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SHE1.LS0RT AND SORTING NETWORKS 

by Vauchan R. Pratt 

Abstract 

Shellsort is a particular method of sorting data on digital computers, 

Associated with each variant of Shellsort is a sequence of integers that 

characterizes that variant. In this paper we answer seme open questions 

about the speed of Shellsort with certain characteristic sequences, and 

suggest a novel application of Shellsort, namely to sorting networkr. 

Shellsort with any characteristic sequence that approximates a 

geometric progression and that has short coprime subsequences throughout 

5/2 
takes 0(n  ) units of time. For any sequence that approximates a 

geometric progression with an integer common ratio, this bound is the 

best possible.  (The notion of "sorting template" is used to prove this.) 

However, if the sequence consists of the descending sequence of positive 

integers less than n and having only 2 and 5 as prime factors, 

then Shellsort takes only 0(n log2 n) units of time. Sorting networks 

based on Shellsort with this sequence operate approximately l.S times 

as fast as with previous methods. 

This research was supported in part by the National Science Foundation 
under grant number GJ 992, and the Office of Naval Research under grant 
number N-0001U.67-A-O112-OO57 NR 0hk~k02.    Reproduction in whole or in 
part is permitted for any purpose of the United States Government. 
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Chapter 1 

Introduction to Shellsort 

The problem is to sort the elements of the array 

A      A| lljAlI'J, ...,A(n |    into acccndinc; order,  c.ivon some total ordering 

on the possible values of the elements of   A .   The high cost of 

random-access memory together with the speed of in-core sorting 

motivates the consideration of algorithms that sort arrays "in their 

own length", with little or no auxiliary storage requirements beyond 

what is needed to hold the array.    A number of such algorithms are 

known, and all but Shellsort [Shell,  1959] have proved more or less 

amenable    to an analysis of bounds on their running time, as a function 

of   n .   Chapter 2 shows that    0(n '   )    units of time is the best 

possible upper bound on the more conventional variations of Shellsort. 

To discuss Shellsort requires some terminology.    A p-chain of   A 

is a sequence of elements of   A    occurring at intervals of   p .    For 

instance,  if   n = 8 , then   A    has three 5-chains,    {A[l],Ai 4] ,A[7]}, 

then    {A[2],A[5],A[8]} ,   and then    {A[3],A[6]}.    In general,    A    has 

min(n,p)    p-chains, each of length    |~-~[    or      1_~J   • 

When    A's    p-chains are in ascending order,    A    is defined  to be 

p-urdcred.    To p-sort   A    is to sort    A's    p-chains. 

Shellsort works by repeatedly p-sorting    A    for a   characteristic 

sequence (abbreviated to "sequence"   hereaftei) of   p's  , with the last    p 

beine   1 .    This last value ensures  that    A    is sorted by this process,   since 

a 1-ordered array must be ordered.    Furthermore,  Shellsort prescribes a 

particular technique for sorting each p-chain,  namely insertion sorting. 

Insertion sortinr: is a technique whereby one starts with an array 

of no elements,  and some source of    n    entries,  and progressively builds 



up a sorted array starting with A[1],A[2],... by (i) determining for each 

entry where in the array so far constructed it should go in order to 

keep the array sorted, (ii) moving the appropriate array elements up one 

place to make room for it, and (Hi) Inserting it. Since the space consumed 

by the partially constructed array and that consumed by the remaining 

uninserted entries is just n items, this method can be used to sort 

in place, requiring almost no auxiliary storage, by combining all the 

operations for each entry into the one loop, as follows: 

procedure insertionsort(A); 

for i := 2 until length(A) do 

for j  := i step -1 until 2 while A[ J-l? > A[ J ] do 

swap (A[J-l],A[j]); 

The while clause signifies that the iteration is to be terminated if 

the expression following the "while" becomes false.    The procedure "swap" 

exchanges the contents of the locations named by its arguments.   The 

expression " length(A) " is supposed to be what it says.   The variables 

i   and   j    are assumed to be declared implicitly, as in ALGOL W, by being 

named as the controlled variable of a for loop. 

The outer loop of the procedure cycles through the source of entries. 

A[l]    is not processed since the destination of its contents must be    A[l]   . 

The inner loop takes each entry and shuffles it backwards through the 

array to its proper place.    After each execution of the body of the 

outer ^oop,  but before    i    is incremented, the array   A[l:i]    is ordered. 

Let us define an inversion in an array   A   to be a pair of elements, 

A[i]    and   A[J] ,  suchthat   i< j    but   A[i] >A[J]  .    Thus   A   is ordered 



if and only if there are no inversions in   A .   Define an adjacent 

inversion to be one whose elements are adjacent.      Then the insertion 

sort above can be seen to eliminate adjacent Inversions.   No other 

inversions appear or disappear because every other pair of elements 

maintain their relative positions after the exchange.   Thus each exchange 

reduces the number of inversions in   A   by one.    Since   A   can have up 

to    (?)    Inversions (when   A   is in descending order,  i.e.,    A[i-1] >A[i] 

everywhere in   A ), this technique may take up to    («)    exchanges to sort   A , 

or   0(n )    exchanges. 

The idea underlying Shellsort is that moving elements of   A   long 

distances at each swap in the early stages,  then shorter distances later, 

may reduce this    0(n )    bound. 

An algorithm for Shellsort using the procedure "insertionsort"  is 

not easy in ALGOL.    We might write,   in near-ALGOL: 

procedure Shellsort (A,P,m) 

for i  := 1 until m do 

for j   := 1 until P[i] do 

insertionsort (A[*xP[i]+j ]); 

The expression    A^xp^j]    denotes simply the j-th p-chain of    A  . 

The more usual way to write Shellsort carries out the insertion 

sort on a time-shared basis,   i.hus: 

procedure Shellsort (A,P,m); 

for i   := 1 until m do 

for j   := P[i]+1 until length(A)  oo 

for k : = j step -P[ i ] until P[ i ]+l while Al k-P[ i ] ] > A[ k ] d< 

swap (A[k-P[i]],A[k]); 



Because Shellsort works by correcting inversions within p-chalns, 

It is convenient to call such inversions p-inversions. 

The time spent by Shellsort is made up of what it would do with an 

ordered array, plus an amount of time at most proportional to the number 

of exchanges it must do to sort the array.    Since the fomer time is   n 

times the number of passes, and since the number of passes considered in 

the next chapter Is always   O(log n) , we shall measure the time required 

by Shellsort in units of the number of exchanges performed.    To convert 

this figure to seconds, multiply it by the number of seconds required for 

an exchange, a decrement of   k , a test for k> P[i]+1   and a subsequent 

comparison, and add the time required to Shellsort an ordered array of 

the same size.    Since the dominant term in the expressions derived in 
5/2 Chapter 2 is   0(n '   )  , the time for exchanges asymptotically dominates 

the   0(n log n)    time for Shellsorting an ordered array, which is why 

the number of exchanges is an adequate measure in that chapter. 

Let us now summarize the remainder of the thesis.    In Chapter 2, we 

5/2 
show that Shellsort takes time  proportional to    n-"       In the worst 

case. Prior to this, only Papernov and Stasevich's [1965] upper 

bound of 0(n '   )  for Shellsort with Hibbard's sequence was known.     In 

Chapter 5, we describe a considerably faster Shellsort that operates 

with only 0(n log n) units of time, and in Chapter k we show that under 

quite reasonable conditions this version of Shellsort can be used to build 
2 

a sorting network that requires 0,5    log n    units of delay,  about 1.5 times 

as fast as was previously possible.    [Batcher,  1968]. 

Further prologue relevant to Chapter 2 may be found in section 2.1 of 

that chapter.    Chapter 5 presents a more detailed summary and unification 

of the results of Chapters ? to ^ and also suggests problems for further 

rucoarch. 
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Chapter 2 

Least Upper Bounds for Most Shellsorts 

2.1   Discussion 

A natural characteristic sequence to follow when Shellsorting is a 

geometric progression.    If one thinks of Shellsorting as progressively 

bringing each element closer to its final position,  in jumps of decreasing 

size, it is "natural" to arrange that these Jumps decrease geometric ally i 

this is what happens in a binary search, for example.    Possibly some such 

consideration has motivated the choice of a (usually slightly perturbed) 

geometric progression for almost all Shellsorts. 

If a sequence of even numbers, followed by   1 ,  is used, Shellsort 

may take up to    n(n-2)/e    exchanges when l-sorting.    This would happen 

if one 2-chain were    1,2, ...,n/2   and the other were   |+1, |+2,   ..., n   . 

Since this array is 2-sorted,   it is 2k-sorted for all   k > 0 .    Thus at 

the last pass, the original array is being 1-sorted, that is, it is simply 

being insertion-sorted, which is readily seen to take 

l+2+3+...+ (--i)  = n(n-2)/8   exchanges,  for even   n ,  an   0(n2) 

figure. 

Shell [1959] originally suggested the sequence 

L2 J  '   Li; J  * • ••*   I  — I   • •••, 1 .    If   n    is a power of    2 , this is 

readily seen to be a sequence dealt with in the previous paragraph.    This 

problem was recognized by Lazarus and Frank [i960], who proposed that 

the even elements in Shell's sequence be incremented by one.    Thus every 

element can be expressed as    2k+l , and its successor must be either    k 

or    k+1 ,  depending on whether    k    is odd or even respectively.    Now    k|2k 

5 



and   kfl|2kf2 , so    (2kfl,k) = (2kfl,kfl) = l ; that is, every consecutive 

pair of elements in the sequence is coprime.   We shall see shortly that 
3/2 2 

0(n     ) , not    0(n )  ,  is the (least) upper bound for Lazarus and Prank's 

sequence, mainly because of this coprlmeness property. 

Hibbard [1963] suggested the descending sequence of all numbers of 
it 

the form   2 -1 < n ,  integer   k > 1 .   When   n    is one less than a power 

of   2 ,  this sequence coincides with both Shell's sequence and Lazarus 

and Frank's sequence.    Many other sequences have been suggested [cf. 

Knuth 1972 J,  almost all of them having in common that they form "fuzzy" 

geometric progressions, with every element relatively prime to at least one of 

its nearby predecessors.    (It is interesting to note that both ol these 

guidelines are ignored in the sequence of Chapter 3 for the   0(n log2 n) 

Shellsort.) 

The next part of this chapter will prove a theorem enabling us to 

show that the above Shellsorts take at most    0{r?'2)    units of time, 

provided their sequences have the coprlmeness property.   The last part 

will prove a theorem applicable to Shellsorts whose sequences are fuzzy 

geometric progressions with integer common ratios,  enabling us to prove 
3/2 

that the   0(n '   )    figure cannot be improved in such a case. 
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2.2 An Upper Bound For Moat Shellsorts 

The first result is essentially a generalization of Papernov and 

Stasevich's theorem [1965] that Shellsort with Hibbard's sequence takes 

3/2 
at most 0(n  ) units of time. The basic properties we shall impose 

on the class of sequences covered by the result are that they approximate 

geometric sequences and that every d consecutive elements in the latter 

part of the sequence forn a coprime set of integers, for some <i . 

We shall need in advance some auxiliary lemmas. The first is the 

"non-messing-up" theorem for p-sorting and q-sorting. 

Lemma 2.1. Given positive integers p and q , and a p-ordered array A 

with n elements, q-sorting A leaves it p-ordered. 

Proof.  (This is a slight modification of a proof in [Boerner, 1955, plj?].) 

Let j be such that A[j-p] > A[j] after q-sorting. We shall give 

one method of q-sorting which contradicts this, whence it follows that all 

methods contradict this, since the outcome of q-sorting is unique. 

Let A[j-p], A[j] belong to q-chains B and C respectively. Now 

B and C must be distinct, otherwise A[j-p]<A[j] because each 

q-chaln is ordered. 

Call the least element of A , -• , and the greatest, • . 

Sort all the q-chains except B and C . Now put B and C into 

correspondence, with A[,j-p] corresponding to A[j], A[j-q-p] to 

AfJ-q], A[j+q-p] to A[j+q] , etc. If necessary, extend B and C to 



ensure that every element has a mate, using    - •   for   B   and   •   fop   C 

Call the extended q-chains   B'    and   C  .   We now have the situation of 

Figure 2.1, as the reader may chtck.    (Here    (a,c)    and   (b,d)    are two 

instances of corresponding elements.    Lower valued subscripts of   A 

correspond to elements closer to the top of the figure.) 

o»     < 

B< 

a     <     c 

I  '   I 
b     <     d 

>C 

<     • 

B' C1 

Figure 2.1 

Corresponding q-chains    B'    and   C   . 

1. 

2. 

Now sort    B'    and    C    thus: 

Use a sorting alßorithm which sorts every array of a given size   n 

by using a fixed sequence of pairs    (i,d)    depending only on   n and 

drawn from    [l,n] x [l,n]  .    For each such pair,   it puts   A[i]    and 

A[j]    in order.    The insertion sort of Chapter 1, with the while 

condition deleted,   is such an algorithm. 

For each pair    (A[i],A(J])    in   B«    ordered by this algorithm, 

simultaneously order the corresponding elements    (A[i+p],A[J+p]) 

in   C   .    Thus   B'    and   C    are sorted in parallel. 

8 



Let    a,b   in   B'    and   c,d   in   C    be four elements participating 

in one step of this algorithm, with   a,b,c,d    in the order shown in 

Figure 2.1.    Suppose before the step, we had   a < c    and   b < d .   We 

claim that after the step, the two resulting corresponding pairs will 

still be ordered.    This is trivially true if neither or both of   (a,b) 

and    (c,d)    are swapped.    If only    (a,b)    is swapped, we must have had 

b < a < c < d   before, and if only    (c,d)    is swapped, then we had 

a<b<d<c ; in both cases, both elements of   B   are less than or 

equal to both elements of   C , proving the claim. 

Since corresponding pairs are ordered at the start, they must 

therefore be ordered at the end, by induction on the steps of the 

algorithm.    Now the extensions clearly cannot have moved,  so they may 

be removed.    The result is just as if we had q-sorted    B   and   C  .    But 

now   A[j-p] <A[jl   .    This contradiction completes the proof. 

An immediate corollary is that if ar array is p -sorted, then 

P2-sorted,  and so on up :-o   pk ,  it is then p^ordered for    i = 1,2, ...,k 

If the diophantine equation 

plxl+ P2X2+ • • • 4 Pk
x
k - <*■    >    a11   Pi > 0    , (1) 

has non-negative solutions in the   x    , then an array p.-ordered for 

these   pi
,s    is also q-ordered, by the transitivity of the ordering 

relation,  since the solution indicates the existence of a sequence 

AlJ]  < AU+pJ  < A[j+2p1]  < ...  < Atj+x^]  < A[j+x1p1+p2]  < ... 

< A[J+p1x1+...+pkxk]  = A[j+q] ,  for all    J   . 



Lemma 2.2.   When   gcd^Pg, ...,pk) = 1 , and   Q > Pm(P1
+P2+"*+Pk'Pj 

for some   p   ,  equation (1) always has non-negative Integer dolutlons 
Mtl 

in the   x.   . 

Proof.    It is well known that when   gcd(p1,p2,.. .,p,)   = 1 , the 

diophantine equation (1)  always has a solution in   x., ...,x   .    The 

set of possible solutions must be closed under the operation of simultan- 

eously adding   p.    to   x     and subtracting   p.    from   x. , since this adds 

(PJP-I "PiP^) = 0   to the left-hand side of the equation.    Thus there must 

be a solution in which for all   i / m ,    Q < \ <V.X >  since each   x, 

other than   x     can be adjusted by increments of   p    .  at a cost to   x    . m m m 

But now we have 

Pm( (P^P^ • • .+Pk) -Pm)  > (PiV^V • • •+PkXk) -pmXm ' (M m ^ xi < pm) 

= q_PmXm    ' (equation (1)) 

^Pm(pl+P2+*--+VPm^Vm    ' (Hypothesis) 

from which it follows that    x    > 0    in this particular solution. 

Q.E.D. 

We may infer from Lemma 2.2 that if an array   A    is p.-ordered 

for   p,»...^ >  and    gcdCp.^p«,.. .,p.)  = 1 ,    A    is p-ordered for all 

P >P (Pi+Pp+,,,+Pi "P )  * where   p     is  any one of the    p.'s  .    Thus 

an upper bound on the number of elements of a p-chain    B   which may 

precede and be greater than a giver, element of    B    is 

p (p1
+Pp+■ ..+p,-p )/p    since the elements of a p-chain are spaced   p   apart, 

10 
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Hence to p-sort   A   requires at most   npm(p1+p2+.. .+pk.p )/p   exchanges. 

Call this the first upper bound. 

Within a p-chain (of at most    f^~]    elements),  the average element 

can participate in at most   ^C Fp"!"1)    exchanges during p-sorting. 

So the total number of exchanges required is at most   i n( f-~)-l)  . 

Hence   n /2p    is also a (larger) upper bound, the second upper bound. 

Before proceeding with the formalism of the main result,  let us 

provide some insight into what is going on.    The two upper bounds we 

have Just derived are about to be used to bound the time required by 

Shellsort using a characteristic sequence having properties shared by 

most of the suggested sequences,  excluding those for which Shellsort is 

clearly an   0(n )    algorithm.    The properties we require of a sequence    S 

are (for the moment):    that there is a sequence   S*     such that to each 

element    P   of    S    there corresponds an element p1    of   S*  , with fixed 

bounds on    P-P'   ("additive fuzziness", namely    -a < p-p'^ b ,  for fixed 

a,b  );  and that each element of    S1    is between    r    and    s    times its 

successor,  for fixed r,  s > J     .     That is,    S»    is a sloppy decreasii^ 

roomttric progression    ("multiplicative fuzziness"). 

These conditions are general enough to cover most sequences that 

could be called "fuzzy"  geometric progressions. 

We also impose a coprimeness condition on neighboring elements of 

the sequence, to satisfy the conditions required for the first upper bounds, 

For como  integer d  independent  of n,  every  d consecutive elements must be 

relatively  prime. 

ViC shall  vs': the   first upper bound to bound the  time  spent  1 y 

Stiel'sort when  n-sorting Tor  sraal]     p  .    The second  upper bound ir-  for 

large    p   ,    WhP"  tii"   latter  remark make's  sense     (n'/i'p    is  small  for 

large    p   ),  the   former may seem not to,  at  first,  siact-    p    appears  in 

11 



the denominator of the first upper bound also.    However, the numerator 

ic an    0(p")    expression,  and the    p^s   will be just those elements in 

the sequence that immediately precede   p .    Our conditions ensure that 

these decrease in approximate proportion to   p ,  so tne first upper bound 

is really an   0(p)    expression rather than an   0(l/p)    one. 

Because we do not need the first upper bound for large elements 

of   S , we shall actually restrict the condition   that    S   be a fuzzy 

ccprime geometric progression to the small elements of   t   .    We impose 

a much weaker condition on the large elements of   S , that the sum of 

their reciprocals be an    0(l//n)    quantity.    (This conditicn is readily 

seen to hold for the first half of a fuzzy geometric progression with 

all elements less than   n ,  since the smallest element In that half is 

itself an    0(/n)    quantity.) 

We now proceed with the formalism. 

Theorem 2.h.    Lot    r,s,t,u,v   be reals, wjth    r,s >1    and    t,u,v > 0 . 

Let    a,b,d    be integers,  with    a,b > 0 ,    d > 2  . 

To each array size    n ,  suppose there corresponds a sequence 

P^PM* •••>Prn    and an   index        c     (denoting the cut-off point p  ) 

euch Lliat 

(i) prr      ^    ^0 ensure tha't F-iellsort   really sorts) 

(ü) /—        ;r   -   "7"        (UKJ
  

larfTe P- ^or the second upper hound) 
l<J<c    pj /n ,J 

(iii) c > d      (co that the first upper bound is usable for 

olementE    p ,p ,,,...,p .,  ,   ) ^c"c+l rc+d-.l ' 
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(Iv) p^ < t/n       (to keep small those elements covered by 

the first upper bound,  in conjunction with 

condition (vii)) 

(v) j>c    Implies   gcd(p     , ...,p     )  = 1       (for the first 

upper bound) 

(vi)    There is a sequence S» = p',p« ,. ..,p«  in which 
c    Cr JL in 

-a < P^P! <* ,    for   i --- c, ...,m-l     and   p' > v . i    1 in — 

(vii) In   S'  ,    p» > rp^+1 ,    for   i =c, ...,ra-l . 

(viii)        In   S»  ,    p«  < sp'^1 ,    for    i = c, ...,m-l . 

Then with these conditions,  Shellsort takes    0(n '   )    units of time. 

Proof»    Applying the second upper bound is easy.        The total time 

required for p.-sorting, for   j < c ,  is at most 

L,       öz— (using the second upper bound) 
l<j<c    ^j 

1      3/2 
<   2un (by condition (ii)) 

The remainder of the sequence requires a little more work.    However, 

the underlying idea remains simple,  that the first upper bound decreases 

approximately geometrically as Shellsort progresses through the sequence, 

and hence the total time required is proportional to that required for 

p -sorting alone. 
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First note that 

Pi ^pi+b (condition (vi)) 

-Spi+k+b    >      k>0 (condition (viii)) 

k k 
Pi - s pi+k+S a+b (condition (vi)) (2) 

and 

pi ^Pi"a (condition (vi)) 

^   k t 

-rpi+k'a   >      k>0 (condition (vii)) 

Pm-k-rv"a (condition (vi))        (3) 

Also 

1, 

pi+k - (pi+a)/r  + b (condition (vi))        (1+) 

Then the total time required for Pj-sorting,  for   J > c ,  is at most 

r 
c < J <m ^ -l(P^ -2 + * *' + PJ -d5 / PJ  (the first upper bound' 

and conditions (iii), (v)) 

Z.  r1(Sp-tCa+h)l(:-
2p.+c:,a+b)+(^p.+0^b)+...+ (G

dp + 

(by inequality  (^)) 

.)    ^l/Pj 

(z2+      + s )n      L     ( s + ~^ ) (P.+a+b) (since    s > l) 

2 d V" 
< (s +...+ S )n Z- (sp +sa+bf(2sa+b)(a+b))     (since    p. > 1 ; 

J also note use of 

condition (iv)) 

<(5
2

+...+S
d)n Z   r A(t/r.a) ^     \ 

l<r
k< i^Lla  V.       rk 7 

(K *     (s(ya+l)+b)(a+b))   ;  s >  1   ; 

and ucinc inequalities (^),   (1))) 

114 



*mmmmmmmmmmmmmmmmmmmmitmmim 

(s +...+ S )n 2-1 (srkv+K) 
a+1 ^   k ^ t/n+a < r   < v   - v 

< (s +...+ 0 )nl —^T£ •- + K log   —     I (Bumming the 
V. / geometric 

-^ .. .+sa) (■£ s(t n5/2 + an) + K   1c Ji^^n 

progression) 

Hence the total time reqinred for Shellsort is less than 

^- +   (s +...+E ) jzijn 

,   ,2       ^ d/rsa .       (s(2a+l)+b)(a+b)   f,      ft/n+aSn 

This completes the proof of the    0(n '   )    upper bound result for 

Shellsort with this class of characteristics sequences. 

The reader may readily calculate the values of   r ,   s    (both    2    in 

the sequences of Chapter 1),    u    (a function of   t ,  clearly,  as well 

as of    r ,  s ,  a   and   b ),    a ,  b    and    v    for various sequences, and 

may amuse himself dcterminirifj: the value of   t    that minimizes the bound 

in each case. 

For the case of Hibbard's sequence,   for example, where 

- 2
Ll0<:2 nJ "1+1 -1 > take    r-s-t=v = d-2,    u = a = 1 , 

pi 

b -^ 0 ,    c   ^   Lloßo nJ   " ~ loBp n   •    Condition (i)  is satisfied since 

Hibbard's  sequence contains    1  .    Condition (ii)    is satisfied since 

Pc   -   .'Ai-1 > rn    (for    n > 1)  ,   and    p.   = 2p.+   + 1  .    Condition  (iii) 

holds  for    n  > /n  .    Condition  (iv)   holds  since    p    = 2/n-1    (soe above) 

Condition  (v)  holds since    (p.,p      )   ~ 1    trivially.    Conditions  (vi)  to 
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(vlii) hold if   p»    is taken to be   p^l .    Thus our theorem is true 

for all   n > 32 .   Making the substitutions, the dominant term of our 

upper bound is    52.5 n^'2 
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2.3 Optlmallty of the 0(T?'2)    Bound 

In this section we shall construct arrays that take time proportional 

5/2 
to n '  to sort using Shellsort with sequences that approximate a 

geometric progression with integer common ratio. Most of the proposed 

sequences to date have this property. 

The basic tool for the construction is a sorting template. 

(Visualize this as a strip of cardboard with some holes in a straight 

line; the elements of the template are the hole locations, numbered 

right to left.) 

Definition 2.1.     A sorting template is a set of natural numbers 

containing    0    and closed under addition. 

Definition 2.2.     The sorting template generated by a set is the least 

sorting template containing that set. 

Vor example,  the sortinp, template generated by    {1}    is the set    N 

of natural numbers,  while that generated by    f2,5}    is    N-fl,5]   . 

Definition 2.3.      An array element    A[i]    is visible through a sorting 

template   T    at   ^   when   j-i    is in   T  . 

(Visualize    A    as being written on a sheet of paper   underneath   T , 

with subscripts numbered from left to right.    The zero hole of   T    is 

over    Alj]   .) 

17 



Definition 2.h.      An array A is constructed under a sort in« template T 

at a sequence q[l],...,q[m] thus: 

I := 0; 

for i := 1 until m do 

for j   := 1 until n do 

if A[j] is undefined and A[j] is visible through T at q[i] 

then begin  I := /+!; A[j]   :a i end; 

Note that each element of   A   is initially undefined, and becomes 

defined by assigning    I    to it, after which it is defined. 

Intuitively, ve put the template down with the zero hole of the 

template on   A[q[l]]   ; then we move the template to   A[q[2]]    and so on. 

At each position, we fill in all the visible but as yet undefined 

elements of   A ,  using ever-increasing numbers.    Some of the language 

we employ later assumes that this intuitive view has been grasped. 

Lemma 2.5.      If   pcT ,  then an array   A    constructed under the sorting 

template    T    is p-ordered.    (Hence the name sorting template.) 

Proof»      Say   A[j]    becomes defined when   T    is at    q .    Then   q-j e T 

Goq-(j-p)fT    also,  since   prT    and   T    is closed under addition. 

Thus    A[j-pj    nust be assigned its value before   A[J] , whence 

Alj-pJ <A[j]  . 

Q.E.D. 

Let us use the notation    [a,b]    to denote (the set of integers in) 

the interval from    a   to    b    inclusive.    By the length of    [a,b]    we 

shall mean    b-a+1   .    By    A < B ,   for intervals    A    and    n , we 

shall mean every element of   A    is less than every clement of    B  . 
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Let us now pive an informal preview of the formalities to follow. 

Our goal is to be able to construct arrays that take time n^'2 to 

Shcllsort. 

As the preceding section showed, p-sorting for p near the be- 

ßinninc and end of sequences takes only linear time; only near the 

middle can an additional factor of /n creep in to spoil things. Thus 

if we are going to find arrays that take time n5'2, we should arrange 

things so that Shellsort finds the going toughest halfway through the 

sequence. To do this, we shall construct arrays that look as if Shell- 

sort is already halfway through sorting them, and yet that have many 

inversions. Thus when sorting these arrays, Shellsort will zip through 

the first half of the sequence finding nothing to do, and then suddenly 

hit a brick wall, and take time n-5'  in a single p-sorting pass. We 

do not much care what happens for the rest of the sequence. 

The preceding definitions and lemmas established the basic tools 

for the construction. The following lemn.as establish some quantitaf • 

results of use in the analysis of the actual construction, which is 

described in the first paragraph of the Proof of Theorem 2.11. 
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Lemma 2.6.      The sorting template   T    generated by    [a,b]    is      IJ   [ka,kb] 
k>0 

Proof.     The union certainly contains    (0}    and   (a,b]  .   To see that the 

union is closed under addition, take   ra,n   r^ch that   k-a < ra < k..b 

and   k2a < n < kgb .    Then   (l^+kja  < m+n  <  {k.+k^h .    Thus the 

union is a sorting template containing    [a,b]  . 

To see that it is the least such sorting template, suppose   m    is 

the least Integer which is in the above union, but is not in every other 

sorting template containing    [a,b]  .    Then    (fcfl)a  < ra  <  (kfl)b    for 

some    k > 1 .    But every number in this range is expressible as the sum of 

two numbers from    (a,b]    and    [ka,kb]    respectively.    This contradicts 

the closure property of the template lacking    m . 

Lemma g.?.      If   T    is generated by    [a,b]    and   a < b , then   icT 

for all    i > a2/(b-a)  . 

Proof.      The complement of   T ,    f ,   is the set    [l,a-l] U [bfl,2a-l] U ••• 

IJ (klH-1, (k+l)a-l] U  ... ,  by Lemma 2.6.    When    ktrt-1 > (kfl)a ,  these 

intervals vanish.    This happens for    k > (a-l)/(b-a)   .    Thus the largest 

possible element oi'    T is    ((a-l)/(b-a))a-l , which is certainly less 

than    a /(b-a)   . 

Lemma 2.8.      If   T    is generated by    [a,b] ,     a < b ,  then for any non- 

negative integer    p < a there is an interval    I    of length p    in    f 

such that    T    has exactly    rfff~l    intervals of the form [ka,kbj  , 

K > 0 , which are less than    I  . 
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Proof.   Choose    I   of length   p   and lying in   [ (ffj-l^+l, f^a     1]. 

This latter interval lies in   T   since it is of the form   [kb+l,(k+l)a-ll 

(see proof of Lemma 2.7), and is of length    (fglEl (a-b)+b-l), which is 

certainly not less than p.    Now take the    r|=fl     intervals of T to be 

[0,0]   ,  [a,b]   ,  [2a,2b]  ,   ...  ,  [ (0-l)a'( ^ "^   ' ^ of which 

are clearly less them I. 

Lemma 2.9.      With   T,I    as in Lemma 2.8, the number of elements of   T 

which are less than any element of   I   are at least   ^ (a-P)(tEf " *) 

Proof.     We shall sum just the complete intervals    [ka,kb]    of   T 

•a-p- 
b-a for k to rssn • 

z k(b.a) = i (b-a) reiTIES-n 
o<k<rS3-| 

b-a  '' b-a 

b^a 

> i'^'H-1) • 

Lemma 2.10.      Let   ceT    and let    A    be constructed under   T   at 

c,2c,5c,...,mc  ,  for some    m .    Then if sone    A[j]     is visible through 

T    at     ic,     it is visible through    T    at    jc    for all    j > i.    That  is, 

once visible,   always visible.    Conversely,  every  invisible element must 

be undefined. 
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Proof'  If A[j] is visible through T at ic , the ic-j e T . 

Rut c c T , whence Jc-j e T , by closure of T under addition. Thus 

A[.i] is visible through T at Jc. 

We are now ready for the main theorem. 

Theorem 2.11.  Let r,s be reals greater than 1 . Let a,b be 

non-negative integers. Then there exist non-negative reals 

t,u,c, with rt < u , such that 

if  for every array size n Shellsort uses a sequence 

Sn = pl,*;,,pm With the ProPerties that 

(1)  there is some element p in S  such that t/n < p < u/h 

and for all p. preceding p , there is an integer m 

for which m(p-a) < p. < m(p+b) ; and 
J 

(li) the successor of p in S , q , satisfies 

r(q-b)-a < p < s(q+a)+b and also q < p-a; 

then Shellsort takes at lease en5'2 units of time on some arrays 

of length n . 

Proof.  Construct A under the sorting template T generated by the 

integers in [p-a,p+b]  at the sequence p,2p,5p,...,gP, where g is 

large enough to ensure that A is completely defined. By Lemma 2.7, 

every element of A is visible through T beyond n+(p-a)2/(a+b) , 

whence it siilTices to take g=rn+(p-a)2/(a+b)l . 

We now show that A tikes cn^"" units to Shellsort. 
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mvtimm.'mii'mm'iiimmMmimwimmmmtnmipmmm'Aimmmf*! 

For the pk In Sn up to and Including p , the conditions of 

the theorem ensure that pk is in T . Thus after p.-sorting, for all 

Pk preceding q , A is left unchanged (Lensma 2.5). So the number of 

q-inversions in the original A ßives a lower bound on how fast A will 

be sorted. We shall ßive a lower bound on the number of these inversions. 

Initially T is at p in the construction, whence the first interval 

of f "covers" some of the first p elements of A . As T advances 

by p units each time, exactly one new interval of T (which of course 

must move as T does) appears, to cover elements of A . Eventually 

the I of Lemma 2.8 (of length q in this case) appears. There are 

L-J disjoint contiguous sequences of elements of A of length p such 

that as T progresses, I will partly cover each such sequence in turn. 

Hence there must be at least j^j positions of T during this construc- 

tion for which q elements of A are covered by I . 

During this process there is an f such that when T is at fp , 

interval I covers some contiguous ret V of elanents of A within 

A[l] to A[p] . By Lemma 2.10, the elements of V must be undefined 

at this time. By the construction, the set D of those elements of A 

visible through T at fp and that lie to the right of V must be or 

become defined at thic tijne. Hence the value of each element d in D 

must be less than that of each element of V (since the latter becomes 

defined later) and in particular less than one that is in d's q-cliain, 

since ever/ q-chain must have a representative in any interval of length q . 

Thus there are at least  |D | inversions within the q-chains of A . 

From this time on, as T is advanced, new elements of A become 

covered by I , resulting in  |D | more q-inversions by the same argument. 

Eventually T wij 1 be at some point beyond n , and the number of inversions 

contributed in this way for T at each subsequent position will start to 
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decrease.   Aiter    L^j    such advances of   T ,    I    "fallß off" the right 

hand end of   A . 

We might start to count the number of q-inversions in   A   by 

multiplyinf:    |D |    by     |_-J    since the q-invcrsionc are ail distinct 

(because   T   moves further than    q   places each time) .    However, this 

would then include those q-inversions whose right-hand members lie 

outside   A .    So we need an upper bound on the number of those q-inversions, 

which we shall then subtract from    |D|. 1_-J    to give a lower bound on the 

number of q-inversions in    A • 

At the first position of   T   at which we start to lose q-inversions 

to this effect, we lose q-inversions corresponding to just that element 

In the first interval of   T ,  namely the zero element.    At the next 

position we lose at most those q-inversions corresponding to the zero, 

and the interval    [p-a,p+b] ,  a total of   l+(bfa+l)   .    At the k-th 

position, we xose a number of q-inversions bounded by 

Z_       (j(b+a)+l)    . 
0 <,i < k 

This procesu stop:; a^ coon as the interval I of f leaves the array, 

llc-ncc k may be bounded by the result of Lemma 2.0. 3o the subtraction 

term is at most 

2k 



i<K<rTife!fey1    O<J<K 

2]        (J(b+a)+l) 

l^ (i(a+b)k" + k+l)      ,    where    k   = (k(k-l) ...(k-i+1) 

is^r^i 

=   l (a+b) 
5       2 

k' + ^k" + 6k 
I    a+b    I 

,    since        ^      k     is   7 
a<k<b jt*      ^ 

I (a+b) k5+ 5k 
E±3 

a+b 

Now 

1 (^,((^,5 + ^ai)    . 

|D|    IS given by Lemma 2.9,  namely   x (p-a-q)(^^    - 1)   •    Hence 

the niunber of inversions  in q-chains  is at least 

I (| - «(P-.-MC^S . D  . 1 (atb)((^)5 .  5 ^S) 

,     /               +                                         I    - (r-l)/n + ^ + b-a 
>   l4-i)(|(r.l)/n   +^b-a)(    r'    -1 a+b 

[(li!4^\ .(lif^ll^l)] 1 |i7 (s-l)/n+ - - 
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There Is a terra in    tr'       in the above,  namely 

^•(i(r.l))2/(atl,)-|(^)(H^)5jn^    , 

This coefficient is not always positive.    (Consider arbitrarily 

large   u .)    However, the two main terms of the coefficient are always 

positive, since   r,s > 1 .    The first terra is proportional to   t2/u , 

the second to   u    .    Thus one can choose suitably small   t   and   u   tc 

ensure that the first term exceeds the second, so that their difference 

is then positive. 

This completes the proof. 

Tn the case of Shellsort with Hibbard's sequenc-,  the parameters 

arc    r      s = 2 ,    a - 0 ,     b  .   1  . 

To verify that Hibbard's sequence satisfies the conditions of the 

lemma with these parameters,  note that for any   p      in the sequence,  the 

intervaJ     (Pj-a^+b]    is    [2k-l,2k]    for some   k ,  and thus every larger 

element    2 -1    is contained in the interval    [m(2k-l),m2k]    where 
i-k 

m  - 2        .    Indeed, this condition will be satisfied for any "fuzzy" 

geometric progression with    r    being an integer    > 1   and    s = r  .     Th= 

other cond tions are easily verified. 
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Chapter  3 

2 
An   n log   n   Shellsort 

We show in this chapter that, using the sequence    ^J*1 < n , 

p,q   non-negative Integers,  Shellsort takes   | n(logg n)(log, n)    steps, 

and also admits of a simplification in which the innermost loop can be 

replaced by one instruction. 

Let us establish some properties of arrays that are both 2-ordered 

and 5-ordered. 

Lemma 3.2.      If   p > 1 , then    p    is representable as a sum of   2,s 

and   3's ; that is, there are non-negative integers   r,s , with 

P = 2r + 3s . 

Proof.      If   p    is even, then    p = 2(p/2)   .    Otherwise,    p = 2(^) + 3  . 

Corollary 3.3.      If   A    is 2-ordered and 5-ordered,   it is p-ordered for 

all   p > 1  . 

Proof.      Follows from Lemma 3.2 and the transitivity of   < . 

Lemma 3,U.      if   A    is 2-ordered then for all    j    satisfying    1 < j < n , 

cither    A(,j-ll < A[,j]    or    A[j]<A[j+l]   . 
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Proof.      If not, then   A(j-1] >A[j] > A[J+1] , a contradiction. 

An  unmediate coroUary is that if   A    is p-ordered for all   p > 1 , 

no element    A(J)    may be a member of more than one inversion,  and every 

inversion must involve two adjacent elements.    Thus to sort a 2-ordered 

and 3-ordered array, it suffices to swap the inverted adjacent pairs, 

which can be done in one pass,  during which each of the   n-1    adjacent 

pairs are compared and exchanged if necessary. 

All of the above applies equally well to the p-chains of an array. 

In particular, when   A    is 2p-ordered and 3p-ordered,   its p-chains are 

2-ordered and 3-ordered, which means we can p-sort as above,  and only 

take    n-p    comparisons and exchanges. 

Applying all this to Shellsort, we then deduce that any sequence 

wi]J. serv.. our purposes if    (a)     it contains    1 , and    (b)     if   p    is in 

the sequence    p    is preceded by    2p    and    5p  .    Furthermore, we only need 

use those elements less than   n  .    The smallest such sequence contains 

c-vcry number of the form    ?^ < n ,   for integer   p,q > 0 .    The inequality 

;-'   ;    < n    can be written as    p/log2 n + q/log7 n    <   1 ,  an inequality 

linear in    p    and    q  . 

Kstimatin- the leng'.h    L    of this smallest sequence is made easy 

using a geometric argument.    In Figure 3.1,  associate the lattice point 

(P,q)    with the element    2p5q  .    The three bounds   p > 0 ,    q > 0    and 

p/lo*^ n + q/log^. n    < 1    define the three sides of a triangle. 
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»T 
p/logg n + q/log, n = 1 

n - 5^   la this figure 

Figure 5.1.    A triangular array of elements of   {^^q > 0) 

In Figure 3.1, the   p   and   q    intercepts of the sloping line are 

log2 n   and   log3 n   respectively, whence the area of the triangle is 

2 log2 n log3 n , a first approximation to   L    which we improve thus: 

We cla'm that the interior of the triangle is completely covered 

by those unit squares whose lower left vertices are lattice points in or 

on the triangle (other than on its hypotenuse).    For suppose    (x.y)    is 

in the triangle.    Then    (x,y)    is covered by the square whose lower left 

vertex is    (L*J,LyJ)   •    But    (LxJ,Ly_|)    is easi^ seen to be in 

or on the triangle but not on the hypotenuse (since    (x,y)    is net on 

the hypotenuse).    This proves the claim. 

But those lattice points in the claim correspond exactly to the 

elements of our sequence.    Hence there are at least   |(log^n)(log   n) 

elements in the sequence,  since the area of the squares corresponding to 

these elements exceeds the area of the triangle.    So our first approximation 

turned out to be in fact a lower bound. 
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This bound is far from attainable, since the boundary of the squares 

is very ragged near the hypotenuse, as in Figure 5.2 (a). 

Figure 5.2(a). A triangle covered by squares, 

(b). A triangular extension. 

One way to improve the bound is to give the triangle a more ragged 

hypotenuse. Take copies of the triangle of Figure 5.2(b) and paste 

them over the dark regions of Figure 5.2(a).    We need    l_log, nj    such 

triangles,   each of area   ^ iu^ 5 ,  Riving a total area of more than 

-, (lo»^ n - l)-log^ 5 ,  which is more than   - locu n - 0.8 . 

To see that the interior of these triangles are all covered by the 

squares, note that if    (x,y)    is in some small triangle   t , then 

( LXJ* LyJ)    must be on the horizontal lattice line passing through the 

lower right vertex    v    of   t , and must be to the left of   v ,  and hence 

inside the main triangle. 

Hence the area of the squares,  and thus the number of elements of the 

sequence,   is bounded below by   ^ log    n(log, n +  1).- 0.8 . 
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To get an upper bound we use a very similar argument.    First 

replace the hypotenuse by one almost parallel to it: 

p/log2(n-l) + q/lo63(n-l)  = 1    . 

(This uses the fact that   7?? < n-1 ,  and simply gives us a marginally 

tighter upper bound.)    Now associate with each lattice point   p   in the 

new triangle or on its hypotenuse (but not on the   p   or   q   axes, and 

hence not on the endpoints of the hypotenuse) the unit square whose upper 

right vertex is   p .    These squares are all clearly inside the triangle. 

We left out     Llog2(n-l) J + U^n-l) J + 1   points on the axes (the    "1" 

is the origin).    Hence there are less than 

| log^n-lUog^n-l) + llog2{n-l) J + Llog3(n-l) J + 1   elments in the 

sequence. 

The reader may check that the earlier "ragged" argument still works, 

this time using the reflection   [^y   of the triangle of Figure 3.2(b), 

and removing copies of this triangle from the main triangle.    (The 

hypotenuses of the small triangles still coincide with the hypotenuse of 

the main triangle.)    Hence we may subtract    | logg n - 0.8    from our 

upper bound. 

In conclusion, we may bound the length    L    of our sequence by 

| log2 n(log? n + 1)   -0.8    <   L    <   | log^n-l) (log^n-l) + l+2 log, 2) + 1.8 

where 2 log, 2 is about 1.26 . The width of this bound is about 

log, n (note that log2(n-l) . log,, n - n"1 log2 e) . So 

1 o 

ö log5 2(log2 nr  ,    or   C.315(log2 n)2 ,   is a good approximation to   L  . 
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It follows lOTnediately that   0.315 n(log2 n)      is a good estimate 

of the best-case, worst-case and average number of conparlsons required 

by Shellsort using this sequence.   This is of interest in that, at least 

asymptotically,  it is the fastest known way to Shellsort,  in the sense 

that the other Shellsorts we could analyze take time proportional to 

3/2 
n        on some arrays.    However, it is of more interest for a reason we 

\ri.ll   pursue in Chapter k.    Here we shall confine ourselves to sane 

remarks about this particular Shellsort. 

There are many ordert; in which the sequence may be generated and yet 

have   2p   and    ^p    precede    p .    One computationally convenient sequence 

generates all    2p5q    for   pfq =  |_log2(n-l) J >   then all    2p5q    for 

p+q =  j_log2(n-l) J-l , and so on until   p+q    vanishes.    Thus 

2.2Pjq = 2p^q  &nd  ,.2P5q = ^q+i ) both of which are in the set 

prenedin^ the one containing    '^  .    Within a set  for which   p+q = i , 

start with    2    ,   then multiply by   5/2    until the result is odd or    > n  . 

Expressing this  in near-ALGOL, we have 

for i  := 2 t   |_ 2  i  (n-1) J , i -r 2 while i > 1 do 

for J   == i>   (3 x ,1)   T2 while j mod 3=0 and j  < n do 

for k  := 1 step 1 until n-j do 

if A[kJ  > A[k+j]  then swap    (A[ k),A[ k+j ]) ; 

Here   alb    is an abbreviation for    log    b ,  which is an abbreviation 

for    ln(b)/ln(a)   ,   and     |_ a J    is an abbreviation  for    entier(a)   .    The 

reader  is asked to believe that    j mod 1=1    if    j    was odd before 

f^ing    .)   :- (Jv.i)   ■=■ 2 ,  otherwise it is    0    (an  inelegant Jump over a 

l.nrdle of ALLJOL  'O) . 
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An interesting improvement to the algorithm capitalizes on 

Lemma 3.k, by avoiding a test following an exchange. 

for i := 2 t   [_2 I (n-1) J , i -s- 2 while i > 1 do 

for J := i^   (5 x J) T 2 while j mod 5 = 0 and J < n do 

for k := 1 step 1 until J-l do 

for I  := k step J until n-j do 

ifA[i] > ALl+j] then begin swap (A[I],A[f+J]); 

/  := l+j 

end 

Whereas before we simply corrected all p-inversions,  starting at the 

left, we now correct all the inversions of one p-chain before going on to 

the next.    This change is necessary if we are to take advantage of 

Lenrnia J.k. 

Suppose the body of the  inner loop takes    1    unit of time if 

A[i] < A[i+j]    and    2   otherwise and that all other operations are negligible. 

Then the timing of this version of the algorithm becomes remarkably 

independent of how well ordered the initial array was,  since for all but 

the last two elements of each p-chain,  if the  body ever takes     ^ 

units, this increase is offset by skipping the next comparison.    Thus 

each pass will require between    n-p   and   n    units of time (depending on 

how many p-chains had their last two elements inverted) which is quite a 

small range for most    p's    in the sequence,   in comparison with   n ,  for 

reasonably large    n   . 

The numbers    2    and    5    are not the only possible choice for this 

algorithm.    In fact,  any set    x^ ...,xm   will do if their greatest common 
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divisor Is - , by Lemma 2.2. The corresponding sequence Is the set of 

numbers less than n that have only x.f»,,,x.     as factors. In 
1 m 

descending order,  say,  civln« a tirainn of   0(n loß1 n)   .   The Shellsort 

of Chapter 1 must be used, since we now need the inner loop again. 

Preliminary Investigation of various sets seems to indicate that    {2,3} 

is the best choice,,  as far as the upper bound is concerned.   However, 

other sets with two elements may conceivably give a faster running time 

on the average. 
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Chapter k 

A Shell Sorting Network 

^•1   Sorting networks 

The most interesting feature of the algorithm of Chapter 3 is that 

it suggests a fast sorting network.    A sorting network is a set of 

comparators wired such that when an array of numbers is presented to 

the input terminals of the network, the same numbers rearranged in 

ascending order are presented at the output terminals.    A comparator is 

a two-input two-output sorting network whcih may be treated as a black 

box for the purpose of denigning sorting networks with them as the basic 

building blocks.    The basic difference between a sorting network and a 

general-purpose computer programmed to read,   sort and output arrays is 

that whereas the control structure of the computer is inherently serial, 

forcing comparisons and exchanges to be done one at a time, the network's 

control structure is defined by the comparators alone and can be made 

highly parallel; all that is required in the way of control is that a 

comparator start work just when it has received both of its inputs. 

By way of example,  the illustrated network of Figure l*.l will sort 

four numbers with 3 units of delay. 

O A[3] 

O   A[M 

Vigure ^.i. Sorting Network for four elements. 
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To show that this particular network indeed sorts,  note that output k 

must get the maximum of the inputs, and output 1 the rainlraura.    Hence 

Afl] < A(2] ,  and   A[5) < A[M  .   The last comparator guarantees 

Al 2] < A[3] ,  and these three relations then mean that the array is 

sorted. 

A convenient representation for a comparator and its wiring is as in 

Figure 1+.2: 

Figure k.2.    An abbreviated comparator. 

where the vertical line denotes the comparator and the arrow denotes the 

direction the larger number goes.    Thus our previous example would be 

drawn as in Figure Ji.J. 

m r\ *  

O 

■•     A[l] 

"»     A[2] 

-»   Ab: 

 |     A[U] 

Figure h.}.    Ar abbreviated sorting network for four elements. 

Note that the inputs to the final comparator as drawn here are inverted 

with respect to the corresponding inputs in the other diagram.    This does 

not affect its operation;   indeed the two inputs to a comparator never need 

be distinguished,   since    max    and   min    are commutative functions. 
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The important thing about sorting networks is that they permit 

considerable parallelism,  since up to   n/2   comparators can be working 

simultaneously on   n   lines.    One might deduce from this that, since there 

exist serial algorithms taking time   n log n ,  one could do   n/2    of 

these steps at a time in a sorting network, taking    O(log n)    units of 

time.    This deduction breaks down because it is not necessarily possible 

to predict which   n/2   comparisons to do at any given time without knowing 

in advance the outcome of some of those same comparisons.    So far, the 

best asymptotic timing to date has been Batcher^ algorithm [Batcher 1968], 
1        2 

which takes   ^ log2 n   units of delay asymptotically (where a unit is the 

time to compare and exchange two elements) and uses   J log^ n   comparators 

asymptotically.    (See also Van Voorhis [1971].) 

Further discussion of sorting networks can be found in Floyd and 

Knuth [1970]. 

^•2   Shellsort with standard comparators 

In the algorithm of Chapter 3, where an array was sorted by being 

2pj5q - sorted for all integers    p,q > 0   with    2p3q < n ,   it was noted 

that for each    p    and   q  ,   the corresponding   2P3q - sorting involved only 

correcting a small number,       L § J ' 2^ adjacent inversions.    It is 

possible to do all of this work in two stages of parallelism, by first 

simultaneously comparing every even-numbered location (numbering the 

elements of a p-chain    1,2,3,...  ) with its predecessor,  and then doing 

the sane for odd-numbered elements.    For a single p-chain with 6 elements 

we would have Figure k.k. 
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— 5 

— k 

— 5 

— 6 

Figure U.U.    A sorting network for a 6 element p-chain 

that is already 2- and 5-ordered. 

Since the p-chains are independent for a fixed   p ,  we can 

extend this parallelism to the whole array.    Thus if the above example 

were of a single 5-chain in an array of 16 elements, the whole 

5-sorting stage would involve the network of Figure U.5: 

A. 

,;2 

1  

JM. 

+ 

2 
5 

r> 
7 
8 

_      9 
     10 
    11 

12 
  13 
  1U 
— 15 
  16 

3a   '     3b 

Figure U.5 

where    5a   and   3b    denote the first and second stages of 3-sorting 

respectively. 



A complete sorting network for 8 elementa would use the characteristic 

sequence 6, h, *, 2, 1 ,  as in Figure U.6. 

A • • , 1 I •        • 
Vi   - -... 

s 1 :      : M  . 
• • • i            i.l 
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i i i '        '     I 
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■       t 1 :     i i ; 

6 
1 
1 h • 5e i • 5b • 2a 

i 2b ' la'   lb 

1 
2 
3 
k 

5 
6 
7 
8 

Figure k.6 

From the analysis of Chapter 3, we know that there are about 

■z (log_ n)(log, n)    elements in the sequence, whence we need at most 

(logp n)(log, n)    stages of parallelism,  each renuiring one unit of delay. 

1 2 So this network takes about » log? n   units,  slover than Batcher's 

algorithm by a factor of    1.26  . 

U.J    A faster network 

In the above network,   for each   p    in the characteristic  sequence, 

we had to partition into two groups those comparators responsible for 

p-sorting,  in order to avoid having two comparators workiig on the same 

line simultaneously.    But Lemma 5.U tells us that two such comparators may 

not both swap their inputs.    This suggests a conjecture,  that the comparators 

can operate in parallel anyway,  perhaps with some modification to the design 

of the comparators.    Were this possible with nr increase in delay of a 
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comparator, our network would then function with   ^ log- n log, n   units 

of delay asymptotically, which would represent an laprovement of a factor 

of    log^ 5   =   1.585    over the networks described by Batcher [I968]. 

Unfortunately, there is no universally applicable way of doing this. 

For if there were, we could apply it to the particular case where the 

quantities to be sorted may take on only the values   0   and   1 , and the 

only available components are two-input AND and OR gates,  each with a 

delay of 1 unit.    Now we may readily build a comparator for this domain 

fcs in  Figures U.7 and U.8. 

u 1 ^ MIN  „ v. 

«% 
f 

r-     / 
MAX 

^ 

Figure '».7.    A comparator for zeroes 
and ones. 

Figure U.8.    Notation. 

f.ince our conjecture refers only to that part of a sorting network 

forrespondin/: *o a single clement of the    f^v    sequence,  we need only 

consider,  in isolation, the realization of this part as AND and OR gates. 

Moreover, within that part,  we only need consider a single    S^V1 - chain 

as in Figure J+.g,  since chains are not connected to each other within 

that part. 
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E 0~ 4)5 E fr 

(a) (b) 

Figure U.9.    (a)    A sorting network for one p-chain (as in Figure U.U, 

minus one input). 

(b)    Implementation of Figure U.9(a) using Figure U.8. 

The delay of this stage of the sorting network as implemented in 

Figure U.9(b)  is just 2 units.    In order to Improve on this we must reduce 

the delay to 1 unit.    But then output 3 of Figure »u9(a) would have to be 

the output of some gate with two inputs chosen from the inputs    B , C , D 

and    E    (the only inputs that could affect output 3),  since only 2-input 

gates are available.    But output 3 is a non-trivial function of    B , C 

and    D ,   even under the condition that the input is p-ordered for all 

p >1 .     (Consider    BCD = 001    vs.    101    (for    B ),    001    vs    011    (for   C ), 

and    010    vs    Oil    (for    D ).)    Hence it is not possible to reduce the delay 
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of this stage to 1 unit.    (The reader may readily extend this result to 

the case when multiple-input AND and OR (and even NAHD and NOR) gates 

are available.) 

So the best we can hope for is that under some conditions we may 

be able to take advantage of Lemma 5 A.    To show that our conjecture is 

not completely without grounds we shall give in detail an example of a 

situation much closer to real-life problems and state-of-the-art 

technology than the foregoing somewhat artificial one, and show that in 

this situation we may come closer to realizing the desired factor-of-two 

speed-up. 

A more common domain for sorting purposes is that of the integers. 

A common representation for this domain is the familiar binary notation. 

Let us assume that we want to sort    n    words of   w    oits each,  and that 

each word represents an unsigned binary number. 

One way to ijnplement a sorting network for this situation is to have 

each comparator process all   w   bits of each of Its two inputs in 

£arallel before outputt inn anything    This is fast but expensive,  since 

each hit requires some hardware of its own.    At first sight,  serial 

prooessin.: (most significant hit  first) would seem to involve a speed 

decrease of a facLor of about    w  .    However,  it should be clear that 

as soon as a comparator has inspected a bit from each of its inputs,   it 

rnaj^ ^ass those bits on to the next comparator before it has seen an^ more 

of its irjEut.    (A proolem that can arise here is that a comparator may 

not know at  some time which of its inputs  is the maximum.    But  in this 

case,  all pairs of bits seen so far must have been equal,  so that  it 

doesn't matter which way It  routes its output.)    So the time required for 



a serial network is really Just that required by a parallel network, 

plus  (rather than times) the time required to pass   w   bits (to be precise, 

w-1 )  through a comparator.    Hence serial organization would appear to 

be economically sound here, and we shall assume it for our example. 

Finally, let us assume that we have available NAND gates and NOR 

gates with any number of inputs,  and flipflops.    While this restricted 

repertoire does an injustice to the present state of the art of integrated 

circuits (where the effect of parasitic lead capacitances on timing 

dominates that of AND-OR-INVERT gate propagation delays In some cases), 

it will at least take advantage of the reader's presumed familiarity with 

the elements of traditional (and rather idealized) switching theory. 

With our assumptions formulated, we shall exhibit an implementation 

of Figure U.9(a) under these assumptions. 

Since the input to the netwoik of Figure M(a)  is p-ordered for 

all    p > 1 ,  and since the output is completely ordered,   it follows that 

each output is just the median of its three closest inputs; e.g. 

output ;? is the median of   A , B    and   C ,  output 5 is the median of 

B , C    and    n ,  and so on.    hence it suffices to implement Figure U.9(a) 

as in Kicure 14.10(a), where the output of each box labelled   M'    is the 

median of its inputs.    (The    0    and    1    inputs at the top and bottom are 

fixed at those values throughout the operation, and thus correspond in 

their effect to values of    -»    and    +«     respectively.) 
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Fi,;ure U.IO (a)  Implementation of Figure U.9(a) using median-finders. 

(b) Same as (a) (some detail omitted) with registers R added. 

The device M' must keep track of the relations between its inputs, 

because of our serial organisation, these relations are a function of 

time, in that they depend on how much of the incoming three words has 

been seen. It suffices to remember (say for the M' connected to output 2) 

whether A<B, A = B or A>B, and whether B<C, B = C or B>C, 

Thus It would seem that each M' must be able to distinguish nine casea 

(three of which cannot arise, as we shall see later, leaving six cases). 

This is wasteful since two adjacent M' s could share the information 

about '.heir two common inputs. This immediately suggests Figure U.10(b) 

as a more economical organization. The connections of Figure U.10(a) are 
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preserved (although their detail is omitted for clarity in Figure U.10(b)). 

Box M' is now replaced by bcx M , which no longer has the responsibility 

of remembering what happens from one bit to the next. Instead, this 

responsibility is delegated to the R boxes. Box M now consults its 

three inputs and two R boxes as each new set of 3 bits, A , B , C , 

arrives. The output from an R box is 5-valued, viz. < , =  or > , 

corresponding to whether R thinks that A<B, A = B or A>B. 

There are two approaches to the timing of M . Either M may wait 

until the R boxes have decoded their inputs before deciding which of 

A , B and C is now the median, or M may decide to go ahead with the 

new A , B and C bits but using the old states of the boxes R. , 
  A 

corresponding to the situation up to the previous A , B and C bits. 

That is, M may anticipate the next states of the R boxes, without 

waiting on them. The merit of this approach is that the delay of the 

whole stage is then reduced by an amount possibly as great as the delay 

of R . We shall adopt this second strategy. 

We may build R boxes as in Figure U.ll. 

^O 

\ < 

> 

< 

) 

Gi-» 1 . 
\ 

> ; 

Notation 

set X »-1 X — X 

set Y o-i Y ^>Y 

where X = Y 

Figure U.ll.    Implementation of an R box,  with 2 gates,  2 flipflops. 
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Note that the complemented inputs    A    and    B   may be lerived from   A ,  B 

respectively using inverters (single input NAND or NOR gates).    However, 

it is highly likely that a practical design will interpose a flipflop 

between the output of a median finder and the next stage in order to 

control the movement of bits through the network, both to avoid one bit 

catching up with its predecessor and to ensure that -she three inputs all 

arrive simultaneously at a median finder.    Inherent in the design of 

flipflops ir.ade of NOR gates (the usual strategy)   is the accessibility 

of both the flipflop's output and its complement.    Thus the inverters 

would then not be needed. 

The two AND ßatec may independently be replaced by NOR gates, with 

the appropriate changes to their inputs (that is,  use the complemented 

value of each input instead).    This follows from De Morgan's Law that 

AB = A+ B .    We used AND gates to aid the reader's understanding of the 

circuit's operation. 

'['ho notation for flipflops should be self-explanatory.    It was 

VMi'j'vslcd to UE by 11. i'tono ainl cidestejc the  Lrrelevant   issue of whether 

Ln ucc tlic    Q    or the    Ci    output (a desicnation quite arbitrarily 

assigned by each flipflop'c manufacturer,  with    R    (reset)  and    S    (set) 

inputs then named to correspond to this arbitrary choice) to denote 

come variable.    Each half of the flipflop represents a buffer that 

"remembers" any logic level of   1   that arrives at its input.    The 

juxtaposition of the two halves represents the fact that the buffer is 

made to "forget"   (i.e.,   return to state    0 )   if a level of    1    arrives 

at the ocher buffer's input. 
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In the operation of the R box, input   G    (go) is momentarily set 

to   1   prior to starting to sort, and then returns to   0    for the 

remainder of the sorting operation.    Thus every   R   box initially 

supposes that both   A < B    and   A > B , that is,    A = B . 

By inspection of the circuit, as long as   A = B   at the inputs, the 

state of   R   will be undisturbed.    Suppose   A = 0   and   B = 1   at some 

time.    If   A = B   before this, then we must have   A < B , and   R   digests 

this fact by complementing the upper flipflop.    The dual situation 

obtains if   A = 1   and   B = 0 . 

Once one of the flipflops has been complemented,  it is clear that 

no further change of state of   R   is possible.    The complemented flipflop 

will never see another    1    at its    G    input, and the other flipflop's 

input has been turned off by the complementing.    So only three states 

of   R    are possible, corresponding toA = B,    A<B   and   A > B , as 

desired.    These states are comraunicated to the outside world by four 

outputs (abbreviated to one in Figure U.10(b)) labelled   < ,    > ,    < 

and   >   respectively. 

Let us now proceed to a circuit for the    V    boxes,  given by Figure 

h.12.    We uce AND and OR gates for pedagogical reasons; an equivalent 

circuit may be obtained by replacing every gate with a NAND gate; recall 

De Morgan's Law that    A+B = AB . 
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A   • 

C   «■ 

B    0——(> median 

Figure k.12.    An implementation of a median finder   M . 

The unprimed inequalities  labeling   the input terminals denote the 

appropriate outputs of the    R    box that is to be connected between   A 

and   B .    Call this    R    box    simply   R  .    The primed inequalities are 

for the    R    box between   B    and   C   .    Call this box   R«   . 

To verify that this circuit works,  it suffices to enumerate the 

possible pairs of states of    R    and    R»   .    The details are encapsulated 

in Figure U.IJ. 
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Three cases,    (>,>•),    (>,=•)    and   (=,>•)    are not shown 

because they cannot occur.    Each of these cases implies that   A >C , 

contradicting Lemma 3 A.    This remark is independent of what bits are 

seen later,  even if eventually    (>,=•)    becomes    (>,<•) , say.    The 

explanation in this case is that if there is so far no way to distinguish 

B   from   C , yet   R   can tell that   A > B   for some reason, then we 

must deduce that   A > C    for the sanv reason. 

The figure shows those inputs that are set to   1    for each of the    6 

possible cases.    By eliminating those AND gates of Figure U.12 that have 

a    0    input,  and then sjjnplif^ing the remaining circuit,   it is easy to 

arrive at the equivaJoic circuits shown for each case. 

To verify that the equivalent circuits arc the desired ones, note " 

that we have essentially reduced the problem to the case when the data to 

be sorted can have only the two values    0    and    1  .    The median finder's 

responsibility is simply to decide which of three bits is the output. 

It is the responsibility of   R    and   R«    to decide which equivalent circuit 

ic required for any particular set of 3 bits. 

For the case    (    ,    ')   ,  wc clearly want the fullblown circuit of 

K-kuro Jt.')(b).    Inspecting output 2 of that circuit shows that we have 

the correct equivalent circuit. 

For the case    (=,<•),    C    cannot be the median,  so we want 

max(A,B)  .    Figure h.Q verifies this equivalent circuit. 

In the case    (<, =•)  ,    A    cannot be the median,  so we want 

min(B,C)   .    A^ain Figure »4.8 confirms the circuit. 

The remaining cases correspond to   B<A<C,    A<B<C    and 

A < C  < B   respectively,  giving medians    A ,  B    and    C    respectively.    So 

the circuit of Figure U.12 does indeed work. 
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Note that if   R    ls in state   < ,  the output of   M    is independent 

of input   A , and sünilarly for input   C   when   R»    iß in state   <• , as 

can be seen from Figure I+.13. 

It follows that in Figure U.10(b) the top input of the top   M   box 

need not be set to   0   as in Figure U.10(a), and similarly for the very 

bottom input.    Thus these two inputs may be tied to any convenient 

terminal in practice, provided the teminal's voltage does not interfere 

with the otherwise correct functioning of the gates thereby attached. 

The crucial question now is that of speed,    m particular, how does 

this circuit compare with the fastest possible circuit for a standard 

comparator for use in Batcher's network?   Any anrwer to this will almost 

certainly have to depend on a detailed knowled^-. of the relative speeds 

of the available devices for building comparators. 

Figure k.lh exhibits a possible implonentation of a comparator. 

The principle of operation of the structure in Figure k.lk{a)  is the 

same as that of Figure luio(b).    The only difference is that in place 

of the three-argument median finders, we now have    max    and   mjn    finders, 

each with only two arguments.    The circuits for    MIN    and   MAX    are 

analogous to that of Figure k.12, and the style of argument represented 

by Figure )ul5 carries over to these circuits quite trivially.    AL 

before,    NAND    gates may be used throughout,    it  is interesting to note 

that although the circuit for   M   was developed independently of those 

for MIN and MAX, the MAX circuit is obtainable directly from the   M 

circuit by removing the bottom three AND gates of   M   and the    <•    input 

of the second AND gate (that  is,   everything to do with input    C  ).    The 

MIN circuit is a^ost as easily obtained (together with some simplification) 

by suppressing anything to do with input    A . 
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Figure h.lh      (a) Structure of a comparator. 

(b),(c) MIN, MAX circuits. 

We conjecture that the circuit of Figure U.lU iß very close to the 

fastest possible for a standard comparator, using the existing technology 

based on NAND and NOR gates. In support of this, we can prove that the 

two-gate delay of this circuit cannot be reduced to a one-gate delay. 

For if it could, each gate (necessarily one for each output) would have 

to be a NAND or NOR gate. But neither these nor AND nor OR gates are 

suitable. Consider the MIN output. This cannot be the AND or NAND of 

the inputs A and B , since there are occasions when one of A or B 

is 0 yet a 1 output is required (e.g. when R knows A < B , the 

current A bit is 1 and the B bit is 0 ) or a 0 output is requir-d 
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(e.g.    both   A   and   B   are simultaneously   0    at some time).    A dual 

argument says that the MIN output cannot be the OR or NOR of the inputs 

A   and   B .   A fortiori> the MIN output cannot be a single-gate function 

of   A ,  B   and the state of   R  . 

Hence the question of optlmality of the circuits of Figure k,lk 

involves mostly very technology-dependent issues such as the effect of 

fan-in and fan-out on gate propagation delays, the ratio of turn-on 

to turn-off delays (quite significant with bipolar transistor TTL 

technology) and whether it is possible to wire-OR gate output (as with 

tri-state logic for example; this gives the effect of having OR gates 

with no delay).    Each gate in Figure k.lk has a fan-in of at most    5 , 

and a fan-out of at most    U  .    It would seem unlikely that this could be 

significantly improved,  especially in view of the fact that the delay of 

currently available gates as quoted by theii manufacturers is independent 

of the fan-in for up to about six inputs, and increases by about 5 percent 

(for fast gates)  for each extra device loading the output, up to a fan-out 

of about    10 . 

If wired-OR is possible,  this gives all our circuits (except for   R ) 

the effect of one f;ate of delay,   so the issue of the availability of 

wired-OR lo/:ic would not appear to significantly damage our conjecture. 

The issue of turn-on/J.urn-off delays  is probably too transistor-dependent 

to be worth discussion here.    The reader is challenged (if he is 

interested in technology-dependent arguments)  to try to show constructively 

that the ratio of turn-on to turn-off delays  (within reasonable limits) 

affects our conjecture. 
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Of course, none of this is very relevant if the delay of   R 

exceeds that of the other devices.    In this case, our median-finder 

is as fast as our comparator (ignoring the fan-out of   R    for the moment), 

and our ccmparator in turn is probably close to optimal,  In view of the 

triviality of the circuit for   R .    Taking the fan-out of   R    into 

consideration, this is at most   2   for each output from   R    in Figure h.lk 

(counting the connections within   R ), and at most    3   in Figure U.12 

(provided we are using NOR gates in   R ; with AND gates as shown, the 

fan-out of the   <   and   >   outputs becomes    h ).    So a delay of at most 

5 percent that of a gate (we can build flipflops from NOR gates),  and 

hence less than 5 percent of the whole circuit, is about the main 

difference in timing between these circuits. 

In the event that    R   turns out to be faster than our median finder, 

wc need to show that the latter is not much slower than our MAX and MIN 

circuits.    The only significant difference is that the fan-out of the 

output of   M   is    5   more than that for our comparator outputs (6   if 

wc (lonH have fiipflopc at the output,   for then   R    will require two 

inverters).    To cet around thlc disparity, we can "move the fan-out back 

a cate",  by duplicating or triplicating the circuitry for the OR gate in 

each of our circuits, at the cost of increasing the fan-out of the AND 

gates.    The optimum appears to be triplication for   M   and duplication 

for each of MIN and MAX,  independently of whether we use flipflops 

between stages.    (The flipflops if they are present must be duplicated 

along with the OR gates.)    Without flipflops, the optimized "accumulated 

fan-out"  (maximum fan-out of any AND gate plus maximum fan-out of any OR 

f:ate)   is    7    for   M    (5    for the ANDs,    k    for the ORs)  and    5    for 
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MIN/MAX    (2    for   ANDa,    3    for ORs).    With flipflops, it is    6   for   M 

(5    for the ANDs,    jj    for the ORs) and   h   for MIN/MAX    (2    for ANDs, 

2    for   ORo).    The situation for   M   with flipflops is shown in Figure U.15. 

In both cases the difference between   M   and   MIN/MAX    U    2 , corresponding 

to a difference in delay of about 10 percent of a gate, or at most 

5 percent of a comparator without flipflops,  even less for one with 

flipflops. 

rF^—&-; 

^fcr 
D-4 

I       i 

B-' 5+5+3 = 9= total load of next 
stage 

Ficurc lt.1^.      M   with triplicated OR f-ates and flipf lop buffers. 

(Not all AND gates shown.) 

In conclusion, there seems little reason to doubt that with 

state-of-the-art technology, we can build median-finders whose speed is 

within 5 percent of the speed of the best comparators.    Thus,  using our 

2*^3      network, we may improve on Batcher's network by a factor of between 

1.5    and    I.585  . 
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Chapter 5 

Epilogue 

5.1. Sumnary and Suggested Problems. 

For each chapter, we shall summarize its result' and suggest 

problems associated with that chapter. 

3/2 
In Chapter 2, we gave an upper bound (namely 0(n  )) on the worst- 

case time for Shellsorts that use "fuzzy" geometric progressions with 

short coprime subsequences throughout. In addition we showed that when 

these progressions had an Integer common ratio, the upper bound could 

not be Improved other than to within a constant factor. This leaves 

open the following problems. 

1. What is the constant factor (as a function of the given 

characteristic sequence) for the worst case of Shellsort with the 

integer-coromon-ratio sequences? 

3/2 
2. Can the 0(n  ) bound be Improved if the ratio is not an 

integer, but, say, /2? 

3. What other properties do Shellsorts with geometric sequences 

have? For example, what is the mean and the variance of the time for 

Shellsort with Hibbard's sequence,  given some  frequency distribution 

for  the data? 

3/2 
In Chapter 3, we showed that 0(n  ) is certainly nut the ultimate 

fate of Shellsort. We did this by exhibiting one sequence for which 

2 
Shellsort takes time 0(n log n).  Some problems this raises are: 
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4. What if the ultimate speed of which Shellsort is capable? 

(Is 0(n log2n) the best possible?). 

5. What is the average time for Shellsort using sequences of the 

form 2p5q, etc.? Is it better or worse than that for the 2p3q sequence? 

In Chapter 4, we converted the aerial algorithm of Chapter 3 

into a highly parallel one. Our arguments were, unfortunately, based 

on the state-of-the-art of the electronics industry. We showed that 

there was no universal way to eliminate this dependency, by describing 

a rather trivial environment where our method failed to compete with 

Batcher's method. This raises these questions. 

6. What environments less trivial than the domain fO,l} alru 

handicap our method? 

7. Are there environments for which our method is still better 

than Batcher's, but only by, say, a factor of 1.27 

8. What is the advantage of our method when we can afford to 

build parallel comparators? (This costs many times more, with a 

disproportionately small return on the investment, making this question 

of interest mainly to the very rich.) 

9. Is It a coincidence that all attempts to build faster sorting 

networks have resulted in networks that take time 0(log2n), or is this 

the asymptotic lower bound? 
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5.2. Conclusions and Perspective. 

The unifying basis for this thesis is the sorting technique 

described by Shell [1959], generalized of course to consider a larger 

class of characteristic sequences for Shellsort than the one considered 

in Shell's original paper. The sequences we considered in detail could 

be classified respectively as first- and second-order geometric progressions, 

where an m-th order progression has m distinct ways of generating new 

elements of the progression from old ones (e.g. multiplying by either 2 

or 5, as in the second-order geometric progression of Chapter 3). 

The behavior of Shellsort is strikingly different for first-order 

geometric progressions as opposed to higher order ones. In the former 

3/2 
case, as remarked in Section 2.1, Shellsort takes time 0(n^/ ) using 

2 
perturbed progressions, but time 0(n ) using an unperturbed sequence 

of, say, powers of two. The theorems and remarks of Chapter 3 depend 

1'or their proof on the higher-order sequences remaining unperturbed. 

The questions answered in Chapters 2 and 3 are of academic Interest 

only, since thor»- already rocist sorting techniques which, on theoretical 

rroundn alono, are as good as Shellsort, and which on empirical evidence 

are much better for almost all applications. Chapter 1+ gives a most 

interesting exception to this rule, in that we show that In practice 

ohellsort is the best method to use for sorting networks, at least 

from the point of view of speed. This is mt to say that Shellsort 

will always be better than Batcher's method; a way of building 

consi ierably far.ter comparators, which does not apply to our median-finders, 

could upset this claim. But the arguments presented in Chapter k  seem to 

indicate that a different technology would be required for this to happen. 
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