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Matter and Radiation

Most of the information we gather regarding astronomical bodies is through the
radiation received from them. It is therefore essential for us to learn both the
production of radiation as well as the interaction of radiation with matter.

The form of radiation that we are most sensitive to at present is electromagnetic,
and almost the entire electromagnetic spectrum has been used by astronomers,
to the technologically feasible level of sensitivity. Astronomy at some bands,
notably ultraviolet, X-rays and low-energy gamma rays, cannot be carried out
from the ground because our atmosphere absorbs radiation at these wavelengths
(see fig. 2). One resorts to space platforms for observations at these wavelengths.

In India, strong groups and excellent instruments exist for carrying out ground-
based observations at radio wavelengths (e.g. GMRT). At optical wavelengths,
we have a number of telescopes of up to 2-m diameter. Small, but effective space
payloads for astronomy at X-ray and Gamma-ray wavelengths have been flown by
ISRO in the past, and the country is now gearing up to launch, in the year 2006, a
major space mission ASTROSAT, which will carry four X-ray payloads and one
ultraviolet/optical payload. New facilities have also just been commissioned for
ground-based study of gamma rays at very high energy, above ∼ 1012 eV.

Figure 1: Giant Metrewave Radio Telescope (GMRT) near Pune, a radio interferometer
consisting of 30 dishes of 45 m diameter each, spread over distances spanning ∼ 30 km,
is the world’s largest radio telescope operating at metre wavelengths
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Penetration of the earth’s atmosphere by external radiation 
The line shows the altitude at which the incoming radiation is blocked (schematic)
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Figure 2: Height above which astronomy is possible at different wavelengths

Interaction of matter and radiation

Radiation passing through matter can be modified due to several reasons:

• Radiation could be absorbed, the energy going into excitation of discrete
atomic or molecular energy levels (bound-bound transitions), or ionisa-
tion/dissociation (bound-free transitions), or even in free-free transitions
between continuum levels which increase the kinetic energy of particles
(heating).

• Radiation could cause stimulated emission, which is a process inverse to the
absorption mentioned above and exists for all transitions – bound-bound,
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Figure 3: A schematic representation of the deployed configuration of the Indian multi-
wavelength astronomy satellite ASTROSAT planned for launch in the year 2006

free-bound and free-free. This will add extra energy to the radiation at the
expense of the excitation or kinetic energy of matter.

• Spontaneous emission in all three categories may also take place and add to
the passing radiation.

• Radiation may be scattered by matter, either imparting kinetic energy to the
matter present, or gaining energy at the expense of kinetic energy.

• If the radiation is sufficiently energetic, it could produce particle-antiparticle
pairs (e.g. e± at photon energies > 1 MeV) and be destroyed in the process.
The inverse process, if free pairs are available, would add photons of the
corresponding energy.
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So if we follow the passage of a ray through a medium, there will be processes
which will remove photons from the ray path by absorption, destruction or scatter-
ing, and there will be processes which will add photons to it such as spontaneous
or stimulated emission or pair annihilation. In astrophysics, we lump together
these effects in two quantities which characterize the medium: the absortion coef-
ficient αν and the emission coefficient jν. Both are functions of frequency ν. jν is
defined as the amount of energy created by spontaneous emission per unit volume
per unit time per unit frequency interval per unit solid angle, at the frequency ν. αν
is the amount of energy removed from the beam per unit volume per unit time per
unit frequency interval per unit solid angle per unit incident specific intensity at
the frequency ν. Since stimulated emission is an inverse process to absorption and
is proportional to the incident intensity like absorption is, its effects are also taken
into account through αν. If stimulated emission dominates over loss of intensity
due to absorption and scattering, αν becomes negative, as is the situation in lasers.
Astronomers sometimes use a related quantity called opacity κν = αν/ρ, which is
the absorption coefficient per unit mass.

Accounting for the radiative energy removed from and added to the propagating
beam one can write the Radiative Transfer equation:

dIν
ds

= −ανIν + jν

which can be rewritten as
dIν
dτν

= −Iν + S ν

where S ν = jν/αν is called the source function of the material and

τν =

∫ s

0
αν(s′)ds′

is called the optical depth.

The solution of the transfer equation yields

Iν = I0
νe−τν + S ν(1 − e−τν)

where I0
ν is the incident intensity on the material and Iν is the emergent intensity

after passage through the material. The first term gives the exponential decay of
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background radiation due to absorption effects and the second term corresponds to
the amount of radiation added by the material, including effects of self-absorption.

If τν � 1, the medium is called “optically thin”, while if τν ≥ 1 it is called “opti-
cally thick”. As τν becomes large, the incident background radiation is practically
fully extinguished, and the intensity observed from the source approaches S ν.

According to thermodynamic principles, any material immersed in a blackbody
radiation bath at a temperature T , at equilibrium, must attain the same temperature
T . This imposes a strict condition on the source function for a thermal body:

S ν = Bν

where

Bν =
2hν3

c2

1
ehν/kT − 1

is the Planck function. So the radiation emitted by a thermal body approaches
that from a blackbody at the same temperature as the optical depth τν becomes
large, and this is the maximum radiation this body can emit at that frequency.
If the optical depth is smaller, the radiation emitted by the body is also smaller,
but of course any background radiation can then shine through the body more
easily. Note that τν depends on frequency, so a body could be optically thick at
some frequencies and optically thin at others at the same time. For example a
body that produces spectral lines has higher optical depth at line frequencies and
lower optical depth away from line frequencies. A true blackbody spectrum will
be generated only if the body is optically thick at all frequencies.

In this context, it is often convenient to express the actual intensity Iν at a given fre-
quency in terms of an equivalent blackbody temperature Tb,ν, called the brightness
temperature. This is the temperature that a blackbody needs to have to produce
the intensity Iν at the frequency ν. If the radiation is a true blackbody then Tb be-
comes independent of frequency and equal to the actual temperature of the black-
body. From the transfer equation one can then easily conclude that at any given
frequency ν the passage of radiation through a medium results in a net absorption
(i.e. emergent intensity Iν less than incident intensity I0

ν ) if the temperature of the
medium T is less than the brightness temperature of the background T 0

b,ν(I
0
ν ) and

in a net emission (i.e. Iν > I0
ν ) if T > T 0

b,ν.
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The thermodynamic principle stated above also results in an equivalent relation
between the emission and absorption probabilities described by quantum mechan-
ics. If we consider two energy levels 1 and 2, at energies E1 and E2 = E1 + hν,
then the transition rates between these levels are described by three Einstein coef-
ficients:

A21 = transition (2→1) probability per unit time
for spontaneous emission

B12 = transition probability (1→2) per unit time
for absorption, per unit incident intensity at
frequency ν

B21 = transition probability (2→1) per unit time
for stimulated emission, per unit incident intensity at
frequency ν

The thermodynamic relations between these coefficients are

g1B12 = g2B21

A21 =
2hν3

c2 B21

where g1 and g2 are the statistical weights of the two levels respectively. These
are called the Einstein relations.

In terms of these coefficients, the emission and absorption coefficients defined
before can be written as

jν =
hν
4π

n2A21

and
αν =

hν
4π

(n1B12 − n2B21)

where n1 and n2 represent the population at the lower and the upper levels re-
spectively. In reality a spectral transition is not infinitely sharp but will have a
certain width depending on the lifetime of the levels, as well as the velocity dis-
tribution of the atoms. In order to account for this a normalised profile function
φ(ν) (

∫ ∞
0
φ(ν)dν = 1) should be multiplied to the right hand side of both the above

relations.

One clearly sees from the above that if the level populations of the atom are such
that n2 > n1(g2/g1), then αν becomes negative due to the dominance of stimulated
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emission. The corresponding τν becomes negative, and the Radiative Transfer
equation predicts an exponential amplification of the incident background radia-
tion at that frequency. This is the so-called “Amplification by Stimulated Emission
of Radiation”, namely LASER or MASER effect. Given a thermal distribution of
level populations this can never be achieved:

n2 =
g2

g1
n1e−hν/kT ;

n2

n1
→ g2

g1
as T → ∞

The population at the upper level must exceed this for amplification to occur. Such
a situation is called “population inversion” and is manifestly “non-thermal”.

It is not uncommon in Astronomy to encounter situations where such population
inversion is naturally established. In ionised regions where strong ionising pho-
ton flux from, say, a nearby hot star is present, hydrogen atoms are first ionised,
and then many electrons recombine at levels with very high principal quantum
number. They then undergo gradual de-excitation, level by level, by spontaneous
emission. But since the radiative lifetime of upper levels are longer than those
of the lower levels, in a steady state the population in the upper levels exceed
those at the lower levels, for a certain range of quantum numbers. Population
inversion is also encountered in the cool envelopes of giant stars, where maser
emission from molecules such as Silicon Monoxide are seen. Dense molecular
clouds where young stars are being formed display maser transitions of Water,
Methanol, Ammonia, OH radical etc.

Production of radiation

Let us now look at microscopic electromagnetic processes that lead to the produc-
tion of radiation by matter, as well as scattering of radiation by single particles.

From classical electromagnetic theory one obtains the radiation field from an ac-
celerated charge:

Erad(r, t) =
q
c

[
n

R(1 − n · β)3 × {(n − β) × β̇}
]

Brad(r, t) = [n × Erad]
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where β = v/c, v being the velocity of the particle. n is the unit vector pointing
from the particle to the observer and R is the distance between the particle and
the observer. The expressions in square brackets are evaluated at the retarted time
(t − R/c). q is the charge of the particle. These give the instantaneous electric and
magnetic fields experienced by the observer. The plane containing the direction
of the electric field and the propagation vector n defines the plane of polarization
of the radiation.

The power radiated per unit solid angle at a direction Θ with respect to the accel-
eration v̇ can be obtained from the above:

dW
dtdΩ

=
q2v̇2

4πc3 sin2 Θ

for β � 1. Integrating over all angles, one obtains the expression for total power
radiated (Larmor’s formula):

dW
dt

= −dE
dt

=
2q2v̇2

3c3

For a relativistic particle with Lorentz factor γ this assumes the form

dW
dt

=
2q2

3c3 γ
4(a2
⊥ + γ2a2

|| )

where a⊥ and a|| are the components of acceleration perpendicular and parallel to
the velocity respectively.

For a collection of charges, this can be written, if the particle velocities v � c, as

dW
dtdΩ

=
D̈2

4πc3 sin2 Θ

and
dW
dt

=
2D̈2

3c3

where D is the dipole moment of the system of charges. This is called the Dipole
approximation.

In general the magnitude or the direction or both of the radiation field Erad at
the observer changes with time. Any arbitrary time dependent function such as
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this can be described as being composed of sinusoidal oscillations of different
frequencies, each with a different amplitude and phase. This is called Fourier
decomposition. The complex amplitude of a sinusoidal component with frequency
ν is given by

Ê(ν) =
1√
2π

∫ ∞

−∞
E(t)ei2πνtdt

the power at that frequency component being P(ν) = |Ê(ν)|2. This P(ν) vs ν is
what we normally call the “spectrum” of the radiation. There are some simple
properties of the Fourier transform which allow us to guess the nature of the spec-
trum:

1. If E(t) has a characteristic duration T then P(ν) is significant for frequencies
ν ≤ 1/T . The sharper the spike in E(t), the higher is the frequency content.

2. If E(t) is periodic with a period T0 then P(ν) only contains contributions at
the frequency ν0 = 1/T0 and its harmonics. If each pulse of the periodic
signal has a width ∆T < T0 then Nh ∼ T0/∆T harmonics will be present in
the spectrum.

Common radiation processes in astrophysics

Thermal Bremsstrahlung This relates to the radiation emitted by free electrons
in an ionised plasma due to encounter with ions. This is one of the most common
continuum radiation processes in astrophysics.

We can deduce the character of this radiation from the following simple consider-
ations. Let b be the impact parameter in one such encounter between an electron
of charge −e and an ion of charge +Ze. We can approximate the encounter as an
acceleration

a ≈ Ze2

meb2

for a duration
∆t ≈ 2b

v
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around the closest approach, and negligible acceleration outside this time window.
This gives the power emitted

P ≈ 2e2

3c3 a2 =
2
3

Z2e6

m2
ec2

1
b4

and the total energy emitted in the encounter

P∆t ≈ 4
3

Z2e6

m2
ec2

1
b3v

Given the duration of the acceleration, this power is emitted over the frequency
range 0 to v/2b, and hence the spectral power per unit frequency is

P(ν; b, v) ≈ 8
3

Z2e6

m2
ec2

1
b2v2

per encounter.

Noticing, now, that the number of encounters per unit time per unit volume with
impact parameter between b and b + db with electrons having speed between v
and v+dv is

2πbdbnine f (v)dv

where ni and ne are the number densities of the electrons and ions respectively
and f (v) is the normalised speed distribution of the electrons, we can write the
emission coefficient due to bremsstrahlung (free-free emission) as

j f f
ν =

1
4π

∫ ∞

vmin

dv
∫ bmax

bmin

db2πbnine f (v)P(ν; b, v)

Here bmin is decided by the fact that after the encounter and the corresponding loss
of energy in radiation the electron still remains free, and bmax from the condition
that v/(2bmax) = ν. The minimum cutoff speed vmin is decided by the condition

1
2

mev2
min = hν

i.e., the electron must have enough kinetic energy to produce a photon of fre-
quency ν. Here we are considering a non-relativistic situation. For a thermal
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distribution of electrons, f (v; T ) is the Maxwellian distribution of speeds at a
temperature T . The above integral yields the result

j f f
ν =

8e6

3mec3

(
2π

3mek

)1/2

T−1/2Z2nenie−hν/kT ḡ f f (ν,T )

where the factor ḡ f f (ν,T ), called the velocity averaged Gaunt factor, arises from
the limits on the impact parameter and is a very slowly varying function of fre-
quency: ḡ f f (ν,T ) ≈ 1 for hν ≤ kT . (In the above expression for j f f

ν numerical co-
efficients that result from the exact treatment of the problem have been included).
From Kirchhoff’s law one can then obtain the corresponding free-free absorption
coefficient

α f f
ν = j f f

ν /Bν

=
4e6

3mehc

(
2π

3mek

)1/2

T−1/2Z2neniν
−3(1 − e−hν/kT )ḡ f f

Numerically,

j f f
ν = 5.4 × 10−40T−1/2Z2nenie−hν/kT ḡ f f W m−3 Hz−1

α f f
ν = 3.7 × 1010T−1/2Z2neniν

−3(1 − e−hν/kT )ḡ f f m−1

The bremsstrahlung emission can cool a hot gas significantly, the net cooling rate
per unit volume being given by

ε f f =

∫ ∞

0
4π j f f

ν dν = 1.4 × 10−28T 1/2neniZ2ḡB W m−3

where the frequency averaged Gaunt factor ḡB ≈ 1.2. The above numerical coef-
ficients have been evaluated for number densities ne and ni in units of cm−3.

Synchrotron Emission Synchrotron emission arises from the motion of rela-
tivistic charged particles in a magnetic field B. Let us consider the example
of an electron. The Lorentz force on it, ev × B/c, is perpendicular to v, caus-
ing the electron to gyrate around the magnetic field. The gyration frequency is
ωc = eB/mec, which in the case of a relativistic electron with Lorentz factor γ
becomes ωB = eB/γmec. When the electron is extreme non relativistic, the elec-
tric field at the observer oscillates sinusoidally, and only the frequency ωc/2π is
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present in the spectrum. As the speed of the electron is increased, Lorentz transfor-
mation causes a front-back asymmetry in the emission, introducing non-sinusoidal
character to the periodic oscillations of the electric field, hence generating higher
harmonics in the radiation spectrum. As the electron becomes highly relativistic
(γ � 1), the radiation gets beamed into a forward cone of half-width 1/γ. The ob-
server experiences the electric field only when this cone crosses the line of sight.
The typical duration of the electric field in each pass, after correcting for doppler
effect, turns out to be 1/γ3ωB sinα, where α, called the “pitch angle”, is the an-
gle between the magnetic field and the velocity vector of the electron. Thus the
synchrotron radiation peaks at a frequency

νsy ≈ γ3ωB sinα
2π

∝ BE2

with harmonics present every ωB/2π. In a collection of electrons with different
pitch angles and energies the harmonic structure of the spectrum is washed out,
and one is left with a continuum. The power emitted by a single electron is given
by

P =
2
3

e4

m2
ec3γ

2β2
⊥B2

which, on averaging over an uniform pitch angle distribution yields

P =
4
9

r2
0cγ2β2B2 (∝ B2E2)

=
4
3
σT cγ2β2uB

where r0 = e2/mec2 is the classical electron radius, σT = 8πr2
0/3 is the Thomson

scattering cross section (see discussion later) and uB = B2/8π is the magnetic
energy density. This also expresses the average energy loss rate of a single electron
in a tangled magnetic field often encountered in astrophysical situations.

Often the relativistic electrons that produce the synchrotron emission have a non-
thermal power-law energy spectrum

N(E) ∝ E−p

which results in a broadband, power-law synchrotron emissivity of the form

jν ∝ ν−(p−1)/2
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Just like any other radiation process this too has its inverse, commonly referred to
as Synchrotron self absorption. For a thermal distribution of relativistic electrons,
the source function would be the Planck function Bν. In most of the situations we
will deal with, the photons produced by Synchrotron emission have a much lower
energy than the particles themselves. The source function in this Rayleigh-Jeans
regime is proportional to ν2kT , where kT is the typical energy of electrons in the
distribution. Once the electron distribution is non-thermal, the source function
will depart from this. The particular case of power-law distribution mentioned
above has the special property that it is scale-free, i.e. no typical energy can be
defined for the distribution. The typical energy of electrons responsible for syn-
chrotron emission at a frequency ν, according to the expression above, is E ∝ ν1/2.
In this case of scale-free distribution, this energy replaces kT in the expression for
the source function, which now goes as S ν ∝ ν5/2. The absorption coefficient is
therefore

αν =
jν

S ν

∝ ν−(p+4)/2

Compton Scattering Compton scattering causes momentum exchange between
a photon and a charged scatterer such as an electron. In a reference frame where
the electron is initially at rest, the change in wavelength of the scattered radiation
w.r.t. the incident is given by

λscattered − λincident = λc(1 − cos θ)

where θ is the scattering angle and λc ≡ h/mec is the “Compton wavelength” of
the electron. Clearly, in this frame the incident radiation loses some energy which
is picked up by the electron recoil. The cross section for Compton scattering is
given by the Klein-Nishina formula, which reduces in the non-relativistic regime
(x ≡ hν/mec2 � 1) to

σ ≈ σT

(
1 − 2x +

26x2

5
+ · · ·

)

and for x � 1 to

σ =
3
8
σT x−1

(
ln 2x +

1
2

)

For low x, the cross section approaches σT and the change in energy of the photon
is also very small. This limit is called the Thomson scattering. As x increases, the
energy transfer becomes larger, and the cross section drops.
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If the electron is originally in motion then the problem is analysed simply by mak-
ing a Lorentz transformation to the rest frame of the electron before scattering, and
transforming back to the lab frame after scattering. If the electrons are relativistic,
this shows that initially low energy photons (hν/mec2 � γ2 − 1) gain energy by
a factor γ2 in the lab frame, at the expense of the kinetic energy of the electron.
This is often called the “Inverse Compton Effect”. The inverse compton power for
a single electron works out to be

Pcomp =
4
3
σT cγ2β2uph

where uph is the photon energy density. Note the similarity to Psy.

A photon of energy ε passing through a thermal distribution of electrons at a
temperature T gains, on an average, an amount of energy

∆ε =
ε

mec2 (4kT − ε)

per scattering if kT � mec2. This shows that photons of energy higher than 4kT
lose energy and those of lower energy gain energy from the electron distribution.
In the relativistic limit, however, passing photons can gain a substantial amount of
energy:

∆ε = 16ε
(

kT
mec2

)2

One ought to note that the scattering process preserves the number of photons.

Bound-free transitions

We will now discuss processes involving bound states. We begin with free-bound/

bound-free transitions, the most important such processes in astrophysical con-
text are photoionisation and recombination. One encounters this in hot, thermal
regions where a large fraction of the gas is ionised.

A photoionisation/recombination process is represented by

(Z + 1)e+(n′) + e−(p)
 Ze+(n) + γ(hν = χZ,n − χZ+1,n′ + p2/2me)
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where n denotes the level of excitation of the lower ionisation species, and χZ,n

is its ionisation potential from this level. n′ and χZ+1,n′ are the corresponding
quantities for the higher ionisation species. In thermal equilibrium, a relation can
be obtained for the population ratio of the different species.

Let NZ+1(n′), NZ(n) and Ne be the number densities of the species in question. Let
the temperature of the gas be T . The number density of electrons with momentum
p, per unit momentum range, is then

Ne(p) =
Ne

(2πmekT )3/2 e−p2/2mekT · 4πp2

In the language of Einstein coefficients, the above process can be thought to be
composed of three distinct parts:

• Spontaneous Recombination, equivalent to spontaneous emission:

(Z + 1)e+(n′) + e−(p)→ Ze+(n) + γ(hν = χZ,n − χZ+1,n′ + p2/2me)

the rate for which is

RS = NZ+1(n′)Ne(p)A21(n, n′, p)

• Induced Recombination, equivalent to stimulated emission:

(Z + 1)e+(n′) + e−(p) + γ(hν = χZ,n − χZ+1,n′ + p2/2me)→ Ze+(n)

for which the rate is

RI = NZ+1(n′)Ne(p)IνB21(n, n′, p)

• Ionisation, equivalent to absorption:

Ze+(n) + γ(hν = χZ,n − χZ+1,n′ + p2/2me)→ (Z + 1)e+(n′) + e−(p)

at a rate
I = NZ(n)IνB12(n, n′, p)
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In thermal equilibrium, detailed balance requires that the total radiative transitions
downwards must equal the absorbing transitions upward, namely

I = RS + RI

i.e.

NZ(n)IνB12(n, n′, p) = NZ+1(n′)Ne(p)[A21(n, n′, p) + IνB21(n, n′, p)]

Hence
NZ+1(n′)Ne(p)

NZ(n)
=

B12(n, n′, p)/B21(n, n′, p)
1 + A21(n, n′, p)/IνB21(n, n′, p)

Now
B12(n, n′, p)/B21(n, n′, p) = g2/g1

the ratio of statistical weights. The statistical weight of state 2 is

g2 = gZ+1,n′ge
4πp2

h3

per unit volume per unit momentum range. The spin degeneracy factor ge is 2
and gZ+1,n′ is the statistical weight of level n′ of the higher ionisation species. The
statistical weight of state 1 is g1 = gZ,n. Thus, per unit momentum range,

B12(n, n′, p)/B21(n, n′, p) =
gZ+1,n′ge

gZ,n

4πp2

h3

Noting also that

A21(n, n′, p) =
2hν3

c2 B21(n, n′, p)

and

Iν =
2hν3

c2

1
ehν/kT − 1

we find
NZ+1(n′)Ne(p)

NZ(n)
=

gZ+1,n′ge

gZ,n

4πp2

h3 e−(χZ,n−χZ+1,n′+p2/2me)/kT

which in terms of the total electron density can be written as

NZ+1(n′)Ne

NZ(n)
=

gZ+1,n′ge

gZ,n

(
2πmekT

h2

)3/2

e−(χZ,n−χZ+1,n′ )/kT
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Noting that χZ,n = χZ,1 − EZ,n where EZ,n is the excitation energy of level n from
the ground state of the species Z, and likewise for the upper ionisation state, a sum
can be performed over all states n′ of the higher ionisation state and the states n
of the lower ionisation state:

NZ+1Ne

NZ
=

gZ+1ge

gZ

(
2πmekT

h2

)3/2

e−(χZ−χZ+1)/kT

where we have dropped the suffix 1 for the ground state ionisation potential. The
quantities gZ and gZ+1 now denote the partition functions of the corresponding
species. This expression, first derived by Meghnad Saha, goes by the name Saha
ionisation equation and is vital for the determination of the abundance of different
ionised species in a hot gas.

The ionisation and recombination probabilities are often expressed in terms of
the respective cross sections: σn′,n,Z(v) is the cross section for the capture of an
electron of speed v by an ion of charge Z + 1 at the level n′, resulting in an ion of
charge Z at a level n. This cross section is defined per unit velocity range.

aν is the corresponding photoionisation cross section, for a photon of energy hν =

χZ,n − χZ+1,n′ + mev2/2 to be absorbed by an ion of charge Z at a level n and be
ionised to charge Z + 1 at a level n′ as well as produce a photoelectron travelling
with a speed v. This cross section is defined per unit frequency range. We note
that since hν obeys the above relation, an unit velocity range corresponds to a
frequency range

dν
dv

=
mev

h

The cross sections σn′,n,Z(v) and aν are related to the A and B coefficients defined
above, and are therefore related among themselves. Let us slightly modify the
foregoing discussion to consider unit velocity range in place of unit momentum
range. A21, defined for unit velocity range, will now equal σn′,n,Z(v)v. The relation
between aν and B12 can be worked out as follows. Since in an isotropic radiation
field a radiation intensity Iν corresponds to a photon flux 4πIν/hν, and an unit
velocity range corresponds to a frequency range mev/h, we have

IνB12 =
4πIν
hν

mev
h

aν
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or
B12 =

4πmev
h2ν

aν

Noting that the statistical weight of the upper level

g2 = gZ+1,n′ge
4πm3

ev2

h3

per unit volume per unit velocity range, and the statistical weight of the lower state

g1 = gZ,n

we get

B21 =
g1

g2
B12 =

gZ,n

gZ+1,n′ge

h3

4πm3
ev2

4πmev
h2ν

aν

and then using

A21 =
2hν3

c2 B21

one finds

σn′,n,Z(v) =
2gZ,n

gZ+1,n′ge

h2ν2

c2m2
ev2 aν

This is called the Milne relation. Like in the case of Saha equation, the levels n
and n′ of the ion species can be summed over, replacing the respective statistical
weights by the corresponding partition functions.

In astronomy, the ionisation state of an atom is designated by a roman numeral
starting with I for the neutral state. Neutral Hydrogen is thus referred to as HI and
ionised hydrogen as HII. Neutral Helium is HeI, singly ionised Helium is HeII and
doubly ionised Helium is HeIII. The photoionisation processes, where important,
converts the region into a predominantly ionised one, and such ionised diffuse gas
is usually referred to as an HII region.

The free-bound processes in an HII region produces a continuum radiation, called
the recombination radiation. The HI free-bound radiation at a frequency ν will
result from recombinations of free electrons with speed v to levels with principal
quantum number n ≥ n1, where

hν =
1
2

mev2 + χn
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and
hν ≥ χn1

the emission coefficient then being given by

jν =
1

4π
npne

∞∑

n=n1

n−1∑

l=0

vσnl(HI, v) f (v)hν
dv
dν

The recombination cross section σ can be calculated from the corresponding aν
using the Milne relation. The nature of aν is such that at the ionisation threshold
from each n the cross section jumps to a large value and then falls roughly as
ν−3 at frequencies higher than the threshold. These thresholds thus make their
appearance in jν too, and due to the Milne relation it decays roughly linearly
with wavelength beyond each threshold. This gives the emission coefficient of
recombination radiation a “sawtooth” appearance.

In most situations, the total emission by the free-free process far exceeds the re-
combination radiation, but the recombination radiation can introduce character-
istic spectral features at ionisation thresholds in the continuum radiation. For
Hydrogen, the highest ionisation threshold, called the Lyman Limit, corresponds
to an energy of 13.6 eV or an wavelength of 912Å. Recombination radiation from
Hydrogen at wavelengths shorter than this is called the “Lyman continuum”. Sim-
ilarly, the recombination radiation shortward of 3646Å, the Balmer Limit, is called
the “Balmer continuum” and so on. It is to be noted that radiation at wavelengths
shorter than Lyman limit have a great difficulty escaping from regions of diffuse
gas, since such a photon is almost immediately absorbed by a nearby Hydrogen
atom. Observed light from gas-rich galaxies abruptly cuts off above the Lyman
limit and this feature, called the “Lyman break”, has been used to infer the redshift
of very distant galaxies. At wavelengths much shorter than Lyman limit, however,
the absorption cross section dies away as ∼ λ3, and the absorption by Hydrogen is
no longer significant. However heavier elements with higher ionisation energies
continue to provide significant opacity to photons of energy until about 1 keV,
above which the continuum absorption by diffuse gas is no longer significant.

Photoionisation is a very important heating process for diffuse gas. Given a source
of ionising photons, this process converts the energy of the ionising radiation into
the kinetic energy of photoelectrons, thereby heating the gas. HII regions around
hot stars can be heated quickly to high temperatures by this process. If there were
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Figure 4: Recombination radiation from a pure hydrogen nebula compared to free-free
emission. The red line includes both free-free and recombination radiation, the blue line
free-free radiation alone

no cooling processes available such a region would eventually attain the tempera-
ture of the star itself. Free-free emission, however, provides a substantial amount
of cooling, and recombination continuum a smaller amount. When metals are
present, certain bound-bound transitions in them may become the most important
cooling agents. In practice, one finds that the temperatures of HII regions lie in
the range ∼ 6000 to 15000 K.

Spectral lines

We will now discuss bound-bound transitions. There are many important spectral
lines used in Astronomical studies of various phenomena, and it is not possible to
discuss here all of them. We will mention some of the most commonly used ones,
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and the physical parameters they can help us derive.

We note that the probability of a radiative transition from an initial state |i〉 to a
final state | f 〉 of an atom (or molecule) is proportional to the squared expecta-
tion value of the interaction Hamiltonian e ~A · ~p/mec. For radiation, writing ~A as
A(t) exp(i~k · ~r)n̂, where n̂ is the unit vector in the direction of propagation of the
radiation, one finds that the transition probability is proportional to

|〈 f | exp(i~k · ~r)n̂ · ~∇|i〉|2

This is written for one electron, but can be generalised to a many-electron system
by summing the individual momentum operators. The exponential in the above
expression can be expanded as

exp(i~k · ~r) = 1 + i~k · ~r +
1
2

(i~k · ~r)2 + · · ·

And the lowest order, where the exponential is set to unity, is called the dipole
approximation. When the result in this order is zero, then one needs to go to
the higher orders, called electric quadrupole, magnetic dipole, electric octupole,
magnetic quadrupole and so on.

One often refers to the transitions in which the electric dipole order is non-zero,
as allowed transitions. These need to obey certain selection rules, which ensure
that there is a change in the net electric dipole moment of the atom (or molecule),
and also that the change in the angular momentum compensates for the angular
momentum carried away (or brought in) by a photon. In general, there can be
no dipole transition between states of the same parity. This condition does not
need to be fulfilled for higher order transitions, which are usually called forbidden
transitions. The forbidden transitions have much lower transition probabilities
than allowed transitions, and hence have much smaller optical depths associated
with them. This property makes them very valuable as tools to study dense regions
or long pathlengths encountered in Astronomy. Forbidden lines also provide some
of the most important cooling mechanisms encountered in hot regions.

Since radiative excitation/de-excitation has a low probability for forbidden tran-
sitions, transitions between these levels can often be caused by collisions. If we
designate two levels participating in this as 1 (lower) and 2 (upper) respectively,
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E21 being the energy difference between these two levels, then the collisional pro-
cesses are

Atom (state 1) + e−(Ekin =
1
2

mev2)
 Atom (state 2) + e−(Ekin =
1
2

mev2 − E21)

The rate of the collisional processes can be written as

Excitation : nen1q12

De-excitation : nen2q21

The collision probabilities q12 and q21 are the products of collision cross sections
and velocities, averaged over the electron speed distribution. They therefore are
functions of temperature, and are related by

q12 =
g2

g1
q21e−E21/kT

Levels that collisionally excite and radiatively de-excite can be a major source of
cooling for hot gas. A number of metal ions have levels that can participate in the
cooling of this form. The statistical equilibrium for such a pair of levels can be
written as

nen1q12 = nen2q21 + n2A21

where A21 is the spontaneous radiative transition probability. This yields

n2

n1
=

neq12

neq21 + A21

which provides a cooling rate

Lc = n2A21E21 = nen1q12E21


1

1 +
neq21
A21



This shows that the line cooling increases with increasing ne until neq21 reaches
values ∼ A21. Beyond that the cooling rate becomes practically independent of ne.

Important cooling transitions of this kind are [OII]λλ3726,3729; [OIII]λλ4959,5007;
[NII]λλ6548,6583 at temperatures of a few thousand K. The square brackets around
the species indicate a forbidden transition, and the wavelengths are in Angstroms.
The A21 coefficients for these transitions lie in the range 10−2 to 10−5 s−1. Com-
pare this with the A21 coefficient of a typical allowed transition: ∼ 108 s−1. At
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higher temperatures, the dominant cooling transitions are [NeV]λλ3345,3425;
CIV λλ1548,1550 etc.

The main Hydrogen lines seen from hot HII regions are the recombination lines, of
which Balmer transitions (Hα, Hβ, Hγ) are the most important. electrons captured
at higher levels cascade down, eventually producing these photons. Nearly every
recombination results in one of these Balmer photons (Hα λ6563, ∼ 60%, Hβ
λ4861 ∼ 20%, Hγ λ4340 ∼ 10%) that escape from the region. Lyman series
photons that are emitted are almost immediately absorbed in the vicinity, since
the vast majority of the HI component resides in the ground state. As a result,
Lyman photons are usually unable to escape from the nebula. The Balmer line
emissivity of an HII region can then be written as

jHα
ν ≈ nenpα

hνHα

4π
φ(ν)

where α is the recombination coefficient. This leads to a line intensity

IHα
ν =

∫ L

0
jHα
ν ds ∝

∫ L

0
nenpds =

np

ne

∫ L

0
n2

eds

Where L is the total pathlength through the nebula. The quantity
∫ L

0
n2

eds is called
the Emission Measure of the nebula, usually expressed in the units cm−6 pc. Note
that also the free-free emission, the recombination continuum, the free-free optical
depth are all proportional to this quantity.

Absorption at Lyman-α wavelength by neutral gas is one of the strongest signa-
tures of Hydrogen observed from even very distant gas clouds. In the spectrum
of a distant quasar one may find Lyman-α absorption by a large quantity of Hy-
drogen gas in the material between us and the quasar. The intergalactic medium
is by and large ionised, and neutral gas resides in discrete clouds and filaments,
some of which could be galaxies or protogalaxies. Being distributed over a large
redshift range, the Lyα absorption from many such clouds in any given line of
sight appear to us as a series of distinct lines, often referred to as the “Lyα” forest.
As Lyα is absorbed very strongly by HI, the narrow forest lines usually indicate
systems where the neutral fraction of Hydrogen is low. If, instead, the amount of
HI is relatively high, one gets a deep, saturated absorption with extended wings of
the line. These are called “Damped Lyman Alpha” systems or DLAs.
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Figure 5: Lyman alpha absorption in the spectrum of the Quasar Q0913+072 (Bechtold
1994 ApJS 91,1). The quasar is at a redshift of 2.785, corresponding to a wavelength of
the Lyman alpha line of 4602Å. Absorption at wavelengths shorter than this is caused by
intervening medium located at lower redshifts. Note the large number of Lyman alpha
absorption lines, called the Lyman Alpha Forest. Near 4400Å a Damped Lyman Alpha
absorption is seen.

The signature of Helium in ionised Helium regions is seen in the strong opti-
cal recombination line HeII λ4686, which is a transition from principal quantum
number 4 to 3. In very hot gas lines from highly ionised metals provide impor-
tant diagnostics. For example, absorption lines of OVI at 1032 and 1038 Åare
expected from a gas above a few times 105 K. At very high temperatures, en-
countered for example in shock-heated regions or in gas streams accreting onto
compact objects, strong X-ray lines of FeXXVI Lyα and Lyβ at 6.7 and 7.8 keV
are expected.

We now discuss one of the most important spectral lines in Astronomy that probes
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neutral atomic Hydrogen gas. This is a hyperfine (spin-flip) transition in the
ground state of the Hydrogen atom. In the upper state the nuclear and the electron
spins are parallel, and in the lower state they are antiparallel. This falls in the
category of forbidden transitions, and has a very low transition probability A21 =

2.869 × 10−15 s−1. The frequency of this radiation is 1420.406 MHz, correspond-
ing to a radio wavelength of 21.11 cm. Since the energy difference between the
two levels ∆E = 5.9 × 10−6 eV is very much smaller than kT in any astronomical
situation, the populations in these two levels are always in the ratio of their sta-
tistical weights, 3:1, namely three-quarters of all neutral hydrogen is in the upper
state. The emission coefficient of this line is

jν =
hν21

4π
n2A21φ(ν) =

3hν21

16π
nHIA21φ(ν)

where nHI is the neutral hydrogen number density. If the gas is at a temperature T
then the absorption coefficient can be obtained from

αν = jν/Bν(T ) =
3c2hA21

32πν21k
nHI

T
φ(ν)

Using the Rayleigh-Jeans approximation for Bν. The optical depth in the line is

τν =

∫
ανds =

3c2hA21

32πν21k
NHI

T
φ(ν)

which gives a line brightness temperature

Tb,ν = T (1 − e−τν)

In the above NHI stands for the line-of-sight integral of the number density of
neutral hydrogen, called the neutral hydrogen column density. From these, one
may write

NHIφ(ν) =
32πν21k
3c2hA21

τνTb,ν

1 − e−τν
or

NHI =
32πν21k
3c2hA21

∫
dν

τνTb,ν

1 − e−τν

Measurement of line emission in a given direction yields Tb,ν and absorption
against a strong background radio source yields τ. From these two measurements
one can determine the Hydrogen column density and the temperature of neutral
hydrogen in the line of sight. The temperature determined this way is commonly
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referred to as the “spin temperature”. Observation of this line allows us to map
the hydrogen distribution and study the dynamics of gas in the Galaxy as well as
external galaxies.

Nearly half the gas in our galaxy is in molecular form and resides in large molec-
ular clouds. A molecule exhibits rotational, vibrational and electronic transitions,
the corresponding spectra being, typically, in mm-waves, infrared and ultraviolet
respectively. H2 itself is a homonuclear molecule with no dipole moment, so rota-
tional and vibrational transitions are dipole-forbidden. H2 molecules are therefore
best observed in ultraviolet through its electronic transitions. However a molec-
ular cloud contains other molecular species such as CO which do have permit-
ted rotational-vibrational transitions which are excited by collisions with the H2

molecules. Study of these transitions allows one to indirectly study the properties
of the H2 gas. The rotational transitions of CO start at a frequency of 115 GHz
(J = 1 → 0), and are almost equidistant in frequency, occurring roughly at an
interval of 115 GHz. These transitions of CO have enabled us to study molecular
gas in similar amount of detail as the 21-cm line did for the atomic gas.


