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ABSTRACT
Recently, with an increase in the number of healthcare devices, studies measuring and diagnosing electro-
cardiogram (ECG) signals in daily life are emerging. ECG signal analysis is an essential study area that
can diagnose fatal heart abnormalities in humans at an early stage. Conventional signal detection uses one
reference beat to diagnose ECG signals; thus, the detection rate is different for each person. In this study,
we design a system that can learn a reference beat and diagnose ECG signals in real-time using hardware
accelerators with the approximated template-based ECG diagnosis algorithm proposed in the previous
study. The proposed algorithm can easily perform personalized learning, increasing the detection rate
since it has faster learning time and consumes less memory than the existing algorithm. The learning data,
which occupies a small memory space, enables real-time and simultaneous diagnosis of several people. We
confirmed that the proposed ECG diagnosis algorithm is suitable for hardware acceleration by accelerating
the ECG signal diagnosis and measuring the parallelized result using Alveo field-programmable gate array
(FPGA). The ECG diagnosis algorithm, implemented at the FPGA in real-time, can flexibly determine
reference beats that vary depending on the person and diagnose each person’s signal. The experimental
results showed that the time required to diagnose the ECG signals of five people containing 1987 beats
takes 5.70 s with software and 0.572 s with hardware accelerators, which is 89.96% shorter than software
execution time.

INDEX TERMS Electrocardiogram, Alveo FPGA, large-scaled IoT, hardware acceleration, co-design,
flexible accelerator

I. INTRODUCTION

Since the average life expectancy has been extended due to
the recent development of medical technology, interest in
healthcare devices for managing health is increasing. Re-
cently, studies have been conducted to create a light-weight
wearable system that measures and analyzes vital data using
embedded devices [1], [2]. The electrocardiogram (ECG)
signal, one of the vital signals that can be measured using a
healthcare device, is measured by detecting and amplifying

electrical signals generated when the heart beats. It is the
best signal for real-time diagnosis of heart abnormalities,
which are fatal for humans [3]. ECG signals are sampled
at high frequencies above 100 Hz. Abnormal beat varies
rarely, so ECG signal must be measured and analyzed for
a long time, more than several hours. Thus, to analyze an
ECG signal that generates big data, a fast processing speed
and data compression is required [4]. The existing signal
compression studies used various compression techniques,
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FIGURE 1. Server structures of (a) existing cloud computing method and (b) the proposed hardware and software co-design method for electrocardiogram signal
diagnosis.

such as the Fourier transform [5], wavelet transform [6], [7],
Walsh transform [8], and Karhunen-Loeve transform [9].

Fig. 1 shows the existing server structure and the hard-
ware/software co-designed server structure for ECG signal
diagnosis. Wearable devices that measure ECG signals have
a small memory size, low performance, and a small bat-
tery capacity. Since ECG signal diagnosis requires much
computation, most data are transmitted to a cloud server
(Fig. 1(a)). The server diagnoses the input signal using a
reference signal trained in advance with a large number of
ECG signals. Existing servers for ECG signal diagnosis have
several problems, such as ECG data size, reference signal-
training time, and a unified reference signal. The ECG signal
is a fast signal with a sampling rate of around 300 Hz. In
addition, it is common to take measurements of 30 min or
longer when diagnosing patients using ECG signals. Thus,
the reference signal used for diagnosis is trained by investing
a large amount of data and time. The unified reference signals
trained by consuming many resources are used to diagnose
various people. Thus, the detection rate of abnormal signals
varies from person to person.

We designed a platform that provides personalized di-
agnostic services through software and hardware co-design
(Fig. 1(b)) [10]. Each person’s reference beat is trained by
software receiving different ECG signals. The size of the
ECG data and the time required for learning where reduced
by reducing the data fidelity using the approximation ap-
proach in the learning process. After the learning process,
the server synthesizes and implements a hardware accelerator
that can diagnose the ECG signal on the field-programmable
gate array (FPGA) in real-time using a personalized reference
signal. The proposed platform reduces the amount of data
analyzed during the learning and diagnosing process by
adjusting fidelity, increases the detection rate of ECG signals
different for each person using a reference signal optimized
for individuals, and processes multiple ECG signals at the
same time to implement a diagnostic unit flexibly using an
FPGA [11].

In this study, we designed a signal processing unit to pro-

cess ECG data in real-time using an energy-efficient FPGA
accelerator in an internet of things (IoT) edge server where
large amounts of ECG data are input. We accelerated repet-
itive computation using hardware and software co-design
platforms [12], [13]. In Section II, we introduced the related
ECG signal study and linear approximation (LA) study ap-
plied in this study. Section III introduces the approximated
template-based classification proposed in the previous study
[14], [15]. The algorithm uses less memory space and has a
faster processing speed compared to existing studies in the
process of learning and diagnosing ECG signals. Section IV
describes the design of the accelerated ECG signal diagnosis
using FPGA. In Section V, experiments using the MIT-BIH
arrhythmia database are conducted. In addition, the results of
ECG diagnosis using only the processor and the signal pro-
cessing unit synthesized in the FPGA are presented. Finally,
Section VI presents the conclusion.

II. RELATED RESEARCH WORK
The ECG monitoring study focused on heart rhythm detec-
tion and normal/abnormal signal classification in real-time.
The ECG classification can be divided into feature-based and
shape-based classifications [16]–[19]. The ECG signal data
show a small number of irregular, abnormal beats between
most of the periodic normal beats. Normal signals have simi-
lar feature values and shapes. If the feature-based and shape-
based similarities are low compared to the normal signal, it is
classified as an abnormal beat. Fig. 2 shows the feature values
used for ECG signal analysis. The feature-based classifica-
tion gathers fiducial points where an ECG signal is changed
and classifies the signal using amplitude and time difference.
The fiducial points can be detected with high reliability using
the Pan-Tompkins algorithm [20]. However, a small error
cannot be obtained using the potential difference based on
the feature-based classification since the feature points are
different for each ECG signal. The shape-based classification
compares the shape of ECG signals with the normal signal
template. However, the shape-based classification requires
much data, time, and memory to determine a normal ECG
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signal template.
We improved the accuracy using feature-based and shape-

based classification by comparing amplitude and angular er-
rors, respectively. The existing template-based classification,
which selects only one normal beat template, has a problem
in that a normal beat with slight shape deformation is over-
detected as an abnormal beat: thus, the proposed method uses
template clusters instead of a single template [21], [22]. Fig.
3 shows the template cluster creation process for template-
based classification and the diagnosing process using the
generated template in the designed platform.

In the learning process, the sampled ECG signal is pre-
processed using noise filtering and R-peak value detection.
Then the ECG signal is divided by the average PR interval
size around the R-peak including all fiducial points in Fig. 2.
The separated signals are grouped with similar signals using
the Pearson similarity of the overall shape and PR interval.
When all inserted learning ECG signals are processed, the
template with the largest group in the template cluster is
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FIGURE 4. Illustration of linear approximation: (a) normal and (b) abnormal
reference templates, and (c) normal and (d) abnormal template cluster.

selected as the reference template. Since the signal that oc-
curs most frequently in the ECG signal is normal, templates
with high similarity to the reference template are stored in a
normal template cluster, and templates with a low similarity
are stored in an abnormal template cluster (Fig. 3(a)).

The template cluster stored after the learning process is
synthesized in the hardware on the FPGA using the diagnos-
ing algorithm after performing an approximation process. As
shown in Fig. 3(b), the ECG raw data transmitted to the diag-
nosis process is pre-processed by sampling and R-peak value
detection. The synthesized hardware examines the similarity
between the pre-processed data and the normal/abnormal
template and diagnoses it as normal or abnormal according
to its similarity to the clusters.

A template consists of one ECG signal sampled around the
R-peak. The number of templates constituting the template
cluster and sampling rate of the ECG signal is directly
proportional to the memory size occupied by the template
cluster. We adopted the LA to simplify templates [23]–[25].
Figs. 4(a) and (b) show the normal and abnormal reference
templates with sampled data and LA. The LA has been
proposed to express fiducial points of ECG signal with a
small number of vertices. This approach, which converts
the data stored by time into event-driven data, reduces the
memory required to express one template and determines
abnormal beats by emphasizing the feature values consisting
of fiducial points.

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109875, IEEE Access

Dongkyu Lee et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

When the number of vertices expressed using LA in-
creases, the ECG signal is accurately expressed, leading
to high fidelity. When the number of vertices decreases,
the fidelity is low. However, when the fidelity is low, the
amount of data that require memory space decreases, and the
computational increases. The accuracy of ECG diagnosis is
decreased. We improved the accuracy of the diagnosis at low
fidelity using template clusters. Figs. 4(c) and (d) show LAs
of normal and abnormal template cluster data, respectively.
Errors similar to the reference signal can easily be obtained
using clusters, such as P wave abnormality.

III. APPROXIMATED TEMPLATE-BASED
CLASSIFICATION

A. PRE-PROCESSING

The input signal is pre-processed by noise filtering, R-peak
detection, signal division, and offset removal. The ECG sig-
nal, an electrical signal generated by the heart-beat, contains
various noises [26]. Noise is generated from the electro-
magnetic field of the power line, the activity of the muscles
around the heart, and the movement of a person. Power and
muscle noises are high frequencies above 50 Hz, and the
noise caused by human movement is mostly low frequencies
around 1 Hz; thus, noises can be removed using a bandpass
filter [27].

Finding an R-peak point with the highest electrical poten-
tial in the ECG signal is relatively easier than with other fidu-
cial points. Among various methods for finding R-peak, we
adopted the Pan-Tompkins method, which achieved 99.3%
accuracy in finding QRS complex in the standard 24 h of
MIT-BIH database. The adopted method finds the R-peaks of
each beat of data and average RR interval information. The
sampled ECG signal is separated into individual data pieces.
Each data piece has the size of the RR interval centered on the
R-peak, including P wave, QRS complex, and T wave (Fig.
2).

B. LEARNING TEMPLATE CLUSTERS

Unlike the existing method where a reference normal signal
is given, in this study, a reference normal signal is obtained
using template clusters [28]–[30]. The template-learning al-
gorithm is divided into three steps: cluster and template
initialization, template update, and normal reference template
selection and cluster separation. Alg. 1 represents the algo-
rithm for initializing and updating the template cluster. Each
template consists of weights and shape data. In the template
initialization step, a new template is created. The first input
ECG signal is inserted into the created template, and the
weight is set to 1.

In the template update step, the data piece is compared
with all generated templates. The Pearson correlation co-
efficient, expressed by (1), represents a linear distribution
between the two signals as a value between −1 and 1.

Algorithm 1: Update template cluster

1 Goal: Update template
2 Si : ith input beat

3 M : maximum similarity
4 p : most similar template’s number

5 PRR : Pearson similarity of RR interval
6 PP : Pearson similarity of P wave

7 Pt : threshold for template update

8 T i : ith template in cluster
9 T i

w : weight of ith template
10 N : number of template in cluster

11 % Initialize cluster
12 T 1 = S1

13 T 1
w = 1

14 N = 1

15 % Find most similar template
16 foreach j from 1 to N do
17 Calculate PRR and PP between Si and T j

18 Map PRR’s range and PP ’s range from 0 to 1
19 if PRR + PP > M then
20 M = PRR + PP

21 p = j

22 % Update cluster
23 if M > Pt then
24 % Weighted mean update
25 T p = (T p

w × T p + Si)/(T p
w + 1)

26 T p
w = T p

w + 1

27 else
28 % Add new template
29 N = N + 1
30 TN = Si

31 TN
w = 1

ρ(X,Y ) =
1

N − 1

N∑
i=1

(Xi − µX)

σX
· (Yi − µY )

σY
(1)

The Pearson similarity 1 means a perfect positive linear
correlation, 0 means no linear correlation, and −1 means
perfect negative linear correlation. The similarity between
template and signal is analyzed using the Pearson similarity
of the P wave and RR interval.

Each input signal (Si) selects the template with the highest
similarity among all created templates. When the highest
similarity exceeds the template update threshold, template
data (Cp

T ) is updated as the weighted mean value shown in
(2).

Cp
T =

Cp
w × C

p
T + Si

Cp
w + 1

(2)
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The template’s weight (Cp
w) indicates the number of ap-

peared data similar to the template. When the template is
updated, the larger the weight, the less the data changes. After
the data update, the template’s weight is increased by 1. If the
similarity does not exceed the threshold, it means that there
is no similar template. Thus, a new template is created in the
cluster.

The templates of the created cluster are sorted in the order
of the largest weight. Each template is classified into a normal
template and abnormal template clusters by comparing the
Pearson similarity with the reference normal template with
the largest weight. With these normal/abnormal template
groups, we can prevent overdetection of a normal beat with
slight shape deformation as an abnormal beat.

C. LINEAR APPROXIMATION
A cluster consisting of several templates requires many mem-
ory spaces. If one ECG signal consisting of 300-number of
32-bit samples and 20 templates is stored in the cluster, it re-
quires 24 KB of memory. We adopted an LA of each template
to reduce memory for the cluster and overall execution time.
The proposed approximation method simplifies the template
with N fiducial points.

Fig. 5 shows the behavior of a conventional LA. The cost
matrix Ck(i, j) represents the minimum cost between the
ith and the jth point with k number of vertices. The cost
matrix C0 representing the minimum cost without vertex is
called the base matrix. The existing LA requires memory
of O(L2N) to find the minimum path from 1 to L using N
vertices. With the top-down recursive approach, each cost
matrix Ck(i, j) can be calculated as (3).

Ck(i, j) = min
vk∈[1,··· ,L]

(Ck−1(i, vk) + C0(vk, j))) (3)

where vk denotes the position of the kth vertex. We reduced
the memory usage of the LA using the ECG signal charac-
teristics (Fig. 6). The ECG signal approximation error is the
same, even when the signal is reversed. Thus, the cost matrix
has a symmetry characteristic. The vertices selected using LA
have a monotone characteristic, because the ECG signal data
is sampled over time. In addition, the internal vertices of the
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FIGURE 6. Reduced matrices memory usage by applying the monotone
characteristic.
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FIGURE 7. Minimized base matrix and column-wise operation.

ECG signal start at the first sample and end at the last sample.
Thus, only the first row of the cost matrix is used for LA.

The LA converts an ECG signal over time into an ECG
signal according to an event. Thus, the compressed ECG data
consists of time information and signal data of the vertex.
In the LA process, we limit the maximum distance between
vertices to Nbit to reduce the signal distortion and ensure
that the entire signal is evenly compressed. Fig. 7 shows the
memory space used for the base and the cost matrices when
the maximum distance between vertices is Nbit. The cost
matrix needs the value of the previous column to obtain the
current column’s value.

The X and Y arrays in Fig. 7 are one-dimensional (1D)
arrays with a size of Nbit. The cost matrix element C(i, j)
can be calculated as the smallest value among the sum of each
element of the X array, having values from C0(i − Nbit, j)
to C0(i − 1, j), and the Y array, having values from C(i −
Nbit, j−1) to C(i−1, j−1). In this calculation process, we
expressed the base matrix as two Nbit-sized arrays instead of
L × L-sized array. The first array is the base matrix column
array used to calculate the cost matrix, represented as the
X array. The second array is the first column of the base
matrix used to compute the first row of the cost matrix. Alg.
2 represents the template cluster learning process used. The
C0 represents the base matrix required to calculate the cost
matrix, denoted by X array, and the CT represents the first
column vector of the base matrix.
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Algorithm 2: Learning template cluster

1 Goal: Calculate C(N,L)
2 L : length of the signal
3 Nbit : maximum distance of vertices
4 N : number of vertices in the signal

5 C : cost matrix of size N × L
6 C1 : base matrix of Nbit size column vector
7 CT : temporary row vector

8 R : Range of vk
9 E(i, j) : linear approximation error from i to j

10 % Calculate the CT

11 foreach j from 1 to Nbit do
12 CT (j − 2) = E(1, j)

13 % Calculate the cost matrix
14 foreach j from 2 to L− 1 do
15 % Update the base matrix for jth column of cost

matrix
16 foreach i from max(0, j −Nbit) to j − 1 do
17 C1(i− (j −Nbit)) = E(i, j)

18 % Calculate jth column of cost matrix
19 foreach d from max(0, j − L+N − 2) to

min(N − 1, j − 2) do
20 if d is 0 then
21 R = [max(1, j −Nbit), · · · , j − 1]
22 C(0, j) =

min
vk∈R
{CT (vk−1)+C0(vk−j+Nbit+1)}

23 else
24 R = [max(d+ 0, j −Nbit), · · · , j − 1]
25 C(d, j) =

min
vk∈R
{C(d−2, vk)+C0(vk−j+Nbit+1)}

26 % Update base matrix for Lth column of cost matrix
27 foreach i from max(0, L−Nbit) to L− 1 do
28 C1(i− (L−Nbit)) = f(i, L)

29 % Finish to calculate the cost matrix
30 R = [max(d+ 0), L−Nbit, · · · , L− 1]
31 C(N,L) = min

vk∈R
{C(N−2, vk)+C0(vk−(L−Nbit))}

D. BEAT DIAGNOSIS

The normal/abnormal cluster is a set of templates having
an event fiducial point optimized for a person through the
ECG signal-learning process. The input ECG signal to be
diagnosed is classified by the error value with the nor-
mal/abnormal cluster. Fig. 8 shows the normal/abnormal
ECG signal and the data sampled by the reference normal
template. First, the input ECG signal is cut around the R-
peak. The cut signal is sampled using time information of the
linear approximated template for comparison. The signal’s
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FIGURE 8. (a) Normal electrocardiogram signal, (b) the abnormal signal, and
the (c) normal/ (d) abnormal data sampled by the reference normal template.

error value is calculated as the sum of squares of the potential
difference and the angular difference between the template
and sampled data. The cluster’s error value is calculated
with the average of the template error values consisting of
the cluster. If the normal cluster’s error is smaller than the
abnormal cluster’s error, the input ECG signal is diagnosed as
normal. However, if the normal cluster’s error is larger than
the abnormal cluster’s error, it is diagnosed as abnormal.

IV. HARDWARE ACCELERATION USING
FIELD-PROGRAMMABLE GATE ARRAY
A. CO-DESIGN PLATFORM
To diagnose a person’s ECG signal, the proposed algorithm
first learns normal and abnormal beats using individual ECG
data. Through the learning process, the reference normal
signal for diagnosis is optimized for a person, resulting in
high accuracy with a small investment of resources, such
as memory usage and processing time. However, since the
accuracy of diagnosing other people using a reference signal
optimized for a person is lowered, a learning process for each
person’s ECG signal is required before diagnosis. In a server
environment that diagnoses ECG signals from multiple peo-
ple at the same time, the software can operate flexibly, but it
is difficult to execute in parallel. Because each individual’s
ECG signal is different and each beat is independent in the
diagnosis process, the ECG signal is suitable for parallel
computation using hardware accelerator. We used a hardware
and software co-design to quickly diagnose the ECG signals
of many people, creating an environment that can process
large amounts of ECG data on the server.

For software and hardware co-design, we divided the al-
gorithm into a learning and a diagnosis process. Fig. 9 shows
the order in which each algorithm operates in a co-designed
platform. If the target is a person without learning data, the
algorithm learns a reference signal for diagnosis by receiving
ECG data for about 30 min. When the reference signal is
learned, data is received from the sensor, and diagnosis is
started. At the diagnosis process, the received data is pre-
processed to remove noise and is divided into one interval
centered on the R-peak. When the interval data is ready,
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the FPGA binary is implemented through a command. The
reference signals are delivered to the kernel in the form of
a clustered matrix. Then, the pre-processed data is sent to
the kernel in the form of an ECG matrix. The transmitted
data is analyzed by hardware and diagnosed as normal and
abnormal.

We used a hardware accelerator so that the algorithm
consisting of the learning and diagnosis process can execute
the data quickly. The learning process of finding a reference
signal by receiving data from a sensor is a time consuming
process. If all operations of the algorithm are performed in
the hardware, the processing speed will be fast. Hardware
consumes large power instead of fast execution time. For
energy-efficient hardware acceleration, it is necessary to
properly distribute execution using software and hardware
acceleration. In ECG signal analysis, which diagnoses a large
amount of data, the learning process takes up a low per-
centage of the total execution time because once a reference
signal is found, it is no longer executed. We tried reducing
the execution time and power consumption by executing the
learning process, which occupies a low percentage of the
total execution, as an application algorithm, and the diagnosis
process, which occupies a high percentage of total execution,
as a hardware accelerator.

We co-designed the software and hardware using Xilinx’s
Vitis integrated software platform. The Vitis platform sup-
ports high-level synthesis (HLS), which synthesizes hard-
ware using high-level languages such as C/C++ or Python.
Fig. 10 shows the process of compiling an application pro-
gram using GCC and hardware synthesis using the Vitis com-
piler. Files written in C/C++ are compiled and linked by GCC
to create a single executable file. Similar to compiling an
application, the Vitis compiler builds a high-level language
consisting of C/C++ and OpenCL into Xilinx FPGA binary
file (xclbin). In the implementation phase, Vitis automatically
generates the connection code between software and hard-

Host compiler
(g++)

Vitis compiler
(v++)

C/C++, OpenCLC/C++, OpenCLC/C++, OpenCL C/C++, OpenCL, RTL

Host executable Xilinx FPGA binary
(.xclbin)

Algorithm OpenCL XRT
Configurable 

hardware
Shell

config.

Development

Compiled object

Implementation
Call

Reply
Processor FPGA

FIGURE 10. Application and hardware development using Vitis platform.
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API

Global
memory

(1) Prepare binary

Reconfigurable 
hardware

(2) Prepare
data set

(3) Launch kernel
(4) Memory

burst read

(5) Process

(6) Memory
burst write

(7) Receive
result

Local
memory

FPGA
binary

Processor FPGA

Software execution Hardware execution

FIGURE 11. Execution flow of the co-design system.

ware.
The host application consists of an algorithm that per-

forms computing operations and an OpenCL API that com-
municates with the hardware. The OpenCL API abstracts
hardware-specific Xilinx runtime (XRT) functions so that
the application can be developed independently of the tar-
get hardware. Fig. 11 shows the behavior of hardware and
software executed on the Vitis platform. The application first
sets the hardware target and environments available in the
execution environment. When the hardware target setting is
completed, select the kernel FPGA binary to be executed,
set the memory space for data transmission/reception with
the hardware, and set the context queue for command deliv-
ery. After all settings, data necessary for the operation are
transferred to global memory using the algorithm, and the
hardware kernel is executed. When the kernel is executed,
the FPGA binary file is implemented at the reconfigurable
region. Then, the hardware reads data at the global memory,
processes it, and writes the result to global memory according
to the internal operation. After the kernel execution, the
processor receives the result written from the kernel into the
global memory and executes the rest of the algorithm.

B. ECG DIAGNOSIS HARDWARE
Alg. 3 represents an ECG diagnosis application using the
Vitis platform. When the application starts, it trains the
normal cluster ClN and the abnormal cluster ClA with the
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Algorithm 3: Application for electrocardiogram
(ECG) diagnosis

1 Goal: Normal/abnormal diagnosis of data
2 ClN : normal cluster
3 ClA : abnormal cluster
4 ErrN : set of error value from normal cluster
5 ErrA : set of error value from abnormal cluster
6 B : beats processed into an ECG matrix

7 % Training ECG signal
8 (ClN , ClA) = get_cluster(learning data)

9 % Set server’s hardware
10 Get hardware configurations
11 Create context and command queue
12 Load binaries to FPGA
13 Set kernel arguments

14 % Diagnosing
15 ErrN = Launch the kernel (ClN , B)
16 ErrA = Launch the kernel (ClA, B)
17 foreach data in B do
18 if ErrNi < ErrAi then
19 ith beat is Normal

20 else
21 ith beat is Abnormal

set of learning data. When the cluster training is complete,
the application starts preparing for using the hardware accel-
erator. It finds the hardware that can be used in the server
environment and configures the hardware. After configuring
the hardware, context and command queues are created to
transfer data and commands from the application to the
hardware. By preparing the binary code of pre-synthesized
hardware and configuring the kernel arguments, which is a
communication port between the application and hardware,
the preparation for using the hardware in the application is
completed. In the diagnosis process, the input ECG signal is
processed as an ECG matrix and transferred to the hardware.
The trained normal and abnormal clusters are transferred to
the hardware kernel along with the ECG matrix and executed,
respectively. The execution results are stored in an array of
normal/abnormal cluster error values. The normal/abnormal
diagnosis of each ECG beat is determined by the smaller
error value.

Alg. 4 represents the hardware accelerator running in the
application. The hardware kernel, which is written in C++
and Vitis HLS syntax, is synthesized into hardware binary
code using Vitis HLS. All operations inside the accelerator
are executed in parallel by hardware. In the application, the
data to be provided to the hardware is inserted into the
global memory, and the address and size of the data are
passed through arguments. The hardware reads the cluster
and ECG matrices stored in the global memory in the internal

Algorithm 4: Error value calculation hardware

1 Goal: Calculate the error value Ei of each beat
2 Cl : cluster matrix of reference signals
3 Bi : ith beat signal inside the ECG matrix
4 Ei : ith beat’s error value
5 N : number of templates in cluster

6 Vi : ith beat’s sum of squares of potential error
7 Ai : ith beat’s sum of squares of angular error

8 % Memory burst read
9 Cl← Cluster matrix

10 B ← ECG matrix

11 % Calculate potential and angular error
12 foreach Bi do
13 Vi = get_sum_of_square_verr(Cl, Bi)
14 Ai = get_sum_of_square_aerr(Cl, Bi)

15 % Memory burst write
16 (Vi +Ai)/N → Ei

memory. Beat data is stored in each row of the ECG matrix,
and an approximated template is stored in each row of the
cluster matrix. The hardware calculates the sum of the square
value of potential and angular errors between one beat and a
template data and then calculates the average value. Finally,
the hardware returns the error value for each beat. Since
this study focused on accelerating the ECG signal using
hardware, the amplitude and angular errors are measured
using a simple sum of squares operation.

Fig. 12 shows the architecture of the ECG diagnosis ac-
celerator configured in the FPGA. The accelerator stores a
normal cluster consisting of an N number of templates and
an abnormal cluster consisting of anM number of templates.
Each template is wired up to the angle error and potential
error calculators. The ECG beat data stored in the ECG
matrix is inserted into the accelerator. The input data is wired
up to each calculator, and the calculated errors are summed
to obtain average values. The diagnosis result is obtained by
comparing the average error value of the normal cluster with
that of the abnormal cluster.

Fig. 13 shows the calculation circuit inside the accelerator
block. The potential error circuit is obtained by subtracting
the potential value of the template and data, while the angular
error is obtained by subtracting the template and data’s angle.
The data inserted into the angle calculator consists of N
vertices. The included angle of each vertex is calculated using
the law of cosines with the previous and next vertices. When
data is input to the angle calculator, each vertex’s angle is
output.

To process ECG signal input from many sensors in an IoT
environment, we proposed real-time hardware acceleration
(Fig. 14). Target people who have signed up for the first
time send ECG data signals for learning to the system.
The individual normal/abnormal templates are converted into
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template clusters and stored in the cluster matrix. Each signal
transmitted from the sensors is stored in the ECG matrix after
pre-processing and is diagnosed in real-time at the FPGA.
The entire system speeds up the computation using hardware
and process data of multiple people in parallel.

V. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
For the experiment of the proposed algorithm, a Xilinx Alveo
U200 FPGA accelerator card and two Intel Xeon Bronze
3204 processors are configured in the server (Fig. 15). Xeon
processor consisting of six threads has a maximum clock
speed of 1.9 GHz and a memory read speed of 2133 MHz.
The Alveo U200 card based on Xilinx’s UltraScale archi-
tecture consists of 892,000 number of lookup tables (LUTs)
and 100 MHz clock sources. It has an 18.6 tera operation per
second computation speed at INT8 precision.

For the proposed method’s performance evaluation, MIT-
BIH ADB, a representative arrhythmia database, was used
[31]. Each record of the MIT-BIH ADB is a 30-min ECG

signal sampled at 360 Hz. We diagnosed five different data,
including 1987 beats, to simulate the diagnosis of large-scale
data. Each person’s data is stored as a cluster for diagnosis
through the learning process. The diagnostic process was
conducted with execution using only software and hardware
acceleration.

Fig. 16 shows a timeline trace of a hardware-accelerated
application running on the server. In the process of (1), the
application creates each cluster by training on the ECG data
of five people. In the process of (2), the kernel is configured
and the binary is implemented in the actual FPGA. Fig. 16
(b) shows an enlarged part of the kernel timeline in (a).
The application delivers data to the kernel through a queue,
executes the kernel to process the data, and receives the
execution result. Inside the designed kernel, the ECG data
of five people are simultaneously diagnosed through parallel
processing.

B. EXECUTION TIME
We executes five people’s ECG signal diagnosis for four
times. Fig. 17(a) shows the total execution time using the
software and hardware accelerators when the data of five
people with 1987 ECG beats were diagnosed. Fig. 17(b)
shows the execution time when diagnosing an ECG beat. On
average, diagnosing one ECG signal using the software at
the server takes 0.573 ms, and diagnosing five people’s ECG
signal takes 5.7 s. With the hardware acceleration, it takes
0.290 ms on average to diagnose an ECG signal because the
iterative computation of the diagnostic algorithm is quickly
processed by pipelining. The hardware that simultaneously
diagnoses five people’s ECG signal takes 0.572 s, an 89.96%
reduction compared to the software execution.

For more experiments on hardware parallel execution, we
analyzed the execution time and the size of the accelerator
when diagnosing the ECG signals of 10 people. Fig. 18
shows the average execution time according to the type of
accelerator. The accelerator is divided into HW 1 to HW
10 depending on how much data can be simultaneously
processed in parallel. Using only a processor without an
accelerator, represented as SW, takes 11.39 s on average
for diagnosis. The more parallel execution the accelerator
supports, the less execution time it takes.

C. POWER CONSUMPTION
Fig. 19 shows the number of LUTs required when imple-
menting an accelerator. In principle, the more work the accel-
erator executes, the more LUTs it needs. Using the number
of LUTs and the execution time, we estimate the total power
consumption by the method of (4).

E = (PHW ×
nLUTs

N
+ PSW )× t (4)

The Alveo U200 has 892,000 number of LUTs, which
are represented by N , and it consumes 100 W of power on
average (PHW ). The Intel Xeon 3204 processor consumes
85 W on average (PSW ). We assumed that average power
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FIGURE 15. Server environment for abnormal electrocardiogram diagnosis
using Alveo U200.

consumed by the designed hardware accelerator is propor-
tional to the number of used LUTs, represented by nLUTs.
Therefore, the power consumed by the accelerator per second
can be calculated by multiplying the average power of the
hardware by the ratio of the number of used LUTs to the total.
The total power consumption, denoted by E, can be obtained
by multiplying the execution time by the power consumed by
the accelerator and processor per second.

Fig. 20 shows the power consumption calculated from (4)
using the execution time and the number of LUTs. Diagnos-
ing without an accelerator has high power consumption due
to the slow processing speed, which takes 11.39 s. Although
the accelerator’s instantaneous power consumption is greater
than the processor’s instantaneous power consumption, its
total power consumption is smaller because of the shorter
execution time. As the hardware gets bigger, more beats
can be simultaneously diagnosed, reducing the execution
time and increasing the instantaneous power consumption.
As shown in Fig. 20, as the number of hardware increases,
the total power consumption decreases. However, starting

(a)

(b)

(1) (2)

FIGURE 16. Timeline trace of (a) co-design platform execution and (b) kernel
execution using Alveo U200.

from HW 9, the instantaneous power consumption is larger
than the reduced execution time, resulting in increased power
consumption. In this experiment with ECG signals of 10
people, HW 8, which can diagnose eight beats in parallel,
consumes the least power compared to the execution time.

VI. CONCLUSION
This study introduces a hardware acceleration system for
diagnosing ECG signals in real-time in an IoT environment
where a large amount of data is generated. Existing diagnosis
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algorithms require a large amount of memory and time to
train a reference signal, which is a standard for diagnosis.
The proposed system uses an approximated template-based
classification to reduce memory usage and time required
for learning and diagnosing. Since the learned approximated
reference signal has low fidelity, the detection rate is im-
proved by storing multiple reference signals using the tem-
plate cluster. We focused on acceleration of ECG signal
diagnosis using parallel accelerator. Therefore, experiments
were conducted using basic amplitude and angular difference
calculations rather than algorithms based on precise error
detection.

In the diagnostic process, each reference signal is in-
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FIGURE 19. Number of used lookup tables according to the amount of
hardware running concurrently.
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FIGURE 20. Total power consumption according to the amount of hardware
running concurrently.

dependent; thus, it can be simultaneously executed using
an accelerator. We designed a software and hardware co-
design platform that receives data for training, generates
template clusters, and synthesizes accelerator in real-time,
using a diagnostic algorithm. The co-design platform, which
implements hardware at FPGA in real-time, can obtain the
flexibility of software execution and high performance of the
hardware. As a result of executing five people’s ECG signals
on the processor and Alveo U200 FPGA, the execution time
using the accelerator is reduced by 89.96% compared with
the execution time using only the processor. As the hard-
ware accelerates more computations, total execution time is
decreased. However, the instantaneous power consumption
is increased. When using hardware that accelerates single
diagnosis, the overall power consumption is reduced by 70%
compared with the power consumption using the processor.
As the size of hardware grows, the instantaneous power
consumption increases, but the reduction in execution time
is limited. Therefore, it is necessary to find appropriate size
of hardware in the acceleration system.

The proposed platform is suitable for a diagnostic sys-
tem using a hardware accelerator since the memory usage
required for diagnosing ECG signals for a person is small.
Besides, the diagnosis of each person’s signal is performed
independently. We designed a large-scale ECG signal di-
agnostic platform using an accelerator that simultaneously
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diagnoses the ECG signals of several people. The more
people the accelerator can simultaneously diagnose, the less
time required for diagnosis, thereby increasing the size of the
hardware. In this study, the power consumption, according to
the size of the accelerator, was experimented with. In future
studies, this study will be the basis for designing an efficient
diagnostic system suitable for the situation by adjusting the
size of the accelerator in real time according to the change of
the input ECG signal, the required diagnostic precision, and
the state of the server.

REFERENCES
[1] P. Gentile, M. Pessione, A. Suppa, A. Zampogna, and F. Irrera, “Embedded

wearable integrating real-time processing of electromyography signals,” in
Multidisciplinary Digital Publishing Institute Proceedings, vol. 1, no. 4,
2017, p. 600.

[2] S. Saponara, M. Donati, L. Fanucci, and A. Celli, “An embedded sensing
and communication platform, and a healthcare model for remote monitor-
ing of chronic diseases,” Electronics, vol. 5, no. 3, 2016.

[3] S. S. Virani, A. Alonso, H. J. Aparicio, E. J. Benjamin, M. S. Bittencourt,
C. W. Callaway, A. P. Carson, A. M. Chamberlain, S. Cheng, F. N. Delling
et al., “Heart disease and stroke statistics—2021 update: a report from the
american heart association,” Circulation, vol. 143, no. 8, pp. e254–e743,
2021.

[4] H. Kim, R. F. Yazicioglu, T. Torfs, P. Merken, H. Yoo, and C. Van Hoof,
“A low power ecg signal processor for ambulatory arrhythmia monitoring
system,” in 2010 Symposium on VLSI Circuits, 2010, pp. 19–20.

[5] S. Liu, J. Shao, T. Kong, and R. Malekian, “Ecg arrhythmia classification
using high order spectrum and 2d graph fourier transform,” Applied
Sciences, vol. 10, no. 14, p. 4741, 2020.

[6] T. Tuncer, S. Dogan, P. Pławiak, and U. R. Acharya, “Automated ar-
rhythmia detection using novel hexadecimal local pattern and multilevel
wavelet transform with ecg signals,” Knowledge-Based Systems, vol. 186,
p. 104923, 2019.

[7] M. Kumar, R. B. Pachori, and U. R. Acharya, “Automated diagnosis of
myocardial infarction ecg signals using sample entropy in flexible analytic
wavelet transform framework,” Entropy, vol. 19, no. 9, p. 488, 2017.

[8] M. Elsayed, M. Mahmuddin, A. Badawy, T. Elfouly, A. Mohamed, and
K. Abualsaud, “Walsh transform with moving average filtering for data
compression in wireless sensor networks,” in 2017 IEEE 13th International
Colloquium on Signal Processing its Applications (CSPA), 2017, pp. 270–
274.

[9] S. Olmos, M. MillAn, J. Garcia, and P. Laguna, “Ecg data compression
with the karhunen-loeve transform,” in Computers in Cardiology 1996.
IEEE, 1996, pp. 253–256.

[10] D. Lee, J. Cho, and D. Park, “Cloudification of on-chip flash memory
for reconfigurable iots using connected-instruction execution,” IEMEK
Journal of Embedded Systems and Applications, vol. 14, no. 2, pp. 103–
111, 2019.

[11] D. Lee, H. Moon, S. Oh, and D. Park, “miot: Metamorphic iot platform
for on-demand hardware replacement in large-scaled iot applications,”
Sensors, vol. 20, no. 12, p. 3337, 2020.

[12] D. Lee and D. Park, “Hardware and software co-design platform for
energy-efficient fpga accelerator design,” Journal of the Korea Institute of
Information and Communication Engineering, vol. 25, no. 1, pp. 20–26,
2021.

[13] D. Lee, J. Cho, and D. Park, “Efficient partitioning of on-cloud remote
executable code and on-chip software for complex-connected iot,” in
2019 IEEE International Conference on Big Data and Smart Computing
(BigComp), 2019, pp. 1–4.

[14] S. Lee, Y. Jeong, J. Kwak, D. Park, and K. H. Park, “Advanced real-time
dynamic programming in the polygonal approximation of ecg signals for a
lightweight embedded device,” IEEE Access, vol. 7, pp. 162 850–162 861,
2019.

[15] S. Lee and D. Park, “Efficient template cluster generation for real-time
abnormal beat detection in lightweight embedded ecg acquisition devices,”
IEEE Access, vol. 9, pp. 70 596–70 605, 2021.

[16] N. Kishore and S. Singh, “Cardiac analysis and classification of ecg signal
using ga and nn,” International Journal of Computer Applications, vol.
127, no. 12, pp. 23–27, 2015.

[17] B. Oussama, B. Saadi, and H. Zine-Eddine, “Extracting features from ecg
and respiratory signals for automatic supervised classification of heartbeat
using neural networks,” Asian J. Inf. Technol, vol. 14, no. 2, pp. 53–59,
2015.

[18] G.-Y. Jeong, K.-H. Yu, M.-J. Yoon, and E. Inooka, “St shape classification
in ecg by constructing reference st set,” Medical engineering & physics,
vol. 32, no. 9, pp. 1025–1031, 2010.

[19] Qibin Zhao and Liqing Zhang, “Ecg feature extraction and classification
using wavelet transform and support vector machines,” in 2005 Interna-
tional Conference on Neural Networks and Brain, vol. 2, 2005, pp. 1089–
1092.

[20] J. Pan and W. J. Tompkins, “A real-time qrs detection algorithm,” IEEE
transactions on biomedical engineering, no. 3, pp. 230–236, 1985.

[21] M. D. Silva-Filarder and F. Marzbanrad, “Combining template-based and
feature-based classification to detect atrial fibrillation from a short single
lead ecg recording,” in 2017 Computing in Cardiology (CinC), 2017, pp.
1–4.

[22] S. Lee, D. Park, and K. H. Park, “Qrs complex detection based on
primitive,” Journal of communications and networks, vol. 19, no. 5, pp.
442–450, 2017.

[23] S. Lee, Y. Jeong, D. Park, B.-J. Yun, and K. H. Park, “Efficient fiducial
point detection of ecg qrs complex based on polygonal approximation,”
Sensors, vol. 18, no. 12, 2018.

[24] H. I. Shahein and H. M. Abbas, “Ecg data compression via cubic-splines
and scan-along polygonal approximation,” Signal processing, vol. 35,
no. 3, pp. 269–283, 1994.

[25] S. Lee and D. Park, “Improved dynamic programming in local linear
approximation based on a template in a lightweight ecg signal-processing
edge device (to be appeared),” Journal of Information Processing Systems,
2021.

[26] A. Velayudhan and S. Peter, “Noise analysis and different denoising
techniques of ecg signal-a survey,” IOSR journal of electronics and com-
munication engineering, vol. 3, pp. 641–644, 2016.

[27] R. Kher, “Signal processing techniques for removing noise from ecg
signals,” J. Biomed. Eng. Res, vol. 3, pp. 1–9, 2019.

[28] M. S. Alam and N. M. Syfur Rahim, “Compression of ecg signal based on
its deviation from a reference signal using discrete cosine transform,” in
2008 International Conference on Electrical and Computer Engineering,
2008, pp. 53–58.

[29] S. Lee, K.-H. Park, and D. Park, “Communication-power overhead reduc-
tion method using template-based linear approximation in lightweight ecg
measurement embedded device,” IEMEK Journal of Embedded Systems
and Applications, vol. 15, no. 5, pp. 205–214, 2020.

[30] S. Lee and D. Park, “A real-time abnormal beat detection method using a
template cluster for the ecg diagnosis of iot devices.”

[31] G. B. Moody and R. G. Mark, “The mit-bih arrhythmia database on cd-
rom and software for use with it,” in [1990] Proceedings Computers in
Cardiology. IEEE, 1990, pp. 185–188.

DONGKYU LEE received his B.S. degree in the
school of electronics engineering from Kyung-
pook National University, Daegu, the Republic of
Korea in 2018. He is currently an integrated Ph.D.
student in the school of electronic and electri-
cal engineering at Kyungpook National Univer-
sity, Daegu, Republic of Korea. He is now pur-
suing his Ph.D. degree in Artificial Intelligence
(AI) Embedded System-Software-on-Chip Plat-
form lab. His research is focused on designing

energy-efficient cloud-connected processors at the VLSI chip level.

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109875, IEEE Access

Dongkyu Lee et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SEUNGMIN LEE received his B.S. and M.S.
degrees in mathematics and his Ph.D. degree in
electronics engineering from Kyungpook National
University (KNU) in 2010, 2012, and 2018, re-
spectively. He expanded his research topics to bio-
inspired signal processing algorithms and elec-
tronics systems. He holds a postdoctoral posi-
tion in KNU. His research interests include signal
processing, image processing, bio-inspired signal
processing, and compact system implementation.

He is focusing his research on bio-signal processing as the research director
of the project supported by the Basic Science Research Program funded by
the Ministry of Education.

SEJONG OH received the Ph.D. degree in elec-
trical engineering and computer science from the
Korea Advanced Institute of Science and Technol-
ogy (KAIST). He is currently a software engineer
at Nvidia and works on compiler problems for
machine learning applications. Prior to that, he
worked on various compiler projects at Qualcomm
and Microsoft. His research interests include com-
pilers, runtime systems, and high performance
computing.

DAEJIN PARK received his B.S. degree in elec-
tronics engineering from Kyungpook National
University, Daegu, Korea in 2001, his M.S. and
Ph.D. degrees in electrical engineering from the
Korea Advanced Institute of Science and Technol-
ogy (KAIST), Daejeon, Korea, in 2003, and 2014,
respectively. He was a Research Engineer in SK
Hynix Semiconductor, Samsung Electronics over
12 years from 2003 to 2014 and has worked on
designing low-power embedded processors archi-

tecture and implementing fully AI-integrated system-on-chip with intelligent
embedded software on the custom-designed hardware accelerator, especially
for hardware/software tightly coupled applications, such as smart mobile
devices and industrial electronics. He was nominated as one of the Presi-
dential Research Fellows 21, the Republic of Korea, in 2014. Prof. Park is
now with the School of Electronics and Electrical Engineering and School
of Electronics Engineering as a full-time assistant processor in Kyungpook
National University, Daegu, Korea, since 2014. He has published over 180
technical papers and 40 patents.

VOLUME 4, 2016 13


