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ABSTRACT 
The increase with time of random stellar velocities, as a result of gravitational encounters with inter- 

stellar cloud complexes, has been recomputed, taking into account the presence of differential galactic 
rotation. As a result of such nonuniform rotation, the clouds will have velocities relative to one another 
even if their random velocities are zero; the gravitational potential of these clouds will be a fluctuating 
function of time; and the stars will gain kinetic energy from the clouds. 

To explain the increase of velocity dispersion with advancing spectral type along the main sequence, 
the mass of a typical cloud complex must be in the neighborhood of 106wo, the value found previously; 
but the random velocity of a cloud complex, as a whole, is irrelevant and may be vanishingly small. 
Since inhomogeneities of density with the required scale of some 300 parsecs or more seem indicated by 
the extinction observations, it seems not unlikely that star-cloud encounters are, in fact, responsible 
for the greater velocity dispersion of the later-type, older stars of population type 1. 

I. INTRODUCTION 

In a previous paper1 (subsequently referred to as “Paper I”), it was suggested that 
gravitational encounters between stars and interstellar clouds might increase the 
velocity dispersion of the stars. Such a cause would naturally produce a greater effect 
on the older stars. The early-type stars, presumably formed recently from interstellar 
matter,2 would not have had time to change appreciably their root-mean-square veloci- 
ties, which would therefore equal more closely the velocities of the clouds from which 
they had formed. This mechanism provides a natural qualitative explanation of the 
fact, known for many years, that the root-mean-square random velocity for stars of each 
spectral type along the main sequence increases systematically with advancing spectral 
type, ranging from 10 km/sec for the O and early B stars to some 20 km/sec for the 
F stars. 

The discussion in Paper I showed that small clouds, with radii of some 5 parsecs and 
masses of about lOOw©, would not produce any measurable effect on the velocities of the 
stars in times less than 1011 years. The same conclusion follows from the analysis by 
D. Osterb rock.3 The larger complexes, of the type considered by Greenstein4 and Bok,5 

have much greater masses, and it is these that must be primarily responsible for the 
effect in question. The detailed analysis in Paper I was based on conditions in an infinite 
homogeneous medium, and neglected galactic rotation. The results indicated that star- 
cloud encounters could, in fact, produce the results envisaged if: 

a) Most of interstellar matter is gathered into cloud complexes with masses of the 
order of lO6^© • 

b) The velocity dispersion of these massive cloud complexes is about 10 km/sec. 

* This work was supported in part by funds of the Eugene Higgins Trust allocated to Princeton Uni- 
versity. 

1L. Spitzer, Jr., and M. Schwarzschild, Ap. /., 114, 385, 1951. 
2 For a survey of this theory see L. Spitzer, Jr., J. Washington Acad. Sei., 41, 309, 1951. 
z Ap. J., 116, 164, 1952; ibid., in press. 
* Harvard Ann., 105, 359, 1937. 
* Centennial Symposia (Cambridge, Mass.: Harvard College Obs., 1948). 
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STELLAR VELOCITIES 107 

The first of these requirements might seem rather difficult to meet, since the mass of 
a typical large cloud of the type observed seems to be more nearly lO5^©. However, 
the total mass of the Orion nebula may well exceed 106wq, and such large masses cannot 
be excluded. Requirement b is even more difficult to meet. Although no extensive meas- 
urements are available on the systematic motion of very large clouds or groups of 
clouds, it would seem likely that the mean random velocity of such a very massive cloud 
complex would be substantially less than the velocity of the smaller clouds observed 
by Adams.6 

In the present paper the analysis is extended to take into account the presence of 
differential galactic rotation. The results indicate that in this more realistic case re- 
quirement b is eliminated entirely, and the random motion of the clouds may be arbi- 
trarily small; i.e., the star-cloud encounters will increase the stellar velocity dispersion 
even if each cloud is assumed to be moving with the circular velocity around the galactic 
center. Requirement a is formally not much changed—in fact, it becomes easier to meet, 
once requirement b is removed. Regions of excess density extending over several hundred 
parsecs and comprising masses of 106wq seem much more plausible than the relatively 
coherent dynamic units of this mass which were originally envisaged. 

One may readily see why requirement b can be eliminated if differential galactic 
rotation is present. Let us suppose that the random motions of the clouds are rigorously 
zero. Then, if no differential rotation is present, the position of each cloud with respect 
to every other cloud is fixed in time. The potential energy of a star is then a simple func- 
tion of position only, the sum of the potential and kinetic energies remains constant, and 
the velocity dispersion is unchanged by encounters. In the presence of differential rota- 
tion, the clouds nearer the galactic center have greater angular velocities than those 
farther out, the distances between different clouds will vary, and the potential energy 
of a star is no longer a simple function of position. In such a case, the stars form a non- 
conservative system, and their velocity dispersion will tend to increase as a result of the 
encounters. 

To illustrate these effects by a specific example, let us consider a star in the neighbor- 
hood of the sun whose velocity relative to the local standard of rest is initially directed 
toward the galactic center and is numerically equal to 10 km/sec, a relatively low value. 
Such a star will move in an ellipse, with major and minor axes equal to 1400 and 700 
parsecs, respectively, and with the minor axis pointing toward the galactic center. Over 
this range of distances from the galactic center the circular velocity of galactic rotation 
will change by some 30 km/sec. If the interstellar clouds are assumed to be moving with 
the local circular velocity, with no random velocities, the effective velocity spread of 
the clouds encountered by the star along its path will be ± 15 km/sec. While the detailed 
situation is somewhat more complicated than this simple example implies, this large 
effective spread of velocities greatly facilitates the transfer of energy from the inhomoge- 
neous interstellar medium to the stars. 

The energy gained by the stars must come, of course, from the interstellar matter, 
which will fall inward toward the galactic center by an inappreciable amount. 

II. STATISTICS OF ENCOUNTERS IN A ROTATING SYSTEM 

First, we shall consider the orbit of a single star, neglecting encounters. Then the 
effect of encounters can be considered, assuming that the clouds have negligible random 
velocities and utilizing in each segment of the star’s orbit the results obtained in a uni- 
form medium in the absence of external forces. An average over the orbit may next 
be taken, to find the mean change of the stellar velocity. Finally, an average over all 
stars in a particular group may be taken, to yield the rate of change of the velocity 
dispersion. 

*Ap. 109, 354, 1949. 
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108 LYMAN SPITZER, JR., AND MARTIN SCHWARZSCHILD 

We write the equations of motion for a single star in the smoothed gravitational field 
of the Galaxy. Let x and y be the co-ordinates of a star relative to some point, P, which 
is at a fixed distance, RP) from the galactic center but which is moving about the center 
at the angular velocity co. The direction of positive x is taken to be the direction of 
increasing P, while y is taken to be positive in the direction of galactic rotation. Motions 
in the z direction, perpendicular to the galactic plane, do not affect motions in the xy 
plane, to a first approximation, and will be ignored. If <í> (R) is the gravitational poten- 
tial per unit mass, then the familiar equations of motion in a frame of reference rotating 
with angular velocity o) become 

d v 
—Yf—2üûVy=4:Aü)X, (i) 

d Vy 
dt 

2o) vx — 0 , (2) 

where A, the familiar Oort constant, may be written 

(3) 

with the derivatives evaluated for R equal to Rp. In equations (1) and (2) terms of the 
order (x/R)2 and (y/R)2 have been ignored. 

These equations yield the solution: 

vx = K sin 2 ( — Boo)1/21 , (4) 

vy= K cos 2 ( — Boo) 1'/2t — 2Ax , (5) 

where P is a constant of integration and B is the second Oort constant, given by 

B == A — co . (6) 

The term x in equation (5) will be ignored, since this term may be eliminated by a simple 
change of co-ordinate system, i.e., by a change of the point P about which the expansion 
is made. The values of x and y as functions of time are readily obtained by direct integra- 
tion of equations (4) and (5). 

Before the theory of encounters can be applied, we must know ux and uy, the com- 
ponents of the star’s velocity at each point relative to the local standard of rest. Since 
the circular velocity, in this co-ordinate system, is —2Ax, parallel to the y axis, we have 

Ux= vx , (7) 

Uy= Vy+ 2 AX . (8) 

If we insert in equation (8) the value of x found by integration of equation (4), and 
substitute equation (5) for Vy, we find 

/ BY/2 
Uy= —J cos 2 (-Boo) . (9) 

It may be remarked that in an inverse-square field of force, B equals —co/4. Then vy 

at its greatest is twice as great as the maximum value of vx, while uy at maximum is 
only half the greatest value of ux. 
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STELLAR VELOCITIES 109 

We now assume that the star encounters clouds in its orbit. The problem will be 
treated on the assumption that each encounter takes place in a region small compared 
to the size of the stellar orbit about the point P. Thus the effect of the encounter may 
be computed as though the star were moving in a straight line. Each cloud will be 
assumed motionless relative to the local standard of rest. All deflections will be assumed 
small, a legitimate approximation for inverse-square encounters in general, and par- 
ticularly appropriate in the present case, where the finite radius of the clouds reduces 
the deflections produced by the closer encounters. Under these assumptions, the effect 
of each encounter is to deflect the star by some angle A0 in the xy plane, without chang- 
ing its local velocity u. Thus the changes of ux and uy are given, to the first order, by 

kuz = — uyL d , Auy = uxA d . do) 

It is readily verified that the mean square local velocity u% + ul is unchanged by this 
transformation^ 

Such a deflection will, in general, change the velocity v, measured relative to the point 
P. Equations (4), (7), and (9) may be combined to determine K in terms of ux and uy, 
yielding 

KL = ul — %ui. (ii) x B y 

If transformation (10) is now used to find the change of K resulting from a deflection 
A0, we have 

a 
KAK= — — uxuyAd . (i2) 

B 

To relate our results to observable quantities, we express K in terms of F2, defined as 
half the mean square value of w, averaged around the star’s orbit. Evidently 

Hence 

(13) 

(14) 

The mean value of AF in one revolution about the point P is zero. However, the 
mean square value of AF is not zero. If we let Vn be the value of F after n deflections, 
then 

F2 = (F0 + AF1 + AF2 +. . • + AF)2, (is) 

= ^0+S (AF¿)
2, . (16) 

1 = 1 

since the terms not involving squares of AF cancel out on averaging. If we denote by 
<(AF)2> the mean sum of all the separate values (AF)2 within a unit time, then 

JF2 

<(AF)2>. (17) 

The quantity <(AF)2>, a diffusion coefficient for the change in velocity, is equal to 

< wh ■> -16^ Ü 0 -£)]’*>•.<(ii),> • 
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110 LYMAN SPITZER, JR., AND MARTIN SCHWARZSCHILD 

where the horizontal bar denotes an average around the star’s orbit. The quantity 
((Ad)2), the sum of all the mean square deflections per second, may be taken from 
Chandrasekhar,7 and we have 

((Ad)2) = 
4:7rG2ncm

2
c]n a 

u* 
(19) 

where nc and mc are, respectively, the number of clouds per unit volume and the mass of 
each cloud. 

The quantity u2 is again the local velocity, equal to ul + ul, while, as in Paper I, the 
term In a may be set equal to 3. We may substitute from equations (4), (7), and (9) for 
ux and uy, and express K in terms of V by means of equation (13). If we also assume that, 
for all the stars in a group, V has a Maxwellian distribution, with root-mean-square 
value Vm (neglecting uz again), we obtain 

where 

<(AFJ2> (20) 

-1/2 sin2 d cos2 ddd 
(sin2 d —B cos2 d/ct>)3/2 * 

(21) 

The integral in equation (21) may be evaluated directly, if the denominator is expanded 
as a series in 1 + B/oo, and we obtain 

where 

G (#) 
75 245 6615 

128 
X' 

512 
xi 

16,384 
æ4 + . . . 

(22) 

(23) 

In the extreme case of an inverse-square force fields 1 B/œ is 0.75, and the series in 
equation (23) converges very slowly. A numerical integration in this case gives 

G (0.75) = 2.48 , (24) 

If equation (20) is now substituted in equation (17), averaged over all stars in the 
group, we may integrate at once. If Fm(0) denotes the value of Vm at time zero, we have 

/ t A1/3 

Fm(0)(^l+-J , (25) 

where 

4F^(0) 
E a F (B/u) ' 

(26) 

Equation (25) is clearly only approximate, since the distribution of stellar velocities 
will not remain exactly Maxwellian even if it is so initially; more accurately, one 
should compute the distribution function /(F) as in Paper I. However, the results of 
Paper I indicate that results obtained on the assumption of a Maxwellian distribution 
are remarkably close to the truth. 

7 Principles of Stellar Dynamics (Chicago: University of Chicago Press, 1942), eq. (5.724). This equa- 
tion must be divided by 2, since deflections in the z direction are not considered here. The quantity 
H(xq) is unity, since the clouds are stationary and bothj and #o are, therefore, infinite. 
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STELLAR VELOCITIES 111 

III. APPLICATION TO OBSERVED VELOCITIES 

The observations of V for stars near the sun are summarized in Table 4 of Paper I. 
We discuss the extent to which the theory in the preceding section may be used to explain 
these observations. 

In the neighborhood of the sun, the values of A and B are8 about 0.021 km/sec psc, 
and —0.007 km/sec psc. Thus œ is about 0.028 km/sec psc, or 0.9 X 10~15 sec-1, while 
— B/u is 0.25, the value corresponding to an inverse-square field of force. Combining 
equations (22) and (24), we see that the corresponding value of F(B/œ) is 0.98. 

We have seen in Paper I that, if the increase of velocity along the main sequence is to 
be explained as an age effect, the value of V for the F stars—about 20 km/sec—must 
be attained in half the age of the universe, or about 1.5 X 109 years. If Vm(0) is as- 
sumed to be 10 km/sec, we compute from equation (25) that must equal about 
2 X 108 years. If this value of tE is inserted in equation (26) and the product wcwc is 
set equal to 3 X 10-24 gm/cm3, we find 

mc = 4.9 X 105wq , (27) 

or about one-half the value found in Paper I. If we assume that only half the inter- 
stellar medium is concentrated in such clouds, with the rest distributed somewhat more 
uniformly, wc will increase to 9.8 X 105wo. Evidently, mc must be about 106wq if star- 
cloud encounters are to have an appreciable effect. If the density in such a massive 
cloud, or cloud complex, corresponds to 15 E atoms/cm3, the radius9 of such a cloud will 
be about 100 parsecs. The mean distance between centers of neighboring clouds, if the 
interstellar medium were infinite and homogeneous, would be about 350 parsecs. 

It is evident that with such large cloud complexes the analysis in Section II is not 
exactly applicable for two reasons. In the first place, the spacing between the clouds 
is about equal to the thickness of the Galaxy. In the second place, the size of the clouds 
and the spacing between them are not so very much smaller than the size of the star 
orbits. As we have already seen, if K is 10 km/sec, corresponding to a value of 5.6 km/sec 
for F, then the major and minor axes of the orbit, given by —K/B and Ar/( —F>co)1/2, 
are equal to 1400 and 700 parsecs, respectively. We investigate in a rough way the 
modifications required by these two effects. 

One may readily compute (A0)2 for a star moving in a plane, encountering clouds 
which are all situated in the same plane. If nc is the density of such clouds per unit area 
and a is the radius of a cloud, then, if we ignore encounters in which the star passes 
through the cloud (for which the distance of closest approach is less than a), we find 

<(A0)2> = 
O/^i 2 ' 2 
8G ncmc 

auz (28) 

The ratio of equation (28) to equation (19) is simply 2nc/iranc In a. Since n'c/anc is some- 
where between 2 and 5, this ratio is not far from unity. Hence the difference between 
equations (28) and (19) does not have a major effect on the increase of stellar velocity 
in the galactic plane, although this difference must be considered in a more precise 
analysis. 

If deflections perpendicular to the plane are considered, a quite different result is 
found. In the idealized two-dimensional picture, all deflections are in the galactic plane, 
and the velocities in the s direction, perpendicular to the galactic plane, are not affected 
by the star-cloud encounters. A more realistic analysis would yield some increase of 

8 J. H. Oort, Ap. 116, 233, 1952. 
9 Paper I incorrectly gives 100 parsecs for the diameter, instead of the radius, of a cloud complex with 

a mass of 106wo. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
53

A
pJ

...
11

8.
.1

06
S

 

112 LYMAN SPITZER, JR., AND MARTIN SCHWARZSCHILD 

these z velocities, but certainly less than is found in the simple three-dimensional picture, 
where velocities parallel and perpendicular to the plane are affected equally. Hence we 
see that the theory yields a simple qualitative explanation of the persistence of low s 
velocities in the older stars. 

The second effect to be considered is the large size of the cloud complexes relative to 
the stellar orbits. If the minimum distance of closest approach to be considered is 100 
parsecs, the curvature of the star’s orbit is certainly not negligible during an encounter. 
A detailed analysis, taking into account the motion of the star in an elliptical orbit, 
would be complicated. It would seem that such a more realistic analysis would give a 
somewhat more rapid rate of deflection of a star. This result follows, in part, from the 
fact that for clouds outside the star’s orbit the differential galactic rotation will reduce 
the relative velocity between star and cloud, in the y direction, and thus lengthen the 
time during which thé star is accelerated by a single cloud. However, it seems unlikely 
that these effects would decrease mc to much less than half the value in equation (27), 
and we shall neglect this change. 

IV. CONCLUSION 

The results in Paper I were somewhat speculative, since it was uncertain whether 
such massive cloud complexes could behave as single dynamical entities, with the as- 
sumed root-mean-square velocity of some 10 km/sec. The present analysis indicates 
that the presence of differential galactic rotation makes the random velocities of the 
cloud complexes irrelevant. Acceleration of type I stars during times of 3 X 109 years 
will be important if density fluctuations exist in the interstellar medium with a scale 
of not less than about 300 parsecs and with an amplitude of fluctuation equal to an 
appreciable fraction of the mean density. Such density fluctuations need have no 
coherent structure and need not even be stable. 

The large fluctuations of obscuration observed in the Milky Way over relatively large 
regions strongly suggest that inhomogeneities of the type required by the present 
theory are, in fact, present. The authors have taken as a working hypothesis the picture 
that type I stars, or “cloud stars,” are forming continuously from interstellar matter 
and that the mean age of all type I stars later than spectral type F is about 1.5 X 109 

years. Even if this hypothesis should not be substantiated in detail, it now appears 
likely that large-scale fluctuations in density of the interstellar medium are responsible, 
at least in part, for the increase of velocity dispersion with advancing spectral type along 
the main sequence. 
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