This is the html version of the file https://csce.ucmss.com/cr/books/2017/LFS/CSREA2017/FEC3090.pdf. Google automatically generates html versions of documents as we crawl the web.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

	[bookmark: 1]Page 1

A Comparative Study of Early Instruction Set Architectures and

their Effect on Current Computer Architecture Coverage

Hassan Farhat

Computer Science

University of Nebraska at Omaha, USA

Abstract - While advances in hardware resulted in

significant improvements in the computational power of a

computer, the study of computer architecture at the assembly

level remains similar (to a great extent) to early instruction

sets. In discussing the assembly level, computer architecture

coverage today includes a subset of a given instruction set.

Part of this set is also used in the discussion of designing

sample processors.

In this paper we look at the early instruction sets from a

historic perspective. We then look at instruction set coverage

today and how it remains close to early instruction set

architectures. This is true when one looks at the assembly

instructions generated by GCC for example for an x86

architecture. A comparative study is given of popular

textbooks in terms of instruction set coverage, and the subsets

used in this coverage to design sample processors.

Keywords: Instruction-sets, Computer Architecture,

Assembly Language, Machine Language, Processor Design.

1 Introduction

The advances in computer designs, and corresponding low

costs, introduced microprocessor to many facets of today's

life. Microprocessors clock speed increased significantly,

740 kHz for 4004 processor to 4.2 GHz for Intel Core i7-

7700K, 7th Generation desktop processor (5.7×103, faster

clock speed), [1]. The improved clock speed, the additional

processors found on a microprocessor (multicore), and

pipelining, resulted in significant improvements in

computational speeds. While these improvements took

place, the cost of computing elements continued to decline.

At the assembly level of discussion, computer

instruction sets have not changed significantly. This is

particularly true when contrasted with improvements in

hardware designs. In fact, many of the textbooks on computer

organization and computer architecture present this topic by

studying a subset of a given instruction set. In discussing the

user view of assembly and translating high-level language

constructs to assembly, pipeline topics are not included at this

level.

As a result, the user (programmer) view of the

architecture remains similar to early instruction sets. The

programmer view is composed of an ALU, a register file and

the control unit. The topic of pipelining is covered when

considering the microarchitecture (design) level of a sample

computer. Even then, however, the topic is covered on a

small subset of the instruction set.

The subset used in the designs resembles, to a large

extent, a smaller sample of instructions from early instruction

sets. The small sample includes representative instructions

on: 1) data movement instructions, 2) arithmetic and logic

instructions, 3) branch and jump instructions, and 4) stack

instructions.

In this paper we survey coverage of this topic in popular

textbooks in the field. We compare the instruction sets used

in the coverage to instruction sets of earlier popular

architectures, such as the PDP 8 minicomputer by Digital

Equipment Corporation, the 6502 processor by Rockwell

International and 8085 processor by Intel [2, 3, 4].

The paper is organized as follows. Section 2 contains

historic timelines of early computer designs. Section 3 looks

at sample instruction sets of early designs. In section 4, we

look at sample popular instructions sets found in today's

architecture. Section 5 includes comparative study of

coverage of the topic in textbook on computer architecture.

The conclusions are given in section 6.

2 Timelines of early popular computer

designs

The literature on the first electronic computer or processor

contains many debates. The debates ranged from computers

to minicomputers to microcomputers and to processor design.

For computers, by some researchers, the first electronic

computer is considered to be the Atanasoff-Berry Computer

(ABC). The proposed initial design plans were considered in

the academic year 1937-1938 at Iowa State College

(University) [5].

By others, the Electronic Numerical

Integrator And Computer (ENIAC), announced in 1946, was

considered as the first electronic computer. Atanasoff claims

were resolved in his favor in 1973 [6]. However, in

Int'l Conf. Frontiers in Education: CS and CE | FECS'17 |

215

ISBN: 1-60132-457-X, CSREA Press ©

	[bookmark: 2]Page 2

additional conclusion, it was determined the word

"computer" is not patentable.

As to early popular computers, two dominated the

industry, the IBM 360-series, 1964, and the DEC VAX-

11/780, 1977. VAX is an abbreviation for Virtual Address

Extension (the extension is in reference to extending the PDP

11 instruction set architecture). The VAX was used as a

standard in comparing CPU speeds. The IBM series is still

in use but under a different name, IBM z9CMOS servers.

The results are inconclusive with regard to the first

minicomputer since the definition of a minicomputer is not

clear and was termed after the design of the first

microprocessor.

However, some researchers termed

Interdata 7/32, 32-bit as the first 32-bit minicomputer, 1973.

The design was influenced by IBM's main frame design of

the 360-series. The goal was the need for smaller and more

cost effective computer design.

In terms of popularity and market distribution of the

early minicomputers, the Digital Equipment PDP 8, 1964,

was the most popular and widely distributed.

In terms of the first microprocessor, the results are

conclusive, the first microprocessor design is the Intel 4004,

1970, by Integrated Electronics (INTEL) [7].

A few years later, 1973, the first microcomputer, the first

non-kit microcomputer, Micral, was introduced by a French

company [8]. The microcomputer was introduced as a low

cost minicomputer, 1974, and used the Intel 8008 processor,

1971. The processor is an 8-bit version of the Intel 4004

processor.

Later, 1977, the Apple II computer was introduced and

popularized the use of microcomputers at the first West Coast

Computer Fair [5].

The Apple II used the MOS 6502

processor (also used earlier in Apple I) [9].

IBM, the

dominant company with mainframe computer design, did not

start the personal computer (microcomputer) line until 1981.

The first personal computer used the 8088 processor, an

INTEL processor based on the 8080 processor technology, an

8-bit version of the 8086 processor.

In 1986, the MIPS R2000 processor, by MIPS Computer

Systems, was introduced as an example of Reduced

Instruction Set Computers (RISC). It was used by many

companies including DEC and Silicon Graphics. The

architecture was widespread in the academic field as one of

its founders, John Hennessey at Stanford started the MIPS

project in 1981 [10].

3 Sample instruction sets of early

designs

We review sample instruction sets in terms of influence and

from historical perspective. We choose the instruction sets

for: 1) the PDP 8 minicomputer, 2) the MOS 6502 processor,

3) the Intel 8085 processor, and 4) the MIPS R2000

processor.

Due to its low cost, the PDP-8 (and later PDP-11)

became widespread in industry and in academic institutes.

The 6502 is referred to by some researchers as one of the first

RISC processors (it had some features of RISC machines)

and is derived from the Motorola 6800 processor. The 8085

processor resulted in the very popular architecture, the Intel

x86 architecture. The MIPS processor affected a major

instruction set architecture, the ARM architecture found in

millions of portable devices today.

Instruction sets are characterized as: AC based, stack

based and general-purpose register based. In AC based, a

special register, called the accumulator (AC), is used as both

a source and a destination. For instructions that required 3

operands such as ADD, for example, AC is a source and

destination. In stack based, a stack (in memory) is used.

Instructions such as ADD are assumed to have the needed

operands on the stack. The result of the addition is placed on

the stack. In general-purpose register based and an ADD

instruction, the needed operands can be registers found in the

register file of the processor. We look at the sample

architectures next.

The PDP-8 minicomputer. The PDP-8 minicomputer

was among the most successful computer of its era and was

introduced to the academic and industrial fields; it sold more

units than many others competitors at the time. Later CPU

architectures borrowed concepts from this architecture.

The PDP-8 is an AC based architecture with only two

registers visible to the programmer, the accumulator (AC) a

12-bit register and the link bit (L) a 1-bit register. As to

memory, the size of memory is 4096 words, each word is a

12-bit word.

The PDP-8 computer included other registers not

directly accessible by the user. These are, the memory buffer

register (MBR), the program counter (PC) and the memory

address register (MAR). MBR served as a buffer to hold

data for communication between memory and the CPU. It

also served as one of the operands for arithmetic and logic

binary operations.

The machine instruction is a 12-bit word of the form

An opcode with decimal value of 0 to 5, indicates a

memory reference instruction. For these opcodes, the I bit is

used for two addressing modes direct (I = 0) and indirect (I =

1). The memory for the PDP-8 is viewed as 32 pages, each

is 128 words with12-bit word size. The Z field is used to

select one of two pages, Z = 0 implies page 0, Z = 1 implies

current page. For both cases, the lower 7 bits of the address

are taken from the address field of the instruction (bits 5-11).

The upper 5-bits of the address are set to 00000 (for Z = 0) or

the upper 5-bits of PC (for Z = 1).

The memory reference instructions are: AND, TAD

(add), ISZ (increment and skip if zero), DCA (store and clear

AC), JMS (jump subroutine), and JMP (unconditional jump).

Other instructions, referred as OPR (operate)

instructions, are divided into groups. For example, the

instructions in group 1 are register reference instructions

0 1 2 3 4 5 6 7 8 9 10 11

Op code

I Z

Address

216

Int'l Conf. Frontiers in Education: CS and CE | FECS'17 |

ISBN: 1-60132-457-X, CSREA Press ©

	[bookmark: 3]Page 3

(examples: CLA clear accumulator, and RAR rotate L and

AC right by 1 bit). The instructions in group 2 affect the

value of the program counter (examples: SMA skip next

instruction on AC negative, and SZA skip next instruction

AC equal zero). The complete instruction set is given in [11].

The PDP-8 instruction set is good from a pedagogical

perspective. The simplicity of the set can reduce the time

needed to learn instruction sets. This in turn can allocate

more time for additional topics coverage. The instruction set

of the PDP-8, to a large extent, resembles Reduced

Instruction Set Computers (RISC):

The number of

instructions is small, the number of addressing modes is also

small, and the machine instruction size is fixed to 12 bits.

The 6502 Processor. The 6502 processor, 1975, was

used in Apple II microcomputer. It was designed by the same

engineers that designed the Motorola 6800. The design of

both was influenced by a very popular minicomputer, the

PDP-11 [12]. The processor control unit design was

hardwired and influenced later designs of ARM processors.

Unlike the PDP-8, the 6502 processor had additional

registers visible to the programmer (besides the AC and the

link registers). It included two index registers, X and Y, and

a stack pointer register. It had a total of 56 instructions (but

no input/output instructions) with several addressing modes.

Unlike the PDP-8 instruction set, the instruction size is not

constant.

The processor is an 8-bit processor (AC, X and Y are 8-

bit). The total addressable memory is 64 K (PC and SP are

16-bits each). The stack is set to a fixed location, the upper

byte address of the stack pointer is (01)H. The instruction size

varied from 1 to 3 bytes with register reference instructions

sizes of 1 byte.

The first byte represents the opcode and, in case of

memory reference, the addressing mode. Examples of

instructions mnemonics are: ADC (add memory to AC with

carry), CLA (clear AC), ROR (rotate right memory or AC),

and PHA (push AC contents on stack) [13].

The 8085 Processor. The processor, 1975, is based to a

large extent on the popular Intel 8080 processor. The 8085

processor had two additional instructions only, SIM and RIM

(for interrupt masks). The use of the number 5 was to indicate

the processor required only 5 V, unlike the 8080 that required

3 sources (5 V, - 5 V, and 12 V).

The architecture includes the three types of instruction

sets: AC, stack and general-purpose register based. It is byte

oriented (AC and other general registers are 8 bits, memory

is byte oriented). The total addressable space is 64 K (PC

and SP are 16 bits each). The general registers are B, C, D,

E, H, and L. Pairs of registers can be treated as 16-bit

registers (BC, DE, HL). As in the case of the 6502, the

machine instruction size is not fixed, some instructions are 1

byte while others are 3 bytes.

Based on the Intel 8085/8080 Assembly Language

Reference Card, March 1979, the instructions are divided into

groups: Data Transfer (examples: MOV, MVI, LXI, and

load/store instructions); Arithmetic and Logical (examples:

ADD, ADC, SUB, INR, XRA, and ORA); Branch Control

(examples: JMP, JNZ, CALL, and RET); I/O and Machine

Control (examples: PUSH, OUT, IN and two new

instructions for 8085 RIM and SIM) [14].

The MIPS R2000 Processor. The processor, designed by

MIPS Computer Systems, 1986, follows the concepts of

Reduced Instruction Set Computers. The processor and

subsequent MIPS became popular in the academic field due

to one of one its founders [10]. The architecture is covered

in several educational textbooks [15].

The processor is a register-register processor where all

arithmetic and logic instructions operands are registers or

constants. The architecture access to memory is restricted to

load and store only, unlike the processors discussed earlier

where one of the arithmetic operands can be a location in

memory. In addition, due to the number of registers, register

Table 1: MIPS 32 registers with naming and use convention.

Register number Name

Usage

0

$zero

constant 0

2-3

$v0-$v1 Return values function calls are placed in these registers

4-7

$a0-$a3 arguments in function calls are passed in these registers

8-15

$t0-$t7

called (callee) function can use these registers (caller-saved)

16-23

$s0-$s7

callee, must save these registers if they are used (callee-saved)

24-25

$t8, $t9 temporaries as above in registers 8-15

26-27

$k0, k1

Used by OS

28

$gp

global pointer

29

$sp

stack-pointer

30

$fp

frame pointer

31

$ra

return address in function calls

Other 32- bit registers: PC, HI, and LO

Int'l Conf. Frontiers in Education: CS and CE | FECS'17 |

217

ISBN: 1-60132-457-X, CSREA Press ©

	[bookmark: 4]Page 4

use conventions were incorporated to pass parameters

between function calls, instead of using a stack.

The number of general-purpose registers in the CPU is

comparatively large, thirty one 32-bit registers (register 0 set

to a constant value of 0) Table 1 [16]. The instruction size is

fixed to 32 bits with three types of instructions as given in

Figure 1 [16].

The I stands for immediate. This group includes:

arithmetic/ logic, branch, and load/store instructions. The R

in the R-type stands for register. This group includes:

arithmetic/logic, shift, set register values, move, and jump

register instructions. The J in the figure for jump. This type

includes two instructions only: j and jal where j means

unconditional jump and jal means jump and link.

4 Today’s Sample Popular Instruction

Sets

Today’s architectures are 64-bit architectures. The

registers are 64-bit registers in the data path with the program

counter as 64-bit, allowing a maximum of 264 address space.

Among the first to introduce 64-bit architecture is the Cray

Supercomputer, 1975. In addition to the 64-bit registers sizes

in today architectures the CPU contains many general-

purpose registers that can be used for temporary variables in

the CPU, and can be used to pass function parameters. We

briefly look at two architectures, the Intel x86-64 (Intel64)

and the ARMv8 architectures. The x86-64 is mostly used in

laptops and servers, while the ARMv8 is used in tablets and

cellular phones.

The x86-64 architecture. This architecture is extension

of the Intel x86 architecture with the CPU containing 64-bit

registers, instead of 32-bit, and with 16 registers instead of 8,

Figure 2, [16]. The figure shows the added registers R8-R15

to the x86 architecture. In addition, the x86 registers are

expanded to 64-bits instead of 32-bits.

As in earlier architectures, the x86-64 architecture is

backward compatible. For example, the same add instruction

can be used to refer to a 8-bit register up to 64-bit as in [17]

"ADD AL, imm8

ADD AX, imm16

ADD EAX, imm16 and

ADD RAX, imm64"

In above, the add range of reference is an 8-bit (AL) to 64-bit

(RAX)

The ARMv8 Instruction set. The ARMv8 was introduced

by Advanced RISC Machine, 2011, and is a 64-bit RISC

processor [18]. Similar to MIPS architecture it includes 32-

general purpose registers (X0-X30 and XZR fixed to contain

0), each is 64-bit [19]. It is a load store architecture with

access to memory through load and store only. Arithmetic

and logic operands are either registers or immediate

constants.

Field width

6 bits

5 b its

5 bits

5 bits

5bits

6

R

opcode

rs

rt

rd

shamt

funct

I

opcode

rs

rt

Imm

J

opcode

address

Figure 1: The instruction fields for the three instruction types.

RAX

EAX

RBX

EBX

RCX

ECX

RDX

EDX

RBP

EBP

RSI

ESI

RDI

EDI

RSP

ESP

R8

R9

R10

R11

R12

R13

R14

R15

Figure 2: The x86-64 general-purpose registers

63

0

63

0

218

Int'l Conf. Frontiers in Education: CS and CE | FECS'17 |

ISBN: 1-60132-457-X, CSREA Press ©

	[bookmark: 5]Page 5

Similar to MIPS, the instruction encoding includes R-

format as well as 4 additional formats [19].

In terms of backward compatibility, the instructions

mnemonics follow x86-64 format of Intel. For example, the

following same ADD mnemonics applies to different data

types from the register contents [18]

"ADD X0, X1, X2 // 64-bit register add

ADD W0, W1, W2 // 32-bit register add".

5 Comparative Study of Instruction Set

Coverage

In this section, we look at textbooks coverages of assembly

language in some popular textbooks in the field. We start

with [20] as an early popular textbook. The textbook, page

143, introduces an assembly language similar to PDP 8 that

is AC-based. It consisted of 25 instructions. In later versions

of the textbook [21], the instruction set used in the discussion

and design was changed to general-purpose register based,

page 469.

The total number of instructions used in the design is 19.

The instructions chosen are those found in early architectures

as well (move, increment, add, subtract, decrement, and, or,

xor, not, shift, load, store, conditional and unconditional

branch). Later, page 556, the set is expanded to a 26 RISC

architecture instructions. However, the type of instructions

in terms of functions remained similar to early instruction

sets.

Among the most popular textbooks on RISC architecture

is [15]. The number of instructions considered mostly, the

core instructions, is 31. Further, when the design of a

processor is considered, a subset of the core instructions is

selected (page 259: lw, sw, beq, add, sub, and, or, set on less

than, and jump). As can be seen, these instructions are found

in early instruction sets as well.

A later edition of the text, ARM edition [19], used a

subset of ARMv8 instead of the MIPS architecture, a

significant transition from earlier texts. Here as well, a core

instruction set is used, 36 instructions, as given in page 65.

In addition, the design of a processor included 9 instructions,

page 271.

Another popular text is [22], the instruction sets

considered in discussions include x86-64 and Intel Core i7.

However, the assembly coverage is that of the Intel 8088,

Appendix C. The 8088 is an 8-bit version of the 8086

processor.

The rationale used in incorporating the

architecture is in its simplicity and ease of learning. As to a

sample processor design, the author includes a CPU design

as in earlier edition. Also as in early editions, the design is

based on microprogramed control. The instruction set chosen

is a subset of the Java Virtual Machine, 20 instructions,

Figure 4-11, page 262.

Next we look at [23]. The textbook discusses ARM and

x86 architectures. As to learning assembly, the text includes

appendix B on x86 architecture. It uses NASM (Netwide

Assembler). NASM uses a format similar to Intel assembly

format and is open source assembler.

We conclude with discussing the textbook [24]. The

authors present more detailed coverage of Intel x86 in their

first and second editions, 2003, and 2011. In the third edition,

2016, the authors moved to x86-64 as a platform for

presenting assembly instructions. For the second edition, a

sample design processor is presented, Y86, with 28

instructions based on the IA32 (x86) architecture.

Unlike other texts discussed above, the authors work

much closer with the x86 and x86-64 assembly as generated

by the GCC compiler. Hence the title "Computers Systems:

A Programmer's Perspective". In the second edition, the

authors emphasized the fact that compilers generated

assembly for earlier instruction sets (8086 and 386).

While newer processors instruction sets included many

additional instructions, for the x86 instruction set, many

compilers continued to be tailored to instructions from the

original 8086 and 386 era, page 267, second edition . This

was done so as to continue backward compatibility, an

important aspect of the x86 and x86-64 architecture.

6 Conclusion

In this paper, we surveyed early advances in computer and

processor instruction sets. While major advances occurred in

hardware, in terms of the number of switching elements per

unit area, computer architecture textbooks discussing

assembly remain, to a large extent, the same. This is true

even if the newer editions have moved to a 64-bit

architectures.

Several important texts on the topics still emphasize the

study of assembly as it relates to earlier architectures. This

includes the Intel 8088 (an 8-bit data path design of 8086

processor), and the x86 architecture.

For the x86

architectures, as referenced in [24], some compilers generate

instructions that are based on earlier architectures (Intel 386).

In addition, when considering sample processor designs, all

assume a small subset of instructions that are found in earlier

architectures as well.

References

[1]

http://www.intel.com/content/www/us/en/processors/

core/core-i7-processor.html

[2]

http://homepage.cs.uiowa.edu/~jones/pdp8/faqs/

[3]

Rockwell International, "R6500 Microcomputer

System, Hardware Manual", Rockwell International

Corporation, 1978.

[4]

Intel,

"8080/8085

Assembly

Language

Programming", Manual order Number 980094, Intel

Corporation, 1977.

[5]

Edwin Reilly, "Milestones in Computer Science and

Information Technology", Greenwood Press, 2003.

Int'l Conf. Frontiers in Education: CS and CE | FECS'17 |

219

ISBN: 1-60132-457-X, CSREA Press ©

	[bookmark: 6]Page 6

[6]

https://en.wikipedia.org/wiki/Honeywell,_Inc._v._Sp

erry_Rand_Corp.

[7]

http://www.intel.com/content/www/us/en/history/mu

seum-story-of-intel-4004.html

[8]

Roy Allan, "a History of the Personal Computer",

Allan Publishing, 2001

[9]

Steve Wozniak, "Systems Description/The Apple-II",

Byte, May 1977.

[10] http://www.computerhistory.org/fellowawards/hall/j

ohn-hennessy/

[11] http://homepage.cs.uiowa.edu/~jones/pdp8/faqs/

[12] Paul E. Ceruzzi, "A History of Modern Computing",

MIT Press, 2003.

[13] R. Camp, T. Smay, C. Triska, "Microprocessor

System Engineering", Matrix Publishing Inc., 1979.

[14] Intel, "8085/8080 Assembly Language Reference

Card", Intel Corporation, 1979.

[15] David Patterson, John Hennessy, "Computer

Organization and Design, The hardware/Software

Interface", 5th edition, Morgan Kaufman, 2014.

[16] Hassan Farhat," "Introduction to Digital Design &

Computer Organization", University Readers,

www.universityreaders.com.

[17] http://www.intel.com/content/dam/www/public/us/en

/documents/manuals/64-ia-32-architectures-

software-developer-instruction-set-reference-

manual-325383.pdf.

[18] http://www.arm.com/about/newsroom/arm-discloses-

technical-details-of-the-next-version-of-the-arm-

architecture.php].

[19] David Patterson, John Hennessy, "Computer

Organization and Design, The hardware/Software

Interface", ARM edition, Morgan Kaufman, 2017.

[20] M. Morris Mano, "Computer System Architecture",

2nd edition, Prentice Hall, 1982.

[21] M. Morris Mano, Charles Kime, "Logic and

Computer Design Fundamentals", 4th edition,

Pearson, Prentice Hall, 2008.

[22] Andrew S. Tanenbaum, Todd Austin, "Structured

Computer Organization", 6th edition, Pearson 2013.

[23] William Stallings, "Computer organization and

architecture Designing for Performance", 10th edition

Pearson, 2016.

[24] Randal E. Bryant, David R. O'Hallaron, "Computer

Systems: A programmer's Perspective", 3rd edition,

Pearson, 2016.

220

Int'l Conf. Frontiers in Education: CS and CE | FECS'17 |

ISBN: 1-60132-457-X, CSREA Press ©

