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Abstract
Automatic recognition of disordered speech remains a highly
challenging task to date. Sources of variability commonly found
in normal speech including accent, age or gender, when fur-
ther compounded with the underlying causes of speech impair-
ment and varying severity levels, create large diversity among
speakers. To this end, speaker adaptation techniques play a vi-
tal role in current speech recognition systems. Motivated by the
spectro-temporal level differences between disordered and nor-
mal speech that systematically manifest in articulatory impre-
cision, decreased volume and clarity, slower speaking rates and
increased dysfluencies, novel spectro-temporal subspace basis
embedding deep features derived by SVD decomposition of
speech spectrum are proposed to facilitate both accurate speech
intelligibility assessment and auxiliary feature based speaker
adaptation of state-of-the-art hybrid DNN and end-to-end dis-
ordered speech recognition systems. Experiments conducted
on the UASpeech corpus suggest the proposed spectro-temporal
deep feature adapted systems consistently outperformed base-
line i-Vector adaptation by up to 2.63% absolute (8.6% rel-
ative) reduction in word error rate (WER) with or without
data augmentation. Learning hidden unit contribution (LHUC)
based speaker adaptation was further applied. The final speaker
adapted system using the proposed spectral basis embedding
features gave an overall WER of 25.6% on the UASpeech test
set of 16 dysarthric speakers.

Index Terms: Speech Disorders, Speech Recognition, Speaker
Adaptation, Speech Assessment, Subspace-based Learning

1. Introduction
In spite of the swift progress of automatic speech recognition
(ASR) technologies targeting normal speech in the past few
decades [1–9], accurate recognition of disordered speech re-
mains a demanding task to date [10–16]. The underlying causes
of speech disorders include a wide range of neuro-motor con-
ditions, such as cerebral palsy, Parkinson disease, amyotrophic
lateral sclerosis and stroke or traumatic brain injuries [17]. De-
spite the reduced intelligibility of disordered speech, hands-free
and speech-enabled assistive technologies are among natural al-
ternatives [18] to aid people with speech disorders since they
often suffer from the co-occurring physical disabilities.

A key challenge in current ASR system development is to
systematically model the latent variations among diverse speech
data. A wide range of sources of variability commonly found in
normal speech, including speaker specific idiosyncrasy such as
accent and physiological differences brought by age or gender,
when further compounded with the underlying inducements of
speech impairment and varying severity levels, create large di-

versity among disordered speech. Due to the associate difficul-
ties in controlling the muscles and articulators used in speech
production [19], abnormalities including articulation impreci-
sion, reduced intensity and clarity, slower speaking rates and
increased disfluencies are observed in disordered speech [20].
Furthermore, temporal or spectral perturbation based data aug-
mentation techniques widely used in both state-of-the-art ASR
systems for normal speech [21–24] and recently those designed
for impaired speech [25–27] introduce extra diversity. To this
end, speaker adaptation techniques play a crucial role in current
ASR systems for both normal and disordered speech.

Previous researches of speech adaptation targeting normal
speech recognition can be divided into three broad categories:
1) auxiliary speaker embedding feature based approaches that
encodes speaker-dependent (SD) characteristics in a compact
vector representation, such as speaker codes [28], i-Vectors [29]
and bottleneck features [30]; 2) feature transformation based
methods applied at acoustic front-ends that produce speaker
invariant input features in a canonical representation, such as
feature-space maximum likelihood linear regression (f-MLLR)
[31]; 3) model based adaptation techniques that exploits spe-
cially designed SD transformations in model parameters to han-
dle the speaker level variability [32, 33].

In contrast, so far there has been limited research on speaker
adaptation targeting disordered speech recognition, particularly
those suitable for state-of-the-art ASR systems. Many of the
earlier researches were conducted in the context of traditional
hidden Markov models (HMMs) with Gaussian mixture model
(GMM) state density distributions. In [10, 34, 35], maximum
likelihood linear regression (MLLR) and maximum a posterior
(MAP) were applied to speaker-independent (SI) GMM-HMM
systems. In [12], a combination of MLLR and MAP adaptation
were used in speaker adaptive training (SAT) of SI GMM-HMM
models. In [36], f-MLLR based SAT was studied. In [37],
regularized speaker adaptation on Kullback-Leibler divergence-
based HMMs (KL-HMMs) was conducted. More recent re-
searches investigated model adaptation of state-of-the-art deep
neural network (DNN) based systems. Dysarthric speaker adap-
tation of recurrent neural network transducers (RNN-Ts) [4] and
lattice-free MMI trained time delay neural networks (TDNNs)
[5] via direct model parameter fine-tuning were studied in
[38, 39]. Learning hidden unit contributions based (LHUC)
SAT [33] was investigated in [13, 27]. The majority of prior
researches on disordered speech adaptation focused on feature
transformation and model based adaptation. On the contrary,
very limited research has been conducted on auxiliary speaker
embedding feature based adaptation approaches, particularly
those motivated by the underlying spectra-temporal variation of
impaired speech of diverse causes and severity levels.
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This paper proposes novel deep spectro-temporal subspace
basis embedding features to facilitate both accurate speech
intelligibility assessment and auxiliary feature based speaker
adaptation for disordered speech recognition. Spectral and tem-
poral basis vectors derived by singular value decomposition
(SVD) [40] of speech spectrum were used to structurally rep-
resent the spectro-temporal level key attributes found in disor-
dered speech [41–43], such as the overall decrease in speaking
rate and speech volume as well as changes in spectral enve-
lope. These two form of basis vectors were then used to con-
struct a DNN speech intelligibility classifier. More compact,
lower dimensional speaker specific spectral and temporal DNN
embedding features produced by the bottleneck layer of the re-
sulting intelligibility classifier were further employed as auxil-
iary features to adapt start-of-the-art hybrid DNN [27] and CTC
end-to-end [3] disordered speech recognition systems. Experi-
ments were conducted on the largest available and most widely
used UASpeech [44] dysarthric speech corpus and LHUC based
speaker adaptation was further applied.

The main contributions of the paper are summarized below:

1) To the best of our knowledge, our novel spectro-temporal
deep feature based adaptation approach is the first work to ex-
ploit auxiliary speaker embedding features in disordered speech
adaptation. In contrast, prior works [10, 12, 13, 27, 34–39] fo-
cused on feature transformation and model based adaptation.
Speaker embedding features, e.g. i-Vector [45, 46], were used
in speech assessment rather than ASR adaptation tasks.

2) The spectro-temporal deep features are intuitively re-
lated to the underlying diversity of disordered speech. The
spectral basis embedding features are designed to learn char-
acteristics such as volume reduction, changes of formant po-
sition, imprecise articulation and hoarse voice while the tem-
poral ones to capture patterns such as increased disfluencies
and pauses. Experiments conducted on UASpeech suggest that
our proposed spectro-temporal deep feature adapted systems
consistently outperformed comparable baseline i-Vector adapta-
tion [29, 47] by up to 2.63% absolute (8.6% relative) reduction
in word error rate (WER) with or without data augmentation.
The final speaker adapted system using the proposed spectral
basis embedding features gave an overall WER of 25.6% on the
UASpeech test set of 16 dysarthric speakers, which is the best
ASR performance so far published as far as we know.

The rest of this paper is organized as follows. The deriva-
tion of spectro-temporal basis vectors via speech spectrum sub-
space decomposition is presented in Sec.2. The subspace ba-
sis vector based DNN speech intelligibility classifier and em-
bedding features for speaker adaptation are proposed in Sec.3.
Sec.4 presents experiments and results of both speech intelli-
gibility assessment and speech recognition on UASpeech. The
last section concludes and discuss possible future works.

2. Speech Spectrum Subspace
Decomposition

To systematically reveal the patterns contained in disordered
speech, we conduct SVD on the mel-filterbank log amplitude
spectrum following [40] to derive basis vectors of the spectral
and the temporal subspaces. Let Sr represent a C × T dimen-
sional mel-spectrogram of utterance r with C mel-filterbank
channels and T frames. The SVD of Sr is given by

Sr = UrΣrV
T
r (1)

where the set of column vectors of the C × C dimensional

Ur matrix (the left-singular vectors) and the set of row vec-
tors of the T × T dimensional VT

r matrix (the right-singular
vectors) are respectively the bases of the spectral and the tem-
poral subspaces, and Σr is a C × T diagonal matrix contain-
ing the singular values in descending order [40]. The rank
of Sr is equal to the number of non-zero singular values, i.e.
rank(Sr) ≤ min{C, T}. Motivated by low-rank approxima-
tion [48], we select the top d principal spectral and temporal
basis vectors for all the experiments of this paper.
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Figure 1: Example subspace decomposition of mel-
spectrograms of normal (CTL, upper) and dysarthric (DYS,
lower) utterances of word “choice” to obtain top d spectral
and temporal basis vectors (circled in red in U and VT).

As shown in Fig.1, when compared with that of the normal
speaker, the mel-spectrogram of the dysarthric speaker contains
reduced energy especially in the lower portions of mel-scale fre-
quencies. The overall spectral envelope of the dysarthric spec-
trum is less visible with weakened formants. Spectral basis vec-
tors are designed to capture these patterns as well as imprecise
articulation and hoarse voice. As the dysarthric speaker speaks
more slowly and less fluently, the extracted temporal basis vec-
tors encode the speaking rate in their dimensionality in addition
to other patterns such as increased disfluencies and pauses.

Traditional disordered speech assessment methods often re-
quire the contents spoken by different speakers to be the same
[43, 49], which allows normal and dysarthric speech of iden-
tical contents but varying durations to be compared after an
alignment procedure [50]. In order to facilitate a more practical
assessment scheme applicable to unrestricted speech contents
of unknown durations and derive speaker-level embedding vec-
tors of consistent dimensionality for ASR system adaptation in
this paper, when processing the temporal basis vectors of each
utterance, a frame-level sliding window of 25 dimensions was
applied to the top d selected temporal basis vectors. Their 25 di-
mensional mean and standard deviation vectors were then com-
puted to serve as the“average” temporal basis representations of
fixed dimensionality, as shown in Fig.2.
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Figure 2: Framework of the proposed speech intelligibility
assessment and auxiliary feature based speaker adaptation
founded on spectro-temporal subspace basis vectors derived
from speech spectrum subspace decomposition.
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3. Spectro-Temporal Deep Features
The overall framework of our proposed subspace decom-
position based speech intelligibility assessment and spectro-
temporal deep feature based speaker adaptation for disordered
speech recognition is shown in Fig.2. A DNN speech intel-
ligibility classifier is trained using the spectro-temporal basis
vectors discussed in Sec.2. More compact, lower dimensional
features obtained from the DNN classifier are used as auxiliary
speaker embedding features for disordered speech adaptation.

3.1. DNN Speech Intelligibility Classifier

The DNN speech intelligibility classifier shares similar struc-
ture with the hybrid DNN acoustic model for disordered speech
recognition except that the DNN classifier has four hidden lay-
ers while the hybrid DNN has seven. As illustrated in Fig.3,
each hidden layer of the DNN classifier contains a basic set
of neural operations performed in sequence, i.e. affine trans-
formation (in green), rectified linear unit (ReLU) activation (in
yellow) and batch normalization (in orange). Apart from this,
linear bottleneck projections (in light green) are applied to the
inputs of the intermediate two hidden layers and dropout op-
erations (in grey) are applied to the outputs of the first three
hidden layers. A skip connection connects the output of the
first layer to that of the third layer. The first three layers are of
2000 dimensions while the 25-dimensional fourth layer serves
at the bottleneck layer. Softmax activation (in dark green) is
applied in the output layer. Multi-task learning (MTL) [51] is
implemented and the labels for the two tasks are the speaker’s
intelligibility group and speaker ID respectively.

Figure 3: Architecture of the DNN speech intelligibility classi-
fier (upper) and the hybrid-DNN system for disordered speech
recognition (lower). Selecting connection (a) leads to systems
using auxiliary feature based adaptation only, while selecting
connection (b) leads to systems with additional LHUC SAT.

3.2. Auxiliary Feature Based Speaker Adaptation

As shown in Fig.2 and Fig.3, the output of the 25 dimensional
bottleneck layer, after a speaker-level averaging, is concate-
nated to the acoustic features at the front-end of the hybrid DNN
(shown in Fig.3) or CTC end-to-end system1 for disordered
speech recognition. The hybrid DNN acoustic model shares the
same structure as our previous work [27] except for the front-
end. The MTL labels for speech recognition are tied triphone
state and monophone alignments. In Fig.3, 1) Excluding both
the adaptation features concatenated at input and the speaker
dependent LHUC [33] model parameters leads to the baseline

1The CTC E2E system consists of four 2D convolutional layers and
three BLSTM layers.

speaker independent (SI) systems. 2) Keeping the concatenated
adaptation features but excluding the LHUC parameters leads to
the spectro-temporal deep feature adapted systems. 3) Keeping
both adaptation features LHUC parameters leads to the spectro-
temporal deep feature adapted systems with LHUC SAT.

4. Experiments and Results
4.1. Task Description

The UASpeech [44] corpus is the largest available and most
widely used corpus for research on speech disorders. It is an
isolated word recognition task consisting of speech recordings
from 16 dysarthric and 13 control speakers on 155 common
words and 300 uncommon words. There’re three blocks per
speaker, each containing all 155 common words and one third
of the uncommon words. Speech intelligibility rating given to
each speaker lies in five groups, i.e. “very low”, “low”, “mid”,
“high” and “control”. Block 1 and block 3 of all 29 speakers
are treated as training set while block 2 of the 16 dysarthric
speakers as test set. Silence stripping was performed using a
HTK [52] trained GMM-HMM system as described in our pre-
vious work [13], which results in a 30.6-hour training set (99195
utterances) and a 9-hour test set (26520 utterances).

4.2. Experiment Setup

In our experiments, the DNN speech intelligibility classifier and
the hybrid DNN acoustic model were implemented using an
extension to the Kaldi toolkit [53] while the CTC end-to-end
system was implemented using PyTorch. We select top 2 and
top 5 principal spectral and temporal basis vectors based on
the experimental results [42]. The inputs to the acoustic mod-
els were 80-dimensional filter bank (FBank) + Δ features plus
25-dimensional DNN bottleneck spectro-temporal features or
100-dimensional i-Vectors2. The other settings of the hybrid
DNN were exactly the same as our previous work [27]. Follow-
ing [10], a uniform language model was used in decoding.

4.3. Performance of Speech Intelligibility Assessment

Table 1: Utterance-level accuracy of the DNN speech intelli-
gibility classifier on 49717 utterances from block 2 of all 29
speakers. Here ‘DYS” is short for dysarthric. “SB” and “TB”
denote ”spectral basis vectors” and ”temporal basis vectors”
respectively. ”CTL v.s. DYS” and ”5-way intel.” stand for bi-
nary speech intelligibility (normal / dysarthric) assessment and
finer classification among DYS intelligibility subgroups includ-
ing very low (VL), low (L), mid (M), high (H) and control (CTL).

DNN
Input

DNN
Label

Assess
Accuracy(%)

DYS
CTL Avg

VL L M H Avg

SB
Intel.

5-way
Intel.

92.8 95.6 94.5 95.8 94.9 99.3 96.9
SB+TB 91.1 94.9 94.4 95.5 94.2 99.3 96.6

SB Intel.
+

spkrID

93.4 96.7 96.5 96.3 95.9 99.5 97.6
TB 78.2 69.4 61.8 58.6 66.2 93.6 79.0

SB+TB 93.9 96.8 97.2 95.7 95.9 99.7 97.7
SB

Intel.
DYS
v.s.

CTL

- - - - 98.9 99.3 99.1
SB+TB - - - - 98.8 99.3 99.0

SB Intel.
+

spkrID

- - - - 99.3 99.5 99.4
TB - - - - 87.2 93.6 90.2

SB+TB - - - - 98.9 99.7 99.3

For speech intelligibility assessment, apart from block 2 of
the 16 dysarthric speakers, block 2 of the 13 control speakers

2We follow Kaldi: egs/wsj/s5/steps/nnet/ivector/extract ivectors.sh

4795



are also used for testing the DNN speech intelligibility classi-
fier, making a total of 49717 utterances. As shown in Table 1,
for the 5-way intelligibility assessment, the best overall accu-
racy of 97.7% is achieved when both spectral and temporal ba-
sis vectors are given as input to the DNN classifier (line 5). For
the binary assessment which classifies a speaker as control or
dysarthric, the best overall accuracy of 99.4% is achieved with
spectral basis as input (line 8). Ablation study which removes
speaker ID from the DNN label (line 1-2, 6-7) indicates that
there is only small degradation in assessment accuracy if the
intelligibility group labels only are provided during training.

4.4. Performance of Speaker Adaptation

Table 2: WER performance comparison of the proposed
spectro-temporal deep feature adaptation, i-Vector adaptation
and LHUC adaptation on the UASpeech test set of 16 dysarthric
speakers. “6M” and “26M” refer to # of network parameters.
“DYS” and “CTL” in “Data Aug” column denote perturbing
the disordered and the normal speech respectively for data aug-
mentation. “SBE” and “TBE” denote spectral basis and tem-
poral basis embedding features. “SBE�” and “STBE�” mean
only intelligibility group labels were used in the previous DNN
speech intelligibility classifier for ablation study. “VL / L / M /
H” refer to intelligibility groups.“† and “‡ denote a statistically
significant improvement is obtained over the comparable base-
line i-Vector or SI systems and LHUC adaptation respectively.

Sys.
Model
(# Par.)

Data
Aug.

# Hrs
Adapt.
Feat.

LHUC
SAT

WER%
VL L M H Avg

1

Hybrid
DNN
(6M)

� 30.6

�

�

69.82 32.61 24.53 10.40 31.45
2 i-Vector 67.25 32.70 22.56 10.11 30.46
3 TBE 70.87 35.06 21.11 10.84 31.81

4 SBE 64.43 29.71 19.84 8.57 28.05†

5 SBE+TBE 64.54 29.13 18.90 8.69 27.83†

6 SBE� 66.23 29.71 19.29 9.07 28.49†

7 SBE+TBE� 65.77 30.06 20.76 8.70 28.64†

8 �
�

64.39 29.88 20.27 8.95 28.29

9 SBE 63.40 28.90 18.64 8.13 27.24‡

10 SBE+TBE 63.01 28.10 18.25 8.22 26.90‡

11

Hybrid
DNN
(6M)

DYS 65.9

�

�

68.43 29.60 21.37 10.44 29.79
12 i-Vector 66.06 31.16 20.27 8.86 28.95

13 SBE 62.56 28.33 18.21 9.01 27.13†

14 SBE+TBE 61.40 28.93 18.74 9.00 27.14†

15 �
�

60.99 28.20 18.86 8.41 26.69
16 SBE 60.98 27.29 17.96 8.54 26.32
17 SBE+TBE 60.23 27.87 18.27 8.67 26.41
18

Hybrid
DNN
(6M)

DYS
+

CTL
130.1

�

�

66.45 28.95 20.37 9.62 28.73
19 i-Vector 65.52 30.63 19.27 8.60 28.42

20 SBE 61.55 27.52 17.31 8.22 26.26†

21 SBE+TBE 61.24 27.77 17.45 8.31 26.32†

22 �
�

62.50 27.26 18.41 8.04 26.55

23 SBE 59.83 27.16 16.80 7.91 25.60‡

24 SBE+TBE 60.35 27.11 17.19 7.95 25.79‡

25
CTC

(26M)

DYS
+

CTL
130.1

�
�

78.25 53.18 46.56 34.09 50.79

26 SBE 68.16 47.08 40.68 32.40 45.37†

27 SBE+TBE 68.32 47.81 39.70 32.75 45.52†

Table 2 shows the WER performance comparison between
our proposed spectro-temporal deep feature based speaker
adaptation, i-Vector based adaptation and LHUC based adap-
tation. We follow [27] for data augmentation. Sys.1-10 are
without data augmentation, Sys.11-17 are with partial data aug-
mentation of perturbing dysarthic speech only and Sys. 18-27
are with full data augmentation of perturbing both dysarthric
and control speech. Several trends can be observed3:

1) Our proposed spectro-temporal deep feature adapted sys-
tems consistently outperform the comparable baseline SI sys-

3A matched pairs sentence-segment word error based statistical signifi-
cance test was performed at a significance level α = 0.05.

tems (Sys.4-5 vs Sys.1, Sys.13-14 vs Sys.11 and Sys.20-21 vs
Sys.18) by up to 3.62% (Sys.5 vs Sys.1) absolute (11.5% rela-
tive) WER reduction. 2) Our proposed spectro-temporal deep
feature adapted systems consistently outperform the compara-
ble baseline i-Vector adaptation (Sys.4-5 vs Sys.2, Sys.13-14 vs
Sys.12 and Sys.20-21 vs Sys.19) by up to and 2.63% (Sys.5 vs
Sys.2) absolute (8.6% relative) WER reduction. 3) When fur-
ther compounded with LHUC adaptation, our proposed spectro-
temporal deep feature adapted systems consistently outperform
the comparable baseline LHUC adaptation (Sys.9-10 vs Sys.8,
Sys.16-17 vs Sys.15 and Sys.23-24 vs Sys.22) by up to 1.39%
(Sys.10 vs Sys.8) absolute (4.9 % relative) WER reduction. 4)
Temporal basis embedding features contribute to adaptation of
speakers with low intelligibility (Sys.10,14,17,21) especially
when the amount of training data is small. 5) Experiments
on the CTC E2E system (Sys.25-27) suggests our proposed
spectro-temporal deep feature adapted systems also reduced the
WER by 5.42% (Sys.26 vs Sys.25) absolute (10.67% relative)
over the comparable baseline unadapted system.

A comparison between previously published ASR systems
on UASpeech and our system is shown in Table 3.

Table 3: A comparison between published systems on UASpeech
and our system. Here “DA” refers to data augmentation.

Systems WER%

Sheffield-2013 Cross domain augmentation [11] 37.50
Sheffield-2015 Speaker adaptive training [12] 34.80
CUHK-2018 DNN System Combination [13] 30.60

Sheffield-2020 Fine-tuning CNN-TDNN speaker adaptation [39] 30.76
CUHK-2020 DNN + DA + LHUC SAT [27] 26.37

CUHK-2021 LAS + CTC + Meta-learning + SAT [16] 35.00
CUHK-2021 QuartzNet + CTC + Meta-learning + SAT [16] 30.50

DA + SBE Adapt + LHUC SAT (Table 2, Sys.23) 25.60

5. Conclusions
This paper presents novel spectro-temporal deep features for
both accurate speech intelligibility assessment and auxiliary
feature based speaker adaptation. Experiments conduct on
UASpeech suggest that our proposed spectro-temporal deep
feature adaptation consistently outperform i-Vector adaptation.
Future research will focus on improving spectral and temporal
basis features extraction for variable length speech data and ap-
plication to more advanced neural network systems.
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