

A research data management workflow for applied plasma science

Markus M. Becker^{1,*}, Ihda Chaerony Siffa¹, Hans Höft¹, Fabian Hoppe^{2,3}, Detlef Loffhagen¹, Nick Plathe¹, Harald Sack^{2,3}, Volker Skwarek⁴, Tabea Tietz^{2,3}, Simon Tschirner⁴, and Laura Vilardell Scholten¹

- ¹Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
- ²FIZ Karlsruhe Leibniz-Institut für Informationsinfrastruktur GmbH, 76344 Eggenstein-Leopoldshafen, Germany
- ³Karlsruhe Institute of Technology (KIT), Institute AIFB, 76133 Karlsruhe, Germany
- ⁴Hochschule für Angewandte Wissenschaften Hamburg (HAW Hamburg), Berliner Tor 5, 20099 Hamburg, Germany

*E-mail: markus.becker@inp-greifswald.de

DOI: 10.5281/zenodo.528849

MOTIVATION

 Research data management (RDM) according to the FAIR data principles (Wilkinson) 2016) poses new challenges to research processes and complements the primary goals of researchers in plasma science:

PRESERVING

- Local backups
- Long-term archiving, open file formats

That's too much effort, I have to set my priorities...

COLLECTING

- Reliable data
- Provenance, replicability and reproducibility

PUBLISHING

- High-rank papers
- Open access / open data

ANALYSING

- Expressive results
- Transparency and reproducibility

FIRST STEPS AND FUTURE REQUIREMENTS

- The plasma metadata schema, Plasma-MDS (Franke 2020) provides core elements for the uniform documentation of data in plasma science.
- Efforts are ongoing to build a common knowledge graph for plasma technology, which facilitates the implementtation of the FAIR data principles.
- New workflows and implementations of data management tools are now required in the different labs to balance effort and benefit of RDM, see https://nfdi4phys.de.

GLOSSARY OF RDM TOOLS

- The **FAIR** data principles are guidelines to improve the <u>Findability</u>, <u>Accessibility</u>, Interoperability, and Reuse of digital assets.
- Electronic lab notebooks (ELN) are designed to replace paper lab notebooks and bring several advantages such as automated import/export of information.
- Blockchain technology provides a basis for tamper-proof time-stamping and certification of research data, hypotheses and methods.
- Ontologies serve to create a formal representation of entities in a knowledge graph.
- A knowledge graph is a semantic network of real-world entities, like research domains, authors, instruments, and datasets and defines the relationship between them.

RESEARCH DATA MANAGEMENT WORKFLOW

- Usage of standardised metadata and open data formats
- Automation metadata collection and programmatic
- Publication of data machine actionable metadata for simplified data reuse and data-driven plasma science

Setup

References:

M. D. Wilkinson et al., Scientific Data 3 (2016) 160018. St. Franke et al., Scientific Data 7, (2020) 439. INPTDAT data platform, https://www.inptdat.de. RDPCIDAT data platform, https://rdpcidat.rub.de. LXCat plasma data exchange project, https://lxcat.net. eLabFTW, https://www.elabftw.net.

Funded by

R: A language and environment for statistical computing, https://www.R-project.org/.

WORKFLOW IMPLEMENTATION FOR DBD LAB

- Current measurements with large statistics are used to characterise pulsed dielectric barrier discharges (DBD) at atmospheric pressure.
- Here, the proposed workflow particularly supports the automated and reproducible aggregation of thousands of single-shot measurements.

Acquisition of data and metadata

H. Höft et al., J. Phys. D: Appl. Phys. 53 (2020) 025203

SPONSORED BY THE

Deutsche Forschungsgemeinschaft German Research Foundation

0.1 vol% N₂0

 1.0 vol% N₂C 10.0 vol% N₂0