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I. INTRODUCTION

The etymology of the word eikon traces it back to the word eikenai which is the transliteration of the word εικεναι
[1] in the Greek language meaning ‘to resemble’ [2]. In the Greek language it evolved into the word eikōn which is
the transliteration of the word εικoν [1] meaning ‘image’ [2]. It was borrowed into the Latin language and later into
the English language as eikon. In the English language it transformed into the words icon and ikon which are the
variants of the word eikon. Notice that throughout its evolution it has meant ‘image.’

The main goal of this report is to understand the eikonal approximation in quantum mechanics and quantum
field theories. Approximations play a very important role in the understanding of processes that cannot be solved
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exactly. The Born approximation in quantum mechanics is an example of an approximation that has been extensively
used for studying low energy processes. In quantum field theories involving coupling constants smaller than one
we use the standard weak-coupling perturbation series which is parallel in its approach to the Born approximation
in quantum mechanics. In the 1950’s and 1960’s when high energy physics was ascending towards its peak, it was
realized among the high energy physicists of those times that the Born approximation is not a valid approximation for
studying processes involving high energies. This period in fact was the golden age in the development of the eikonal
approximation in quantum mechanics and quantum field theories. The descendents of this era took the theory of
eikonal approximation for granted in quantum mechanics and quantum field theories. There was prolific activity in
the application of eikonal approximation in high energy physics, especially in QCD.

The eikonal approximation was not born in the study of quantum mechanics. It originated far back in optics.
Light we know obeys Maxwell’s equations. In terms of Maxwell’s equations light is understood as a wave obeying a
wave equation. But two hundred years before Maxwell wrote down his equations scientists understood reflection and
refraction of light which was extensively studied under the branch of science called ray optics. Today in elementary
school we learn ray optics without ever introducing Maxwell’s equations. In ray optics we assume that light travels
in a straight line. This assumption works fine as long as the size of the obstacle is large compared to the wavelength
of light. This is called the eikonal approximation in optics. Here we make contact with the meaning of the word
eikon in the sense that eikon meaning ‘image’ is formed by light only in the straight line approximation. In processes
involving diffraction we encounter the limit of the validity of the eikonal approximation in optics. We quickly switch
over to Maxwell’s equations to study diffraction.

Optics is described by Maxwell’s equations which can be written as a wave equation with the dispersion relation
given by ω = kc. Similarly, quantum mechanics is described in terms of Schrodinger’s equation which is a diffusion

equation (in imaginary time) with a dispersion relation given by ω = h̄k2

2m . With this correspondence we ask the
question, can we not have a corresponding eikonal approximation in quantum mechanics? Yes we can. The eikonal
approximation in quantum mechanics works for processes involving the scattering of particles with large incoming
momentum and when the scattering angle is very small.

In the language of differential equations, the main advantage the eikonal approximation offers is that the equations
reduce to a differential equation in a single variable. This reduction into a single variable is the result of the straight
line approximation or the eikonal approximation which allows us to choose the straight line as a special direction.
The early steps involved in the eikonal approximation in quantum mechanics are very closely related to the WKB
approximation in quantum mechanics. The WKB approximation involves an expansion in terms of Planck’s constant
h. The WKB approximation also reduces the equations into a differential equation in a single variable. But the
complexity involved in the WKB approximation is that this variable is described by the trajectory of the particle
which in general is complicated. The advantage of the eikonal approximation is in the classical trajectory being a
straight line. Thus in this manner the eikonal approximation is a very stringent semi-classical limit.

A very comprehensive collection of work on scattering theory in general with a very extensive bibliography which
covers scattering theory in both electromagnetism and quantum mechanics is the book by Roger G. Newton [3]. A
couple of textbooks among many which I have used are [6] and [7].

An extensive list of literature on the theory of eikonal approximation in quantum mechanics and quantum field
theories developed between the years 1950 and 1970 is available in [4]. It is unanimously accepted by everyone that
R. J. Glauber’s lecture notes on eikonal approximation [5] is the best available work on the subject. Glauber’s lecture
notes addresses the question of the conditions for the validity of the eikonal approximations in quantum mechanics.
In the section on eikonal approximations in this article starting out from his ideas we derive the conditions for the
validity of the eikonal approximations more concretely. We verify our conclusions by evaluating the total scattering
cross section for the simplest potential (an inverted finite spherical well) using the eikonal approximation and by
comparing it with the result obtained by the partial wave expansion.

After our study of eikonal approximation in quantum mechanics we concentrate on quantum electrodynamics. To
study the eikonal approximation in quantum electrodynamics we need to first write the field theoretical equations in a
suitable form. Schwinger’s formalism for quantum electrodynamics is the most suitable for this purpose. We develop
Schwinger’s formalism in detail based on [15–18] in section V.

In section VI we concentrate on electron-electron scattering. We introduce the quenched approximation. We outline
the derivation of the electron-electron scattering in the eikonal approximation based on [19,20]. We point out the
similarity of the result of electron-electron scattering obtained in the eikonal approximation to the non-relativistic
scattering amplitude due to the Coulomb potential.

The terminology used in this study report is the following

f(θ, φ) ≡ Scattering amplitude

σscatt. ≡ Scattering cross section
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σabs. ≡ Absorption cross section

σtot. ≡ σscatt. + σabs..

II. SCATTERING IN QUANTUM MECHANICS

A scattering process in quantum mechanics is described by the solution of the Schroedinger equation

[

− h̄2

2m
∇2 + V (~r, t)

]

ψ′(~r, t) = −ih̄ ∂
∂t
ψ′(~r, t) (1)

with the boundary conditions dictated by the requirement that the wave function ψ′(~r, t) must have a component that

involves an incident plane wave with energy E = h̄2k2

2m moving in the positive z direction and another component that
involves a spherical outgoing wave. It should be emphasized that in scattering problems we do not require ψ ′(~r, t) to
go to zero at ~r → ∞. In fact the scattering amplitude which is the quantity of interest is contained in the ~r → ∞
(asymptotic) part of ψ′(~r, t).

A. Formulation of the scattering problem

For the case when the initial beam can be described by a state of definite energy we can write

ψ′(~r, t) = e−
i
h̄

Etψ(~r) (2)

where ψ(~r) satisfies the differential equation

[

∇2 + k2
]

ψ(~r) = U(~r)ψ(~r) (3)

with the boundary conditions on ψ(~r) dictated by the boundary conditions on ψ′(~r, t). We have used the notation

k2 = 2mE
h̄2 and U(~r) = 2mV (~r)

h̄2 .
The differential equation for ψ(~r) in eqn. (3) can be rewritten as an integral equation [8] given by

ψ(~r) = φ(~r) +

∫

d3r′ G0(~r, ~r
′)U(~r′)ψ(~r′) (4)

where φ(~r) satisfies the potential free equation

[

∇2 + k2
]

φ(~r) = 0 (5)

and the Green’s function G0(~r, ~r
′) is the solution to

[

∇2 + k2
]

G0(~r, ~r
′) = δ(3)(~r − ~r′). (6)

The boundary conditions on φ(~r) and G0(~r, ~r
′) are prescribed by the boundary conditions on ψ(~r). The integral

equation in eqn. (4) is called the Lippmann-Schwinger equation [9]1. The solutions to φ(~r) and G0(~r, ~r
′) are

φ(~r) = A0 e
i~k·~r +B0 e

−i~k·~r (7)

G0(~r, ~r
′) = − 1

4π

[

A
eik|~r−~r′|

|~r − ~r′| +B
e−ik|~r−~r′|

|~r − ~r′|

]

(8)

1Schwinger’s view of the paper was [10]: ‘. . . I thought the importance of the paper was the variational principle . . . the so-
called Lippmann-Schwinger scattering equation is to me conventional scattering theory written in operator notation. Nothing
new. But that is what everybody paid attention to.’
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with the constraint A+B = 1. Using eqn. (7) and eqn. (8) in eqn. (4) the Lippmann-Schwinger equation takes the
form

ψ(~r) = A0 e
i~k·~r +B0 e

−i~k·~r − 1

4π

∫

d3r′
[

A
eik|~r−~r′|

|~r − ~r′| +B
e−ik|~r−~r′|

|~r − ~r′|

]

U(~r′)ψ(~r′). (9)

Imposing the boundary conditions that the wave function consists of a component that is a plane wave moving in the
positive z direction and another that is an outgoing spherical wave we get

ψ(~r) = A0 e
i~k·~r − 1

4π

∫

d3r′
eik|~r−~r′|

|~r − ~r′| U(~r′)ψ(~r′). (10)

As we emphasized before the information related to the scattering amplitude is contained in the asymptotic region
of the wave function. In most of the problems of interest the potential V (~r) is confined to a finite volume in space
and the detectors are very far from the region containing the potential. For these cases we can safely conclude r ′ � r
and thus approximate

|~r − ~r′| = r − ~r · ~r′
r

+O

[

(

r′

r

)2
]

. (11)

We can thus write

ψr→∞(~r) = A0 e
i~k·~r − 1

4π

∫

d3r′
1

r
eik(r−~r·~r′

r
) U(~r′)ψ(~r′) (12)

= ei~k·~r + f(θ, φ)
eikr

r
(13)

where we have set A0 = 1 so that

f(θ, φ) = − 1

4π

∫

d3r′ e−i~k′·~r′U(~r′)ψ(~r′) (14)

can be interpreted as the scattering amplitude, where ~k′ = k ~r
r . The illustration of the variables involved is shown in

fig. 1.
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~k, z

~k′ = k ~r

r

x

y

θ

~b′

φ′

~r = (r sin θ cosφ, r sin θ sin φ, r cos θ)
~k′ = (k sin θ cosφ, k sin θ sin φ, k cos θ)
~k = (0, 0, k)
~r′ = (b′ cosφ′, b′ sinφ′, z′)

1

FIG. 1. Illustration of the various variables used in the calculation. Note that ~r, ~k′, and ~k are in spherical polar coordinates
and ~r′ is in cylindrical polar coordinates.

Often it is more useful to denote f(θ, φ) as a function of ~k and ~k′ and thus write f(θ, φ) = f(~k′, ~k). Observe that
even though the information related to f(θ, φ) is contained in the asymptotic region of ψ(~r) the only contributions to
f(θ, φ) in eqn. (14) comes from regions where the potential is not zero. To complete the formulation of the scattering
problem we define the scattering cross section as

σscatt. =

∫

dΩ | f(θ, φ) |2 (15)
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and the total cross section as

σtot. = σscatt. + σabs. (16)

where σabs. is the absorption cross section which will be explicitly defined in eqn. (27).
To summarize this section on formulation of the scattering problem, we have concluded that a prescription to

evaluate the scattering amplitude is to use

f(θ, φ) = − 1

4π

∫

d3r′ e−i~k′·~r′U(~r′)ψ(~r′) (17)

where ψ(~r) is determined by solving

[

∇2 + k2
]

ψ(~r) = U(~r)ψ(~r) (18)

under the boundary conditions described after eqn. (1).

B. Identities satisfied by the scattering amplitude

Starting from the Schroedinger equation we shall derive two identities satisfied by the scattering amplitude. The
first, the dynamical reversibility theorem was first derived by R. J. Glauber and V. Schomaker [11] in 1953. The
second, the optical theorem, is a statement of probability conservation in quantum mechanics written as a continuity
equation in reference to the scattering amplitude. The optical theorem was first derived by E. Feenberg [12] in 1932.

1. Dynamical reversibility theorem

In the Schroedinger equation if we write the wave function as

ψ′(~r, t;~k) = e−
i
h̄

Etψ(~r;~k) (19)

where 2mE = h̄2k2, we can quickly derive the following identity

ψ(~r; ~−k2) ∇2ψ(~r; ~k1)− ψ(~r; ~k1) ∇2ψ(~r; ~−k2) = (k2
1 − k2

2)ψ(~r; ~k1)ψ(~r; ~k2). (20)

Evaluating the above expression on a sphere of radius r →∞ for the case | ~k1 |=| ~k2 | we have

∮

r→∞
d~S ·

[

ψr→∞(~r; ~−k2) ∇2ψr→∞(~r; ~k1)− ψr→∞(~r; ~k1) ∇2ψr→∞(~r; ~−k2)
]

= 0. (21)

Using eqn. (13) in the above expression and evaluating the surface integrals after taking the limit r →∞ we get [5]

f(~k2, ~k1) = f(−~k1,−~k2) (22)

where we have used the notation we defined for f(θ, φ) in the paragraph after eqn. (14). Thus the scattering amplitude

for a process going from ~k1 to ~k2 is identical to that of a process going from −~k2 to −~k1. This is dynamical reversibility.

2. Optical theorem

In a very similar manner as we did in the earlier section (in this case we take the complex conjugate of the wave
function) we arrive at the following continuity equation

∂ρ(~r)

∂t
+ ~∇ ·~j(~r) = s(~r) (23)

where
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ρ(~r) = | ψ(~r) |2

~j(~r) =
h̄

2im

[

ψ∗(~r) ~∇ ψ(~r)− ψ(~r) ~∇ ψ∗(~r)
]

s(~r) =
2

h̄
[Im V (~r)] | ψ(~r) |2 . (24)

Integrating the continuity equation over a sphere of radius r →∞ and noting that the derivative of the ρ term does
not contribute because both the states have the same energy we get

∮

r→∞
d~S ·

[

ψ∗r→∞(~r) ∇2ψr→∞(~r)− ψr→∞(~r) ∇2ψ∗r→∞(~r)
]

= lim
r→∞

∫

d3r s(~r). (25)

Again using eqn. (13) in the above expression and evaluating the surface integrals after taking the limit r → ∞ we
get [5]

∫ 2π

0

dφ

∫ π

0

sin θ dθ | f(θ, φ) |2 − lim
r→∞

2m

h̄2k

∫

d3r [Im V (~r)] | ψ(~r) |2= 4π

k
Imf(θ = 0). (26)

Using eqn. (15) and defining the absorption scattering cross section as

σabs. = − lim
r→∞

2m

h̄2k

∫

d3r [Im V (~r)] | ψ(~r) |2 (27)

we have the optical theorem

σscatt. + σabs. =
4π

k
Imf(θ = 0). (28)

III. PARTIAL WAVE EXPANSION

In this article we will be concerned with approximation methods for evaluating the scattering amplitude. In
particular we will be interested in the eikonal approximation to the scattering amplitude. After we have made an
approximation we would like to be aware of how much we have deviated from the exact result. The closest we can
have to an exact result in a scattering problem is the result got by the method of partial wave expansion. We shall
thus find it very useful to use the results obtained from the method of partial wave expansion as a benchmark.

The method of partial wave expansion breaks down the initial wavefunction into an infinite sum over angular
momentum components labeled by the quantum number l. The contribution to the scattering amplitude from each l
is calculated separately and called the partial wave scattering amplitude. The complete scattering amplitude is then
obtained by summing over all the partial wave scattering amplitudes. We say it is the closest we can have to an
exact expression because the solution cannot in general be written in a closed form. Nevertheless for an incoming
beam of a given energy characterized by the parameter k we can always define its angular momentum as ka where
a is the scattering length defined in section III B in terms of the partial wave scattering amplitude corresponding to
l = 0. It turns out that for most of the potentials the contributions from l terms very much higher than ka converge
very rapidly and thus can be neglected. Physically this is understood as, only those beams that have sufficient initial
energy and those that pass through the scattering length of the potential are deflected.

If the method of partial wave expansion gives us the exact solution why do we need approximation methods?
Firstly because for almost all potentials (even for the simple Gaussian potential) we need to depend on numerical
computational methods to solve the radial differential equation. Secondly for high energy scattering problems we need
to sum over a large range of l.

For potentials involving a boundary beyond which the potential is zero it sometimes becomes possible to evade the
need for computational methods to a significant extent. For the simplest potential of this class, that of an inverted
finite square well, the radial differential equation mentioned above can be solved exactly. Thus we shall solve the
inverted finite square well in detail and use it for comparison with the results obtained from other approximation
methods.
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A. Method of partial wave expansion

For a spherically symmetric potential of the form

V (~r) = V (r) (29)

we can write the solution to eqn. (18) as

ψ(~r) =

∞
∑

l=0

(2l + 1)ilRl(r)Pl(cos θ) (30)

where where Rl(r) is the solution to the radial differential equation

d2Rl(r)

dr2
+

2

r

dRl(r)

dr
+

[

k2 − l(l + 1)

r2
− U(r)

]

Rl(r) = 0. (31)

For potentials that die off faster than 1
r2 we can write the solution to eqn. (31) in the r →∞ region to be

lim
r→∞

Rl(r) = Cl

[

cos δl

(

lim
r→∞

jl(kr)
)

− sin δl

(

lim
r→∞

ηl(kr)
)]

. (32)

Substituting eqn. (32) in eqn. (30) and using the identity

eikr cos θ =

∞
∑

l=0

(2l + 1)iljl(kr)Pl(cos θ) (33)

in eqn. (14) we have

f(θ, φ)
eikr

r
=

∞
∑

l=0

(2l+ 1)ilPl(cos θ)
[

(Cl cos δl − 1)
(

lim
r→∞

jl(kr)
)

− Cl sin δl

(

lim
r→∞

ηl(kr)
)]

. (34)

Using

lim
r→∞

jl(kr) =
1

kr
cos

[

kr − (l + 1)
π

2

]

=
1

2kr

[

i−(l+1)eikr + i+(l+1)e−ikr
]

(35)

lim
r→∞

ηl(kr) =
1

kr
sin

[

kr − (l + 1)
π

2

]

=
1

2kr

[

i−(l+2)eikr − ile−ikr
]

(36)

and equating the coefficients of eikr and e−ikr in eqn. (34) we get

f(θ) =
1

2k

∞
∑

l=0

(2l+ 1)ilPl(cos θ)i−(l+1)
[

Cle
+iδl − 1

]

(37)

0 =
1

2k

∞
∑

l=0

(2l+ 1)ilPl(cos θ)i+(l+1)
[

Cle
−iδl − 1

]

. (38)

The second equation above further reduces to Cl = eiδl which when used in eqn. (37) to eliminate Cl gives

f(θ) =
1

2ik

∞
∑

l=0

(2l + 1)Pl(cos θ)
[

e2iδl − 1
]

. (39)

This is the standard expression for the scattering amplitude given as a sum of partial waves. δl’s are defined as the
phase shifts in Bessel functions (which are trigonometric functions in the r →∞ limit) as introduced in eqn. (32).

Observe that the phase shifts δl’s in eqn. (39) are in principle determined by solving the radial differential equation
in the presence of U(r) which can be solved analytically only for special cases. In practice the phase shifts are
evaluated by solving the radial equation numerically. For problems involving high energies a further complication
arises because we need to sum over a sufficiently high number of partial waves.

For the case of a inverted square well potential it is possible to solve the radial equation exactly. In the subsequent
section we shall write down an expression for δl for the inverted square well potential. We shall find it useful to
compare the results later when we are doing eikonal approximations.
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B. Scattering length of a potential

The scattering cross section is obtained by squaring eqn. (39) and integrating over all directions. Using the
orthogonality of Legendre polynomials it turns out to be

σscatt. =
4π

k2

∞
∑

0

(2l + 1) sin2 δl. (40)

The contribution to the scattering cross section from the s-wave (l = 0) is

{σscatt.}l=0 =
4π

k2
sin2 δ0. (41)

The scattering length ‘a’ is defined as the radius of the sphere that will give a contribution in a classical scattering
problem equal to the s-wave contribution above. Correspondingly we write

{σscatt.}l=0 = 4πa2. (42)

Thus we get

a =
1

k
sin δ0. (43)

Observe that sin δ0 will require the solution to the differential equation in eqn. (31) for l = 0 which normally can only
be solved numerically.

C. Inverted finite spherical well potential

For a spherically symmetric potential of the form

V (~r) =

{

V (r) for r < a
0 for r > a

(44)

we can write

Rl(r) =

{

Rl<(r) for r < a
Cl [cos δljl(kr) − sin δlηl(kr)] for r > a

(45)

where Rl<(r) is the solution to eqn. (31) for r < a. Requiring the wave function and its derivative to be continuous
and taking the ratio of the equations got by requiring the continuity we get

a dRl<(r)
dr

∣

∣

∣

r=a

Rl<(a)
=
ka

[

d
dkajl(ka)− tan δl

d
dkaηl(ka)

]

[jl(ka)− tan δlηl(ka)]
. (46)

The above expression can be solved for tan δl if Rl<(r) is known at r = a.
For an inverted square well potential defined by

V (~r) =

{

V for r < a
0 for r > a

(47)

we further have

Rl<(r) = Bljl(αr) (48)

where α = k
√

1− V
E with V

E < 1. For this case we can write the explicit expression for the phase shifts to be

sin2 δl =
N2(ka, αa)

N2(ka, αa) +D2(ka, αa)
(49)

where

N(ka, αa) = αa jl−1(αa)jl(ka)− ka jl(αa)jl−1(ka)

D(ka, αa) = αa jl−1(αa)ηl(ka)− ka jl(αa)ηl−1(ka). (50)

In fig. 2 we plot σtot. versus kaV
E for the inverted spherical well potential for ka = 500.
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FIG. 2. σtot. versus kaV

E
for ka = 500 using partial wave method.

IV. EIKONAL APPROXIMATION IN QUANTUM MECHANICS

In this section we shall convince ourselves that the eikonal approximation is valid for processes involving small angle
scattering and very large incoming momentum. More rigorously the conditions are V

E � 1 and 1
V/E � ka� 1

(V/E)2 .

In this stringent parameter zone the expression for scattering amplitude takes the form

f(θ, φ) =
k

2πi

∫

d2b′ e−i~k′·~b′
[

eiχ(~b′) − 1
]

(51)

where

χ(~b′) = − 1

2k

2m

h̄2

∫ +∞

−∞
dz′ V (~b′, z′). (52)

The scattering cross section takes the form

σscatt. = 8πa2

∫ ∞

0

dt t sin2

[

k

E

∫ +∞

−∞
dz′ V (~b′, z′)

]

. (53)

We shall derive the above formulas in this section.

A. Formalism for the eikonal approximation

In eqns. (17) and (18) we found the prescription for calculating the scattering amplitude to be

f(θ, φ) = − 1

4π

∫

d3r′ e−i~k′·~r′U(~r′)ψ(~r′) (54)

where ψ(~r) is determined by solving

[

∇2 + k2
]

ψ(~r) = U(~r)ψ(~r). (55)

To solve for ψ(~r) let us write

ψ(~r) = ei~k·~rφ(~r). (56)

With the above substitution and with the choice ~k along the z direction eqn. (55) takes the form
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[

2ik
∂

∂z
− U(~b, z)

]

φ(~b, z) = −∇2φ(~b, z) (57)

where we have used the notation ~r ≡ (~b, z). We can write the formal solution to eqn. (57) as

φ(~b, z) = η(~b, z)−
∫

d2b′
∫ ∞

−∞
dz′ Ge(~b, z, ~b′, z

′) ∇′2φ(~b′, z′) (58)

where η(~b, z) satisfies
[

2ik
∂

∂z
− U(~b, z)

]

η(~b, z) = 0 (59)

and Ge(~b, z, ~b′, z′) satisfies
[

2ik
∂

∂z
− U(~b, z)

]

Ge(~b, z, ~b′, z
′) = δ(2)(~b−~b′) δ(z − z′) (60)

with boundary conditions on η(~b, z) and Ge(~b, z, ~b′, z′) prescribed by the boundary conditions on ψ(~r). The solutions
to eqns. (59) and (60) are

η(~b, z) = e
1

2ik

∫

z

−∞

du U(~b,u)
(61)

where we imposed the boundary condition η0(~b) = η(~b, z = −∞) = 1, and

Ge(~b, z, ~b′, z
′) =

1

2ik
δ(2)(~b−~b′) θ(z − z′) e

1
2ik

∫

z

z′
du U(~b,u)

(62)

=
1

2ik
δ(2)(~b−~b′) θ(z − z′) η(~b, z) η−1(~b, z′). (63)

Using eqns. (61) and (63) in eqn. (58) we have

φ(~b, z) = η(~b, z)

[

1− 1

2ik

∫ z

−∞
dz′ η−1(~b, z′)

(

∇2
b +

∂2

∂z′2

)

φ(~b, z′)

]

(64)

which after iteration takes the form

φ(~b, z) = η(~b, z)

[

1 +

∫ z

−∞
dz′K(~b, z′, ~∇b,

∂

∂z′
) +

∫ z

−∞
dz′K(~b, z′, ~∇b,

∂

∂z′
)

∫ z′

−∞
dz′′K(~b, z′′, ~∇b,

∂

∂z′′
) + . . .

]

(65)

where the expression for K(~b, z, ~∇b,
∂
∂z ) acting on an arbitrary function g(z) is given by

K(~b, z, ~∇b,
∂

∂z
) g(z) =

−1

2ik
η−1(~b, z)

(

∇2
b +

∂2

∂z2

)

η(~b, z) g(z). (66)

Using the above series expansion for φ(~b, z) in eqn. (56) and plugging it in eqn. (54) we can write the scattering
amplitude as

f(θ, φ) = f (0)(θ, φ) + f (1)(θ, φ) + f (2)(θ, φ) + . . . (67)

where

f (0)(θ, φ) = − 1

4π

∫

d2b′
∫ +∞

−∞
dz′ ei(~k−~k′)·~r′U(~b′, z′) η(~b′, z′)

f (1)(θ, φ) = − 1

4π

∫

d2b′
∫ +∞

−∞
dz′ ei(~k−~k′)·~r′U(~b′, z′) η(~b′, z′)

∫ z′

−∞
dz′′K(~b′, z′′)

f (2)(θ, φ) = − 1

4π

∫

d2b′
∫ +∞

−∞
dz′ ei(~k−~k′)·~r′U(~b′, z′) η(~b′, z′)

∫ z′

−∞
dz′′K(~b′, z′′)

∫ z′′

−∞
dz′′′K(~b′, z′′′). (68)

We have used K(~b, z, ~∇b,
∂
∂z ) ≡ K(~b, z) for compactness. The power in the exponent i(~k − ~k′) · ~r′ in the above

expressions can be explicitly written as

i(~k − ~k′) · ~r′ = −ikb′ sin θ cos(φ− φ′) + ikz′2 sin2 θ

2
. (69)

The coordinates used are pictorially described in fig. 1.
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B. Validity of the eikonal approximation

Starting from the expression for f (0)(θ, φ) in eqn. (68) and switching to dimensionless variables z → at, ~b → a~w

and V (~b, z)→ V v(~b, z) where ‘a’ is the scattering length, we can write

f(θ, φ) = − a

4π
(ka)2

V

E

[

g(0)(ka) +
V

E
g
(1)
A (ka) + ka

(

V

E

)2

g
(1)
B (ka) + . . .

]

(70)

where we have suppressed the θ and φ dependence in g(n)’s. The explicit expressions for the g(0), g
(1)
A and g

(1)
B are

g(0) =

∫

d2w′
∫ +∞

−∞
dt′ e−ikaw′ sin θ cos(φ−φ′)+ikat′2 sin2 θ

2 v(~w′, t′) η(~w′, t′)

| g(0) | ≤
∫

d2w′
∫ +∞

−∞
dt′ |v(~w′, t′)| (71)

g
(1)
A = −1

4

∫

d2w′
∫ +∞

−∞
dt′ e−ikaw′ sin θ cos(φ−φ′)+ikat′2 sin2 θ

2 v(~w′, t′)2 η(~w′, t′)

−1

4

∫

d2w′
∫ +∞

−∞
dt′ e−ikaw′ sin θ cos(φ−φ′)+ikat′2 sin2 θ

2 v(~w′, t′) η(~w′, t′)

∫ t′

−∞
dt′′

∫ t′′

−∞
dt′′′

∣

∣∇2
w′v(~w′, t′′′)

∣

∣

| g(1)
A | ≤ 1

4

∫

d2w′
∫ +∞

−∞
dt′ |v(~w′, t′)|2 +

1

4

∫

d2w′
∫ +∞

−∞
dt′ |v(~w′, t′)|

∫ t′

−∞
dt′′

∫ t′′

−∞
dt′′′

∣

∣∇2
w′v(~w′, t′′′)

∣

∣

g
(1)
B = − i

8

∫

d2w′
∫ +∞

−∞
dt′ e−ikaw′ sin θ cos(φ−φ′)+ikat′2 sin2 θ

2 v(~w′, t′) η(~w′, t′)

∫ t′

−∞
dt′′v(~w′, t′′)2

− i
8

∫

d2w′
∫ +∞

−∞
dt′ e−ikaw′ sin θ cos(φ−φ′)+ikat′2 sin2 θ

2 v(~w′, t′) η(~w′, t′)

∫ t′

−∞
dt′′

[

∫ t′′

−∞
dt′′′∇2

w′v(~w′, t′′′)

]2

| g(1)
B | ≤ 1

8

∫

d2w′
∫ +∞

−∞
dt′ |v(~w′, t′)|

∫ t′

−∞
dt′′ |v(~w′, t′′)|2

+
1

8

∫

d2w′
∫ +∞

−∞
dt′ |v(~w′, t′)|

∫ t′

−∞
dt′′

∣

∣

∣

∣

∣

∫ t′′

−∞
dt′′′∇2

w′v(~w′, t′′′)

∣

∣

∣

∣

∣

2

. (72)

It is easy to verify from the above expressions that for potentials that fall away faster than 1
t
√

w
the contributions to

g(n)’s are finite. For these potentials it can thus be concluded that major contribution to the scattering amplitude

comes from the zeroth order for V
E � 1 and ka

(

V
E

)2 � 1.
We shall later observe that the expression for the scattering amplitude obtained from the zeroth order eikonal

approximation satisfies the optical theorem only in the limit ka V
E →∞. This requirement can be achieved only if we

additionally require ka� 1
V/E .

Thus to summarize, the conditions under which the eikonal approximation holds are

V

E
� 1 and

1

V/E
� ka� 1

(V/E)2
. (73)

C. Zeroth order eikonal approximation

Thus for potentials that die out sufficiently fast and for conditions V
E � 1 and 1

V/E � ka � 1
(V/E)2 the zeroth

order contribution to f(θ, φ) is the most significant. From eqns. (67), (68) and (61) we can write

f (0)(θ, φ) = − 1

4π

∫

d2b′
∫ +∞

−∞
dz′ ei(~k−~k′)·~r′U(~b′, z′) η(~b′, z′)

= − 1

4π

∫

d2b′
∫ +∞

−∞
dz′ e−ikb′ sin θ cos(φ−φ′)+ikz′2 sin2 θ

2U(~b′, z′) e
1

2ik

∫

z′

−∞

du U(~b′,u)
. (74)
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For large incoming momentum and for small scattering angles most of the contribution to the scattering cross section
comes from angles less than or of order V

E . Thus in the zeroth order eikonal approximation we can approximate

−ikb′ sin θ cos(φ− φ′) + ikz′2 sin2 θ

2
≈ −ikb′θ cos(φ− φ′). (75)

Using eqn. (75) in eqn. (74) we have

f (0)(θ, φ) = − 1

4π

∫ ∞

0

b′db′
∫ 2π

0

dφ′ e−ikb′θ cos(φ−φ′)

∫ +∞

−∞
dz′U(~b′, z′) e

1
2ik

∫

z′

−∞

du U(~b′,u)
. (76)

We notice that the approximation involved in eqn. (75) allows us to carry out the z integral by substituting
∫ z′

−∞ du U(~b′, u) for a new integration variable. After evaluating the z integral we get

f (0)(θ, φ) =
k

2πi

∫ ∞

0

b′db′
∫ 2π

0

dφ′ e−ikb′θ cos(φ−φ′)
[

eiχ(~b′) − 1
]

(77)

where

χ(~b′) = −k
2

1

E

∫ +∞

−∞
dz′ V (~b′, z′). (78)

For the case when the potential is independent of φ variable such that the scattering is symmetric about the z-axis
we can further carry out the φ′ integral and thus get

f (0)(θ) =
k

i

∫ ∞

0

b′db′ J0(kb
′θ)

[

eiχ(b′) − 1
]

(79)

where we have used the identity

J0(t) =
1

2π

∫ 2π

0

dφ e−it cos φ (80)

and J0(t) = J0(−t). For making the above expressions more illustrative we scale the integral variables with respect
to the scattering length of the potential defined in section III B by introducing the dimensionless integral variables u
and t defined as z = au and b = at, where a is the scattering length of the potential. We also use V to signify the
maximum value of the function V (~r). In term of these variables scattering amplitude in eqn. (79) takes the form

f(θ) = a
1

i
ka

∫ ∞

0

t dt J0(t kaθ)
[

eika V
E

ξ(t) − 1
]

(81)

where

ξ(t) = −1

2

1

V

∫ +∞

−∞
du V (at, au). (82)

Using eqn. (15) we have the expression for the scattering cross section to be

σscatt.

πa2
= 2(ka)2

∫ ∞

0

t dt

∫ ∞

0

t′ dt′
[

e+ika V
E

ξ(t) − 1
] [

e−ika V
E

ξ(t′) − 1
]

∫ π

0

sin θ dθ J0(t kaθ)J0(t
′ kaθ). (83)

We said earlier that V
E is a good estimate for the upper limit of the scattering angle θ. Thus in the limit V

E � 1 we

can write sin θ ≈ θ and limit our range of integration in θ from 0 to V
E . Further introducing the integration variable

x = kaθ we have

σscatt.

πa2
= 2

∫ ∞

0

t dt

∫ ∞

0

t′ dt′
[

e+ika V
E

ξ(t) − 1
] [

e−ika V
E

ξ(t′) − 1
]

∫ ka V
E

0

x dx J0(tx)J0(t
′x). (84)

Once we have the above expressions for the scattering amplitude in eqn. (81) and scattering cross section in eqn.
(84) we would like to check if the optical theorem is satisfied in the eikonal approximation. For potentials that are
not complex the optical theorem can be stated as
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σscatt. =
4π

k
Im f(0). (85)

Using eqn. (81) in eqn. (85) we have

σscatt.

πa2
= 8

∫ ∞

0

t dt sin2

[

ka
V

E
ξ(t)

]

. (86)

Comparing eqn. (84) and eqn. (86) we conclude that under the conditions V
E � 1 and ka

(

V
E

)2 � 1 alone the eikonal
approximation does not satisfy the optical theorem. The physical content of the optical theorem is the statement of
probability conservation in quantum mechanics. Can we save the eikonal approximation from violating the optical
theorem? Yes. We recognize that in eqn. (84) if we take the limit ka V

E →∞ and use the identity

∫ ∞

0

x dx J0(tx)J0(t
′x) =

δ(t− t′)
t

(87)

we get exactly the expression required for the optical theorem to be satisfied. Thus we observe that even though
the expression for the scattering amplitude in the eikonal approximation is derived under the conditions V

E � 1 and

ka
(

V
E

)2 � 1 alone, we still need to put an additional condition kaV
E � 1 for it to satisfy the optical theorem. Thus

we have the eikonal approximation valid under the conditions

V

E
� 1 and

1

V/E
� ka� 1

(V/E)2
. (88)

For a given ka, the second inequality above puts an upper and lower bound on V
E given by 1

ka � V
E � 1√

ka
. This can

be rewritten in the form

1� ka
V

E
�
√
ka. (89)

D. Examples

1. Inverted finite spherical well potential

An inverted finite spherical well potential is defined as

V (~r) =

{

V for r < a
0 for r > a

. (90)

Noting that b2 + z2 = r2 and thus integrating z from 0 to
√
r2 − b2 we have for this potential

ξ(t) = −
√

1− t2

f(θ) = a
1

i
ka

∫ 1

0

t dt J0(t kaθ)
[

e−ika V
E

√
1−t2 − 1

]

σscatt.

πa2
= 8

∫ 1

0

t dt sin2

[

ka
V

E

√

1− t2
]

. (91)

In figs. 3 and 4 we plot σscatt. versus kaV
E and compare it with the plots got using the partial wave method. Using

eqn. (89) for ka = 50, we have the region of validity to be 1 � ka V
E � 7, and for ka = 750, we have the region of

validity to be 1� kaV
E � 27. These estimates for the region of validity are in agreement with the region where the

curves obtained from the eikonal approximation fit the curve obtained from partial wave method in figs. 3 and 4.
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FIG. 3. Comparison of eikonal and partial wave method (ka = 50) for the inverted finite spherical well.
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FIG. 4. Comparison of eikonal and partial wave method (ka = 750) for the inverted finite spherical well.

2. Yukawa potential

Consider the Yukawa potential

V (r) = −V e−r/a

r/a
(92)

where V = e2

a and r2 = b2 + z2. For this potential we get

ξ(t) =
1

2

∫ +∞

−∞
du

e−
√

t2+u2

√
t2 + u2

=

∫ ∞

0

dθ e−t cosh θ = K0(t) (93)

where K0(t) is modified Bessel function of order zero. Using this in eqn. (81) we have

f(θ) = a
1

i
ka

∫ ∞

0

t dt J0(t kaθ)
[

eika V
E

K0(t) − 1
]

. (94)
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The contribution to the above expression from J0(t kaθ) dies off very fast. Thus to a good approximation we can say
that we get non-zero contribution to the integral for t kaθ � 1. Noting that in the eikonal approximation θ <∼ V

E and

1 � kaV
E � 1

V/E we conclude that non zero contributions to the integral comes from t � 1. In the limit t � 1 the

modified Bessel function takes the form

K0(t) ≈ ln
2

t
− γ (95)

where γ = 0.577 . . . is the Euler’s constant. Further we observe that one of the terms in eqn. (94) contributes only at
θ = 0 and thus is a delta function. Overall after substituting x = kaθ we get

f(θ) = ika2δ(θ)− ieika V
E

(ln 2+ln(kaθ)−γ) 1

kθ2

∫ ∞

0

dxJ0(x)x
1−ika V

E . (96)

In terms of the gamma functions we have

∫ ∞

0

dxJn(x)x1+2iα = 22iα+1 Γ(1 + n
2 + iα)

Γ(n
2 − iα)

. (97)

Thus we can write

| f(θ) |θ 6=0=
1

2k
(

θ
2

)2

2

kaV
E

Γ
(

1− i 2
ka V

E

)

Γ
(

1 + i 2
ka V

E

) (98)

where 1
2ka

V
E = e2

h̄v using V = e2

a and h̄k = p = mv. Observe that the above result is identical to the scattering
amplitude due to a Coulomb potential for small scattering angles using the approximation sin θ ≈ θ. It is worth
observing the interesting fact that the above result is independent of ‘a’.

V. QUANTUM ELECTRODYNAMICS

A. Schwinger’s functional differential equations for quantum electrodynamics

We define the vacuum to vacuum persistence amplitude for electrodynamics in the presence of external sources
J (x) ≡ {Jµ(x), η(x), η̄(x)} to be

Z[J ] = 〈0+ | 0−〉J . (99)

Using Schwinger’s quantum variational principle we can write

δZ[J ] = i 〈0+ | δW [A;J ] | 0−〉J (100)

where W [A;J ] is the action for quantum electrodynamics given in terms of the fields A(x) ≡
{Aµ(x), Fµν (x), ψ(x), ψ̄(x)} interacting with external sources is J (x)

W [A;J ] = S[A] +

∫

d4x
[

Jµ(x)Aµ(x) + η̄(x)ψ(x) + ψ̄(x)η(x)
]

(101)

where

S[A] =

∫

d4x

[

−1

2
F µν(x)(∂µAν(x)− ∂νAµ(x)) +

1

4
F µν(x)Fµν (x) + ψ̄(x)[iγµ∂µ −m+ eγµAµ(x)]ψ(x)

]

. (102)

Gauge invariance requires us to constrain the external source Jµ(x) to satisfy the condition ∂µJµ(x) = 0. Using
Schwinger’s quantum variational principle to vary Z[J ] with respect to the fields A and the external sources J we
get
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δZ[J ] = i δη̄(x)〈0+ |
δW [A,J ]

δη̄(x)
| 0−〉J + i δη(x)〈0+ |

δW [A,J ]

δη(x)
| 0−〉J + i δJµ(x)〈0+ |

δW [A,J ]

δJµ(x)
| 0−〉J

+ i δψ̄(x)〈0+ |
δW [A,J ]

δψ̄(x)
| 0−〉J + i δψ(x)〈0+ |

δW [A,J ]

δψ(x)
| 0−〉J

+ i δAµ(x)〈0+ |
δW [A,J ]

δAµ(x)
| 0−〉J + i δF µν(x)〈0+ |

δW [A,J ]

δF µν(x)
| 0−〉J

= i δη̄(x)〈0+ | ψ(x) | 0−〉J + i δη(x)〈0+ | ψ̄(x) | 0−〉J + i δJµ(x)〈0+ | Aµ(x) | 0−〉J

+ i δψ̄(x)
[

(iγµ∂µ −m)〈0+ | ψ(x) | 0−〉J + e〈0+ | γµAµ(x)ψ(x) | 0−〉J + η(x)〈0+ | 0−〉J
]

+ i
[

〈0+ | ψ̄(x) | 0−〉J (−iγµ←−∂ µ −m) + e〈0+ | ψ̄(x)γµAµ(x) | 0−〉J + η̄(x)〈0+ | 0−〉J
]

δψ(x)

+ i δAµ(x)
[

−∂µ〈0+ | Fµν(x) | 0−〉J + e〈0+ | ¯ψ(x)γµψ(x) | 0−〉J + Jµ(x)〈0+ | 0−〉J
]

+ i δF µν(x)
1

2

[

〈0+ | Fµν(x) | 0−〉J − {∂µ〈0+ | Aν(x) | 0−〉J − ∂ν〈0+ | Aµ(x) | 0−〉J }
]

. (103)

In the above equation we have treated the variations in the fields to be c-number variations. Schwinger’s quantum
action principle states that Z[J ] is stationary with respect to variations in the dynamical parameters (fields A(x) in
the present case). Thus we can write

(−i) δZ[J ]

δJµ(x)
= 〈0+ | Aµ(x) | 0−〉J

(−i)δZ[J ]

δη̄(x)
= 〈0+ | ψ(x) | 0−〉J

(−i)δZ[J ]

δη(x)
= 〈0+ | ψ̄(x) | 0−〉J

0 = (iγµ∂µ −m)〈0+ | ψ(x) | 0−〉J + e〈0+ | γµAµ(x)ψ(x) | 0−〉J + η(x)〈0+ | 0−〉J

0 = 〈0+ | ψ̄(x) | 0−〉J (−iγµ←−∂ µ −m) + e〈0+ | ψ̄(x)γµAµ(x) | 0−〉J + η̄(x)〈0+ | 0−〉J

0 = −∂µ〈0+ | Fµν(x) | 0−〉J + e〈0+ | ¯ψ(x)γµψ(x) | 0−〉J + Jµ(x)〈0+ | 0−〉J

0 = 〈0+ | Fµν(x) | 0−〉J − {∂µ〈0+ | Aν(x) | 0−〉J − ∂ν〈0+ | Aµ(x) | 0−〉J }. (104)

Eliminating the fields in the above equations we get

−
[

iγµ∂µ −m+ eγµ(−i) δ

δJµ(x)

]

(−i)δZ[J ]

δη̄(x)
= η(x) Z[J ] (105)

−(−i)δZ[J ]

δη(x)

[

−iγµ←−∂ µ −m+ eγµ(−i)
←−
δ

δJµ(x)

]

= η̄(x) Z[J ] (106)

−
[

gµν∂2 − ∂µ∂ν

]

(−i) δZ[J ]

δJµ(x)
= Jµ(x) Z[J ] + e (−i) δ

δη(x)
γµ (−i)δZ[J ]

δη̄(x)
. (107)

These are the functional differential equations for Z[J ]. This was first written down in this form by Julian Schwinger
[13,14]. Since Z[J ] is the generating functional for the Green functions it has the information regarding all possible
processes in quantum electrodynamics. Conversely a solution to the above functional differential equations solves
quantum electrodynamics completely.

B. A formal solution to Schwinger’s functional differential equations

Using Schwinger’s quantum variation principle in eqn. (100) for the variation of Z[J ] with respect to e we have

(−i)∂Z[J ]

∂e
= 〈0+ |

∂W [A,J ]

∂e
| 0−〉J

=

∫

d4x 〈0+ | ψ̄(x)γµAµ(x)ψ(x) | 0−〉J . (108)
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Using eqn. (104) to eliminate the fields we get the first order differential equation

∂Z[J ]

∂e
= i

∫

d4x (−i) δ

δη(x)
γµ(−i) δ

δJµ(x)
(−i) δ

δη̄(x)
Z[J ] (109)

Which can be integrated to yield the result

Z[J ] = eie
∫

d4x (−i) δ
δη(x)

γµ(−i) δ
δJµ(x)

(−i) δ
δη̄(x)Ze=0[J ] (110)

Where Ze=0[J ] is the generating function for the case when the photon field is not coupled to the fermion field. It is
fairly straight forward to show [19] that the solution to eqns. (105), (106) and (107) for the e = 0 case is

Ze=0[J ] = e
i
2

∫

d4x
∫

d4x′Jµ(x)Dµν

+
(x−x′)Jν(x′)ei

∫

d4x
∫

d4x′η̄(x)S+(x−x′)η(x′) (111)

where the Green functions Dµν
+ (x− x′) and S+(x − x′) satisfy the differential equations

−(gµν∂
2 − ∂µ∂ν)Dµν

+ (x− x′) = gµνδ(4)(x− x′) (112)

−(γµ∂µ −m)S+(x− x′) = δ(4)(x− x′) (113)

with the boundary conditions on the Green functions prescribed by the requirement |Z|2 ≤ 1. Using eqn. (111) in
eqn. (110) we have

Z[J ] = e
−e

∫

d4x
∫

d4x′ δ
δη(x)

δ(4)(x−x′)γµ δ
δJµ(x)

δ
δη̄(x′) ei

∫

d4x
∫

d4x′η̄(x)S+(x−x′)η(x′)e
i
2

∫

d4x
∫

d4x′Jµ(x)Dµν

+ (x−x′)Jν(x′). (114)

For xi, yi being Grassmann variables we have the identity

e
∂

∂ym
amn

∂
∂xn exib

ijyj = e~xT ·B̂·(1̂+Â·B̂)−1·~yeTr ln(1̂+Â·B̂) (115)

where we have used the symbolic notation, ~a (vector) for ai and Â (matrix) for Aij and Tr is the trace over the i, j
indices. Generalizing the above result for the case of functionals dependent on Grassmann variables we have

e

∫

d4x
∫

d4x′ δ
δη(x)

M(x−x′) δ
δη̄(x′) e

∫

d4x
∫

d4x′η̄(x)N(x−x′)η(x′) = e
∫

d4x
∫

d4x′η̄(x)[N(δ+MN)−1(x,x′)]η(x)eTr ln(δ+MN) (116)

where we have used the corresponding symbolic notation to suppress the integrals, Tr is the trace over both the
spinor and coordinate index, and δ is the Dirac delta function. Using the above identity, the expression in eqn. (114)
simplifies to

Z[J ] = ei
∫

d4x
∫

d4x′η̄(x)G+[x,x′;(−i) δ
δJµ ]η(x)eL[(−i) δ

δJµ ]e
i
2

∫

d4x
∫

d4x′Jµ(x)Dµν

+
(x−x′)Jν(x′) (117)

where

L[A] = −Tr lnG+[x, x′;Aµ] + Tr lnS+(x− x′) (118)

with Tr denoting the trace over both spinor and coordinate index and the Green function G+[x, x′;Aµ] satisfies the
differential equation

[−(iγµ∂µ −m) + eγµAµ(x)]G+[x, x′;Aµ] = δ(4)(x− x′) (119)

with the boundary condition prescribed by the initial condition

lim
e→0

G+[x, x′;Aµ] = S+(x− x′). (120)

To get prepared for the next step we write down the following identity involving the Gaussian function and an arbitrary
function F (x) in terms of the real variable x

F (
∂

∂x
) e

1
2 xbx = e

1
2 xbx e

1
2

∂
∂bx

b ∂
∂bxF (bx). (121)

Generalizing the above identity for functionals we have
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F [(−i) δ

δJµ
] e

i
2

∫

d4x
∫

d4x′Jµ(x)Dµν

+
(x−x′)Jν(x′) = e

i
2

∫

d4x
∫

d4x′Jµ(x)Dµν

+
(x−x′)Jν(x′)

×
{

e
i
2

∫

d4x
∫

d4x′ δ
δAµ(x)

Dµν

+
(x−x′) δ

δAν (x) F [A]
}

A =
∫

DJ
(122)

where A =
∫

DJ stands for Aµ(x) =
∫

d4x′Dµν
+ (x− x′)Jν(x′). Using the above identity in eqn. (117) we have

Z[J ] = e
i
2

∫

d4x
∫

d4x′Jµ(x)Dµν

+
(x−x′)Jν(x′)

×
{

e
i
2

∫

d4x
∫

d4x′ δ
δAµ(x)

Dµν

+
(x−x′) δ

δAν (x) ei
∫

d4x
∫

d4x′η̄(x)G+[x,x′;Aµ]η(x) eL[A]
}

A =
∫

DJ
. (123)

We observe that our problem of determining Z[J ] for quantum electrodynamics reduces to the evaluation of the Green
function G+[x, x′;Aµ] for an arbitrary Aµ(x). Any kind of approximate solution to G+[x, x′;Aµ] suggests a possible
non-perturbative approximate solution to Z[J ].

C. Electron-electron scattering

We can expand Z[J ] around Z[0] and thus write

Z[J ] = Z[0] +

∫

d4x η̄(x)

{

δ

δη̄(x)
Z[J ]

}

J=0

+

∫

d4x

{

δ

δη(x)
Z[J ]

}

J=0

η(x)

+

∫

d4x Jµ(x)

{

δ

δJµ(x)
Z[J ]

}

J=0

+ . . .+ T + . . . (124)

where T is the quantity of interest in the electron-electron scattering process and is given by the expression

T =
(−i)4
2! 2!

∫

d4x1

∫

d4x2

∫

d4y1

∫

d4y2 η̄A(x2)η̄B(x1)ηC(y2)ηD(y1) GABCD(x1, y1, x2, y2) (125)

where we have explicitly introduced the Dirac indices for clarity and

GABCD(x1, y1, x2, y2) =

{

(−i)4 δ

δη̄A(x2)

δ

δη̄B(x1)

δ

δηA(y2)

δ

δηA(y1)
Z[J ]

}

J=0

=
{

eM[ δ
δA ]

[

G+[x1, y1;A
µ] G+[x2, y2;A

µ] eL[A]
]}

A =
∫

DJ,J=0
(126)

where we have introduced the short form for the operator

M

[

δ

δA

]

=
i

2

∫

d4x

∫

d4x′
δ

δAµ(x)
Dµν

+ (x− x′) δ

δAν(x)
. (127)

T will be interpreted as the probability amplitude for the electron-electron scattering process. Every process in
quantum electrodynamics can be generated out of the expansion in eqn. (124). It is due to this reason that Z[J ] is
also called the generating function.

For the electron-electron process we shall be interested in the case when the sources of the process η̄(x1), η̄(x2), η(y1)
and η(y2) are interaction free states with well defined initial or final momentums. Thus we choose

η̄(x1) = e−ip1x1 ū(p1)[γ
µp1µ +m]

η(y1) = eip′1y1 [γµp′1µ +m]u(p′1)

η̄(x2) = e−ip2x2 ū(p2)[γ
µp2µ +m]

η(y2) = eip′2y2 [γµp′2µ +m]u(p′2). (128)

Accordingly T will be denoted as T (p1, p
′
1, p2, p

′
2). In the next section we shall concentrate on approximate solutions

to T (p1, p
′
1, p2, p

′
2).
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VI. APPROXIMATION TO ELECTRON-ELECTRON SCATTERING

A. Quenched or ladder approximations

To start with we shall assume that eL[A] in eqn. (126) does not contribute. Further we assume that the operator M
in eqn. (127) act in such a way that they connect the two fermion propagators via photon lines. In the diagrammatic
language this amounts to omitting all those graphs that involve fermion loops and keeping only those graphs that
have photons exchanged between the fermion lines. This is called the quenched or ladder approximation. In this
approximation eqn. (126) reads

GABCD(x1, y1, x2, y2) =
{

eM12[ δ
δA ] [G+[x1, y1;A

µ] G+[x2, y2;A
µ]]

}

A=
∫

DJ, J=0
(129)

where we introduced M12 in place of M to signify that it connects the two fermion lines. Using the identities

eM12 = 1 +

∫ 1

0

dλ eλM12M12 (130)

and

δ

δAµ(z)
G+[x1, y1;A

µ] = G+[x1, z;A
µ] eγµ G+[z, y1;A

µ] (131)

we thus get

T (p1, p
′
1, p2, p

′
2) = −i

∫ 1

0

dλ eλM12

∫

d4z1

∫

d4z2 D
µν
+ (z1 − z2)

×
∫

d4x1e
−ip1x1 ū(p1)[γ

µp1µ +m]G+[x1, z1;A
µ
1 ] eγµ

∫

d4y1e
ip′1y1G+[z1, y1;A

µ
1 ][γµp′1µ +m]u(p′1)

×
∫

d4x2e
−ip2x2 ū(p2)[γ

µp2µ +m]G+[x2, z2;A
µ
2 ] eγν

∫

d4y2e
ip′2y2G+[z2, y2;A

µ
2 ][γµp′2µ +m]u(p′2). (132)

B. Eikonal approximation to G+[x, y; Aµ]

Next step is to evaluate G+[x, y;Aµ] in the eikonal approximation. We defined G+[x, y;Aµ] in eqn. (119) to satisfy
the differential equation given by

[−(iγµ∂µ −m) + eγµAµ(x)]G+[x, y;Aµ] = δ(4)(x − y). (133)

In the eikonal approximation we have [19–22]

G+[x, y;Aµ] = i

∫ ∞

0

ds e−imsδ(x− y − s p
m

) e
ie

∫

s

0
dτ 1

m
pµAµ(x−τ p

m
)
. (134)

Using the above eikonal approximation to G+[x, y;Aµ] in eqn. (132) it becomes possible to evaluate T (p1, p
′
1, p2, p

′
2).

Here we shall simply state the result without the detailed steps in the derivation. We define

T (p1, p
′
1, p2, p

′
2) = (2π)4δ(4)(p1 + p′1 − p2 − p′2)M(p1, p

′
1, p2, p

′
2) (135)

and in the eikonal approximation we have the result [19]

|M(p1, p
′
1, p2, p

′
2) |=

e2

2m2

(p1 + p2)
2

(p1 − p′1)2
Γ(1− i e2

4π )

Γ(1 + i e2

4π )
. (136)

We notice the close similarity of the above expression to the non-relativistic scattering amplitude due to the Coulomb
potential. This is not surprising because eikonal approximation is a stringent semi-classical limit.
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