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ABSTRACT 
In this paper, we present a two-way coupled moving solid 

algorithm with discrete element method (DEM) to simulate 
dynamic fluid-solid interaction.  This model allows obstacles 
moving in the multi-phase fluids to generate realistic motion 
for both the fluids and obstacles.  We discretize the Navier- 
Stokes equation using finite volume method (FVM) for the 
fluid part.  The volume-of-fluid (VOF) method is used to track 
the fluid-fluid and fluid-solid interfaces.  This algorithm is 
useful in the fields of Engineering and Earth Sciences, such as 
structure collapse and landslide generated tsunamis.  Exam-
ples of landslide tsunami and floating cubes are demonstrated 
using the algorithm. 

I. INTRODUCTION 
The numerical simulation of water waves interacting with a 

moving solid body is important for many sciences and engi-
neering applications, such as landslide generated tsunamis, 
caisson work, ship maneuvering, and wave energy.  However, 
to analyze unsteady flows with free surfaces poses a great 
challenge to numerical simulations, because both the free- 
surface boundary and the moving solid boundary are presented 
in the fluid system, and both elements are parts of the solu-
tions. 

Over the past decay, many numerical schemes solved the 
Navier-Stokes (NS) equations have been developed for simu-
lation of wave-structure interactions.  Lin and Li [15] made 
use of σ-coordinate transformation to map an irregular physi- 
cal domain on a rectangular computational grid.  Lin [14] fur- 
ther developed a 3D multiple-layer σ-coordinate model to 

simulate surface wave interaction with structures.  However, 
the σ-coordinate method requires coordinate transformation 
which is hard to implement in 3D breaking waves and expen-
sive.  A similar problem happens to ALE (arbitrary Lagrangian- 
Eulerian) method [11].  In ALE method, domain re-meshing is 
required if the solid obstacle is moving.  The re-meshing proc- 
ess is costly and difficult to implement in 3D with complex 
geometry. 

Peskin [21] developed the immersed boundary method (IB 
method) [2, 6, 12, 17, 18].  The fixed-grid technique con-
structed on either simple Cartesian coordinates or complex 
unstructured girds is adopted to handle moving bodies and 
complex breaking waves and is divided into two categories, 
depending on how the inertial solid boundaries are treated.  
Shen and Chan [23] combined IB method and VOF to study 
the fluid interaction with submerged structures.  In IB method, 
both the solid and fluid are treated as one fluid, and a ficti- 
tious force is applied to the solid domain.  This method is also 
known as the fictitious domain method [7, 8].  The one-fluid 
assumption tends to have a larger error when fluid-fluid in-
terfaces appears in the computational domain.  A similar 
problem occurs in the penalty method [3, 22].  In the penalty 
method, the zero-shear constrain is applied to the solid do-
main.  However, the one-fluid assumption limits the accuracy 
when the solid obstacle is moving between the air-water in-
terface. 

Alternative to the one-fluid assumption, we solve the fluid 
and solid separately.  This approach is based on the Partial- 
cell (PC) method.  The PC (sometimes also called “cut-cell”  
or “CC”) method has been widely employed to represent ar-
bitrary body configuration.  Combined with the VOF free- 
surface treatment [10, 13], PC method has been developed for 
the modeling of complex breaking waves interacting with 
stationary solid boundaries.  Heinrich [9] solved 2D NS equa- 
tions and added a source function to the continuity and mo-
mentum equations to represent moving boundary effects.  Wu 
[30] and Liu et al. [16] further extended Heinrich’s model to 
simulate the 3D wave generation induced by landslides.  In 
their studies, the movements of the obstacles are prescribed, 
while we are more interested in the “two-way” fluid-solid 
coupling which requires the prediction of the solid-body 
movement. 
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The body motion with large translation and rotation can be 
calculated by some computational methods developed in solid 
mechanics, like the discrete element method (DEM) [4, 5], 
discontinuous deformation analysis (DDA) method [3], and 
Manifold method (MM) [24, 26], vector form intrinsic finite 
element (VFIFE) method [25, 27] and some other nonlinear 
finite element analysis methods based on up-dated Lagrangian 
algorithm [28].  For the system containing discrete bodies,  
the contact detection and contact force analysis are the core 
parts of the motion analysis.  Cundall [1] proposed the “com- 
mon plane” concept to do the contact detection among three- 
dimensional polyhedrons.  Recently, Zhao et al. [31] improved 
the common plane algorithm to accelerate the contact detec-
tion speed of granular particles of irregular shapes.  Wang et al. 
[29] developed a directed contact analysis algorithm for the 
motion analysis of mixed polyhedral and ellipsoidal particles.  
For the contact analysis of deformable bodies, Zhong and 
Nilsson [32] had developed an effective contact searching 
algorithm for general 3-D contact impact problems.  The au-
thors of this paper would like to group these methods by the 
name as “discrete body motion analysis method”. 

To include the fluid effect into the analysis of granular me- 
dium is highly interested by the researchers in the past two 
decades.  Muller et al. [19, 20] used the smooth particle hy-
drodynamics (SPH) to model the free fluid surface and con-
ducted the fluid-solid particle interaction analysis based on the 
Eulerian grid-based mode.  However, error is accumulated 
after some interactions among particles, especially for the 
particles of distinct types. 

In this paper, we propose a new method which couples the 
discrete body motion analysis method and a moving-solid 
algorithm based on the PC-VOF method.  Our method allows 
robust and accurate solid-fluid coupling in either structure or 
on unstructured girds.  The body motion can either be pre-
scribed or based on DEM.  The fluid solver adopts the two- 
step projection for solving 3D NS equations for fluid-solid 
interaction by simultaneously conserving the momentum of 
the fluid and the moving body, while enforcing the conserva-
tion of fluid mass.  For the model implementations, we will 
demonstrate and validate the results by landslide tsunamis and 
floating cubes.  Good agreement of the obstacle trajectories of 
the landslide experiments and numerical prediction can be 
seen.  

II. NUMERICAL MODEL 
In this section, the numerical algorithm used to simulate 

fluid motion is introduced.  The model uses VOF method for 
the free-surface tracking, finite volume method for the dis-
cretization, PC method for placing the solid material inside the 
domain, and moving solid algorithm for simulating the fluid 
motion caused by a moving solid body.  The motion of solid is 
estimated by DEM model. 

In the projection method, the momentum of Navier-Stokes 
equations can be described by two fractional steps: 
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where ρ is the fluid density, P is the total pressure, g is gravity, 
and μ is viscosity.  The superscripts n and n + 1 represent the 
current time and next time, respectively.  The superscript * 
represents an intermediate level.  From combining Eqs. (1) 
and (2), we can get Poisson Pressure Equation (PPE) to solve 
the next time-step pressure Pn+1: 
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1. Volume of Fraction Method for Multi-Phase Fluids 
In order to simulate multi-fluids with interfaces, such as air 

and water, the VOF method is adopted.  A volume of fluid 
fraction, f representing the volume fraction of water is de-
fended the ratio of the fluid to total volumes.  If the cell is full 
of water, the value of f is equal to 1; if the cell is empty, the 
value is zero; if the value is 0 < f < 1, it means the cell contains 
air–water interface.  A set of mass and momentum conserva-
tion equations is solved on a fixed grid.  The mass conserva-
tion law can be transformed to VOF equation: 

 ( ) 0f f
t

∂
+∇ ⋅ =

∂
u  (4) 

where u is the velocity field, and f is volume of fluid fraction. 
From PLIC (piecewise linear interface calculation) algo-

rithm, the interface between air and water can be described. 
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2. Finite Volume Method and Partial-Cell Method 
The fluid flow fields can be discretized by Finite Volume 

Method (FVM).  In a control volume, the arbitrary quantity φ 
in governing equation can be defined: 

 ( ) ( )iu S
t
φ φ φ∂
+∇ ⋅ =

∂
 (6) 

where S is a source term which is related to φ.  By applying 
integral and Gauss Divergence theorem in the finite volume, a 
discrete numerical scheme is presented: 
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where n indicates the nth time step, Vi is the ith cell volume, and 
subscript f indicates the cell (control volume) face. 

In the fluid domain, the solid material will occupy the fluid 
volume.  The partial-cell (PC) method is adopted to deal with 
this problem.  The effective cell volume will be a fraction of 
the original cell volume: 

 (1 )eff solidV f V Vθ= − =  (8) 

where Veff is the effective cell volume, fsolid is the solid volume 
fraction in each cell, V is the original cell volume, and θ is the 
effective volume fraction. 

3. Moving-Solid Algorithm 
In order to deal with the moving of solid body, the PC 

method and a source function [30] are added to simulate the 
movement.  

Consider the conservation of mass.  A cell volume is V, and 
an obstacle volume and surface is Vobs(t) and Aobs(t), respec-
tively. 

The volume V can be expressed: 

  ( )obs t

A
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(9) 

If the obstacle volume increases, the volume of the fluids 
decreases in a cell.  In other words, dVobst /dt is greater than 
zero.  The new continuity equation for the volume V can be 
expressed as: 

 ( )1 ( , , , )obs tdV
u x y z t

V dt
φ∇ ⋅ = =  (10) 

where ϕ  = internal source function. 

4. Motion Analysis of Discrete Bodies 
To predict the movement of the solid body, DEM model is 

adopted.  The multi-phase fluid force acting on the solid 
bodies and solid surfaces as shown in Fig. 1 are integrated to 
calculate the movement of the solid objects.  To acquire the 
fluid force calculated from the computational fluid mechanics 
part, pressure sensing grids (see Fig. 2(a)) are patched on the 
block surfaces.  The density of the sensing grid can be defined 
by the user according to the gradient of the pressure field the 
solid may admit during the motion analysis.  An interpolation 
scheme as shown in Fig. 2(b) is used to find the weighting 
average pressure value at the sensing node of the block from 
the data of the fluid cells surrounding it. 

Inverse square distance method is used in the interpolation 
part.  A weighting of the fluid cell is showed in Eq. (11).  Sum  

 
Fig. 1. Interaction motion analysis among discrete solid bodies and multi- 

phase fluid. 
 
 

y

z
Fluid cell

(a) (b)  
Fig. 2. (a) a 3 × 3 pressure integration grid on each surface of a cubic 

solid (b) a top view of the interpolation scheme of the surface 
pressure of a body at a sensing grid from the data of its sur-
rounding fluid cells 

 
 

up the weighted pressure of fluid cells, and we can get the 
pressure (Eq. (12)). 
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where doi is the distance between numerical pressure point and 
the ambient fluid cells, N is the total number of the weighting 
points.  In three-dimension Cartesian grid, N = 7.  However, 
only the fluid cells (θ > 0) will be included in the calculation. 

In the present paper, rigid bodies are used to demonstrate 
the capability and accuracy of this two-way coupled moving- 
solid algorithm in fluid-solid interaction analysis.  After 
finding the external forces exerted on the rigid bodies, an 
equivalent force-moment system (see Fig. 3) applied on the 
block centroid can be determined for the motion analysis of 
the block in the next time step. 

As shown in Fig. 3, the resultant forces and moments ap-
plied on each block contain the effects from the fluid forces 
and the contact forces.  Newton’s equations (Eq. (13)) and 
Euler’s equations (Eq. (14)) are applied to prescribe the mo-
tion of block of mass m in the spatial-temporal space. 

 ; ;x x y y z zF ma F ma F ma= = =∑ ∑ ∑  (13) 
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Fig. 3. Equivalent force-moment system for a body exert by the hydro-

dynamic forces. 
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where ai is the i-th component of the acceleration vector, the αi 
is the i-th component of the angular acceleration vector, the ωi 
is the i-th component of the angular velocity vector, the sub-
scripts x, y, z are the global coordinate axes, and the subscripts 
x′, y′, z′ are the principal axes of the mass moment of inertias 
Ix′, Iy′, Iz′. 

Explicit central difference time integration scheme is used 
to solve these equations of motion.  The velocity value at time 

2
tt Δ

+  can be obtained as: 
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where α is the numerical damping and gi is the i-th component 
of the gravity acceleration.  Then, the component of the dis-
placement increment within a time step Δt is 
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If the resultant force does not pass through the centroid of 
the block, a rotating moment will exist.  Since the Euler’s 
equation expressed by Eq. (14) is in the local coordinate sys-
tem (x′, y′, z′) for the simplicity in analysis.  Therefore, we 
have to transform the external moment expressed in global 
coordinate system into the current local coordinate system (x′, 
y′, z′) by Eq. (17). 
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Similar to the analysis of displacement vector, the angular 

velocity vector ω′ at time
2
tt Δ

+  calculated by the central 

difference scheme can be calculated as follows: 
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where β is the damping ratio of rotation.  This angular velocity 
vector is further inversely transformed back to the global 
coordinate system by Eq. (17).  Finally, the increment of ro-
tation within this time step is determined as: 

 2
tt

i i tθ ω
Δ

+
Δ = Δ  (19) 

Those two displacement increment vector and the rotation 
increment vector are used to update the new position of each 
block in the computational space for the next step analysis. 

III. SIMULATION RESULT 
In this part, two cases are discussed by using the numerical 

method.  The first case is tsunami waves by landslide.  The 
result will be compared and validated with the laboratory  
data provided from references [16].  The other case is a float- 
ing body in still water.  This simulation shows the interaction 
between water waves and solid motion. 

1. Landslide Tsunami Simulation 
The results of the 3D subaerial and submerged landslide 

simulations will be presented in this section.  The simulations 
cover different physical parameters with a wide range of initial 
landslide elevation (δ) and specific weight. 

The side view of the 3D landslide setup is shown in Fig. 4.  
An 1:2 slope is placed in a 7.4 m wide tank.  The initial water 
depth is 3.0 m.  A wedge with the size of 45.5 × 61.0 × 91.0 cm 
is sliding down along the slope into the water.  The numerical 
domain is generated with uniform grid size of Δx = 7.5 cm,  
Δz = 3.75 cm and nonuniform in y direction with Δymin = 0.6 
cm near the free-surface.  The density of water is 1000.0 kg/m3.  
The air density is set to 0.0 kg/m3 and is excluded from the  
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Table 1.  Laboratory setup in the OSU experiments. 
Run number δ (cm) Density (kg/m3) 

13 45.4 2144.0 
18 5 2144.0 
24 -5 2144.0 
39 45.4 2791.0 
34 5 2791.0 
31 -5 2791.0 
40 45.4 3425.0 
44 5 3425.0 
48 -5 3425.0 

 
 

x

z

δ

θ

 
Fig. 4. The side view of the centerline cross section of landslide setup.  An 

1:2 slope is placed in a tank with length (x) is 7.4 m and height (z) 
is 3.7 m.  A wedge with the size of 45.5 × 61.0 × 91.0 cm is placed 
on the slope.  The distant between initial wedge top and still water 
level is delta (δ).  θ is slope angle. 

 
 

simulation.  Table. 1 shows the laboratory setup in the experi- 
ments.  With difference initial elevations of the wedge (δ and 
density), the numerical results are compared with laboratory 
data.  The detail wedge parameters can be found in Table 1. 

In the laboratory setup, the motion of the wedge is con-
trolled by wheels and rails under it.  In order to control the 
wedge motion in the numerical model, the displacements in 
the x and z directions are projected on to the slope.  The rota-
tion of the wedge is set to zero to satisfy the experiment setup.  
The wedge motion is then reduced from 6 DOF (degrees of 
freedom) to 1 DOF. 

A friction forcing term is added in the momentum equation 
and is determined by trial and error.  The friction force be-
tween the wedge and the slope is assumed to be a linear func-
tion of the net weight of the wedge in the water: 

 k k efff Nμ=  (20) 

where fk is the kinetic friction force, μk is the coefficient of 
kinetic friction and Neff is the force normal to the slope. 

Considering the effect of buoyancy, the effective normal 
force, Neff normal to the slope can be described as: 

 ( ) coseff solid waterN N B Vgρ ρ θ= − = −  (21) 
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Fig. 5. The time-history trajectories of the landslide wedge.  Symbol ○, □ 
and ＋ denote experimental data of run13, run18 and run24, re-
spectively.  The corresponding lines are the numerical results.  
The density of the wedge is 2144.0 kg/m3. 

 
 

where N is normal force, B is buoyancy, ρsolid is the density of 
wedge, ρwater is the density of water, V is the volume of wedge, 
g is gravity and θ is slope angle. 

By summing up the pressure force on the cube faces, the 
normal force Neff can be obtained.  The coefficient of kinetic 
friction is nearly a constant, 0.1, in all the simulations.  The 
constant friction coefficient shows that the simulation results 
are independent from the empirical friction coefficient, and the 
results can be served as the model validations.  

Figs. 5~7 show the comparisons of wedge trajectories ob-
tained from the laboratory experiments and the numerical 
simulation.  Fig. 5 is the trajectories with wedge density equals 
to 2144.0 kg/m3.  The red dash dot line is the trajectory of the 
subarial wedge (run13).  The blue dash line (run18) and the 
solid black line (run24) are trajectories of submerged wedges. 

In run13, the trajectory predicted by the coupled model 
shows good agreement with experimental data.  From 0 sec to 
0.9 sec, the wedge speeds up by gravity.  After moving into the 
water surface, the speed of the wedge is reduced by water 
resistance.  The wedge velocity then slows down from 0.9 sec 
to 1.5 sec.  After time = 1.5 sec, the wedge velocity reaches a 
terminal velocity and the trajectory displays in a straight line.  
In run18 and run24, there is no de-acceleration of the moving 
wedges because there is no wedge penetration from the air to 
the water.  Fig. 5 also shows that with the same wedge density, 
the higher the initial wedge elevation, the faster the wedge 
speeds. 

Fig. 6 and Fig. 7 respectively shows the trajectories with 
wedge density equals to 2791.0 kg/m3 and 3425.0 kg/m3.  
Comparing with the greater density, both the friction force and 
water resistance are smaller.  The motion of wedge reaches 
terminal velocity quickly.  Comparing with run13, run39 and 
run40, the initial landslide elevations (δ) are the same and the 
difference between those cases is wedge density.  It’s showed a 
positive correlation between density and velocity. 
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Fig. 6. The time-history trajectories of the landslide wedge.  Symbol ○, □ 
and ＋ denote experimental data of run39, run34 and run31.  The 
corresponding lines are the numerical results.  The density of the 
wedge is 2791.0 kg/m3. 
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Fig. 7. The time-history trajectories of the landslide wedge.  Symbol ○, □ 
and ＋ denote experimental data of run40, run44 and run48.  The 
corresponding lines are the numerical results.  The density of the 
wedge is 3425.0 kg/m3. 

 

1. Floating Cube Simulation 
We further extend the DOF from 1 to 6 by simulating a cube 

floating on the water surface.  The movement of the cube is 
determined by the DEM which integrates the fluid pressure 
acting on the cube surface.  The specific trajectory is specified.  
All the movements are predicted via the coupled model.  The 
density of the cube varies from 600 kg/m3 to 800 kg/m3 to 
demonstrate the force balance among the solid cube and fluids. 

The uniform Cartesian grid system is employed in the simu- 
lation with grid size Δx = 0.476 cm, Δy = 0.476 cm and Δz = 
0.476 cm.  A cube is placed in the tank.  The length of tank is 
10 cm in each direction and cube is 5 × 5 × 5 cm.  The density 
of water is 1000 kg/m3.  The density of air is 0 kg/m3.  The still 
water level is located at z = 6 cm while in the bottom the com- 
putational domain locates at zbottom = 0 cm.  All the boundaries 

are no-slip boundary except for the zero pressure at the ceiling 
(ztop = 10 cm).The cube center is same as the still water level 
(at z = 6 cm).  Three different densities of the cube are simu-
lated: ρ = 600 kg/m3, 700 kg/m3 and 800 kg/m3 (Figs. 8~10).  
From the simulation results, the interaction between wave 
pressure, gravity, and buoyancy can be observed. 

The numerical results of x-z plane at y = 5 cm with different 
densities are presented in Figs. 8, 9, and 10.  At time = 0.05 sec, 
the displacements of cubes are close to zero.  At time = 0.25 
sec, the cubes are affected by gravity and water pressure which 
causes the displacement of cube.  Fig. 8 shows the angle view 
of the free-surface profiles and velocity vectors in which cube 
density is 600 kg/m3.  At the time = 0.25 sec, cube moves 
downward and the water velocity pointed towards the top of 
the cube.  Fig. 9 and Fig. 10 show the lager velocity vector 
field with greater densities 700 and 800 kg/m3, respectively.  
In Fig. 10, the cube moving speed is also greater than others.  
At 0.25 sec, the wedge is downward and water around the cube 
moves towarding the top face of cube. 

Time-history displacements of the cube center locations are 
shown in Fig. 11.  From time = 0 sec to 0.2 sec, all the cubes 
move downward.  Cubes with larger density move faster.  From 
time = 0.2 sec to 0.4 sec, because the pressure force is in-
creasing and it makes the cube moving up.  Fig. 11 also shows 
that the denser cube has longer moving period and larger 
moving amplitude.  All the moving trajectories show a decay-
ing trend.  The decaying trend is caused by the water waves 
generated by the oscillating cubes.  The water waves transfer 
the cube energy to the fluid.  The cubes moves up and down in 
the fluid after t = 1.0 sec.  The averaged locations of cube 
centers are located at z = 5.5, 5.0, and 4.5 cm with density = 
600 kg/m3, 700 kg/m3 and 800 kg/m3 respectively.  All three 
values are close to theoretical values for cubes in the calm 
water. 

IV. CONCLUSION 
In this study, we developed a two-way coupled moving- 

solid method which is able to predict both the fluid and solid 
motions.   The model is validated with laboratory data of the 
landslide generated waves.  Good results can be seen.  By 
coupling with DEM model, the moving solid method is able to 
simulate both fluid and solid motion at the same computa-
tional cycle.  The trajectories of landside tsunami agree with 
the experimental data.  It also shows a positive correlation 
between velocity and density, velocity and delta (δ).  The cases 
of floating cube with different cube density are simulated for 
demonstrating the performance of two-way coupled mov-
ing-solid algorithm in 6 DOF.  The results show that the float-
ing cubes move up and down in the water and generate waves.  
The oscillations of the cubes have mean elevations which are 
close to the theatrical cube location in the calm water. 

However, the validation of the landslide wedge is 1 DOF 
only, we shall move on to the floating-cube simulations for the 
6 DOF validation with the experimental data.  The current  
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0.10.10.1

T = 0.05 T = 0.25 T = 2.0  
Fig. 8.  The snapshots of cube and free-surface locations as well as the velocity vectors of x-z plane at y = 5 cm with cube density = 600 kg/m3. 

 
 

0.10.10.1

T = 0.05 T = 0.25 T = 2.0  
Fig. 9.  The snapshots of cube and free-surface locations as well as the velocity vectors of x-z plane at y = 5 cm with cube density = 700 kg/m3. 

 
 

0.10.10.1

T = 0.05 T = 0.25 T = 2.0  
Fig. 10.  The snapshots of cube and free-surface locations as well as the velocity vectors of x-z plane at y = 5 cm with cube density = 800 kg/m3. 
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Fig. 11. Time histories of the cube center vertical displacements.  Dot line denotes cube density ρ = 600 kg/m3, dashed line denotes ρ = 700 kg/m3, and 

solid line denotes ρ = 800 kg/m3. 
 
 

model can only be executed on a single CPU which limits the 
computation domain and simulation speed.  The parallel ver-
sion will be presented in the near feature.  As for the future 

works, the pressure interpolation scheme in the current model 
can also be improved to have better accuracy on the solid 
surface. 
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