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Background: Emerging evidence indicates that iron distribution is heterogeneous within
the substantia nigra (SN) and it may reflect patient-specific trait of Parkinson’s Disease
(PD). We assume it could account for variability in motor outcome of subthalamic
nucleus deep brain stimulation (STN-DBS) in PD.

Objective: To investigate whether SN susceptibility features derived from radiomics with
machine learning (RA-ML) can predict motor outcome of STN-DBS in PD.

Methods: Thirty-three PD patients underwent bilateral STN-DBS were recruited. The
bilateral SN were segmented based on preoperative quantitative susceptibility mapping
to extract susceptibility features using RA-ML. MDS-UPDRS III scores were recorded
1–3 days before and 6 months after STN-DBS surgery. Finally, we constructed three
predictive models using logistic regression analyses: (1) the RA-ML model based on
radiomics features, (2) the RA-ML+LCT (levodopa challenge test) response model
which combined radiomics features with preoperative LCT response, (3) the LCT
response model alone.

Results: For the predictive performances of global motor outcome, the RA-ML model
had 82% accuracy (AUC = 0.85), while the RA-ML+LCT response model had 74%
accuracy (AUC = 0.83), and the LCT response model alone had 58% accuracy
(AUC = 0.55). For the predictive performance of rigidity outcome, the accuracy of
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the RA-ML model was 80% (AUC = 0.85), superior to those of the RA-ML+LCT
response model (76% accuracy, AUC = 0.82), and the LCT response model alone (58%
accuracy, AUC = 0.42).

Conclusion: Our findings demonstrated that SN susceptibility features from radiomics
could predict global motor and rigidity outcomes of STN-DBS in PD. This RA-ML
predictive model might provide a novel approach to counsel candidates for STN-DBS.

Keywords: quantitative susceptibility mapping, radiomics, deep brain stimulation, Parkinson’s disease, motor
outcome, prediction

INTRODUCTION

Deep brain stimulation (DBS) targeting the subthalamic nucleus
(STN) is a surgical therapy with class I evidence for improving
motor symptoms of Parkinson’s disease (PD) (Odekerken
et al., 2013). Overall, STN-DBS yields improvements in motor
symptoms by approximately 52% when observed in the DBS-
on with medication off (DBS-ON/med-OFF) state at 6-month
follow-up compared to preoperative med-OFF state (Kleiner-
Fisman et al., 2006). However, the global and specific motor
outcomes of DBS therapy remain highly variable (Okun
et al., 2005) and the underlying mechanisms have not been
fully unveiled. Several factors can contribute to the variable
outcome after DBS surgery, including candidate selection,
target localization, postoperative programming, and medication
adjustment (Okun et al., 2005). Most of these key factors can
be well-controlled at experienced sites. However, owing to the
heterogeneity of patient-specific disease profile, predicting motor
response remains challenging. Considering the cost, invasiveness
and potential adverse effects of DBS surgery, it is vitally important
to predict surgical efficacy accurately when counseling candidates
for DBS (Lang and Widner, 2002).

In current clinical settings, satisfactory levodopa challenge test
(LCT) responsiveness on motor symptoms has been widely used
to select suitable PD candidates for STN-DBS. However, there is
currently an ongoing debate regarding whether preoperative LCT
response is a reliable predictor or not. Some studies demonstrated
its predictive value (Charles et al., 2002) but not the others
(Piboolnurak et al., 2007). In addition, the threshold values for the
LCT responsiveness have not been standardized for DBS, ranging
from 25 to 50% in published surgical series (Vingerhoets et al.,
2002; Welter et al., 2002).

PD is a complex movement disorder with different responses
to treatment, probably reflecting different pathological and
biological contributions (Espay et al., 2017). One of the reasons
for the heterogenous therapeutic effects among PD patients
could be the heterogeneity underlying PD pathology (Espay
et al., 2017). With the advent of novel imaging techniques, it
would be necessary to assess pathophysiological process and
approach imaging biomarkers to facilitate the development of
patient-specific interventions. The neuropathological hallmark
of PD is dopaminergic neuronal loss in the iron-rich substantia
nigra (SN) (Oakley et al., 2007). The neurodegenerative process
is triggered long before the onset of motor disability in PD
patients. Since the first report of elevated nigral iron content

in a PD patient in 1924. Consistent findings have demonstrated
that, over time, excessive iron accumulates in the pigmented
neurons of the substantia nigra pars compacta, especially in
the form of a neuromelanin (NM)-iron complex (Jellinger
et al., 1992; Zecca et al., 1996). Biologically, NM serves as
an iron chelator leaving behind a NM-iron complex that
activates microglia. Increased ferritin-loaded microglia in the
SN initiates and prompts α-synuclein aggregation which links
to PD development and progression (Li et al., 2010). The
aggregation of α-synuclein and formation of Lewy bodies may
lead to a continuing protective response which results in selective
neuronal loss in the SN-dopaminergic (DA) system (Zucca
et al., 2017). It is believed that one of the most promising
neuroimaging biomarker candidates for PD is iron content as
assessed with MRI. Several imaging studies observed decreased
T2 relaxation times and increased relaxation rates (R2/R2∗) in the
SN in PD patients compared to healthy controls (Dexter et al.,
1989; Martin et al., 2008; Péran et al., 2010; Yan et al., 2018;
Ghassaban et al., 2019). An ultra-high field 7 Tesla (7T) MRI
study based on T2∗-weighted images delineated the nigrosome-
1 territory of the SN with increased spatial resolution and new
contrast (Lehéricy et al., 2014). Elevated nigral iron content was
interpreted as the primary source of imaging changes in PD
patients. However, these T2∗/R2∗measurements have a non-local
component to them owing to the dipole effects of the iron sources
(Schweser et al., 2011).

Neuroimaging has revolutionized quantitative iron detection
in vivo with the advent of quantitative susceptibility mapping
(QSM) (Haacke et al., 2015). Today QSM is able to directly
represent the source of the iron and, hence, its concentration
(He et al., 2015, 2021). Using phase data from multi-echo
gradient recalled echo (GRE) sequences, QSM deconvolves the
phase to produce a source susceptibility map. Post-mortem
studies have validated that QSM provided a reliable and sensitive
measurement to deep gray matter iron content (Langkammer
et al., 2012). Importantly, QSM opens an avenue to investigate the
role of iron deposition in PD pathology (Lotfipour et al., 2012)
and clinical outcomes. Furthermore, radiomics with machine
learning (RA-ML) analysis based on QSM precisely captures
spatial heterogeneity in nigral iron distribution and subsequently
has practical clinical applications in PD diagnosis (Li et al., 2019).

Since Langley first proposed the notion of machine learning
(ML) in 1996, MRI-based ML for PD research has been
widely used in disease classification (Salvatore et al., 2014;
Adeli et al., 2016; Huppertz et al., 2016). In addition to the
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traditional QSM-based analysis of volume and susceptibility
in deep gray nuclei between PD and healthy controls (HC)
(He et al., 2015), researchers have applied imaging features
for further investigation. One recent QSM study observed
significant difference of histogram features in several deep
gray nuclei between PD patients and HC (Zhang Y. et al.,
2020). They also demonstrated that combined model of the
10th percentile of SN (SNP10) and the 75th percentile of
Putamina (PUTP75) successfully distinguished PD patients from
HC far outweighing than the mean value (Zhang Y. et al.,
2020). In addition to the first-order features of the deep gray
nuclei such as mean value and percentile, other radiomics
features, for example texture features, were also investigated
for PD diagnosis. The texture features reflect the variation and
distribution of local tissue properties, which are otherwise not
apparently observed by a human reader (Zhang et al., 2012).
These features can capture subtle changes within the structure
and can be useful for detecting alteration from normal tissue
in PD patients. The texture analyses of the SN showed the
superiority of QSM to R2∗ map in discriminating PD and HC
in one study (Li et al., 2019). In order to apply radiomics to
patient-specific diagnosis instead of intergroup comparison, the
researchers took these radiomics features as prior knowledge and
constructed a novel diagnostic model with the approach of ML
(Xiao et al., 2019).

Currently, there are no efficient indicators for predicting
specific motor outcome, warranting the search for other imaging
biomarkers to predict surgical efficacy and screen for suitable
candidates. We hypothesized that individual iron distribution
in the SN, which may reflect patient-specific disease trait, could
potentially account for some variability in motor outcome of
STN-DBS surgery. In this study, we introduce a computer-
aided PD prognostic framework to develop a RA-ML model
to predict motor outcome of STN-DBS when counseling PD
candidates for STN-DBS.

MATERIALS AND METHODS

Patients
A total of thirty-three PD patients were prospectively recruited
for bilateral STN-DBS surgery from December 2017 to September
2019. This study was approved by the Ethics Committee of Ruijin
Hospital Affiliated to Shanghai Jiao Tong University School
of Medicine. All patients provided written informed consent
prior to recruitment.

The PD patient selection criteria were: (i) clinically diagnosed
idiopathic PD based on the United Kingdom PD Society
Brain Bank Criteria (Hughes et al., 1992) at the time of
surgery; (ii) absence of severe cognitive impairment [Montreal
Cognitive Assessment (MoCA) score ≥ 17, or Mini-mental
State Examination (MMSE) score ≥ 24] (Hoops et al., 2009);
and (iii) no significant neuropsychiatric disorders, such as
depression [Beck Depression Inventory (BDI) score ≥ 15],
anxiety disorders (e.g., panic disorder and obsessive-compulsive
disorder), psychotic disorders (e.g., schizophrenia) or post-
traumatic stress disorder; and (iv) no MRI contraindications.

Clinical Evaluation
Demographic and clinical information including gender, age,
disease duration, levodopa equivalent daily dosage (LEDD), and
LCT responsiveness were recorded prior to STN-DBS operation.
Preoperative Movement Disorder Society-sponsored revision of
the Unified Parkinson’s Disease Rating Scale Part III (MDS-
UPDRS III) scores were recorded in the off-medication (med-
OFF, 12 h discontinuation of levodopa) state. Postoperative
MDS-UPDRS III scores and LEDD were obtained in the DBS-
ON/med-OFF state at 6-months follow-up. MDS-UPDRS III
total scores, corresponding to global motor outcome, were
then subdivided to measure improvements in specific motor
outcome, including rigidity (item 3.3), bradykinesia (item 3.4–
3.8), and tremor (item 3.15–3.17) (Malaga et al., 2021). Motor
improvement was calculated as follows,

Improvement(%)

=
(preoperative MDS −UPDRS III score)−(postoperative MDS-UPDRS III score)

preoperative MDS-UPDRS III score

×100%

Optimal surgical outcome was defined as having achieved no
less than 30% improvement, consistent with previously published
classification (Rodriguez et al., 2007) and suboptimal outcome
was defined as less than 30% improvement. In this work, tremor
was not included in the RA-ML analysis given that there were
100% improvement of tremor symptoms in most PD patients
(16/33) in the postoperative DBS-ON/med-OFF state.

MRI Data Acquisition
Prior to STN-DBS operation, all patients were imaged at 3T
MRI scanner (Ingenia, Philips Healthcare, Netherlands) with
a 15-channel phased head coil. Thin foam pads both under
and beside head were used to reduce potential motion artifacts.
The imaging parameters were chosen as follows: (1) multi-
echo GRE sequence: voxel resolution = 1 × 1 × 1 mm3,
flip angle (FA) = 12o, repetition time (TR) = 25 ms, eight
echoes with the first echo times (TE1) = 3.3 ms, echo spacing
(1TE) = 2.6 ms, sampling bandwidth = 673 Hz/pixel, number
of slices = 136, and an acquisition time of 6 min and 16 s;
2) T2-weighted fast spin echo (FSE T2W): TR = 4,000 ms,
TE = 106 ms, FA = 90◦, voxel resolution = 0.75× 0.75× 1.5 mm3,
bandwidth = 440 Hz/pixel, and an acquisition time of 5 min and
36 s. Fluid attenuated inversion recovery (FLAIR) and diffusion-
weighted imaging (DWI) data were also collected to ensure there
were no cerebrovascular diseases or space-occupying lesions in
the brain. The transverse plane was set to be parallel to the
anterior commissure-posterior commissure line.

Targeting Procedure for STN-DBS
Each patient was defined as a potential candidate for STN-DBS
after reaching group consensus among functional neurosurgeons,
neurologists, neuropsychologists, and psychiatrists. All patients
received bilateral STN-DBS following the standard procedure of
screening for DBS eligibility at Ruijin Hospital. The targeting
procedure for STN-DBS was performed as described previously
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(Zhang C. et al., 2020). The electrodes of two manufacturers
(model 3387–40, Medtronic, Minneapolis, MN, United States or
model L302, PINS, Beijing, China) were used in the recruited
PD patients, which had the same electrode size and physical
parameters. For each patient, correct electrode placement was
verified by postoperative CT imaging merged with preoperative
high-resolution FSE T2W images.

Data Processing and Model Construction
Image Pre-processing and Segmentation
QSM reconstruction was performed in MATLAB (MathWorks,
Inc., Natick, MA, United States). Original DICOM (Digital
Imaging and Communications in Medicine) data from multi-
echo GRE sequences were separated into magnitude and phase
images. The magnitude images were used to extract brain tissue
by using the Brain Extraction Tool (BET) (Smith, 2002) in FSL
(FMRIB, University of Oxford, Oxford, United Kingdom). Then,
a Laplacian-based algorithm was used to unwrap the raw phase
data. Lastly, the susceptibility map was reconstructed through
dipole inversion using STAR-QSM (streaking artifacts reduction
for QSM) algorithm (Wei et al., 2015).

The regions-of-interest (ROIs) for the SN were manually
drawn by two experienced radiologists using SPIN software
(SpinTech, Inc., Bingham Farms, MI, United States). They
were blinded to clinical details and drew the initial ROIs
independently. When tracing the ROIs of SN, the QSM images
were zoomed by a factor of four to make sure the objects could
be accurately drawn. The ROIs were drawn to cover the bilateral
SN on all slices where the SN signal was clearly visible on QSM
images. The final ROIs were obtained from the initial ROIs using
a semi-automated dynamic programming approach in SPIN
software (He et al., 2021). Finally, we combined the final ROIs of
all slices unilaterally to obtain the SN volume-of-interest (VOI).

Radiomics Feature Extraction
The radiomics feature extraction were performed by
PyRadiomics, an open-source platform described in a previous
publication (van Griethuysen et al., 2017). In total, 1,328
radiomics features were extracted from the SN VOIs of each
patient, including 26 shape features, 252 first-order features, 336
Gray Level Co-occurrence Matrix (GLCM) features, 224 Gray
Level Run Length Matrix (GLRLM) features, 224 Gray Level Size
Zone Matrix (GLSZM) features, 196 Gray Level Dependence
Matrix (GLDM) features, and 70 Neighboring Gray Tone
Difference Matrix (NGTDM) features. The shape features were
directly extracted from the SN VOIs. The first-order and texture
features were extracted from the original QSM image or from
the filtered QSM images with one of three specific filter types: (i)
Wavelet filtering: Applying high (H) or low (L) pass filters to a 3D
image in each of the three dimensions. We performed LLL and
HHH to filter QSM images with relative high stability. (ii) LoG:
Laplacian of Gaussian filter for highlighting edges. (iii) Gradient:
Calculating and returning the gradient magnitude of the image.

Feature Selection by Stability
The intraclass correlation coefficient (ICC) was used to quantify
the stability degree of each feature between the two raters. ICC

is an established tool to assess inter-rater reliability. In this study,
ICC estimates was based on an absolute-agreement and two-way
random-effects model, which follows the guidelines for choosing
the appropriate form of the ICC (Shrout and Fleiss, 1979). Here,
ICC (2,1) estimates were calculated for feature values using the
Pingouin python package (Vallat, 2018). It is recommended that
ICC estimates should be >0.80, which indicates good reliability
between the raters. In this study we selected 657 radiomics
features whose ICC values were all >0.85, which is a reasonable
selection strategy (van Griethuysen et al., 2017). Since ICC is a
statistical indicator, it cannot be assumed that each feature with
ICC >0.85 will not have a large error for each case. Therefore,
a relative error of 10% was used for further feature selection.
Relative error is the ratio of an error in a measured quantity to
the magnitude of that quantity, which indicates the credibility
of the measurement. We preserved 149 features with relative
error <0.1, which aimed to select the features with a relatively
high degree of credibility of the measurement.

Feature Selection by Prior Knowledge
Due to the limited sample size and high-dimensional feature
vector, it is important to remove noisy features and avoid
potential overfitting problems. As suggested in one study
(Amoroso et al., 2018), another validation of the proposed
methodology is that the selected features should correspond
to the ones whose relationship with the disease has already
been established. Therefore, we took prior knowledge into
consideration. We assume that the features applied to classify
optimal and suboptimal surgical outcomes in PD patients are
related to PD pathophysiological changes. Among those 149
features, 10 had the same feature types with those from the feature
clusters associated with PD and HC classification in our previous
QSM studies (Cheng et al., 2019; Xiao et al., 2019), which were
subsequently used for model construction.

Logistic Regression With Recursive Feature
Elimination
Logistic regression (LR) was employed as a linear model
for the classification task (Optimal vs. Suboptimal). After a
linear transformation and a nonlinear activation function, all
input radiomics features were transformed into classification
probability values, ranging from 0 to 1. The value describes the
confidence that a PD subject will have optimal surgical outcome.
In the training stage, the cost function of LR was given by:

minw,c
1
2
|| w ||p + C

n∑
i=1

log(exp(−yi(XT
i w+ b))+ 1︸ ︷︷ ︸

loss function

, p ∈ {1, 2}

where w and b represent the trainable parameters. Xi ∈ Rn and
yi ∈ {−1,+1} is the radiomics feature vector and target label
representing the ith sample. In the loss function, there are two
hyperparameters: C ∈ {1, 3, 5, 7, 9, 13, 15} and p ∈ {1, 2}, which
controls the weight of the loss function and the complexity of the
model, respectively.
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Combined with LR, recursive feature elimination (RFE)
was also employed for feature selection. RFE is a commonly
used method of feature selection (Wottschel et al., 2019). And
hyperparameters of the features are determined by the algorithm
itself, therefore there is little manual intervention. Given that
the LR model assigns weights to features, the goal of RFE is to
select the most important ones by recursively selecting smaller
and smaller sets of features. Firstly, the LR was trained on the
initial set of features and the importance of each feature was
assessed by its feature coefficient w. Then, the least important
features were excluded. This procedure was recursively repeated
on the stepwise-changed set until an optimal model was obtained.
We set the number of desired features as a hyperparameter N ∈
{5, 7, 9, 11, 13}.

Development and Validation of the Model
Statistical tests were performed on Scikit-learning software when
we developed the LR model. After feature selection by stability
and prior knowledge, 10 features were finally used for model
construction. All features were normalized by removing the mean
and scaling to unit variance. We used Leave-One-Out cross-
validator (LOOCV) to test the generalization performance of the
model. For each experiment, we randomly selected one sample
for testing and the rest samples for training. In the training
stage, we selected the best hyperparameter based on the following
criteria: selecting the model with the simplest complexity
among those with the best training accuracy. Specifically, when
accuracies of different models were the same, we chose the
one with smaller N ∈ {5, 7, 9, 10} , C ∈ {1, 3, 5, 7, 9} , and p ∈
{1, 2}. A schematic flowchart of the RA-ML processing is shown
in Figure 1.

In addition to the RA-ML model based on SN radiomics
features, we also constructed the models as follows: (1)
the RA-ML+LCT response model, which combined SN
radiomic features with preoperative LCT response, (2) the LCT
response model alone.

Statistical Analysis
Demographic information and clinical details, such as age at
surgery, disease duration, preoperative LCT responsiveness, pre-
and post- surgical LEDD were assessed in the two groups
(Optimal vs. Suboptimal) using an independent sample t-test.
Patient’s gender was assessed using a Fisher’s exact test. We
applied Mann-Whitney U test for intergroup comparisons
regarding the values of radiomics features. The level of
significance was set at p< 0.05 for a two-tailed test. The statistical
analyses mentioned above were performed in IBM SPSS Statistic
Version 26.0 (International Business Machines Corporation,
Armonk, NY, United States). Receiver operating characteristic
(ROC) curves were constructed and area under the curve (AUC)
values were used for assessment of predictive performances.
Statistical comparisons of ROC curves among the three models
were performed by Delong’s test (DeLong et al., 1988) in
MedCalc Statistical Software version 19.7.2 (MedCalc Software
Ltd, Ostend, Belgium). The Bonferroni correction was used to
correct the error of multiple comparisons in ROC curves. The

adjusted p-value was set at 0.05/n, where n = times of comparison
(The adjusted p-value threshold for significance: 0.0167).

RESULTS

Participants, Baseline Characteristics,
and Follow-Up Outcomes
Demographic and clinical information of all recruited patients
are summarized in Table 1. No significant differences of any
demographic or clinical characteristics were observed between
the two groups (Optimal vs. Suboptimal).

Predictive Performances of the Three
Models
The predictive performance was evaluated via accuracy, balance
accuracy, AUC, sensitivity, and specificity (Table 2). Balance
accuracy was used to overcome the problem with an imbalanced
data set. It normalizes true positive and true negative predictions
by the number of the positive and negative samples, which is
in accordance with the division of our data into optimal and
suboptimal cases, respectively. For the predictive performances
of global motor outcome, the RA-ML model had an accuracy
of 82% (AUC = 0.85), while the RA-ML+LCT response model
had 74% accuracy (AUC = 0.83), and the LCT response model
alone had 58% accuracy (AUC = 0.55). For the predictive
performance of rigidity outcome, the accuracy of the RA-ML
model was 80% (AUC = 0.85), superior to those of the RA-
ML+LCT response model (76% accuracy, AUC = 0.82), and the
LCT response model alone (58% accuracy, AUC = 0.42). For
the predictive performance of bradykinesia outcome, the RA-ML
model yielded an accuracy of 50% in comparison with the RA-
ML+LCT model (accuracy = 50%) and the LCT response model
alone (accuracy = 58%). Figure 2 showed the ROC curves for the
three models predictive of global and specific motor outcomes.

As shown in Table 3, among the ROC curves of the three
models predictive of global motor outcome, the RA-ML model
and the RA-ML+LCT response model were significantly higher
than the LCT response model alone (p = 0.001 and p = 0.005,
respectively), but the difference was not significant between the
RA-ML model and the RA-ML+LCT response model (p = 0.359).
Multiple ROC comparisons of the three models predictive of
rigidity improvement all had significant differences: p < 0.001
for the RA-ML and the LCT response model comparison,
p = 0.011 for the RA-ML and the RA-ML+LCT response model
comparison, and p = 0.003 for the RA-ML+LCT response and
the LCT response model comparison. As for the ROC curves
predictive of bradykinesia improvement, there was no significant
difference between any two of the models (p > 0.0167).

Radiomics Features With Significant
Intergroup Differences
Among the 10 radiomics features selected for model
construction, the values of Wavelet-LLL-GLRLM-RunEntropy
(p = 0.036) and Wavelet-LLL-GLCM-IDN (Inverse Difference
Normalized) (p = 0.039) were both significantly higher in
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FIGURE 1 | Illustration of the processing pipeline of the RA-ML model construction. RF, radiomics features; ICC, intraclass correlation coefficient; RFE, recursive
feature elimination; STN-DBS, subthalamic nucleus deep brain stimulation.

TABLE 1 | Demographic and clinical characteristics of patients with optimal and suboptimal motor outcome.

Improvement N Age at
surgery

(Mean ± SD)

Gender (M/F) LCT response
(%)

Disease
duration
(Years)

Pre-LEDD
(mg)

Post-LEDD
(mg)

All patients / 33 60.0 ± 10.1 21/12 48.2 ± 13.6 10.6 ± 4.3 848.1 ± 446.0 433.7 ± 250.6

Global ≥30% 20 59.0 ± 9.6 15/5 49.5 ± 15.0 11.0 ± 4.6 834.5 ± 362.4 389.0 ± 204.3

<30% 13 61.7 ± 11.1 6/7 46.2 ± 11.5 10.1 ± 4.1 869.0 ± 567.3 498.0 ± 297.7

P / 0.46 0.14 0.51 0.58 0.83 0.220

Rigidity ≥30% 23 59.1 ± 9.7 15/8 50.7 ± 12.8 10.9 ± 4.3 911.5 ± 494.0 421.9 ± 247.7

<30% 10 62.1 ± 11.3 6/4 42.3 ± 14.3 9.9 ± 4.4 702.2 ± 277.6 455.2 ± 256.7

P / 0.45 0.78 0.11 0.54 0.22 0.73

Bradykinesia ≥30% 10 57.4 ± 12.6 8/2 45.4 ± 13.1 12.5 ± 5.3 812.7 ± 402.4 404.0 ± 216.8

<30% 23 61.2 ± 9.0 13/10 49.4 ± 14.0 9.8 ± 3.6 863.5 ± 471.5 444.1 ± 262.5

P / 0.33 0.26 0.45 0.10 0.77 0.68

Data are presented as mean ± standard deviation unless otherwise noted. LCT, levodopa challenge test; LEDD, levodopa equivalent daily dosage.

TABLE 2 | Predictive performances of the three models.

Motor outcome Predictive model Accuracy Balance accuracy AUC Sensitivity Specificity

Global RA-ML 0.82 0.82 0.85 0.80 0.85

LCT 0.58 0.57 0.55 0.60 0.54

RA-ML+LCT 0.74 0.75 0.83 0.73 0.77

Rigidity RA-ML 0.80 0.79 0.85 0.75 0.83

LCT 0.58 0.58 0.42 0.60 0.57

RA-ML+LCT 0.76 0.73 0.82 0.65 0.80

Bradykinesia RA-ML 0.50 0.44 0.48 0.59 0.30

LCT 0.58 0.58 0.49 0.57 0.60

RA-ML+LCT 0.50 0.44 0.45 0.59 0.30

RA-ML model: the model based on SN susceptibility radiomics features.
LCT model: the model based on preoperative levodopa challenge test response.
RA-ML+LCT model: the model combining SN susceptibility radiomics features with preoperative levodopa challenge test response.
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FIGURE 2 | Graph shows receiver operating characteristic curves of the three models predictive of global motor (A), rigidity (B), and bradykinesia (C) improvements
after STN-DBS.

patients with optimal global motor outcome as compared to
those with suboptimal efficacy (shown in A and B in Figure 3).
No significant differences of any other radiomics features were
observed between the two groups (Optimal vs. Suboptimal)
regarding rigidity or bradykinesia improvements (p > 0.05).

DISCUSSION

To the best of our knowledge, this is the first study to predict
motor outcome in PD patients based on individual pre-DBS
quantitative images using RA-ML approach. It suggests that RA-
ML analysis can capture the subtle differences in iron distribution
within the SN structure, which could be identified as a potential
imaging biomarker to understand the variability in global motor
and rigidity improvements of STN-DBS for PD patients.

Advantages of the RA-ML Model
In this study, the LCT responsiveness models failed to
predict global motor, rigidity and bradykinesia improvements,
suggesting that the value of preoperative LCT response for
predicting the short-term motor outcome of STN-DBS was
limited. However, LCT is widely used to determine whether a
patient may benefit from DBS surgery in current clinical settings

TABLE 3 | Comparison of ROC curves of the three predictive models.

RA-ML ∼ LCT RA-ML+LCT ∼
RA-ML

RA-ML+LCT ∼
LCT

Global 0.001 [0.117,
0.483] ***a

0.359 [−0.027,
0.075]

0.005 [0.084,
0.468] **c

Rigidity <0.001 [0.114,
0.425] ***a

0.011 [0.007,
0.054] *b

0.003 [0.082,
0.396] **c

Bradykinesia 0.901 [−0.208,
0.236]

0.303 [−0.022,
0.069]

0.740 [−0.187,
0.263]

Data are presented as p-value [95% confidence interval] unless otherwise noted.
*Indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001.
a Indicates RA-ML performing better than LCT.
b Indicates RA-ML performing better than RA-ML+LCT.
c Indicates RA-ML+LCT performing better than LCT.
The adjusted p-value threshold for significance after Bonferroni
correction is 0.0167.

(Pollak, 2013). These conflicting results may be partly attributed
to the enrolled PD patients of different stage in different studies.
Importantly, a recent study observed that levodopa medication,
rather than DBS itself, had a modulatory effect on basal ganglia
activity during finger movement execution (Mueller et al., 2020),
which implies different therapeutic mechanisms for levodopa and
DBS. Therefore, predicting STN-DBS outcome via preoperative
LCT responsiveness may be underpowered. Future studies must
be carried out for clarification. Importantly, it is reported
that levodopa and STN-DBS responses are not congruent
(Zaidel et al., 2010). Researchers clarified the methodological
shortcomings of previous studies and questioned the validity of
using LCT responsiveness as a selection criterion for STN-DBS
(Zaidel et al., 2010).

Different from LCT responsiveness, individual nigral iron
measurements assessed with QSM data could reflect patient-
specific disease trait and potentially help to understand PD
prognosis (Bergsland et al., 2019). The predictive performance
of the RA-ML model outweighs that of the LCT response
model for both global motor and rigidity improvements,
which offers a promising alternative to general-applicable LCT
responsiveness in counseling PD candidates for STN-DBS. It can
be partly explained by the explicit characterization of PD-related
pathophysiological changes in the deep gray nuclei by radiomics
features, and well-designed modeling between radiomics features
and clinical presentation by the ML model. In addition, LCT
has its own disadvantages: (1) discontinuation of levodopa for
at least 12 h would raise the risk of motor complications; (2)
levodopa may prime drug-induced dyskinesias; and (3) LCT
is time-consuming.

More recently, imaging studies demonstrated the predictive
value of structural and functional connectivity for motor
outcome of STN-DBS in PD patients based on diffusion tensor
imaging (DTI) (Horn et al., 2017) and resting-state functional
MRI (rs-fMRI) (Younce et al., 2020). Smaller ventricular volumes
measured on T1 weighted images were associated with more
favorable motor outcome in one report (Younce et al., 2019)
but not in others (Price et al., 2011). Nevertheless, predicting
specific motor outcome based on individual level remains
challenging. This study addressed the issues and provided a
simple and convenient approach to predict global motor and
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FIGURE 3 | Intergroup comparisons of radiomics features using Mann-Whitney U test. As shown in panels (A,B), respectively. The values of
Wavelet-LLL-GLRLM-RunEntropy (p = 0.036) and Wavelet-LLL-GLCM-IDN (Inverse Difference Normalized) (p = 0.039) for the SN are higher in patients with optimal
global motor outcome than those who had suboptimal improvement following STN-DBS surgery. In panels (A,B), the box denotes the 25th and 75th percentiles with
the horizontal line denoting the median value. * indicates p < 0.05.

rigidity outcomes for individual PD patients. Furthermore, since
QSM is easily accessible and imaging acquisition is relatively fast,
the RA-ML model developed in this study has promising clinical
applications to counsel STN-DBS candidates for neurosurgeons’
decision-making.

A previous imaging study reported that the maximum T2-
relaxation times (T2) for the SN failed to predict motor
outcome of STN-DBS (Lönnfors-Weitzel et al., 2016). This
conflicting finding with our work could be partly explained
by the fact that change in water content can also change T2
acting as a confounder, but it does not affect the susceptibility
measurements. Hence QSM outperforms T2 in measuring nigral
iron content and potentially reflecting patient-specific disease
trait. In addition, they calculated the absolute instead of the
relative improvement in MDS-UPDRS III score. The relative
improvement may be preferred to measure surgical efficacy
since the absolute improvement calculation only indicates the
magnitude of the improvement (Zaidel et al., 2010).

Interpretability of the RA-ML Model
The level of interpretability is about understanding how the RA-
ML model makes decisions, which could help to comprehend
the outcome based on the key radiomics features. Among the 10
features selected for model construction, the values of Wavelet-
LLL-GLRLM-RunEntropy and Wavelet-LLL-GLCM-IDN for the
SN were both significantly higher in patients with optimal global
motor outcome as compared to those with suboptimal efficacy.
GLRLM-RunEntropy in each VOI measures the randomness
of run length and gray distribution. GLCM-IDN is another
measure of the local homogeneity of an image. For both these
radiomics features, a lower value indicates more homogeneity in
the texture patterns, suggesting that those PD patients exhibiting
more uniform iron signal with decreased iron heterogeneity may
respond worse to STN-DBS treatment.

This finding is comparable to the iron heterogeneity changes
underlying PD pathology. Different from the iron-rich SN pars

reticulata (SNpr), the lateral-ventral part of the SNpc is packed
with melanized dopaminergic neurons with less iron content
(Damier et al., 1999). Imaging studies have demonstrated that
iron increases predominantly occurred in the lateral-ventral
SNpc (Langley et al., 2017; He et al., 2020) in PD; this is
in line with the pathological findings (Damier et al., 1999).
Therefore, this region-specific high iron accumulation changes
the spatial patterns of nigral iron content which could lead
to decreased heterogeneity of iron distribution in PD patients.
Importantly, susceptibility measurements using RA-ML could
capture this subtle difference in spatial iron distribution within
the SN structure.

Taken together, this study suggests that the heterogeneity of
spatial iron distribution in the SN may be pertinent to patient-
specific pathological patterns, which could help to understand the
variability of motor outcome in PD patients after STN-DBS.

Prediction of Specific Motor Outcome
This study conducted RA-ML analysis of specific motor outcome
which is not available in most previous studies (Price et al., 2011;
Lönnfors-Weitzel et al., 2016; Horn et al., 2017; Younce et al.,
2019, 2020). Cardinal motor symptoms in PD patients include
rigidity, bradykinesia, and tremor. At least 89% of PD patients
suffered from rigidity causing stiffness or inflexibility in muscles
(Mutch et al., 1986). In this study, the predictive performance
of the RA-ML model was superior to the LCT response model
regarding rigidity improvement. The mechanisms underlying the
high-precision performance of the RA-ML model predictive of
rigidity improvement are not yet fully understood; however, this
finding may suggest that susceptibility measurements of nigral
iron accumulation could help to understand the variability in
rigidity outcome of STN-DBS for PD patients. Bradykinesia is
one of the early signs of PD characterized by a reduced ability
to move. However, none of the three models in this study were
able to predict bradykinesia improvement. This may partly be
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explained by the fact that STN-DBS treatment affected each
motor symptom via different mechanisms (Temperli et al., 2003).

Limitations
There are several limitations to this study. Firstly, the sample
size is relatively small, which might be the reason for the
poor performance of bradykinesia prediction. In order to
prevent the potential overfitting problems resulting from small
sample size, we used two sets of VOIs, took prior knowledge
into consideration and applied recursive feature elimination to
preserve those features with the topmost importance. Clearly,
future investigation in a larger cohort is needed. Secondly, The
RA-ML analyses of specific motor symptom excluded tremor
given that the absence of tremor symptoms in most PD patients
(16/33) postoperatively. In order to investigate tremor prediction,
more PD patients with suboptimal tremor improvement should
be collected in the future. In addition to improving motor
symptoms of patients with PD, STN-DBS aims to treat motor
complications, such as increasing on-time without dyskinesia
and improving motor fluctuation during off periods. Owing
to the relatively low presence of levodopa induced dyskinesia
(LID) as a result of lower medication dose, the RA-ML analysis
of related motor complications was not performed. Future
studies with a much larger sample size including more PD
patients with motor complications is needed to address this issue.
Finally, it would be of interest to perform longer term follow-up
analyses, incorporating continued disease progression to explore
the fading of DBS efficacy after the surgical honeymoon period
(Fasano and Merello, 2020).

CONCLUSION

Our study demonstrated that individual SN susceptibility features
derived from radiomics can predict global motor and rigidity
outcomes of STN-DBS in PD patients. This RA-ML predictive
model may provide a novel and practical approach to counsel
suitable candidates for neurosurgeons’ decision-making. Our
research suggests that individual spatial heterogeneity of nigral
iron distribution may be pertinent to patient-specific pathological
patterns, which could help to understand the variability of STN-
DBS motor benefits.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Ruijin Hospital affiliated
to Shanghai Jiao Tong University School of Medicine. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

YLiu, BX, and CZ: writing–original draft, writing–review and
editing, investigation, data curation, and formal analysis. JL, YLai,
FS, DS, LW, BS, YLi, ZJ, HW, EH, and HZ: data curation,
formal analysis, and writing–review and editing. QW, DL,
and NH: conceptualization, supervision, funding acquisition,
resources, and writing–review and editing. FY: supervision,
funding acquisition, resources, and writing–review and editing.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported, in part, by the National Natural
Science Foundation of China (Grant Number: 81801652 for
NH; Grant Number: 81971576 for FY, NH, and CZ), a grant
from the Science and Technology Commission of Shanghai
Municipality (17411952700 for FY, NH, CZ, and YLi), a grant
from the Shanghai Sailing Program (18YF1414700 for NH and
20YF1426500 for CZ), the Innovative Research Team of High-
level Local Universities in Shanghai, a grant from the Science
and technology development plan project of Changshu City
(CS202021 for JL), and CZ was supported by the fellowship
of Shanghai Research Center for Brain Science and Brain-
Inspired Intelligence.

REFERENCES
Adeli, E., Shi, F., An, L., Wee, C. Y., Wu, G., Wang, T., et al. (2016). Joint feature-

sample selection and robust diagnosis of Parkinson’s disease from MRI data.
Neuroimage 141, 206–219. doi: 10.1016/j.neuroimage.2016.05.054

Amoroso, N., La Rocca, M., Monaco, A., Bellotti, R., and Tangaro, S. (2018).
Complex networks reveal early MRI markers of Parkinson’s disease. Med. Image
Anal. 48, 12–24. doi: 10.1016/j.media.2018.05.004

Bergsland, N., Zivadinov, R., Schweser, F., Hagemeier, J., Lichter, D., and Guttuso,
T. Jr. (2019). Ventral posterior substantia nigra iron increases over 3 years in
Parkinson’s disease. Mov. Disord. 34, 1006–1013. doi: 10.1002/mds.27730

Charles, P. D., Van Blercom, N., Krack, P., Lee, S. L., Xie, J., Besson, G., et al.
(2002). Predictors of effective bilateral subthalamic nucleus stimulation for PD.
Neurology 59, 932–934. doi: 10.1212/wnl.59.6.932

Cheng, Z., Zhang, J., He, N., Li, Y., Wen, Y., Xu, H., et al. (2019). Radiomic
features of the nigrosome-1 region of the substantia nigra: using quantitative
susceptibility mapping to assist the diagnosis of idiopathic Parkinson’s disease.
Front. Aging Neurosci. 11:167. doi: 10.3389/fnagi.2019.00167

Damier, P., Hirsch, E. C., Agid, Y., and Graybiel, A. M. (1999). The substantia nigra
of the human brain. II. patterns of loss of dopamine-containing neurons in
Parkinson’s disease. Brain 122(Pt. 8), 1437–1448. doi: 10.1093/brain/122.8.1437

DeLong, E. R., Delong, D. M., and Clarke-Pearson, D. L. (1988). Comparing the
areas under two or more correlated receiver operating characteristic curves: a
nonparametric approach. Biometrics 44, 837–845. doi: 10.2307/2531595

Dexter, D. T., Wells, F. R., Lees, A. J., Agid, F., Agid, Y., Jenner, P., et al. (1989).
Increased nigral iron content and alterations in other metal ions occurring in
brain in Parkinson’s disease. J. Neurochem. 52, 1830–1836. doi: 10.1111/j.1471-
4159.1989.tb07264.x

Frontiers in Neuroscience | www.frontiersin.org 9 September 2021 | Volume 15 | Article 731109

https://doi.org/10.1016/j.neuroimage.2016.05.054
https://doi.org/10.1016/j.media.2018.05.004
https://doi.org/10.1002/mds.27730
https://doi.org/10.1212/wnl.59.6.932
https://doi.org/10.3389/fnagi.2019.00167
https://doi.org/10.1093/brain/122.8.1437
https://doi.org/10.2307/2531595
https://doi.org/10.1111/j.1471-4159.1989.tb07264.x
https://doi.org/10.1111/j.1471-4159.1989.tb07264.x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-731109 August 31, 2021 Time: 12:21 # 10

Liu et al. Iron Radiomics Predicts DBS Outcome

Espay, A. J., Brundin, P., and Lang, A. E. (2017). Precision medicine for disease
modification in Parkinson disease. Nat. Rev. Neurol. 13, 119–126. doi: 10.1038/
nrneurol.2016.196

Fasano, A., and Merello, M. (2020). Fading of deep brain stimulation efficacy versus
disease progression: untangling a gordian knot. Mov. Disord. Clin. Pract. 7,
747–749. doi: 10.1002/mdc3.13041

Ghassaban, K., Liu, S., Jiang, C., and Haacke, E. M. (2019). Quantifying iron
content in magnetic resonance imaging. Neuroimage 187, 77–92. doi: 10.1016/
j.neuroimage.2018.04.047

Haacke, E. M., Liu, S., Buch, S., Zheng, W., Wu, D., and Ye, Y. (2015). Quantitative
susceptibility mapping: current status and future directions. Magn. Reson.
Imaging 33, 1–25. doi: 10.1016/j.mri.2014.09.004

He, N., Ghassaban, K., Huang, P., Jokar, M., Wang, Y., Cheng, Z., et al. (2021).
Imaging iron and neuromelanin simultaneously using a single 3D gradient
echo magnetization transfer sequence: combining neuromelanin, iron and
the nigrosome-1 sign as complementary imaging biomarkers in early stage
Parkinson’s disease. Neuroimage 230:117810. doi: 10.1016/j.neuroimage.2021.
117810

He, N., Langley, J., Huddleston, D. E., Chen, S., Huang, P., Ling, H., et al. (2020).
Increased iron-deposition in lateral-ventral substantia nigra pars compacta:
a promising neuroimaging marker for Parkinson’s disease. Neuroimage Clin.
28:102391. doi: 10.1016/j.nicl.2020.102391

He, N., Ling, H., Ding, B., Huang, J., Zhang, Y., Zhang, Z., et al. (2015). Region-
specific disturbed iron distribution in early idiopathic Parkinson’s disease
measured by quantitative susceptibility mapping. Hum. Brain Mapp. 36, 4407–
4420. doi: 10.1002/hbm.22928

Hoops, S., Nazem, S., Siderowf, A. D., Duda, J. E., Xie, S. X., Stern, M. B.,
et al. (2009). Validity of the MoCA and MMSE in the detection of MCI and
dementia in Parkinson disease. Neurology 73, 1738–1745. doi: 10.1212/WNL.
0b013e3181c34b47

Horn, A., Reich, M., Vorwerk, J., Li, N., Wenzel, G., Fang, Q., et al. (2017).
Connectivity predicts deep brain stimulation outcome in Parkinson disease.
Ann. Neurol. 82, 67–78. doi: 10.1002/ana.24974

Hughes, A. J., Daniel, S. E., Kilford, L., and Lees, A. J. (1992). Accuracy of clinical
diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100
cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184. doi: 10.1136/jnnp.55.3.181

Huppertz, H. J., Möller, L., Südmeyer, M., Hilker, R., Hattingen, E., Egger, K.,
et al. (2016). Differentiation of neurodegenerative parkinsonian syndromes by
volumetric magnetic resonance imaging analysis and support vector machine
classification. Mov. Disord. 31, 1506–1517. doi: 10.1002/mds.26715

Jellinger, K., Kienzl, E., Rumpelmair, G., Riederer, P., Stachelberger, H., Ben-
Shachar, D., et al. (1992). Iron-melanin complex in substantia nigra of
parkinsonian brains: an x-ray microanalysis. J. Neurochem. 59, 1168–1171.
doi: 10.1111/j.1471-4159.1992.tb08362.x

Kleiner-Fisman, G., Herzog, J., Fisman, D. N., Tamma, F., Lyons, K. E., Pahwa, R.,
et al. (2006). Subthalamic nucleus deep brain stimulation: summary and meta-
analysis of outcomes. Mov. Disord. 21(Suppl. 14), S290–S304. doi: 10.1002/mds.
20962

Lang, A. E., and Widner, H. (2002). Deep brain stimulation for Parkinson’s disease:
patient selection and evaluation. Mov. Disord. 17(Suppl. 3), S94–S101. doi:
10.1002/mds.10149

Langkammer, C., Schweser, F., Krebs, N., Deistung, A., Goessler, W., Scheurer, E.,
et al. (2012). Quantitative susceptibility mapping (QSM) as a means to measure
brain iron? A post mortem validation study. Neuroimage 62, 1593–1599. doi:
10.1016/j.neuroimage.2012.05.049

Langley, J., Huddleston, D. E., Sedlacik, J., Boelmans, K., and Hu, X. P.
(2017). Parkinson’s disease-related increase of T2∗-weighted hypointensity in
substantia nigra pars compacta. Mov. Disord. 32, 441–449. doi: 10.1002/mds.
26883

Lehéricy, S., Bardinet, E., Poupon, C., Vidailhet, M., and François, C.
(2014). 7 Tesla magnetic resonance imaging: a closer look at substantia
nigra anatomy in Parkinson’s disease. Mov. Disord. 29, 1574–1581.
doi: 10.1002/mds.26043

Li, G., Zhai, G., Zhao, X., An, H., Spincemaille, P., Gillen, K. M., et al. (2019).
3D texture analyses within the substantia nigra of Parkinson’s disease patients
on quantitative susceptibility maps and R2(∗) maps. Neuroimage 188, 465–472.
doi: 10.1016/j.neuroimage.2018.12.041

Li, W. J., Jiang, H., Song, N., and Xie, J. X. (2010). Dose- and time-dependent alpha-
synuclein aggregation induced by ferric iron in SK-N-SH cells. Neurosci. Bull.
26, 205–210. doi: 10.1007/s12264-010-1117-7

Lönnfors-Weitzel, T., Weitzel, T., Slotboom, J., Kiefer, C., Pollo, C., Schüpbach, M.,
et al. (2016). T2-relaxometry predicts outcome of DBS in idiopathic Parkinson’s
disease. Neuroimage Clin. 12, 832–837. doi: 10.1016/j.nicl.2016.09.019

Lotfipour, A. K., Wharton, S., Schwarz, S. T., Gontu, V., Schäfer, A., Peters, A. M.,
et al. (2012). High resolution magnetic susceptibility mapping of the substantia
nigra in Parkinson’s disease. J. Magn. Reson. Imaging 35, 48–55. doi: 10.1002/
jmri.22752

Malaga, K. A., Costello, J. T., Chou, K. L., and Patil, P. G. (2021). Atlas-
independent, N-of-1 tissue activation modeling to map optimal regions of
subthalamic deep brain stimulation for Parkinson disease. Neuroimage Clin.
29:102518. doi: 10.1016/j.nicl.2020.102518

Martin, W. R., Wieler, M., and Gee, M. (2008). Midbrain iron content in early
Parkinson disease: a potential biomarker of disease status. Neurology 70, 1411–
1417. doi: 10.1212/01.wnl.0000286384.31050.b5

Mueller, K., Urgošík, D., Ballarini, T., Holiga, Š, Möller, H. E., Růžička, F.,
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