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Abstract: One of the major problems in computational biology is the inability of existing
classification models to incorporate expanding and new domain knowledge. The prohlem of static
classification models is addressed in this paper by the introduction of incrcmelllal learning for
problems in hioinformatics. Many machine learning 100is have been applied to Ihis problem using
static machine learning structun:s such as neural networks or support vector machines that are unable
to accoillmodate new information into their existing models. We utilize the fuzzy ARTMAP as an
alternate machine learning system that has the ahility of incrementally learning new data as it
becomes available. The fuzzy ARTMAP is found to be comparable to many or the widespread
machine learning systems. The use of an evolutionary strategy in thc selection and combination of
individual classifiers into an cnsemble system, coupled with the incremental learning ability of the
fu7.l.y ARTMAP is proven to be suitable as a pattern classifier. The algorithm presentcd is tested
using data from the G-Coupled Protein Receptors Database and shows good accuracy of 83%. The
system prescnted is also generally applicable, and can he used in problems in genomics and
proteomics.
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I. INTRODUCTION

Biosequence analysis has received increased attention in
recent years since the completion of the human genome
project. As a sub-field, protein sequence analysis has also
become important due to its application in drug discovery
programs III and in the analysis of prion diseases. The
benefit of a computational analysis of biological systems
is most clear when analysing the process of drug design.
The development of new drugs often takes up to 15 years
and costing up to $700 million per drug under
investigation [II. This drug design consists of two phases:
a discovery phase and testing phase [21. It is in this drug
discovery phase that computational tools have had the
most impact. In pharmaceutical drug discovery programs
it is often useful to classify the sequences of proteins into
a numher of known families. In a mathematical notation,
if il is known that a sequence S is obtained for some
disease X, and that S belongs (0 family F, (reatment for
the disease is initially determined using a combination of
drugs that are known to apply to F 131.

Consider the example of the human immunodeficiency
virus (HIV) protease, a protein produced by the human
immunodeficiency virus. The target identification stage
involves the discovery of this HIV protease and the
identification of this protein as a disease CalI. ing agent.
The objective of drug design is to design a molecule that
will bind to and inhibit the drug target. A great deal of
time and money can be saved if the effect of molecules
can be determined before these moleculcs arc actually
synthesised in a laboratory. Bioinformatics tools arc used
to predict the structures and hcnce the functions of the

molecules under design and to determine if they will have
any effect on the drug target.

The G-Protein Coupled Receptors (GPCRs) are the most
important super-family of proteins found in the human
body. Many classification systcms have been developed
over the years based on machine learning to classify
sequences as belonging to one of the GPCR families, and
have shown great success in this task. These classification
systems produce static classi fiers which cannot
accommodate any new sequences that may be discovered.

This paper introduces the use of a classification system
based upon an evolutionary strategy, incremental learning
and the Fuzzy ARTMAP to realise a protein classification
system for the GPCR protein super-family lhat allows all
vs-all comparison of these proteins. Being an incremental
system, the classifier i dynamic and has the ability to
incorporate new information into the classification model.

2. IMPORTANCE OF GPCRS

The G-Protein oupled Receptors (GPCRs) arc a super
family of proteins and forms the largest super-family
found in the human body. The GPCRDB is a database
dedicated to the storage and annotation of G-Coupled
proteins and at present consists of 16764 entries 141.
GPCRs play important roles in cellular signalling
networks in processes such as ncurotransmission, cellular
metabolism, secretion. cellular differentiation and growth
and inflammatory and immune responses 151. Because of
these properties. the GPCRs arc the targets of
approximately 60% - 70% of drugs in development today
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161, 50% of CUITent drugs on the market and
approximately 20% of the top 50 best selling drugs target
GPCRs. This results in greater than US$23.5 billion in
pharmaceul ical sales revenue from drugs which target
this super-fami Iy 161. GPCRs arc associated with almost
every major therapeutic category or disease class,
including pain, asthma, inflammation. obesity. cancer, as
well as cardiovascular, metabolic. gastrointestinal and
Central Nervous Systems (CNS) diseases 171. This
obvious importance of tbe G P Rs is the reason they are
used in this research.

The key Icatures of the GP Rs are that they share no
overall sequence homology and have only one structural
feature in common 151. The GPCR super-fami Iy consists
of five major families and several putative families, of
which each family is further divided into level I and then
into level II subfamilies. The extreme divergence among
GP R sequences is the primary reason for the difficulty
of classifying these sequences III, and another important
reason as to why they arc used in this research.

In this research eight GPCR families arc considered from
the number of families available in the GPCRDB. The
GP R sequences arc stored in the European Molecular
Biology Laboratory (EMBL) formal. which consists of a
number of labelled fields considering aspects of a
sequence such as identif"iers in a number of databases. the
dale of discovery and relevant publications dealing with
the protein sequence. The database itself is updated every
three to four months.

The distribution of the sequence lengths in the data that is
used is an important faclor to consider. Figure I shows a
histogram of the sequence length distribution for the data
lhat is used and shows that the data has a unimodal
distribution, with most sequences having a length of
about 350 amino acids for the GPCR data. The
distribution also shows that the dala docs include
sequences of lengths both longer and shorter than that
indicated at the mode. We can usc this as an indication
that the data used is sufficiently representative of the
protein data in general and that results rrom experiments
Ihat arc conducted can be used to show that the
algorithms arc not highly dependant on sequence lengths
for classification.

3. SEQ E CE AUG ME T TECH IQ ES ~OR

CLASSI~ICATION

Sequence alignment is the procedure of comparing two
(pair-wise alignment) or more (multiple alignment) DNA
or protein sequences by searching ror a match between
characters or groups of characters in each sequence 181.
The de 'ree of similarity is described by a fractional value
and there exil!> three cal 'gories of computational methods
to p 'rform th 'se alignments.

The simple or Ilairwise alignments determine similarity
by aligning a query sequence wilh every other sequence

,I

Figure I: Sequence length distribution for GPCR data

in a sequence database using an amino acid similarity
matrix. Smith-Waterman 191 and eedleman-Wunsch
algorithms 1101 arc dynamic programming techniques
that rind optimal local and global alignments
respectively. Once an optimal alignment is determined, a
scoring matrix is used which allows us to delermine the
degree of similarity between the aligned sequences.
While the algorithms are efficient in determining the
optimal alignment between two sequences. it bccomes
computationally infeasible for usc in a database-wide
search. This problem though has been overcome by a
number of heurislie database search techniques sueh as
BLAST II II and FASTA 1121. which have become more
prevalent and efficienl for database-widc searches.

The muitillie alignments search against a database of
known sequences by first aligning a set of sequences
from the same protein super-ramily. family or subfamily
and creating a consensus sequence to represent the
part icular group. The query sequence is then compared
against each or the consensus sequences using a pairwise
alignment. The query sequence is elassilied as belonging
to thc group with which it has the highest similarity score
III. Some popular techniques for performing multiple
sequence alignments are Position Specific Scoring
Matrices (PSSM) 1131 and C1ustalW 1141. The third
category uses profile Hidden Markov Models (HMMs)
as an alternat i vc to Ihe consensus sequences. but is
otherwise identical 10 the multiple alignment technique.
Thc focus of this research is not on alignment based
techniques and thus they are not described in detail here.
The alignment based techniques are described in detail in
12, R, 15, 161·

4. PROBLEMS WITH AUG MENT BASED
TECHNIQUES

Many shortcomi ngs have becn identi fied with respect to
the eflectiveness of sequencc alignments. which is the
reason why these techniques arc not considered here. The
principle argument against sequence alignment is the
assLimption that Ihe order of homologoLis segments is
conserved 1171. This assumption contradicts acccpted
understanding that evolution causes gcnetic
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Figure 2: Representation of the Fuzzy ARTMAP
Architecturc

the training phase. In this system, (J = 1, which is known
as fast learning. Further details on the fuzzy ARTMAP
and its training can be found in 1281.
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Genetic algorithms (GA) find approximate solutions to
problems by applying the principles of evolutionary
biology, such as crossover, mutation, rcproduction and
natural selection 1291. The GA search process consists of
the following steps:

5. C RRE l' CLASSIFICATION TOOLS I USE

A pattern recognition approach is adopted in this research
to classify protein primary structures into a number of
primary and putative families. The pattern recognition
approach allows the time complexity to be limited to the
initial training procedure and does not make any
assumptions as to the order of homologous segments of a
protein.

This has led to the development of so called "alignment
free" techniques. These techniques rely mainly on
machine learning approaches 119J and the application of
Information theory, Kolmogorov complexity and Chaos
theory 1171. Popular machine learning tools that have
been applied to problems in protein classification include
the Multi-layer Perceptron neural networks 120. 211.
Support Vector Machines l22, 231, k- eal'est eighbour
Classifiers 1241 and aive Bayes Classifiers rII, among
others.

recombination and rcshuflling of nucleotides and amino
acids 1181. The other argument lies in the lack of
computational efficiency of the approaches.

Thc featurc based approach to protcin sequence classification
makes possible the usc of a wide range of classification lOols.
Most protein databases supply Hiddcn Markov Models (HMM)
for cach of the families in the databasc. and the HMM's can bc
used to delcrminc which family an unknown sequence helongs
to. More recently, the usc of Multi-Laycr Perccptron (MLP)
Ncural NCI works has heen introduced 10 Ihc problem of
classification. Ncural networks have heen applied by au(hors
such as Dubchak 1251, Nagarajan et at 1261 and Weincrt and
Lopcs 1211. Each has shown success in the areas of domain
detection or protein folding prediction. Other typcs of classilkrs
have also bccn uscd. Zhao el fit 1271 have made usc of (hc
Support VeclOr Machincs whilc Radial Basis Function (RBF)
Neural Nctworks and k-Nearcst Neighbour (k-NN) classiliers
have also been used 1241.

5./ FIt;;,I' ARTMAPslor Classificatio/l

I) generation of a population (pool) of candidate
solutions, S = {St, S2 .... , sp}. where fJ is the size of the
population.

2) Evaluation of the fitness for each chromosome Si in the
gene pool. Chromosomcs with Ihe lowest fitness are
discarded and make way for a new set of chromosomes.
Replacement sets of chromosomes are created by the
genetic operations of crossover and mutation on the most
fit individuals.

3) Steps I and 2 are repeatcd for a given number of
generations until a specified fitness level is attained or a
maximum number of generations arc exceeded 1301.

This paper introduces the Fuzzy ARTMAP as a classificr
for the protein classification task. Th fuzzy ARTMAP is
based on adaptive resonance theory and wa. introduced
by Carpcnter el a11281. This learning system is built upon
two fuzzy ART modules and emlloys calculus based
fuzzy operations in the learning procedure. A diagram
showing the slructure of a fuzzy ARTMAP system is
shown in Figure 2.

The fuzzy ARTM P divides the input fealUre space into
a number of hyperboxes in the /I-dimensional space. It
contains a map field which maps the individual
hyperboxes to the output classes of the classification
system. As a result, the fuzzy ARTMAP is able to model
complex input space. well. It requires two variables.
where the vigi lance parameterp, represents the trade-off
between classification accuracy and incremental learning
ability. The learning rate (J, is a faClor by which the
hyperboxes arc adjustcd with each training pattern during

The genetic algorithms represent input dala from the
problem by an encoding such as binary or noating point
and use the genetic operations to itcratively evaluate
solutions from the population of potential solutions to
determine the global optimum 1301. The GA evaluates
candidate solutions through a litness function and by
maximising this fitness function, determincs the global
maximum. The Illness function contains information
from the problem space and is the mechanism by which
properties of the problem spacc is transferrcd to the GA.
which is independent of the problem. The genetic
operations are importanl sincc they add an element of
randomness to the search process. allowing a wider range
of the solution space 10 be explored.

6. PRIOR WORK

Th problem of incremental learning has nOI been
considered before as it is presented here. Vijaya et al1311
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7. SYSTEM OVERVIEW

consider the incremental clustering of protein sequences,
but that is a di fferent problem from that considered here.
The fuzzy ARTMAP has been chosen as the incremental
classi fier and as mentioned, has been shown to be an
efTective incremental classifier 128J. The Support Vector
Machine (SVM) is widely used in protein classification
and it would appear that the usc of an incremental SVM
would be more suitable. While some algorithms for
incremental SVM 1321 exist, the problem with many of
these systems is that they cater to the binary-classification
problem only and arc not applicable to multi-class
classification problems, which is the case for the
classification of proteins into families. Other incremental
classification systems also exist, such as incremental
common-sense models and incremental fuzzy decision
trees. Of these incremental classification systems, the
fuzzy ARTMAP is the most established and well known
and is thus used.

A schematic representation of the system is shown in
figure 3. Input sequences arc extracted from a protein
database and then converted into a numerical feature
vector. We then create a population of classifiers to
introduce classification diversity, with the selection of
suitably diverse classifiers from this population using the
Genetic Algorithm coupled with kappa analysis. An
ensemble of classifiers is used as a means of introducing
modularity in the learning system. This system is
implemented using the fuzzy ARTMAP (FAM) and a
series of experi ments arc conducted to evaluate the
performance of this system. Pseudocode for the creation
and operat ion of the system is shown in the algorithm
listing in rigure 4. The ability of the FAM as an
alternative classifier compared to many of the other more
popular classifiers is demonstrated by comparing the
classification ability of these systems using the GPCR
data set. The incremental learning system described by
the algorithm listing in Figure 4 is then tested using the
GPCR data and shown to be able to learn new data as
well as maintain existing data.

8. PROTEIN VECTORISATION

The data obtained from the GPCRDB is in the form of
amino acid sequences. In order for these sequences to be
used in classification systems, they must be converted
into a numerical form. Before this conversion though,
preprocessing in the form of outlier removal must be
completed. utlier removal consists of removing
sequences which have characters which arc not part of the
standard 20-leller amino acid alphahet - the lellers arc B
and Z and have ambiguous meanings. Once this process
is complete, these protein sequences must he transformed
into numerical features. Two types of features have been
identified in the literature, these heing glohal and local
reat ures. II uang et 'II 1:\31 provide a good description of

Figure 3: Overview of System Architecture

Algorithm 7.1: Fuzzy E:-;sEMBLE(D)

Training Phasr
commrnt: Create population} of FAM cla~sifier~ each trained

Wilh a different permutation of lhe input data Xl
Each clas;ifier is a hypothesis h, : XII-· Y I

(= t L nl",(x,);t:YI
commrllt: Son classifiers l>a~ed on incr. enol' on \'alidation ~el.

SORT(f)
commrlll: Select lowest enol' cia sifier as elite cla>sifier he/'Le

commrllt: Calculate the agreemellll-i.. of the 15l>est clas;ifier~

(ba 'ed on enol') with respect to lhe elite clas ifier
,,_ NLj\~ ril-E~~ Xi .,r I

- N'2-L.I=l :)',+.1'+1

commrnl: Genetic Algorithm selection of J> cla%ifier ba~ed

on a trade-ofT between elTor f and agreement /,
G':l/I'f/,,.,,.,(t-i,() = ALr=I"-' L~)=l (i

Create en~emble clas~ifier using. lhe elite classifier he"l<
and the]J selected clas;ifiers h,. t = I.... , Ji
commrnt: Fusion ofindi\'idual predictions using majority \·oting.

Oprratlon Phasr
If predicting sequence family. com'ert to feature representation
and cla~sify using the Fuzzy ARTMAP based system created
during lhis pre\'ious training phase
commrnt: If incremellling. system knowledge. increment each

cla~sifier~ in the Fuzzy ARTMAP ba~e ~y~lem independently.
u~ing the training data for new sequences
h:",r = T (h,. X k I • Y k)'

where lhe tran~fonnation T i~ lhe incremental training
process and k is the dalaset to be added 10 the system

Figure 4: Pseudocode algorithm listing

the difference between global and local features and this
distinction is used in this work.

8.1 Global Feature Generation

Global features represent the nature of the entire protein
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where IIi is thc value for the ith feature and oS; is thc
number of times the ith amino acid appears in the
sequence. This rcsults in 20 fcatures: a frequency of
appearance for each of the possible amino acids. I I' a
particular amino acid does not appear at all in the
scquence. the corrcsponding feature valuc is zero.

scqucncc. These featurcs must caplUre the global
similarity betwecn rclated sequcnces allowing for
comparison. Consider the amino-acid composition of the
sequence. The composition is simply the presence
frequcncy of each of the 20-possible amino acids in the
givcn sequencc. Thus the composition is calculated by
1271:

Si
Vi = 20 ,for 'i = 1,2, ... ,20.

Lj-1 8 j ( I )

conseculive n-Ietter combinations in the protein sequence,
for integer II. For example. consider the short sequence
SLTKTERTIIVSM. the 2-grams of this sequence are:
SL, LT, TK, KT, etc. Given a sequence, features arc
generated by calculating the presence frequency of all
possible n-grams for the amino acid alphabet. Two letter
combinations are known as digrams or bigrams. While
higher n-grarns such as 3-grams and 4-grarns have bcen
considered in the available literature. only digrams are
considered in this work since it has been proven by
numerous authors II. 191 to work well in protein
classi fication systems.

A total of 438 features have been generated and as a final
post-processing step, the features undergo min-max
normalisation. The normalisation is a requirement for
using the FAM, since the FAMs complement coding
schcme assu mes normal ised data.

A second set of fcatures bascd on the hydropathy of
amino acids in a given protein sequence is also
calculated. Amino acids are eithcr hydrophobic,
hydrophilic (polar) or neutral. We use the Chothia and
Finkelstein 1251 hydropathy classi fication. We calculate
thrce descriptors. the hydropathy composition (C). the
hydropathy distribution (0) and the Hydropathy
transmission (T) for the sequences as described by
Dubchak 1251.

The composition C, is calculated similarly to the amino
acid composition described previously. In this case we
calculate the presence frequency of hydrophobic,
hydrophilic and neutral amino acids in the sequence. This
results in three features being generated. The
transmission T, is defincd by three values. The first is the
number of times a polar molecule I followed by a neutral
molecule or vice versa. Similarly the olher IwO are the
number of times a neutral molecule is followed by a
hydrophobic molecule or vice versa and the number of
limes the polar molecule is followed by a hydrophobic
molecule or vice versa.

Thc distribution D, looks at intervals of 25%, 50o/c, 75%
and 100o/r along the sequence length. For each interval
the prescnce frequency of hydrophobic, hydrophi Iic and
neutral molecules for cach pcrcentage interval is
caleulatcd. This rcsults in 12 featurcs, 4 features for each
of the three hydropathy groups. A morc dctai led
dcscription of these features can be found in Dubchak
1251. In total 38 ICatures (20+3+3+ 12) are generated
bascd on global scquence descriptors.

8.2 Local Fea/llre Gellem/ioll

Thc local features capture local interactions between
amino acids and groups of amino acids in a protein
scqucnce. The II-gram method is well established as a
good descriptor of local similaritics in a sequence and has
been used by many authors such as Cheng et al II J,
Tomovie et al1231 and Zhao el al 1191. Essentially the n
gram method considers thc prcscncc frequcncy of

9. INCREMENTAL ALGORITHM AND DIVERSITY

The ercation of the committee-based system is based on a
novcl approach, implementing an evolutionary strategy
which was summarised in the algorithm listing. We first
train an initial population of j classifiers. each classifier
having been trained with a different permutation of the
input training data. This pcrmutation is needed in order to
add diversity to the classifiers being created. As
mentioned, the fact that the fuzzy ARTMAP Icarns in an
instance-based fashion, makes the order in which the
training patterns arc received an important factor 1341. In
the experiments performed, thc initial population consists
of 30 classi fiers.

The c1assi fieation error f, of each of these classi fiers is
then evaluated against a validation data sel.. The
classifiers arc then ranked in terms of increasing error.
The lowest error classifier from this population is the elite
classifier and is the classifier that automatically becomes
a member of the ensemble system. The inclusion of this
elite classifier ensures that at least one high accuracy
classifier is selected for the cOl1lmillcc. The next step is to
select the remaining 1/ classifiers. In this application we
select a further 4 classi fiers. The selection of the other
members of the committee is important and requires a
number of factors to be considered:

• We do not wish to select classifiers that perform exactly
as the elitc classifier, since this gives no diversity to the
predictions that are generated, and thus there is no rOOm
for improvement.

• We do not wish to select low accuracy classifiers that
will confuse the prediction ohtained and thus result in
predictions that arc more erroneous than a single
elassi fier.

It would appear that these two conditions oppose cach
other, since high accuracy classifiers would tend to agree
on the samc predictions, against what we require for point
I. A trade-olr betwecn the classifier accuracy and the
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The GA will select 4 classifiers. resulting in two vectors:

We usc a linear combination of these two matrices to
dcrine the cost value of a particular selection of
classifiers. It is this cost that lhe GA will attempl to
minimise. The cost function is defined by Equation 7. A is
introduced as a scalar constant to allow the relative
importance or the agreement in the system to be adjusted.
In this study>. -= I. which gives equal imporlance to both
the error and the agreement.

I I

f(f. h') AL Hi -I L (i

These selected classifiers are then used in pamllel, with
each of the five classifiers in the system producing an
independent ~et of predictions. These predictions must
then be fu~ed together to I'orm the final decision. A
number of decision fusion techniques exist. Some or
these include the majority and weighted majority voting.
trained combiner fusion. median, min and max combiner
rules 1381. We adopt the majority voting decision fusion
scheme, which simply considers each of the predictions
produced by the five classil'iers as a vote. with the final
prediction I'or any given pattern given by the prediction
that receives the largest number of votes.

The GA selects the 4 best classifiers that minimises the
cost function of Equation 7. The Genetic Algorithm was
designed to produce SO generations of solutions with each
generation being a population 30 possible solulions. The
crossover rate was set to a high value of 0.8 and a
mutation rate of 0.4. and was empirically determined to
be the best values for the experiment. The crossover
functions are modified from the standard crossover
I'unctions in this case. to ensure that unique classifiers are
selected during each generation. that is. preventing the
same classifier from being selected twice in a particular
generat ion.

(5)

(6)

i 1

{fl: f 2: f ;l:rd

{h:l: h''2: h';\: r; I}

i I

0, .1'" (2)
I I

N

0'2 ·1"1 • ,I' I' (3)
, I

NO I 0'2
I; YO' 0'2 (4)J -

'I~e;sifier ( 'I ( '(..! TOI~I<;

( 'I .1'11 .1','2 .fIC.! ·1"'1

('2 ·f"21 ·1'22 .r.H..! .1'2-/

( .(..! .I'(~I ·1'1.J2 .t'(...!(,} ,1'I.J+
Towle; .1' ~I .1'+2 .1' (..!

In the above table. Q is the number of cla\ses in the data.
X" in Ihe table is the numher of test patterns thaI both
classifier I and 2 agreed belonged to class C/ . .121 is Ihe
numher of lesl pallerns thaI classifier I predicted
helongi ng 10 class C2• hut that c1assi fier 2 predicted
helonged 10 class C/. Similarly, the entire error matrix
can he generated using the prediction made hy any two
classifiers. We determine the error matrices for IS of the
hesl classifiers in terms of predictions with respect to the
elite classifier. The agreement is calculated using the
following sel of equal ions. where N is the number of
training patlerns used in generating the error matrix 1361.

Tahle I: Data formal for error malrix between classifiers

Cl~e;e;ifiel :!

We use the definition of agreement considered by
Petrakos et al 135 I. and the mathematical description that
follows is oenerally known as kappa analysis. We define
the agreement hetween any two classifiers /, based on the
error matrix of the two c1assiliers 1361. The error matrix
shows the numher. and for which classes the two
classifiers agree on a prediction. Tahle I shows the format
for an error matrix hetween two classifiers.

level of agreement between classifiers is then ideally
what is required. This introduces the need for a formal
definition of agreement between classifiers.

The selection of c1assillers from this population. which
must essentially minimise both the error of the individual
classifiers and the agreement of Ihe classifiers with the
elite classifier. is an optimisation problem. We have
chosen to impl'menl a Genetic Algorithm as the
optimisation 1001 for this system. The Genelic Algorithm
(GA) is a stochastic oplimisalion tool that horrows
conceplS from evolulionary biology such as selection,
crossover and mutation 1371. The CiA minimises a cost
funclion that is defined for a particular prohlem hy
stochaslically exploring the space of available solutions.
The CiA implemented for the selection of classiliers is

designed to s 'lect 4 Clilssificrs and minimises both the
agreement and th' error of the selected combination of

c1assi lias.

9./. !llcH'IIII'lIlrt! LNII'Jlillg (~j'Prol{'ill D{/w

The ensemble system is not a useful system if it is not
able to accommodate newly discovered sequences that
are produced daily. The ability of a classifier to allow this
type of knowledge update was also defined as
incremental learning. The fuzzy ARTMAP through its
instance-based learning is ahle to incrementally learn
new data. This incremental learning can consider two
lype\ of data:

I. It is possible to add new sequence information for
I'amilies which the classifier has already been trained
with.

2. Data of completely new classes can he added to the
sYstem. increasin!!. the knowled!!.e Ihatthe system has
of the general protein domain.
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Tablc III: Comparalive performance of FAM versus other
c1assi ficrs on the G PCR dataset

The base system will in general be trained with d<lta of <I

number of classes. Once new data becomes available,
incremental learning of the system is based on
incrementally training each of the 5 FAM classifiers in
the system with the new data. The system can now be
tested with data from all classes it has been trained with,
including classes which have been incrcmentally added to
the system.

('Ia,siller
Generali,ed iJilear'Modd
~lllll1-layel PerceptIon. I/{.. ,{ = 15. I'W' = :WO
Fllzzy ART~'AP fJ = 0./:,
SVI\[ - RBF') = 2.:!
S\'~I-Polynomial 2.23 ckgree

EJI'or(O~
25.91
15.03
1t.90
17.10
10.36

10. SYSTEM TESTI GAD EXPERIMENTAL
RESULTS

10.1. Testillg Usillg CP R Dow

The GPCR d<lta is also divided inlo 6 separate databases
VI ..... V(j, with a validation set for database Vt. In this

case. the datasets have data of all H classes which arc
available. This specific partitioning is used to
dcmonstrate data incremental lcarning. where new data of
classes which the system has already becn trained with is
added to the system. This case is more appropriate for use
with GPCR data where the families arc established. The
separalion of data into these databases is shown in Table
II.

10.3. Bose Clossi/ier Tmillillg olit! Illcrell1ellwl
Perj(II"IIl({IICe

The base classification system wa~ trained using database
VI. Table IV shows the error of the lirst 15 classifiers of
the population and agreemcnt with the elite classifier. The
error is the error of the system on the validation data set.

The GA for this data set selected classifiers 2,3, 4,
and 12 to form the final ensemble system. Again, the

system consisting of the elite classifier and the four
classifiers selected by the GA are incrementally trained
using databases '0'2, .... 'O(j with the ensemble being
tested after each increment with the testing database V,.
The performance of the system is shown in table V.

Table IV: Error and agreement values for 15 classifiers of
the population

This data shows that the system is cxtremely capable of
remembering data that has been trained upon. as shown
by the many OCK which appear in the table for the training
databases. The many zeros are not an indication of
overtraining. The FAM is trained so thaI it learns all its
training data with a O~ error. What the results show is
lhat after it has learnt its initial training data. the memory
is not degraded by the addition of additional data. The
system also shows that the performance docs increase as
more data of each of the classes is added to the systcm.

.
TYJl~ I 32 10 ·B 43 -13 4.~ 43 43
Typ~ 2 23 30 30 30 30 30 30
TyJl~ 3 16 6 12 :2'2 2:2 22 ..,.., 22
TyJl~ ~ 6 2 9 9 8 8 8 8
FzlSmo 12 4 16 15 16 16 16 16
.1LO 3 I 4 5 5 5 5 4
C1a~~ 11 .n II 43 43 -13 43 43 43
Ph~lomon~ 1 20 6 26 26 26 26 27 27

Table II: eparation of data into individual databases for
testing using GPCR data. D, and D, are the validation and

testing datasets respectivcly

I Famity

10.2. CO/l/pamtil'e Perfor/l/allce

We compare lhe Fuz.zy ARTMAP wilh other more
common machine learning tools such as lhe upport
Vector (SVM) Machines and Multi-layer perceptron
(MLP). These have been chosen since Ihey have found
widespread use in the literature II. 3, 191. Tablc III shows
the performance of the classifiers thaI were considered in
the experiment. The paml11eters that are used for each of
thc classifiers are included in the table. Thc classifiers are
trained with all the training data combined into a single
training set and tested on the test set V, . using the
fcatures that werc dcscribed in Section 5. The table shows
thaI the FAM has comparablc accuracy when compared
10 many other classification systems.

I CI~S"lfier I \'al Error ((00) I Agreement /{ I
I 270833 Elite
2 29.166- 0.8940
3 29 166- 0.9-.1O
·1 29.166 08438
) 31.2500 0.8929
6 31.2500 0.8929
7 1.2500 0.8929
8 31 2500 0.8455
9 31.2500 0.868_,
10 31.2500 0.8929
II 31 2500 O. 929
12 31.2500 0.8929
U 31.2500 O. 929
I-I 31.2500 0.84_~0

15 33.3333 0.8-130
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Table V: Training and generalisation performance of
system on GPCR data

l <;e'-[Trnin I ~ ~rniil TJ-Tt~I~:~ 3 I Train -,- [ Tmin 5 IJ~~-
'D I 0 0 0 0 0 0
'[)2 - 0 0 0 0 0
D:\ - 0 0 0 0
'D I - - - 0 0 0
D·, - _. - -- 0 0
11., - - - - 0

D" 25.00 22.92 22.92 27.08 2500 27.08
11, 22.79 18.65 19.17 1969 18.65 16.58

II. ANALYSIS OF RESULTS

We have described the tools and techniques that are
current Iy used in the classi fication of protein pri mary
struclures into families and the introduction of two
algorithms for incremental learning of this protein data,
There has been a great deal of work in the classification
of these proteins using a wide range of computational
intelligence techniques ranging from the k-Nearest
Neighbours classifiers and Naive Bayes classifiers to
more complex tools such as the Multi-layer perceptron
and the Support Vector Machines, While these systems
have allowed a wider set of evolutionary mechanisms
involving proteins to be included in the design of
classification systems, such as invariance to the order of
amino acid motifs in a sequence, they remain static
structures which cannot incorporate newly discovered
proteins inlo their models.

With this in mind. Illcrelllelllal Le{/mill~ was proposed as
a machine learning approach to the classification of
proteins. The system presented IS based on an
evolutionary strategy and the fuZly ARTMAP classirier.
The results presented indicate that the fuzzy ARTMAP is
a suitable m;lchinc learning tool for the classification or
protein sequences into structural families, which is
comparable to many or the more eSlabl ished [ools. An
analysis of Ihe sequences also showed that the system is
able to classify proteins of varying lengths, and thus the
length or the protein sequences used is not important.

The results presented indicate that the fuZl',y ARTMAP is
a suitable machine learning tool for lhe classification of
protein sequences into structural families, which is
comparable to many of Ihe more established tools. The
accuracy of the classification could be improved if some
form or dimensionality reduction or feature selection is
applied. These techniqucs have been applied by many
authors using numerous techniqucs. Principal Component
Analysis has been used as a technique of dimensionality
reduction by Zhao et al 1271 and 'heng et al III uses the
chi-squared lest as a means of feature selection, Feature
selection can also be aprlied using various sub-optimal
feature selection techniques such as the floating forward
selection search using the ./1 l1le,lSUre as the distance
function 13lJj or the Genetic Algorithm can be used as
deJllonstraled by Moh~lmed ('t n/1401,

For the ruzzy ARTMAP based syslem. the agreement K

was used to measure diversity of the system. The use of
the correlation coefricient or the use of a disagreement

1361 should also be explored, to determine if these
alternale measures gives some degree of refinement in the
selection or the classifiers, The genetic algorithm is also
important in the committee. Due to the stochastic nature
of the GA. it is possible lhat different GA optimisations
produce a different selection of c1assirier members. This
though is not as likely in the case of the data presented
here, since many of the c1assi riel'S had the same
agreement or error, resulting in the GA converging to the
same selection choice. That said, the optimisation of the
GA is erficient and runs very fast due to the fact that it
uses pre-calculated results such as the error matrix and
agreement values, It might seem that Ihe contribution of
the GA is not signiricant if the case of the testing using
the GPCR data is considered, This might be the case for
this data. but the algorithm is designed to be generally
applicable, and thus this might not be the case 1'01' another
set of data, which also need not necessarily be protein
data.

12. CONCLUSION

In itial researchers into incremental learni ng such as
Elman [411 claimed that incremental learning is always
superior to batch learning. We choose to adopt a sorter
approach and rather emphasise that. while the batch
trained approach may be suitable, the incremental
approach save a great deal of time and allows previous
classifier design cl'rort to be maintained. Where the case
exists that any new information that may he obtained will
not significantly improve the classification ability of the
system, then the hatch training approach may be more
suitable. Where this is not the case such as ramilies
whose sequences have low sequence similarity, then the
incremental approach may be better and will be more
desirable.

The algorithm presented is applicable in general to all
classification problems and is not limited to the rroblem
of structural family classification, The algorithm can be
easily extended to secondary and tertiary structure
prediction. functional annotations and the prediction of
protein-protein interaction sites. Apart from systems in
proteomics, genomic applications also exist, such as the
classification of promoter, and splice sites. Each
classification task benefits from the improvements which
can be gained rrom using an ensemble system and
incremental learning. These results show great promise
for the future or computational biology, where newly
discovered data needs to be accurately incorporated into
existing models. allowing for highly agile discovery
processes.
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