 +

A

B
B2

)
= AB,

from which we reach the C-S inequality. �

Lemma 4.2 (Rearrangement inequality). The rearrangement inequality states

that, given the real numbers x1 ≤ . . . ≤ xn and y1 ≤ . . . ≤ yn, the similarily

sorted pairing x1y1 + . . . + xnyn is the largest possible pairing and the oppositely

sorted pairing x1yn + . . .+ xny1 is the smallest. As a result of this we have that

xny1 + . . .+ x1yn ≤ x1y1 + . . .+ xnyn. (4.12)

Proof of rearrangement inequality. Consider n = 2 and assume x2 ≥ x1 and y2 ≥
y1. From these considerations we get that (x2 − x1) (y2 − y1) ≥ 0, which can

be expanded and reorganized into x1y1 + x2y2 ≥ x1y2 + x2y1. This gives us the

desired result.

In the general case we assume, as before, that x1 ≤ . . . ≤ xn and y1 ≤ . . . ≤ yn.

Suppose that the pairing that maximizes the sum is not the similarily sorted one.

For that to happen we must have at least one instance where we pair xi with yj

and xk with yl where i < j and k > l. But using the result from the n = 2 case

we know that

xiyj + xkyl ≤ xiyl + xkyj,

which contradicts that the proposed pairing is the greatest one. �

Tenth proof [24]. Let

A = B = C = {a1b1, . . . , a1bn, a2b1, . . . , a2bn, . . . , anb1, . . . , anbn}
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and

D = {a1b1, . . . , anb1, a1b2, . . . , anb2, . . . , a1bn, . . . , anbn} .

Now, since A and B are similarily sorted, and C and D are mixed sorted we can

apply the inequality (4.12)

C ·D ≤ A ·B,

or equivalently

n∑
i=1

n∑
j=1

aiajbibj ≤
n∑
i=1

n∑
j=1

a2i b
2
j ,

from where
n∑
i=1

aibi

n∑
j=1

ajbj ≤
n∑
i=1

a2i

n∑
j=1

b2j .

Thus (
n∑
i=1

aibi

)2

≤
n∑
i=1

a2i

n∑
j=1

b2j ,

from which we deduce the C-S inequality. �

Corollary 4.3. Equality holds for inequality (4.1) if and only if the sequences

are linearly dependent, i.e. there is a constant λ ∈ R such that ai = λbi for each

i ≤ n.

Proof. This proof is from S. S. Dragomir [5]. The inequality (4.5) we used in the

third proof tells us that equality holds if and only if

aibj − ajbi = 0

for all i, j ∈ {1, . . . , n}.
Assuming that all bj’s are all non-zero, we have

ai
bi

=
aj
bj

= λ,

which proves that equality in the C-S inequality holds if and only if the sequences

are linearly dependent. If one or more bj are zero, inequality (4.5) tells us that,

either aj is zero as well, or that all bi are zero. Both cases give rise to linearly

dependent sequences. �
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4.2. C-S inequality for complex numbers.

Theorem 4.4. If a1, . . . , an and b1, . . . , bn are complex numbers, then∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣
2

≤
n∑
i=1

|ai|2
n∑
i=1

|bi|2,

where z denotes the conjugate of z ∈ C.

Proof. This proof is borrowed from W. Rudin [18]. Let A =
n∑
i=1

|ai|2, B =
n∑
i=1

|bi|2,

and C =
n∑
i=1

aibi. The numbers A and B are real, but C is complex. We may

assume B > 0 since if B = 0, then the inequality would be trivial. Now we

observe that the inequality

0 ≤
n∑
i=1

|Bai − Cbi|2

is always true. By expanding the square in its complex conjugates we get

0 ≤
n∑
i=1

(Bai − Cbi)
(
Bai − Cbi

)
.

After multiplying the parentheses and replacing the sums by our predefined vari-

ables, we reach

0 ≤ B2

n∑
i=1

|ai|2 −BC
n∑
i=1

aibi −BC
n∑
i=1

aibi + |C|2
n∑
i=1

|bi|2

≤ B2A−BCC −BCC + |C|2B

≤ B2A−B|C|2

≤ B
(
BA− |C|2

)
.

Now since B > 0 we have

0 ≤ BA− |C|2,

which yields the C-S inequality. �
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4.3. Proofs without words. We will here provide some proofs of the C-S in-

equality in R2. Even though the proofs are self-evident we will give some expla-

nation.

Figure 2. Proof by Roger Nelsen [15].

In the left-hand side of figure 2 we can see a parallelogram formed in the middle

which, on the right-hand side is straightened up. The total area in the right-hand

figure is clearly larger than or equal to the left-hand side and we can express the

inequality of the total area as

(|x|+ |a|) (|y|+ |b|) ≤ 2

(
1

2
|x| |y|+ 1

2
|a| |b|

)
+
√
x2 + y2

√
a2 + b2.

We can also easily verify that

|xb+ ya| ≤ |x| |b|+ |y| |a| . (4.13)

These two expressions together allow us to conclude that

|xb+ ya| ≤ |x| |b|+ |y| |a| ≤
√
x2 + y2

√
a2 + b2,

which proves the C-S inequality.
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Figure 3. Proof by Sidney King [11].

In figure 3 we can easily see that the two non-shaded areas are of the same

size:

|x| |a|+ |y| |b| =
√
x2 + y2

√
a2 + b2 sin θ.

Together with inequality (4.13) this allows us to conclude that

|xa+ yb| ≤ |x| |a|+ |y| |b| ≤
√
x2 + y2

√
a2 + b2,

which yields the C-S inequality.
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Figure 4. Proof by Claudi Alsina [2]. Projection of rectangles.

In figure 4 we are projecting the rectangles onto a common diagonal and hence

creates a parallelogram which, as can be seen in figure 5, has the following prop-

erty:

|xa+ yb| ≤ |x| |a|+ |y| |b| ≤
√
x2 + y2

√
a2 + b2,

from which we reach the C-S inequality.
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Figure 5. Proof by Claudi Alsina [2]. Conclusion.
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5. C-S inequality in various spaces

We will now show the importance of the C-S inequality by investigating its

roles in different spaces of decreasing generality, starting with metric spaces.

Definition 5.1. Let X be a set with an associated notion of distance, a non-

negative, real function d (x, y) defined for each x and y ∈ X that has the following

three properties:

(1) Identity of indiscernibles: d (x, y) = 0 if and only if x = y.

(2) Symmetry: d (x, y) = d (y, x).

(3) Triangle inequality: d (x, z) ≤ d (x, y) + d (y, z).

The set X is often referred to as a space and its members as points. The distance

function is also known as a metric function or just a metric. The pair, the set

and its distance function, is called a metric space and is denoted by (X, d), or

when context is clear, by just X.

Example 5.2. Let X be the set of all real numbers and by associating this with

a metric, defined by

d (x, y) = |x− y| ,

we get the metric space of the real line R.

Example 5.3. Let C ([a, b]) be the set of all continuous functions f : [a, b]→
R. By associating this set with a metric, defined by

d (f, g) = max
t∈[a,b]

|f (t)− g (t)| ,

we get a metric space. This space is also an example of a function space.

Definition 5.4. Let F be one of the fields R or C and let V n be the set of all

ordered n-tuples (x1, x2, . . . , xn) with xi ∈ F for 1 ≤ i ≤ n.

A vector space is defined as (V n, +, ·), with the two associated operators called

vector addition and scalar multiplication.

(1) + : V n×V n → V n := (x1, . . . , xn)+(y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

(2) · : F × V n → V n := α · (x1, . . . , xn) = (α · x1, . . . , α · xn).
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Definition 5.5. The space Rn associated with

d (x, y) =

√√√√ n∑
k=1

(xk − yk)2, (5.1)

is called the Euclidean n-space.

Example 5.6. The Euclidean n-space is a metric space.

Proof. This proof is from A. N. Kolmogorov and S. V Fumin [9]. The distance

function (5.1) clearly has properties (1) and (2) of definition 5.1. What remains

to show is that it also has property (3).

By completing the square on each side of the C-S inequality we get

n∑
k=1

a2k +
n∑
k=1

b2k + 2
n∑
k=1

akbk ≤
n∑
k=1

a2k +
n∑
k=1

b2k + 2

√√√√ n∑
k=1

a2k

√√√√ n∑
k=1

b2k,

so that

n∑
k=1

(ak + bk)
2 ≤

√√√√ n∑
k=1

a2k +

√√√√ n∑
k=1

b2k

2

.

Hence √√√√ n∑
k=1

(ak + bk)
2 ≤

√√√√ n∑
k=1

a2k +

√√√√ n∑
k=1

b2k. (5.2)

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and z = (z1, z2, . . . , zn) ∈ Rn.

If we choose ak = xk − yk and bk = yk − zk, inequality (5.2) become√√√√ n∑
k=1

(xk − zk)2 ≤

√√√√ n∑
k=1

(xk − yk)2 +

√√√√ n∑
k=1

(yk − zk)2

or equivalently,

d (x, z) ≤ d (x, y) + d (y, z) .

�

Definition 5.7. Let V be a vector space over the field R or C and let x ∈ V . A

norm, ‖x‖, on V is a function with the following properties

(1) ‖x‖ > 0 if x 6= 0.

(2) ‖αx‖ = |α| ‖x‖ for any scalar α.
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(3) ‖a + b‖ ≤ ‖a‖+ ‖b‖.

A vector space V where such a norm exists is called a normed vector space, a

normed linear space, or just a normed space.

Example 5.8 (Euclidean norm). The Euclidean space Rn has a norm, defined

by

‖x‖ =
√
x21 + · · ·+ x2n,

where x = (x1, . . . , xn) ∈ Rn. Even though this is a natural norm, it is not the

only one.

Example 5.9. There are other norms on Rn, for example, when x = (x1, . . . , xn) ∈
Rn

(1) The 1-norm on Rn: ‖x‖1 =
n∑
k=1

|xk|.

(2) The ∞-norm on Rn: ‖x‖∞ = max (|x1| , . . . , |xn|).

(3) The p-norm on Rn: ‖x‖p =

(
n∑
k=1

|xk|p
) 1

p

.

Example 5.10 (Normed function space). Let X be the set defined in example

5.3. By associating this space with a norm, defined by

‖f‖ = max
t∈[a, b]

|f (t)| ,

we get a normed function space denoted, as before, by C ([a, b]).

Proposition 5.11. Every normed space is a metric space.

Proof. Let V be a normed vector space, and define a function on V by d (x− y) :=

‖x− y‖. This function satisfies naturally properties (1) and (2) in definition 5.1.

To prove that the function also has property (3) and so is indeed a metric, we

replace a = x − y and b = y − z in the triangle inequality for normed vector

spaces,

‖a + b‖ ≤ ‖a‖+ ‖b‖ ,

and get

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖ ,
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which is equivalent to

d (x− z) ≤ d (x− y) + d (y − z) ,

which proves property (3), and every normed space is therefore a metric space. �

Corollary 5.12. Not every metric space is a normed space.

Proof. This can be shown by a counterexample, as demonstrated by W. Rudin

[18]. Let x, y ∈ R and define a distance function as

d (x, y) =

{
0 if x = y

1 if x 6= y
.

In this case, it is clear that property (2) in definition 5.7 fails to be true, since

‖αx‖ = |α| ‖x‖ is not true for all scalars α. �

Lemma 5.13. Any a = (a1, . . . , an) , b = (b1, . . . , bn) ∈ Rn satisfy Hölder’s

inequality

n∑
k=1

|akbk| ≤

(
n∑
k=1

|ak|p
) 1

p
(

n∑
k=1

|bk|q
) 1

q

, (5.3)

where p, q ∈ (1, ∞) and 1
p

+ 1
q

= 1.

Proof. This proof is classical and we used some ideas from Wikipedia [21], see

also [7]. The weighted inequality of arithmetic and geometric means, or weighted

AM-GM inequality for short, states that

w

√√√√ n∏
k=1

xwk
k ≤

1

w

n∑
k=1

wkxk,

for all x = (x1, . . . , xn) ∈ R+, all weights w = (w1, . . . , wn) ∈ R+, and where

w =
n∑
k=1

wk.

If we put x1 = up and x2 = vq, and the weights w1 = 1
p

and w2 = 1
q
, where

p, q ∈ R and w = w1 + w2 = 1, the weighted AM-GM inequality turns into

uv ≤ up

p
+
vq

q
.
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This special case of the AM-GM inequality is named Young’s inequality, [13].

If we substitute u = xk and v = yk, and sum over all k, we get

n∑
k=1

xkyk ≤
1

p

n∑
k=1

xpk +
1

q

n∑
k=1

yqk. (5.4)

Let A =

(
n∑
k=1

apk

) 1
p

and B =

(
n∑
k=1

bqk

) 1
q

. Set xk = ak
A

and yk = bk
B

, and inequality

(5.4) becomes

n∑
k=1

akbk
AB

≤ 1

p

n∑
k=1

(ak
A

)p
+

1

q

n∑
k=1

(
bk
B

)q

≤ 1

pAp

n∑
k=1

apk +
1

qBq

n∑
k=1

bqk

≤ 1

pAp
Ap +

1

qBq
Bq

= 1,

whence

n∑
k=1

akbk ≤ AB =

(
n∑
k=1

apk

) 1
p
(

n∑
k=1

bqk

) 1
q

,

which yields Hölder’s inequality. �

Remark 5.14. Hölder’s inequality is a generalization of the C-S inequality, as can

be seen when p = q = 2 in inequality (5.3).

The examples in example 5.9 together with the norm in definition 5.7 form a

special class of norms on Rn that is called p-norms, or `p-norms.

Theorem 5.15.

‖x‖p =

(
n∑
k=1

|xk|p
) 1

p

is a norm on Rn.

Proof. This proof is from Wikipedia [21, 22], see also [13]. Properties (1) and (2)

of definition 5.7 are trivial. What remains to show is that property (3), i.e. the
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triangle inequality, holds.

It is indeed Minkowski’s inequality(
n∑
k=1

|ak + bk|p
) 1

p

≤

(
n∑
k=1

|ak|p
) 1

p

+

(
n∑
k=1

|bk|p
) 1

p

.

Assume a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ R+. Let p and q ∈ R, and
1
p

+ 1
q

= 1.

First we observe that
n∑
k=1

(ak + bk)
p =

n∑
k=1

ak(ak + bk)
p−1 +

n∑
k=1

bk(ak + bk)
p−1.

By using Hölder’s inequality on the two terms on the right-hand side we get

n∑
k=1

(ak + bk)
p ≤

(
n∑
k=1

apk

) 1
p
(

n∑
k=1

(ak + bk)
q(p−1)

) 1
q

+

(
n∑
k=1

bpk

) 1
p
(

n∑
k=1

(ak + bk)
q(p−1)

) 1
q

≤

( n∑
k=1

apk

) 1
p

+

(
n∑
k=1

bpk

) 1
p

( n∑
k=1

(ak + bk)
p

) 1
q

.

Hence (
n∑
k=1

(ak + bk)
p

)1− 1
q

≤

(
n∑
k=1

apk

) 1
p

+

(
n∑
k=1

bpk

) 1
p

,

so that (
n∑
k=1

(ak + bk)
p

) 1
p

≤

(
n∑
k=1

apk

) 1
p

+

(
n∑
k=1

bpk

) 1
p

,

which proves Minkowski’s inequality. �

Definition 5.16. Let V be a vector space over the field R or C. Associate each

pair of vectors u and v in V with a scalar 〈u,v〉, that is called an inner product,

which has the following properties:

(1) Positive definiteness: 〈u,u〉 ≥ 0, with equality if and only if u = 0.

(2) Conjugate symmetry: 〈u,v〉 = 〈v,u〉.
(3) Linearity (in the first argument): 〈αu + v,w〉 = α 〈u,w〉+ 〈v,w〉 for all

α ∈ F .

Then V is called an inner product space.
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Remark 5.17. Conjugate linearity in the second variable follows from properties

(2) and (3) of definition 5.16:

〈u, αv + w〉 = 〈αv + w,u〉 =

= α 〈v,u〉+ 〈w,u〉 = α 〈u,v〉+ 〈u,w〉 ,

for all α ∈ F .

Definition 5.18. Let V be an inner product space. The vectors u and v are

orthogonal if 〈u,v〉 = 0.

Example 5.19 (Dot product). Let a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ Rn.

Then

〈a,b〉 :=
n∑
i=1

aibi,

which we call the dot product, is an example of an inner product.

Proof. It follows trivially that the dot product has properties (1) and (2) in def-

inition 5.16. We prove the linearity property. Let u = (u1, . . . , un) , v =

(v1, . . . , vn) , w = (w1, . . . , wn) ∈ Rn, and α ∈ R.

We have

〈αu + v,w〉 =
n∑
i=1

(αui + vi)wi =
n∑
i=1

(αuiwi + viwi) =

=
n∑
i=1

αuiwi +
n∑
i=1

viwi = α
n∑
i=1

uiwi +
n∑
i=1

viwi = α 〈u,w〉+ 〈v,w〉 ,

and hence the dot product is an inner product. �

Example 5.20. Let C ([0, 1]) be the set of all complex-valued continuous func-

tions on the interval [0, 1]. If f, g ∈ C ([0, 1]), then

〈f (x) , g (x)〉 :=

∫ 1

0

f (x) g (x) dx

is an inner product.

Proof. The first property in definition 5.16 is trivial. Since

〈f, g〉 =

∫ 1

0

f · ḡ dx =

∫ 1

0

ḡ · f dx =

∫ 1

0

ḡ · f dx =

∫ 1

0

g · f dx = 〈g, f〉,



26 THOMAS WIGREN

we have shown that property (2) holds and since

〈αf + g, h〉 =

∫ 1

0

(αf + g)h dx

=

∫ 1

0

αfh+ gh dx

=

∫ 1

0

αfh dx+

∫ 1

0

gh dx

= α

∫ 1

0

fh dx+

∫ 1

0

gh dx

= α 〈f, h〉+ 〈g, h〉 ,

we have also shown that property (3) holds and therefore it is an inner product.

�

Theorem 5.21 (Pythagorean theorem). Let V be an inner product space and

u, v ∈ V . When u and v are orthogonal,

‖u + v‖2 = ‖u‖2 + ‖v‖2.

Proof. Proof is from Wikipedia [23], see also [10]. Suppose u and v ∈ V and that

u and v are orthogonal. Then we have that

‖u + v‖2 = 〈u + v,u + v〉 = ‖u‖2 + 〈u,v〉+ 〈v,u〉+ ‖v‖2.

Since u and v are orthogonal we have that 〈u,v〉 = 〈v,u〉 = 0 and we get

‖u + v‖2 = ‖u‖2 + ‖v‖2,

which gives us the Pythagorean theorem. �

Theorem 5.22 (C-S inequality). Let V be an inner product space and u and

v ∈ V . Then the following inequality holds

|〈u,v〉| ≤ ‖u‖ ‖v‖ .

Proof. Proof is borrowed from S. S. Dragomir [5]. For any u and v ∈ V and

scalar t we have that

‖u + tv‖2 ≥ 0.
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Expanding the square we get

0 ≤ 〈u + tv,u + tv〉

≤ 〈u,u + tv〉+ 〈tv,u + tv〉

≤ 〈u + tv,u〉+ 〈u + tv, tv〉

≤ 〈u,u〉+ 〈tv,u〉+ 〈u, tv〉+ 〈tv, tv〉

≤ 〈u,u〉+ t 〈u,v〉+ t〈u,v〉+ tt 〈v,v〉 .

Let t = − 〈u,v〉‖v‖2 . Then

〈u,v〉 = −t‖v‖2 and 〈v,u〉 = −t‖v‖2.

By suitable substitutions we get that

‖u‖2 − |t|2‖v‖2 − |t|2‖v‖2 + |t|2‖v‖2 ≥ 0,

or equivalently

‖u‖2 − |t|2‖v‖2 ≥ 0.

By substituting t, we get that

‖u‖2 − |〈u,v〉|
2

‖v‖2
≥ 0,

which proves the C-S inequality. �

Alternative proof for real inner product spaces. This proof is provided from Wikipedia

[20]. Let u and v ∈ V where V in an inner product space over R and assume

that ‖u‖ = ‖v‖ = 1. We now have that

0 ≤ 〈u− v,u− v〉 = 〈u,u〉 − 2 〈u,v〉+ 〈v,v〉 .

Since 〈u,u〉 = 〈v,v〉 = 1 we have that

〈u,v〉 ≤ 1 = ‖u‖ ‖v‖ ,

from which we obtain the C-S inequality. �

Example 5.23. In example 5.20 we showed that for C ([0, 1]) we have the inner

product

〈f (x) , g (x)〉 =

∫ 1

0

f (x) g (x) dx.
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This allows us to write the C-S inequality as∣∣∣∣∫ 1

0

f (x) g (x)dx

∣∣∣∣2 ≤ ∫ 1

0

|f (x)|2dx
∫ 1

0

|g (x)|2dx.

Remark 5.24. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two non-

zero n-tuples of real numbers. Then ‖x‖ and ‖y‖ are both non-zero, and since

the C-S inequality

〈x,y〉 ≤ ‖x‖ ‖y‖

can be expressed as

−1 ≤ 〈x,y〉
‖x‖ ‖y‖

≤ 1,

we may define

θ := cos−1
(
〈x,y〉
‖x‖ ‖y‖

)
,

which we call the angle between x and y.



CAUCHY-SCHWARZ INEQUALITY 29

6. Problems involving the C-S inequality

Example 6.1. Prove that ab+ bc+ ca ≤ a2 + b2 + c2.

Solution by author. By choosing the vectors x = (a, b, c) and y = (b, c, a), and

using the C-S inequality we get

ab+ bc+ ca ≤
√
a2 + b2 + c2

√
b2 + c2 + a2 = a2 + b2 + c2.

�

Example 6.2 ([16]). Let a, b, and c be real positive numbers such that abc = 1.

Prove that a+ b+ c ≤ a2 + b2 + c2 using the C-S inequality.

Solution by author. The C-S inequality can be written as

a · 1 + b · 1 + c · 1 ≤
√
a2 + b2 + c2

√
12 + 12 + 12

or

a+ b+ c ≤
√
a2 + b2 + c2

√
3. (6.1)

Since the AM-GM inequality can be written as

3
√
a2b2c2 ≤ a2 + b2 + c2

3

and the fact that abc = 1 gives us

√
3 ≤
√
a2 + b2 + c2. (6.2)

From inequalities (6.1) and (6.2) we get that

a+ b+ c ≤
√
a2 + b2 + c2

√
3 ≤
√
a2 + b2 + c2

√
a2 + b2 + c2 = a2 + b2 + c2.

�

Example 6.3 (IrMO, 1999 [8]). Let a, b, and c be real positive numbers such

that a+ b+ c+ d = 1. Prove that

1

2
≤ a2

a+ b
+

b2

b+ c
+

c2

c+ d
+

d2

d+ a
.
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Solution by author. By choosing the vectors

x =
(√

a+ b,
√
b+ c,

√
c+ d,

√
d+ a

)
and

y =

(
a√
a+ b

,
b√
b+ c

,
c√
c+ d

,
d√
d+ a

)
,

and by using the C-S inequality we get

(a + b + c + d)
2 ≤ ((a + b) + (b + c) + (c + d) + (d + a))

(
a2

a + b
+

b2

b + c
+

c2

c + d
+

d2

d + a

)

(a+ b+ c+ d)2

2 (a+ b+ c+ d)
≤ a2

a+ b
+

b2

b+ c
+

c2

c+ d
+

d2

d+ a
.

Since a+ b+ c+ d = 1 we get the desired result. �

Example 6.4 (Belarus IMO TST, 1999 [16]). Let a, b, and c be real positive

numbers such that a2 + b2 + c2 = 3. Prove that

3

2
≤ 1

1 + ab
+

1

1 + bc
+

1

1 + ac
.

Solution by author. By choosing the vectors

x =
(√

1 + ab,
√

1 + bc,
√

1 + ca
)

and y =

(
1√

1 + ab
,

1√
1 + bc

,
1√

1 + ca

)
,

and by using the C-S inequality we get

9 ≤ ((1 + ab) + (1 + bc) + (1 + ca))

(
1

1 + ab
+

1

1 + bc
+

1

1 + ca

)
,

whence

9

3 + ab+ bc+ ca
≤ 1

1 + ab
+

1

1 + bc
+

1

1 + ca
.

As a result from example 6.1 we know that

9

3 + a2 + b2 + c2
≤ 9

3 + ab+ bc+ ca
,

and since a2 + b2 + c2 = 3 we obtain

3

2
≤ 1

1 + ab
+

1

1 + bc
+

1

1 + ca
.

�

Example 6.5. Let a, b, and c be real positive numbers. Prove that

a

2a+ b
+

b

2b+ c
+

c

2c+ a
≤ 1.
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Solution by author. First we reorganize the inequality so that we get 1 on the

left-hand side of the inequality

a

2a+ b
− 1

2
+

b

2b+ c
− 1

2
+

c

2c+ a
− 1

2
≤ 1− 3

2
,

which can be rewritten as

2a− 2a− b
2 (2a+ b)

+
2b− 2b− c
2 (2b+ c)

+
2c− 2c− a
2 (2c+ a)

≤ −1

2

or

1 ≤ b

2a+ b
+

c

2b+ c
+

a

2c+ a
.

By choosing the vectors

x =

(
b√

2ab+ b2
,

c√
2bc+ c2

,
a√

2ca+ a2

)
and

y =
(√

2ab+ b2,
√

2bc+ c2,
√

2ca+ a2
)
,

and by using the C-S inequality we get

(a+ b+ c)2 ≤
(

b2

2ab+ b2
+

c2

2bc+ c2
+

a2

2ca+ a2

)(
2ab+ b2 + 2bc+ c2 + 2ca+ a2

)
≤
(

b2

2ab+ b2
+

c2

2bc+ c2
+

a2

2ca+ a2

)
(a+ b+ c)2.

Hence

1 ≤ b2

2ab+ b2
+

c2

2bc+ c2
+

a2

2ca+ a2

=
b

2a+ b
+

c

2b+ c
+

a

2c+ a
.

�

Example 6.6 (Optimization problem). Let{
a2 + b2 + c2 + d2 + e2 = 16

a+ b+ c+ d+ e = 8

where a, b, c, d, and e ∈ R. Calculate the maximum and minimum value of e.

Solution by author. By choosing the vectors

x = (a, b, c, d) and y = (1, 1, 1, 1) ,
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and using the C-S inequality we get

(a+ b+ c+ d)2 ≤
(
a2 + b2 + c2 + d2

) (
12 + 12 + 12 + 12

)
≤ 4

(
a2 + b2 + c2 + d2

)
.

So that

(8− e)2 ≤ 4
(
16− e2

)
,

whence

e (5e− 16) ≤ 0.

An upper bound of e is therefore 16/5 and a lower bound is 0. To make sure the

upper and lower bounds are also maximum and minimum we need to check when

equality holds. Since C-S inequality is an equality when the vectors are linearly

dependent, we have that a = b = c = d = k.{
4k2 + (16/5)2 = 16

4k + 16/5 = 8

By solving this system we find that k = 6/5, and hence e = 16/5 is a maximum.

With similar argument we find that when k = 2 and e = 0 we have a minimum.

�

Example 6.7 (Circumference of an ellipse [17]). Let a be the semi-major axis of

an ellipse and b the semi-minor axis. One way to determine the circumference of

an ellipse is by using the elliptic integral

E (ε) =

∫ π/2

0

√
1− ε2sin2θ dθ.

E (ε) is here the arc length of a quarter of the circumference measured in units of

a. The circumference is therefore given by 4aE (ε). ε is a measure of eccentricity

of an ellipse, and given by the formula ε =
√

1− b2

a2
, (0 ≤ ε < 1). Find an upper

bound of this elliptic integral using the C-S inequality.
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Figure 6. aE (ε) is equal to one quarter of the circumference.

Solution by J. Pahikkala [17]. Let f (θ) := 1 and g (θ) :=
∫ π/2
0

√
1− ε2sin2θ dθ.

Using the C-S inequality we get∫ π/2

0

√
1− ε2sin2θ dθ ≤

√∫ π/2

0

12dθ

√∫ π/2

0

(
1− ε2sin2θ

)
dθ

=

√
π

2

√∫ π/2

0

(
1− ε21− cos 2θ

2

)
dθ

=

√
π

2

√[
θ − ε2

(
θ

2
− sin 2θ

4

)]π/2
0

=

√
π

2

√(
π

2
− ε2π

4

)

=
π

2

√
1− ε2

2
,

and as a result we have found an upper bound. �
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7. G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Reprint of the 1952 edition, Cam-

bridge Mathematical Library, Cambridge University Press, Cambridge, 1988.

8. The Irish Mathematical Olympiad (IrMO), Collected IrMO Problems 1988-2014, 2014, [on-

line] http://www.imo-official.org/problems.aspx, p. 25.

9. A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Dover Publications, Inc.,

1970.

10. E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, 1978.

11. S.H. Kung, Proof without words: Cauchy-Schwarz inequality, Math. Mag., 81 (2008), no.

1, p. 69.

12. D.C. Lay, Linear Algebra and Its Applications (4th ed.), Pearson Education, 2012.
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