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ABSTRACT: Economists favor pricing pollution in part so that
consumers face the full social marginal cost (SMC) of goods and
services. But even without valuing externalities, retail electric-
ity prices typically exceed private marginal cost, due to a utility’s
need to cover average costs. Furthermore, due to costly storage,
the marginal cost of electricity can fluctuate widely hour-to-hour,
while retail prices do not. We show that residential electricity rates
exceed average SMC in most of the US, but there is large variation,
both geographically and temporally. This finding has important im-
plications for pass-through of pollution costs, as well as for policies
to promote dynamic pricing, alternative energy and reduced elec-
tricity consumption.
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Economically efficient decision making by producers and consumers relies on
prices accurately reflecting the short-run social marginal cost of supply. However,
in utility industries that have traditionally been viewed as natural monopolies,
the theoretical ideal of marginal cost pricing has been elusive in practice. One
stream of research dating back to Ramsey (1927) has examined how price dis-
crimination and non-linear tariffs can be used to mitigate deadweight loss while
still allowing a utility with declining average cost to recover its total costs. An-
other research literature, growing out of Pigou’s (1920) seminal work, has shown
that environmental externalities lead firms to charge prices below social marginal
cost. A third literature – starting with Boiteaux (1960) and Steiner (1957) – has
emphasized that the highly time-varying cost of delivering electricity, due to its
high cost of storage, suggests the need for dynamic pricing in order to reflect the
constantly changing cost.

In this paper, we examine the relationship between marginal retail prices and
the social marginal cost of supply in the electricity industry from 2014 to 2016.
We focus on the most common residential electricity tariffs. In the $174 billion per
year residential market, the efficiency implications of a gap between the marginal
cost of service and the marginal price paid by consumers are growing more se-
rious with the increasing availability of substitute technologies, such as rooftop
solar photovoltaics and small-scale battery storage. These technologies make
the demand of end-use consumers more price elastic, and therefore can magnify
the deadweight loss from mis-pricing. Utilities around the world have expressed
concern about the prospect of a “death spiral,” in which reduced consumption
leads to higher regulated prices, which in turn leads to more consumption decline
(Costello and Hemphill 2014).

Retail pricing in electricity markets suffers from at least three distortions: (a)
because neither buyers nor sellers bear the pollution costs of electricity generation,
prices will tend to be below their optimal level, (b) because there are significant
economies of scale in electricity distribution, and possibly other parts of the value
chain, a linear price likely will need to exceed private marginal cost of the utility
in order to recover its total costs, and (c) because electricity is not economically
storable and demand fluctuates continuously, the private marginal cost changes
constantly within a day, yet retail prices do not reflect those fluctuations. Im-
portantly, these distortions do not all work in the same direction and can at times
potentially offset one another. Research on the electricity industry and the poli-
cies that impact it, however, has tended to focus on each of these distortions in
isolation. Since at least Lipsey and Lancaster (1956) and Buchanan (1969) it has
been well understood in economics that markets with multiple distortions may
not be improved by addressing one of the distortions in isolation.

In this paper, we take a step towards a holistic view by attempting to measure,
at high frequency, the departure of residential electricity prices from the economic
ideal of short-run social marginal cost (SRSMC). We then decompose the depar-
ture from SRSMC into the component caused by charging a price that differs from
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the average SRSMC and the component caused by charging a constant price that
does not vary over short time periods, as SRSMC does. The analysis is primarily
an exercise in measurement of various aspects of SRSMC and the marginal prices
faced by customers. Some of these measures are available in public data, while
some we estimate, because direct measures are not available.

We break the construction of price versus social marginal cost into three com-
ponents: retail price, private marginal cost, and external marginal cost. Section
II presents the residential electricity price data and our calculation of marginal
electricity price. Section III discusses private marginal cost, for which we begin
with hourly wholesale electricity price data, but then make adjustments to incor-
porate time-varying costs associated with local distribution. Section IV brings in
externalities, estimating marginal externality costs for the marginal consumption
of electricity by region. In section V, we bring the three measures together to
analyze the deviation of price from SRSMC, then calculate and decompose the
implied deadweight loss. In section VI we discuss several potential policy impli-
cations of our calculation. We conclude in section VII with a discussion of the
broader relevance of our findings.

I. Related Literature

This paper relates to three strands of literature that have examined electricity
pricing from different perspectives. The first concerns itself with the central chal-
lenge of natural monopoly pricing: minimizing deadweight loss while ensuring the
recovery of average costs (Brown and Sibley 1986, Kahn 1988, Braeutigam 1989,
Borenstein 2016). Here the main concern has been the inclusion of fixed and sunk
costs in volumetric prices, potentially driving prices above marginal cost.1 Various
solutions have been proposed and at least partially implemented, including price
discrimination with linear tariffs (Ramsey 1927, Boiteux 1960, Boiteux 1971), two-
part pricing (Feldstein 1972, Littlechild 1975), and more sophisticated non-linear
pricing (Wilson 1997, Laffont et al. 1998). Yet, despite a plethora of complex rate
structures in use, there is a general perception that utility rates do not closely ap-
proximate (private) marginal costs (Friedman 1991, Puller and West 2013). Davis
and Muehlegger (2010) estimate marginal tariff rates for natural gas utilities and
find that they do not adjust fully to fluctuations in wholesale gas supply costs,
while Borenstein and Davis (2012) examine the equity effects of these departures
from marginal cost pricing of natural gas and discuss the potential equity and ef-
ficiency effects of changing fixed charges. We are not aware of any comprehensive
effort to measure the departure from marginal cost of retail electricity prices.

A second literature on electricity pricing is concerned with the variation of costs
over time, particularly those driven by scarcity or capacity constraints. Early
theory focused on forms of peak-load, or capacity, pricing that could at least

1Low inframarginal costs can drive average cost below marginal cost in some circumstances, most
notably utilities that have access to limited quantities of cheap power, such as from federal hydroelectric
generation.
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partially capture scarcity effects in otherwise static tariff structures (Boiteux 1960,
Steiner 1957, Joskow 1976, Oren et al. 1985, Crew and Kleindorfer 1976). The
advent of advanced metering technology made feasible the prospect of dynamic
electricity pricing (Borenstein 2005, Joskow and Wolfram 2012) that could capture
scarcity costs through frequently varying linear prices. However, despite a growing
literature on its practical effectiveness (Jessoe and Rapson 2014), dynamic pricing
is still quite rare. As we describe below, only 4% of residential US customers are
on a time-varying price, and the bulk of those customers are on static time-of-use
prices. The lack of dynamic retail pricing has been widely cited as a source of
inefficiency in the electricity industry (Borenstein and Holland 2005, Borenstein
2005, Joskow and Wolfram 2012, Puller and West 2013).

The most recently active strand of literature on the efficiency of electricity
prices concerns their relationship with the external costs of electricity production
and consumption (Cullen 2013, Graff Zivin et al. 2014, Novan 2015, Holland et
al. 2016, Callaway et al. 2018). The environmental impacts of electricity supply,
particularly with respect to climate change, are significant and have been the
focus of policy activity for at least two decades. Environmental economists have
generally advocated for the pricing of external costs, through either Pigouvian
taxation or cap-and-trade systems, in this and other industries. However, alter-
native approaches, such as subsidies for clean energy through either tax credits
or performance standards, and non-market interventions relating to energy ef-
ficiency have been more common in practice than the pricing of externalities.2

These latter programs have been criticized by economists on several grounds.

Several papers have addressed the optimality of environmental policies with
respect to consumer incentives. These studies have raised concerns about policies
that limit the pass-through of externality costs. For example, the impact of in-
tensity standards for limiting carbon emissions (Bushnell et al. 2017), the use of
output-based allocation of allowances in cap-and-trade systems (Fowlie 2011, Fis-
cher and Fox 2012), and energy efficiency interventions (Allcott and Greenstone
2017). A common theme is that many “green” policies tend to promote over-
consumption as they fail to properly reflect marginal environmental damages in
electricity costs (Borenstein 2012). However, with the exception of Allcott and
Greenstone (2017), these papers address the design of optimal externality policies
from an underlying assumption that retail prices accurately reflect private (but
not social) marginal cost. To the extent that pre-existing distortions to retail
prices, due to natural monopoly pricing for example, have already distorted re-
tail prices, the optimal environmental policy can look very different from the one
applied in a system with prices reflecting private marginal costs.

2For example, the Obama-era EPA regulatory initiative known as the Clean Power Plan offered
States several options for compliance, including an intensity standard or direct subsidies of zero-carbon
generation sources, as alternatives to carbon pricing (Fowlie et al. 2014).
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II. Residential Electricity Pricing

The challenge in constructing data on residential electricity pricing is to accu-
rately characterize the marginal price that a customer faces. While data on aggre-
gate revenues and quantity sales to residential customers by utility are available,
those data alone only allow inference about the average price paid by residential
customers. Optimizing consumers, however, would respond to the marginal price
of electricity, not the average price. Thus, we must adjust the analysis in order
to get a more accurate measure of marginal price.

Our primary source of utility sales data is the Energy Information Adminis-
tration’s Form EIA-861 survey (Energy Information Administration 2017a). The
EIA-861 is an annual survey of electric utilities that covers many aspects of their
commercial activities.3 The EIA-861 data include for every utility-state annual
total revenues from residential customers, total number of customers, and to-
tal kilowatt-hours (kWh) sold. Dividing total revenues by total kWh yields an
average price.4

However, many utilities have monthly fixed charges. In order to calculate the
marginal price, we remove the fixed charges. The utility fixed charges for residen-
tial customers come from the National Renewable Energy Laboratory’s Utility
Rate Database (URDB) (National Renewable Energy Laboratory 2017b). The
URDB is described in more detail in the appendix. It includes many residential
rates for each utility. For each utility we chose what appeared to be the primary or
basic rate (the process of determining this rate is described in the appendix) and
took the fixed charge from that rate. We used this fixed charge to approximate
fixed revenues – total customers multiplied by fixed charge – and subtracted that
amount from the total residential revenues. We divided the remainder by kWh
sold to get the average variable rate, which we take as our measure of marginal
price.

In most of the country, the same company is responsible for procuring or pro-
ducing electricity on behalf of residential customers and physically delivering it
through local distribution lines. In some parts of the country, however, the elec-
tricity sector has been restructured such that customers can choose their “retail
provider” from among many companies that buy power wholesale and sell to the
customer at retail. About 32% of residential customers in the US are eligible

3To be precise, our sample contains 2,104 utility-state combinations. Utilities report their operations
separately by state to the EIA. For each utility-state combination, we calculate each measure separately
for each year and then for the maps we take the average across the years for which the utility-state is
in the dataset (which is 2014, 2015, and 2016 for almost all utility-states). See the appendix for further
details. For simplicity, we refer to the unit of observation as a utility-state. A smaller number of major
utilities are surveyed monthly, covering about two-thirds of the household customers in the annual survey
(Energy Information Administration 2017b). In the appendix, we discuss a robustness check that we
carry out using the monthly survey. We find very small seasonal changes in retail rates.

4Throughout this paper, we use the standard measurement of electricity quantity, kilowatt-hours.
The average US household uses about 900 kWh per month. For further context, 1 kWh is enough
electricity to run a residential central air conditioning system continuously for 10-15 minutes, a hairdryer
or electric kettle for about 40 minutes, or a microwave oven for an hour.

5



to choose their retail provider, and just under half of those customers choose a
retailer that is different from their local distribution company. Full details of
how we handle these cases can be found in the appendix.

Removing the fixed component of customers’ bills still does not fully capture
marginal rates if those rates vary with the level of consumption, such as from
increasing-block or decreasing-block pricing – under which marginal price rises or
falls in steps as a household’s consumption increases. Thus, some customers of a
given utility are likely to have a higher marginal rate, and others a lower marginal
rate, than the one we use. Based on the 1743 utilities with rates in the URDB,
about 58% of residential customers are served by a utility for which it appears
that the marginal price in the primary residential tariff varies with consumption,
of which about 37% face increasing-block pricing and about 21% face decreasing
block pricing.5

Similarly, we do not capture differences in static rates across customers of a
utility. Many utilities, for instance, have lower rates for low-income households.
But it could also occur if a utility charges rates that vary by geographic region.
It is worth noting, however, that the failure to reflect variations in marginal rates
across customers that are not based on marginal cost is very likely to lead to
understated estimates of the deadweight loss associated with residential rates.
This is because deadweight loss increases more than proportionally with the dif-
ference between price and marginal cost. Thus, for linear pricing, if all customers
have the same demand elasticity, deadweight loss is minimized by charging all
customers the same linear price.

In all cases, we also have assumed that the primary residential rate had no time-
varying component, including no time-of-use variation, no critical peak pricing,
no demand charges, and no real-time pricing. The prevalence of these kinds
of tariffs is very low among residential customers. During 2014-2016 about 4%
of customers were on some form of time-varying pricing, and just under 6% of
customers were part of some form of demand response rebate program.6

Our final dataset on residential electricity pricing covers an average of 128.2
million residential customers during 2014-2016, with average annual total sales of
1.384 trillion kWhs and revenues of $174 billion. After incorporating our estimates
of fixed charges we were able to calculate the average variable per-kWh price faced
by just over 93% of residential customers and kWh sales.

5The share of quantity sold on non-linear pricing is somewhat smaller, as the retail providers utilizing
increasing-block pricing serve smaller average residential demand per customer. Overall, providers serving
larger numbers of customers are more likely to use increasing-block pricing. Of the 1743 retail electricity
providers in our URDB sample, about 39% utilize non-linear marginal pricing, with about 15% using
increasing-block pricing and about 24% using decreasing block pricing in their primary residential rates.

6The EIA-861 data that are the source of these figures do not allow one to calculate the overlap
between these two sets of customers, but it is probably significant. Furthermore, a very large share of the
customers on time-varying pricing are on simple peak/off-peak rates with fixed time periods and fairly
small differentials between peak and off-peak.
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A. Is marginal price the correct measure?

A number of papers, most prominently Ito (2014), have challenged the belief
that electricity consumers respond strictly to marginal price.7 Ito finds that in
the context of steeply increasing-block electricity pricing at two large utilities
in California, consumers are more accurately characterized as responding to the
average price they face, rather than the marginal price.

These analyses, however, do not address the extent to which consumers are able
to separate recurring fixed charges from volume-based charges.8 Understanding
and distinguishing a monthly fixed charge from volumetric pricing seems likely to
be much less difficult than diagnosing which step of an increasing-block marginal
price schedule the household is likely to end up on at the end of the month. Ito
and Zhang (2020) is the only work of which we are aware that addresses the
former question. They find strong evidence that consumers respond to changes
in marginal prices apart from changes in fixed charges.9

Luckily, for our analysis, the three large utilities in California that have steep
increasing-block electricity price schedules, where the steps differ by more than
4 cents per kWh, are outliers in the US as a whole. Out of the 1743 utilities
we study that are in the URDB, there are 673 with non-constant marginal price.
Among those 673, the median absolute difference between the lowest and highest
tier across all US utilities was 1.9 cents per kWh, with 75% of the rates showing
a difference of less than 3.7 cents per kWh.10

To the extent that customers respond to the average variable price they face
in an increasing-block price schedule – a possible third “wrong” – they would
perceive a lower incremental cost than the actual marginal price. This would
somewhat reduce their response to the very high marginal prices in California
and a few other areas, however perceived prices in most of those areas with
significant increasing-block pricing would still substantially exceed social marginal
cost. Decreasing-block price schedules would have the opposite effect, raising
the perceived incremental cost of consumption above the true marginal price.
Nonetheless, the existence of marginal pricing that changes with consumption
quantity should be recognized in interpreting our results.
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Figure 1: Average Price per kWh
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Figure 2: Fixed Monthly Charge



B. Residential Electricity Pricing Results

We present many results in this analysis graphically at the utility-state level for
the 48 contiguous US states. To do this, we use utility service territory shape files
from Homeland Infrastructure Foundation-Level Data (HIFLD).11 In all of the
maps, the percentages in parentheses in the legend are the percent of residential
customers in each category, and areas of the map with no data are represented
by a dark gray shade, such as in part of the Northern border area of Montana.
Values represented for each utility-state are the sales-weighted average across the
three years of data.

Figure 1 presents the average price per kilowatt-hour (kWh), over 2014-2016, by
utility-state. It shows, for instance, that California has among the highest average
prices per kilowatt hour for residential customers, but that the very highest prices
are in the Northeast. The lowest prices can be found in much of the Northwest
and the South. It also shows that even in fairly high-priced states like California
and New York, there are some areas with substantially lower prices.

Figure 2 presents monthly fixed charges as discussed above. Much of California
has zero or slightly negative fixed charges – which occurs because of a semi-annual
“climate rebate” that each residential customer gets as part of the state’s cap and
trade program – while some utilities in the center of the country have fixed charges
of $30 per month or higher.

Figure 3 shows the results from adjusting the average price for the monthly fixed
charges to get an average variable price. Nationally, the adjustment for monthly
fixed charges lowers the marginal price by about 1 cent per kWh. We would expect
this to be an accurate indicator of the marginal price that consumers face if the
utility uses a simple two-part tariff. For those utilities that utilize increasing-
block or decreasing-block pricing, as discussed earlier, this captures the average
variable price across customers.12 The average variable prices illustrated in this
figure are used in our calculation of the gap between marginal price and social
marginal cost.

Table 1 presents the quantity-weighted summary statistics on average price,

7See also Shin (1985) and Borenstein (2009).
8The customers in Ito’s sample faced increasing-block pricing, but no fixed charge.
9If customers are not able to distinguish fixed from marginal prices and make their decisions based

on average price, this would raise perceived prices most for customers in the middle of the country, as
shown in figure 2, where we find that price is below social marginal cost. However, it would also raise
prices in the Northeast, where we generally find prices are already substantially above social marginal
cost. Though fixed charges are common, they are not typically a large share of the total bill, averaging
about 10% as suggested by the difference between average price and variable price in table 1.

10Furthermore, even in California the variation in marginal price across the steps has shrunk signifi-
cantly in the last decade for the vast majority of households, from a ratio of more than 3 to 1 in 2014,
to a ratio of less than 1.4 to 1 in 2017. There remains a higher “superuser” rate that applies for usage
over 400% of the baseline quantity, but that is relevant for just a few percent of households.

11https://hifld-geoplatform.opendata.arcgis.com/datasets/electric-retail-service-territories. The map
captures more than 99% of all residential customers, but omits a few small municipal and coop utilities.

12How closely this reflects the average of the marginal prices faced by customers depends on the
distribution of customers across the tiers of the block pricing. See Borenstein (2009) and Ito (2014) for
further discussion.
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Figure 3: Marginal Price per kWh

Mean StDv Min P10 P90 Max
Retail Fixed Charge ($/month) 10.78 7.65 -26.11 2.53 20.00 75.53
Retail Variable Price (c|/kWh) 11.49 3.07 2.36 8.79 16.29 48.22
Retail Average Price (c|/kWh) 12.61 3.01 2.96 9.83 16.65 53.31

N=6215 (utility-state-years). Statistics are sales-weighted

Table 1: Summary Statistics of Residential Rates



fixed charge and average variable charge across the 6,215 utility-state-years in
the entire sample. For the maps, we calculate the statistics separately for each
utility-state-year it is in the data set, and then take the quantity-weighted average
of those years.

III. Private Marginal Costs

Provided that wholesale electricity markets are competitive,13 the primary com-
ponent of the private marginal cost of supplying electricity is captured in the
wholesale price. We collected wholesale prices from regions that are part of
Independent System Operator (ISO) control areas. ISOs calculate and report
locational marginal prices (LMPs), which reflect the marginal cost of electric-
ity generation plus high-voltage transmission congestion and line losses (due to
heat dissipation of energy during transport). These prices literally represent the
derivative of total system production cost with respect to a change in consump-
tion at a given location (node), accounting for all relevant transmission, operating
reserve, and unit-level operating constraints considered by the system operators.
Electricity prices are extremely volatile over time and geography due to a com-
bination of volatile demand, a lack of economic storage, and frequently binding
limits on low-cost production and/or transmission capacity. Technical constraints
also limit the flexibility of some production resources and the ability to freely dis-
pose of power. In addition, wind generation receives tax subsidies that are based
on quantity produced, effectively lowering their short-run private marginal cost
to below zero. These factors combined to occasionally result in negative prices in
regions with inflexible supply that is unable to export its surplus.

Some parts of the country, particularly the Southeast, have large areas that are
not covered by ISOs. In those areas, we collected data that grid operators are
required to file to the Federal Energy Regulatory Commission as part of the FERC
Form-714 survey (Federal Energy Regulatory Commission 2017). This survey
includes a requirement to report the “system lambda”, which is the engineering
calculation of the shadow cost of changing production by one unit. Thus, ideally,
it would correspond with the marginal cost, as reflected by a competitive market
price, in the ISOs. In practice, however, much of the Form-714 data are obviously
unreliable, exhibiting many consecutive hours of identical values and zero values
where they are not plausible. As described in the appendix, we incorporate data
for those areas where the Form-714 data seem to be most reliable. Nonetheless,
the Form-714 data may understate the true private marginal cost, both because
system lambda likely does not fully incorporate marginal transmission losses and
congestion costs and because system lambdas may not fully incorporate scarcity
rents in constrained hours.14

13Each organized electricity market operator estimates and reports a price-cost margin based upon its
estimate of the marginal cost of supply. In the last decade these reports indicate very low to negative
margins in most electricity markets (Federal Energy Regulatory Commission 2016).

14The wholesale prices in areas with ISOs are also imperfect measures, because they likely incorporate
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Region Location Mean Min P10 P90 Max
CA California 33.86 -150.00 17.47 52.38 1658.94
FRCC Florida 25.87 -32.69 15.91 37.28 1043.18
MRO Upper Midwest 25.94 -150.00 13.42 38.91 1858.24
NPCC Northeast 40.95 -150.00 13.27 76.17 1446.06
RFC Great Lakes 34.90 -150.00 17.95 52.66 1938.75
SERC Southeast 30.63 -150.00 17.09 41.75 2726.81
SPP Oklahoma/TX 27.11 -150.00 14.97 38.43 4655.87
TRE Texas 28.24 -110.47 15.20 40.15 4708.40
WECC Non-CA West 30.85 -150.00 15.28 48.07 2770.26

Weighted by Retail Sales.

Table 2: Wholesale Power Prices by NERC Region ($/MWh)

We calculate private marginal cost based for each ZIP Code based on LMP
prices and/or system lambda values that are closest to the ZIP Code, which allows
those costs to include transmission losses and transmission congestion costs, and
then aggregate up to utility levels. Full details of this calculation can be found in
the appendix. Table 2 summarizes the wholesale power cost, weighted by hourly
consumption, by regions designated by the North American Electricity Reliability
Council (NERC), which correspond to fairly integrated grids. The one exception is
that California is part of the Western Electricity Coordinating Council (WECC),
but operates a wholesale electricity market that was not well integrated with the
rest of the WECC during these years. The data allow us to break out California, so
we do.15 As we discuss later, average prices are below levels generally considered
sufficient to cover long-run average cost of a modern combine-cycle natural gas
power plant, even at the very low gas prices that existed at this time. These
averages, however, mask significant heterogeneity in prices both regionally and
over time. When wholesale markets have experienced either scarcity conditions
or high natural gas prices, wholesale prices have risen to extremely high levels.
Each of our ISO-based markets experienced prices in individual hours well above
$1000/MWh. This supports the viewpoint that market prices are capable of
reflecting marginal costs that include significant scarcity rents when applicable,
and that the relatively low average prices are reflective of a lack of scarcity, rather

some market power in some hours, although analysis by oversight divisions suggests very modest if any
market power averaged over all periods (Bushnell et al. 2017). Unfortunately, comparing system lambdas
to wholesale prices where they exist does not help to reveal the magnitude of these biases, because utilities
in these areas typically report the market price as the system lambda for their region.

15We Winsorize hourly prices at -$150, because that is the minimum bid allowed in most ISO markets.
A few observations of much lower prices appear in the data, but it is unclear whether they are data
errors. Including all prices has a very small effect on average price calculations and the deadweight loss
from price deviating from average SMC. But for a few utilities, extremely negative prices cause larger
deadweight loss calculations from hourly SMC variation. We also did all calculations with hourly prices
Winsorized at $0, which has very little effect on any of the calculations compared to a -$150 cutoff.
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than a systemic suppression of wholesale price below short-run marginal cost.

A. Distribution Losses

The private marginal costs calculated based on wholesale prices do not in-
clude the cost of local electricity distribution on low-voltage lines. The primary
marginal cost of distribution is electricity losses. Losses from low-voltage distribu-
tion lines fall into two categories: a smaller share is attributed to “no-load” losses
that occur in transformers, and a larger component is “resistive” losses that are
a function of the flow on the line. No-load losses are fairly constant for a utility
and vary across utilities as a function of the size of their systems. Resistive losses
change constantly scaling with the square of the flow on a line.16 On average,
around 25% of distribution losses are no-load with the remainder attributed to
resistive losses.

A range of factors affect the magnitude of losses, including the distance electric-
ity must be carried (approximately the inverse of geographic demand density),
the density of load on circuits, the use of equipment to optimize voltage, and
the volatility of demand. Demand volatility increases losses for a given aver-
age demand level due to the quadratic relationship between flow and resistive
losses. Many of these factors are likely to differ between residential customers
and commercial or industrial customers. Importantly, many industrial and some
commercial customers take power from the distribution system at higher voltages
than residential customers, which can substantially reduce the level of line losses.

Unfortunately, the only systematic data available on distribution line losses are
reported on an annual basis by utility in the EIA-861, with no breakdown by class
of customers, or by hour. As we describe in the appendix, we approximate hourly
losses for service to residential customers by first estimating an OLS regression
equation for annual average losses, controlling for the factors mentioned in the
previous paragraph. Using these parameter estimates, for each utility, we then
predict the average losses for service to residential customers.17 The average
loss rate is then converted to a time-varying hourly marginal loss rate on the
assumption that 25% of losses are independent of flow (not marginal) and the
remaining 75% are marginal losses allocated across hours in proportion to the
square of load. The details are presented in the appendix.

To do this, however, we need data on the pattern of hourly consumption by
residential customers, which don’t exist for most utilities. FERC Form-714 pro-
vides hourly data on total consumption of all customers from groups of utilities,
known as planning areas. We use that load profile, scaled by the share of total
demand that comes from residential customers, to approximate the residential

16Lazar and Baldwin (1997) have a very accessible discussion of distribution line losses.
17As discussed in the appendix, the vast majority of our predicted average distribution losses for

serving residential customers fall between 4% and 8%, with a mean of around 6.5%. Thus, the effect
of marginal distribution losses on social marginal cost is overall about one-third larger than it would be
if we had simply assumed that every utility had the national average loss rate of about 5.0%, but this
approach also allows us to capture variation across utilities.
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demand in each hour. This is not ideal. The alternative, however, is to use data
produced with an engineering model of residential energy use patterns, which also
is highly imperfect. As discussed in the appendix, we conduct a sensitivity using
engineering-model based data and it does not materially affect our results.

Distribution losses turn out to be significant in the overall analysis. Figure
4a presents the spread of average annual distribution losses from residential cus-
tomers for the utilities in our analysis. Table 3 shows that on a sales-weighted
basis the estimated average distribution loss rate is 6.2%. Furthermore, because
the externalities associated with electricity consumption take place upstream from
the distribution losses, the loss rate scales up both the private marginal cost and
the external marginal cost. After assuming that 25% of losses are non-marginal
and the other 75% vary with the square of load, figure 4b presents the distribution
of marginal hourly distribution losses from residential service that we estimate.
These average about 8.9%, but vary greatly hourly with load.

Mean StDv Min P10 P90 Max
Avg. Total Losses (%) 4.90 1.33 0.55 3.36 6.55 10.44
Avg. Res. Dist. Losses (%) 6.20 1.26 2.58 4.85 7.85 12.58
Marg. Res. Dist. Losses (%) 8.87 1.82 3.75 6.95 11.15 18.23

N=6215 (utility-state-years). Statistics are sales-weighted

Table 3: Summary Statistics of Distribution Losses

B. Other private cost considerations

The energy costs captured by the LMP and system lambda data used in this
analysis constitute the great majority of the wholesale electricity costs that must
be covered by customers over the year. The remainder is made up of capacity
costs, ancillary services costs and other side payments known as “uplift”. Across
the seven ISOs, energy costs comprised between 74% and 98% of the total whole-
sale cost of electricity in 2015, as shown in table 4.18 More detail on the source
and interpretation of these costs is provided in the appendix.

Capacity payments are regulatory-mandated payments from buyers to suppli-
ers based upon their installed effective production capacity. We do not include
capacity costs in our calculation of short-run private marginal cost. In some mar-
kets, such as ERCOT or SPP, there are no explicit capacity payments. In other
markets that do have capacity requirements, the standards have to be adjusted
in the medium or long run in response to variation in demand. These costs can
sometimes be substantial. In 2015 capacity costs comprised between 4% and 22%

18Our geographic results are grouped by NERC region.The geographic footprints of ISOs overlap those
of the NERC regions, so it is difficult to make one-to-one mappings from and ISO to a NERC region.
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(a) Average annual residential distribution losses

(b) Marginal hourly residential distribution losses

Figure 4: Estimates of residential distribution losses



Location Energy Capacity Ancillary Uplift
CAISO California 89% 9% 1% 1%
PJM Mid-Atlantic 74% 23% 2% 1%
ISO-NE New England 81% 15% 3% 1%
NYISO New York 74% 22% 3% 1%
ERCOT Texas 92% - 4% 4%
SPP Great Plains 98% - 1% 1%
MISO Midwest 95% 4% 0% 1%

Note: Percentages may not sum to 100 due to rounding

Table 4: Estimates of the composition of total wholesale costs by ISO

of the total wholesale cost of electricity at the five ISOs that make these pay-
ments. Importantly, these revenues move inversely to energy market revenues.
When energy prices, reflecting short-run marginal costs, are high, capacity pay-
ments to generation implicitly or explicitly adjust to reflect the fact that resources
are recovering more of their fixed costs through energy prices. In other words, ca-
pacity payments partially smooth the difference between long-run and short-run
marginal cost.

The link between incremental consumption in a given hour and the capacity
requirement is complex. However, conditioned upon the capacity at any point in
time, the wholesale energy market price, adjusted for distribution losses, should
reflect the true marginal resource cost of delivering one more kWh. Thus, from
a strict economic efficiency vantage, longer-run investments triggered by current
demand would not be a short-run marginal cost.19

We also do not incorporate short-run operating reserve, or “ancillary service”,
costs into our marginal cost calculation. LMPs are calculated in a process that si-
multaneously optimizes for meeting demand and reserve requirements. The LMP
therefore already reflects the shadow costs imposed through reserve requirements.
The primary marginal impact of reserves is reflected in the energy prices or sys-
tem lambda values used to reflect cost. This is because most reserves operate
as stand-by resources and do not incur marginal cost unless a contingency event
occurs. The main cost impact of an expansion of reserves arises when lower cost
units are held back to provide reserves, while more expensive units are deployed
to supply energy in their place. However this effect is captured in the marginal
energy price when the more expensive units set those prices. In any event, these
costs are relatively small, even in aggregate. In 2015 ancillary service costs at the

19One complication to this interpretation of short-run marginal cost arises when there is scarcity of
supply. When electricity systems experience short-term violations of operating constraints, such as unit
ramping or transmission flow constraints, prices include penalty values to reflect the cost of the scarcity
of appropriate supply. To the extent these values do not reflect the true underlying value of electricity to
end-users, they are rough approximations of the short-run marginal costs in these periods. There were
relatively few such periods during 2014-2016.
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seven ISOs comprised between less than 1% and 4% of the total wholesale cost of
electricity.

Finally, some non-convex incremental costs, such as generator “start-up” costs,
that are incurred to supply energy are at times not captured in the energy price
and are instead paid as out-of-market side-payments, or“uplift,” payments to
specific units. The funds for these side-payments are usually raised through a
small fee applied to all demand.20 We do not currently adjust our costs for
these considerations. Again though, these costs are very small. In 2015 “uplift”
payments range from less than 1% to 4% of the total wholesale cost of electricity.

Including all of the non-energy wholesale electricity costs would have a mod-
est effect on the average wholesale price of electricity, and therefore on the gap
between the marginal retail price and the average social marginal cost. It could,
however, have a significant effect on the SMC during peak hours if reserve costs
were considered marginal and were attributed entirely to the highest-demand
hours. In that case, SMC would be more volatile than our analysis suggests and
the deadweight loss of static pricing would be greater.

C. Private Marginal Cost Results

Figure 5 presents the private marginal cost calculations. Summary statistics
on private marginal cost are presented in table 5 in the next section along with
external marginal costs and total social marginal cost. As discussed above, these
private marginal cost levels are below what many consider to be the long-run
average cost of power supply. In part, that reflects the fact that much of the
country had excess capacity during 2014 to 2016 due to a combination of mistakes
or bad luck in planning and policies of carrying large quantities of excess capacity.
Consistent with such policies, this also reflects the fact that in most deregulated
markets, power plant owners receive revenues from capacity payments as well as
energy payments. Regardless of whether such capacity payments are appropriate,
they do not reflect marginal cost and therefore can distort consumption when
reflected in marginal consumer prices.

There is also significant variation over time in these levels. Figure 6 summarizes
the monthly average wholesale private marginal cost by NERC region.21 During
winter periods of high demand and gas prices, such as the 2014 polar vortex,
prices rose to extremely high levels, raising monthly averages above $0.15/kWh
in parts of the Mid-Atlantic (RFC) and northeast (NPCC) regions. This pattern
reflects, on a longer time-scale, many of the issues raised in discussions of short-run
dynamic electricity pricing. Marginal costs in power markets are quite volatile,
even on a monthly or annual basis.22 The electricity industry has experienced

20These costs are also not considered to be technically marginal, which is why they are not incorporated
into market prices.

21We have combined California with the rest of the WECC and Florida (FPCC) with the neighboring
SERC region in order to make the figure more readable. The regions that we combined have very similar
price patterns.

22In contrast to other energy markets, such as oil, the level and volatility of wholesale electricity prices
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Figure 5: Average Private Marginal Cost per kWh



repeated cycles where marginal costs move dramatically relative to average cost
(Borenstein and Bushnell 2015), while retail prices, which are strongly linked to
historical average cost, are significantly more rigid.

Figure 6: Monthly Private Marginal Cost by NERC Region

Wholesale prices (and implied private marginal costs) that remain for long pe-
riods below levels necessary to cover long-run average cost are certainly a concern
for generators and policymakers. However, even if measured accurately, such a
shortfall does not have direct bearing on our analysis of the efficiency of resi-
dential retail marginal prices and their deviation from SRSMC. Economic theory
dictates that if short-run marginal costs are indeed quite low, then efficient pric-
ing should reflect that, even if such prices are not sufficient to cover average
cost.23 Furthermore, even if policymakers believe that additional revenue must

can differ substantially between regions because transmission losses, limits on transmission capacity, and
high storage costs limit the ability to arbitrage wholesale electricity prices and costs between regions and
over time. In the case of Texas, a higher cap on spot prices also leads to a more extreme distribution of
prices.

23And, conversely, if the marginal generation costs are quite high, yielding very high profits for pro-
ducers (but without exercise of any market power), then efficient retail prices should reflect those high
short-run marginal costs.
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be raised in order to cover the past investments of suppliers, such revenues need
not come from marginal energy prices. Fixed charges, subscription charges (e.g.,
based on the customer’s circuit breaker capacity), demand charges (e.g., based
on the customer’s maximum hourly demand), or government subsidies are among
the alternatives that can be used to increase revenue collection without raising
marginal price, though these alternatives can also create distortions.

IV. External Marginal Costs and Total Social Marginal Costs

For external marginal cost, we build on Graf Zivin, Kotchen and Mansur (2014)
and Holland, Mansur, Muller, and Yates (2016), as well as the newer Air Pollution
Emission Experiments and Policy (AP3) pollution damage model (see Clay, Jha,
Muller and Walsh (2018)) to estimate the marginal damages associated with a
change in load. We do this analysis for the same nine U.S. regions introduced
in section III. The details of the estimation are in the appendix. In brief, for
each of the four major pollutants from electricity generation (CO2, SO2, NOx,
and PM2.5), we create a variable that is total emissions damages by hour of the
three-year sample for each of the nine regions, incorporating the operations of
each fossil fuel power plant and the damages associated with emissions from each
plant, based on the AP3 damage model for 2014.24 In this analysis, we assume
that the “social cost of carbon” (SCC) – the net present value of damages resulting
from additional emitted CO2 – is $50 per metric ton. In the appendix, we present
the results of an analysis with the SCC assumed to be $100 per ton.

We then regress each pollutant damage variable on piecewise linear functions
of the load within the same region and the load in the other regions that are part
of the same grid interconnect (Western, Eastern, and Texas). The regressions are
estimated in 24-hour differenced form, so identification is based on the change in
emissions from day to day in response to a change in load. The coefficients of these
regressions can be interpreted as estimates of the marginal damage from a change
in load in one region as a function of the load level in that and interconnected
regions.

We use these coefficients to construct the damage associated with marginal
electricity consumption in each of the nine regions for each hour of the sample.
We do make two small adjustment to these damage estimates. The first involves
scaling up the calculations of pollution associated with a marginal end-use kWh to
account for distribution losses as discussed above. The second involves adjusting
down our estimates of external costs to account for any policies that incorporate

24The AP3 model links county-level emissions of criteria air pollutants and greenhouse gases to an air
transport model and physical damages in order to establish costs of emissions by pollutant/county. It
incorporates assumptions about dose-response of various pollutants and value of a statistical life. For
more information, see https://public.tepper.cmu.edu/nmuller/APModel.aspx. Our external marginal
cost analysis does not incorporate emissions upstream of the power plant, in either fossil fuel extraction
or transportation. The extent of externalities from extraction and transportation, particularly for natural
gas, is the subject of widely divergent views. See Alvarez et al (2018) and Jha and Muller (2018).
Including these upstream externalities would increase external marginal costs and decrease price minus
social marginal cost.
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externality costs into electricity prices, such as carbon cap-and-trade programs.
The resulting aggregate damages from incremental quantity consumed in each
region are shown in table A1 in the appendix. The results show that CO2 is
consistently a major contributor to the external marginal cost, but in areas with
high levels of coal-fired generation, SO2 tends to impose as much or more cost.

Figure 7: Average External Marginal Cost per kWh

A. External Marginal Cost Results

In figure 7, we show the average externality cost per kWh. The figure shows the
average dollar-value externality cost associated with a marginal kWh of demand
change in each location. The figure illustrates some coarseness in these data, be-
cause the analysis assumes that the same plants are marginal for any incremental
demand within each of the nine regions for a given hour of the sample regard-
less of the location of the incremental demand in the region. Still, the figure
demonstrates that externality costs vary widely and are particularly large in the
areas where coal-fired power plants are most prevalent. Comparing the scales of
figure 5 and figure 7 also indicates that the majority of the social marginal cost in
our calculations in most locations is due to externalities, rather than the private
marginal cost of generation.
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Figure 8: Average Social Marginal Cost per kWh



B. Total Social Marginal Cost Results

Figure 8 then aggregates the data in figures 5 and 7 to present the average
social marginal cost. Though California has among the higher private marginal
costs, the external marginal cost associated with that generation is much lower
than in most of the U.S., causing it to have among the lowest SMCs. In contrast,
the upper Midwest has low PMC, but such high EMC that it exhibits a very high
SMC. Table 5 shows that the average quantity-weighted social marginal cost is
9.9 cents per kWh, nearly two-thirds of which is due to external marginal costs.

Mean StDv Min P10 P90 Max
Retail Variable Price (P, c|/kWh) 11.49 3.07 2.36 8.79 16.29 48.22
Private Marginal Cost (c|/kWh) 3.72 1.15 2.16 2.59 5.10 8.22
External Marginal Cost (c|/kWh) 6.21 2.38 2.50 3.04 9.38 12.12
Social Marginal Cost (SMC, c|/kWh) 9.93 2.67 5.14 6.51 13.72 17.71
P - SMC (c|/kWh) 1.56 4.21 -9.39 -2.82 6.74 35.89
(P - SMC) / P 0.08 0.31 -3.47 -0.28 0.51 0.81

N=6215 (utility-state-years). Statistics are sales-weighted

Table 5: Annual Averages of Prices and Marginal Costs

Note: Each observation is the hourly-sales-weighted average value of the variable for a utility-state-year.

These summary statistics are weighted across observations by the utility-state annual sales.

V. Mispricing and Deadweight Loss

Figure 9 presents the marginal price minus average social marginal cost map.
The bluer areas are pricing above average SMC, while the redder areas are pricing
below average SMC. Much of the country has fairly light colors, indicating that
the static marginal price that residential customers pay is fairly close to average
SMC. California and parts of New England are notable for price being well above
SMC, while parts of the Dakotas, Nebraska and Minnesota exhibit the largest
price deviations below SMC. In the legend, the percentages in parentheses are
the share of residential customers in each category.

Figure 9, however, captures only part of the story, because it does not include
variation in SMC over time. The static price might reflect the average SMC well,
but still create significant inefficiency because the SMC varies substantially hour-
to-hour. Figure 10 shows histograms by state of the hourly markup, P−SMC

P ,
illustrating that SMC varies quite widely in some states, while it varies much less
in others.
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Figure 9: Marginal Price minus Average Social Marginal Cost per kWh

A. Analyzing Deadweight Loss

In order to study the social cost of electricity mispricing, we next analyze dead-
weight loss (DWL) directly. As discussed above, residential retail electricity pric-
ing departs from efficiency both by charging a single time-invariant price – rather
than allowing price to change hourly or more frequently as social marginal cost
changes – and by setting that single price at a level substantially different from
the average social marginal cost. We decompose mispricing into these two compo-
nents and allow different demand elasticities, a “short run” elasticity that reflects
consumer response to high-frequency price variation and a “long run” elasticity
that reflects consumer response to changes in the long-run average price they face.
A detailed explanation of these calculations is in the appendix.

Estimates of demand elasticity vary substantially in the literature, but there
seems to be widespread agreement that demand elasticity is dependent on tech-
nology and the longevity of price variation. In the last decade, these elasticities
very likely have increased with improved alternatives, from end-user batteries to
advances in technology for automated price response (Gerke et al. (2020)). This
trend is likely to continue with higher levels of electric vehicle adoption. Long-run
electricity demand elasticity has generally been thought to be greater than short-
run elasticity (Zhu et al (2018)), but that could change in the future as technology
allows time-shiftable uses to be moved away from the highest priced hours, in-
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Figure 10: Hourly Price Markup (P−SMC
P ) by State



cluding water heating, dish and clothes washing and drying, and to some extent
even space heating and cooling (through pre-heating and pre-cooling).25 Rather
than base our conclusions completely on one set of demand elasticity estimates,
we present results for a base illustration of a short-run elasticity of -0.2 and a
long-run elasticity of -0.5 – which are approximately the median estimates found
in a recent meta-analysis (Zhu et al (2018)) – but in the appendix we include
results for a wide range of possible elasticities.

DWL calculations are also a function of how SMC changes with quantity. Con-
sistent with discussion of externalities above, we have estimated an SMC elas-
ticity with respect to quantity at the NERC region level, which we detail in the
appendix. We find, however, that the range of quantity changes that result from
the price variation and assumed demand elasticities are associated with miniscule
changes in SMC and have almost no effect on our DWL calculations. Thus, for
computational simplicity, we assume that SMC is constant over the range of the
quantity changes considered.

DWL from mispricing electricity is also potentially influenced by mispricing of
other goods in the economy, most importantly substitutes for electricity such as
natural gas and gasoline (Davis and Muehlegger 2010, Borenstein and Davis 2012).
In follow-on work (Borenstein and Bushnell 2021), we investigate distortions in
pricing these substitute energy sources. Though we find that US gasoline is
generally underpriced relative to SMC and natural gas is generally overpriced,
on an energy-equivalent basis the deviations for both are far smaller in absolute
value than for electricity.26

We calculate total DWL based on the departure from efficient pricing equal
to the hourly SMC. The component of DWL that is due to charging a static price
equal to the quantity-weighted average SMC at all times, rather than hourly SMC,
is calculated using the short-run demand elasticity.27 The component of DWL
due to charging a static price that deviates from the quantity-weighted average
SMC is then calculated using the long-run demand elasticity.

Figure 11 presents the histogram of total DWL per kilowatt-hour. To avoid
biasing the calculation due to the endogeneity of quantity to P , however, each
utility’s quantity of kilowatt-hours is normalized to the quantity it would have
sold at P = SMC given the assumed long-run elasticity. The histogram is also
weighted by these normalized quantities. The results presented show that most
utilities exhibit fairly low DWL per unit demand, compared to an average SMC
of about $0.10 per kWh, but a few show much higher DWL. Figure 12 shows
the histogram of utility DWL

SMC
. This ratio also is quite low for most utilities, but

25As this discussion suggests, a complete analysis of DWL from electricity mispricing would require
estimation of the full matrix of own- and cross-price elasticities across hours, an extremely challenging
task that we leave for future research.

26We exclude congestion and accident externalities from the gasoline calculations, assuming those
would be approximately unchanged if vehicles were powered with electricity.

27Borenstein and Holland (2005) show that the DWL-minimizing static price is the quantity-weighted
average SMC if demand elasticity is static or if time-varying demand elasticity is not correlated with
time-varying SMC.
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Figure 11: Distribution of Deadweight Loss per Normalized Kilowatt-Hour
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Figure 12: Distribution of DWL/SMC Ratio



for some it is 0.2-0.4, suggesting that, at these demand elasticities, mispricing
dissipates as much surplus as would a 20%-40% increase in the social marginal
cost of supplying electricity.28

For this base case, about 77% of the total DWL is a result of the long-run
response, that is, the failure to set P = SMC, with the remainder attributable
to the absence of real-time price variation. The larger assumed long-run elastic-
ity is partially responsible for such a high share. If the short-run and long-run
elasticities are set equal to one another, in the -0.1 to -0.9 range, then 57%-62%
of the DWL would be attributed to the long-run response.

So, the answer to our title question is that two pricing wrongs do indeed make
a (mostly) right for most utilities. One might ask whether this is because each
pricing wrong is relatively small or whether it is a serendipitous result of offsetting
“wrongs.” To address this question, we carry out a similar DWL analysis as above,
but with each of the pricing wrongs separately. First, we consider how large DWL
would be if there were no environmental externalities so that SMC were equal to
PMC in every hour.29 Second, we consider how large DWL would be if there
were environmental externalities, but utilities set a static volumetric price equal
to PMC, perhaps by imposing substantial monthly fixed charges.

Figure 13 presents the (normalized) quantity-weighted distribution of DWL
for the base case and these two alternative cases with only one of the pricing
wrongs. It makes clear that the low DWL in the base case is the result of a lucky
coincidence of the two offsetting distortions. With both distortions, the mean
DWL per normalized quantity is $0.005 per kWh, but with either distortion
alone, it is about five times higher, $0.023 with no environmental externalities
and $0.027 with environmental externalities and price set equal to PMC. With
either distortion alone, the DWL from mispricing dissipates on average about as
much surplus as would a 25% increase in SMC.

VI. Applications and Implications

Having calculated estimates of both the marginal prices and marginal social
costs of electricity, we now consider some policy areas where such information
ideally would be considered, and the implications of our calculation for such
policies. One area where our calculation has potential relevance, but has received
limited policy attention in the U.S., is the application of carbon pricing to the
electricity sector. As discussed above, policy debates over the design of carbon
pricing policies periodically invoke the Pigouvian ideal of capturing the marginal
externality costs of greenhouse gases in consumer energy prices. Mechanisms such

28California’s three large investor-owned utilities are among these outliers. Together they make up
8% of the total US residential normalized quantity (at a long-run elasticity of -0.5), but are responsible
for 31% of the DWL.

29We don’t adjust retail price, because nearly all of the deviation of retail price from PMC is unrelated
to expenses associated with environmental control or remediation. Even in California, Borenstein, Fowlie,
and Sallee (2021) find that a small share of the gap between residential retail price and SMC is attributable
to environmental mandates, though it is difficult to know how much is due to climate change adaptation.
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Figure 13: Distribution of DWL per Normalized kWh with One or Both Pricing
Wrongs

as output-based updating of allowance allocation, and the application of intensity
standards, have been criticized on the grounds that they dilute the externality
cost faced by consumers (Holland et al. 2009, Fowlie 2011).

However, if marginal prices are already above social marginal cost, the addi-
tional externality signal only pushes prices further away from first best. It is
worth noting that in the United States, carbon pricing - in the form of cap-and-
trade - is currently applied to electricity only in California and the northeastern
states comprising the Regional Greenhouse Gas Initiative. However, these are
the collection of states where we have found average retail prices to be well above
social marginal cost.

Still, it is important to recognize that our analysis focuses only on the dis-
torted consumption incentives when residential retail price deviates from social
marginal cost. We have not studied commercial and industrial rates, which are
more complex, with greater use of time varying pricing and demand charges that
determine (and distort) customer incentives. More importantly, our analysis does
not consider the effect of market mechanisms for greenhouse gases and other
pollution externalities on the mix of generation, between coal-fired generation,
gas-fired generation, nuclear power, renewable generation and other sources. The
efficiency value of pricing emissions at the wholesale level seems likely to be quite
significant. Our findings, however, suggest that the argument for passing through
those costs to residential rates is much weaker in some parts of the country.

Our findings also have direct implications for two other areas that have received
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considerable attention in the energy and economics literature: energy efficiency
and distributed energy resource policy. We explore each of these in turn. We do
not attempt here to perform a detailed calculation of the welfare implications of
these policies, but rather present suggestive evidence that efforts in both areas
may be significantly geographically misaligned with the benefits they can provide.

A. Energy Efficiency

The subject of energy efficiency in general, and its role in the electricity indus-
try in particular, has been a topic of debate among economists and technologists
for decades. Much of the debate has focused on whether these programs de-
liver the reduced energy consumption claimed by the utilities that implement
them (Joskow and Marron 1992, Auffhammer et al. 2008). Economists have also
examined the specific behavioral, regulatory, and market channels that could
justify energy efficiency policies (Allcott and Greenstone 2012, Gillingham and
Palmer 2014). However, much of the literature on the “efficiency gap” has focused
on what Gerarden, Newell and Stavins (2017) call the “private energy-efficiency
gap” - the question of whether customers are making individually rational eco-
nomic choices. They note that the more policy-relevant question of the social
energy-efficiency gap hinges on many factors, including the relationship of en-
ergy prices to social marginal cost, a question they identify as a “relatively high
priority” for further research. Indeed, well-informed consumers who face retail
prices that are significantly above social marginal cost are already being given
too much incentive to adopt energy efficiency measures. If consumers are able
to make privately optimal energy-efficiency decisions, government programs to
promote improved energy efficiency would be best aimed at areas where price
is below social marginal cost, and could be welfare-reducing where price is well
above social marginal cost.

Several recent papers have attempted to address aspects of the relationship
between energy efficiency programs and the social benefits they provide. Both
Novan and Smith (2016) and Boomhower and Davis (2017) examine the impact
of energy efficiency programs on the hourly profile of energy use, and compare
those impacts to wholesale power costs and environmental impacts.

Using state-level data from the Consortium for Energy Efficiency,30 we examine
per-customer reported expenditures on residential energy efficiency programs.31

This includes both energy efficiency programs run through utilities and those run
through non-utility organizations, which play a significant role in New York, Ore-
gon, Vermont, and parts of California, for instance. Other efficiency measures,
such as appliance and building standards, impose costs on firms and consumers
that are also not captured in these data. Still the data presented here are strongly
reflective of the relative emphasis that different jurisdictions place upon energy ef-
ficiency measures. Figure 14 illustrates the state-level expenditures per customer

30https://www.cee1.org/annual-industry-reports
31Our thanks to Hunt Allcott for suggesting this comparison.
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Figure 14: Electric Utility Expenditures on Energy Efficiency Programs

of electric utilities on energy efficiency programs. The largest expenditures are
focused on the coasts, with particular intensity in California and the northeast.
According to our calculations, these are the regions where marginal energy effi-
ciency expenditures provide the least, possible even negative, social value. Clearly,
the distribution of spending on energy efficiency within the US is suboptimal at
best.32

B. Distributed Energy Resources

Another area of energy policy that is directly impacted by the relationship be-
tween retail prices and marginal cost is the deployment of small-scale distributed
energy resources. Small scale generation resources, currently overwhelming com-
prised of rooftop solar photovoltaic (PV) installations, are deployed “behind the
meter.” Most of these systems are generally eligible for “net metering,” meaning
that when a customer’s production exceeds consumption in an hour, the excess
production is allowed for billing purposes to offset excess demand in other hours.
This allows residential customers with distributed generation to offset the full

32This discussion assumes that the purpose of energy efficiency programs is to reduce consumption
because P < SMC gives incentives for excessive consumption. To the extent that these programs
have other goals – such as correcting non-optimizing private consumption choices caused by imperfect
information, myopia or irrationality – these other goals would also need to be considered.
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retail price of electricity, rather than the marginal replacement cost of the energy
that is produced. Where retail variable prices substantially exceed the marginal
cost, residential solar is considerably more attractive for consumers. In California,
Borenstein (2017) calculates that the gap between retail and wholesale marginal
electricity prices means that net metering provides about as large an incentive for
residential solar as the 30% federal investment tax credit.

Drawing again from the EIA Form-861, we aggregate the capacity of distributed
resources that is subject to net metering by utility reporting area. Figure 15
illustrates the capacity of distributed generation (in Watts) per customer for the
utility systems that report this statistic to the EIA. California, with over 40% of
the residential solar capacity in the nation, again dominates this calculation.

Figure 15: Percentage of Residential Customers with Rooftop Solar

Note: This figure shows the proportion of residential customers under a “net metering” tariff, which
allows a customer to sell their own generation to the grid at retail prices. Virtually all customers with

rooftop solar are covered by net metering and virtually all residential net metering is associated with
rooftop solar.

The map reflects the union of at least three sets of attributes: significant solar
incentives (e.g., New Jersey), solar potential (desert southwest), and high retail
prices. Comparing figure 15 to figure 10, the strong relationship between high
retail prices and solar deployment again stands out. A full calculation of the
welfare implications of retail tariffs on distributed generation would require a
decomposition of rate effects from other incentives, as well as estimates of the rel-
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ative efficiency of solar deployment in different locations. However, figure 15 does
suggest that expenditures on distributed solar are strongly associated with retail
price incentives that greatly exceed the social value of distributed generation.

The deployment of distributed energy resources, and the resulting reduction
in metered consumption, known as “load defection,” is a growing threat to the
finances of distribution utilities who have been recovering capital cost though
volumetric rates. Critics and proponents of small-scale distributed generation
have battled over net metering policies, but net-metering policies lose their rel-
evance if the marginal retail rate reflects social marginal cost. Recognizing this
fact, utilities are increasingly seeking to adjust their rate structures to increase
monthly fixed charges and reduce their volumetric prices. While not a panacea
(Borenstein 2016) a shift toward larger fixed fees, particularly in states like Cal-
ifornia where they are modest to non-existent, would partially insulate utilities
from the loss of customer load and reduce the marginal private reward of solar
deployment for customers.

Consideration of distributed generation also raises questions of their potential
impact on distribution losses and other costs associated with distribution net-
works, such as voltage support. As discussed above, marginal distribution losses
can be significant, reaching over 20% at times, which distributed generation could
mitigate or exacerbate depending on location and timing of production. More gen-
erally, the degree to which optimized location and control of distributed resources
could change the cost of distribution remains an important area of research. Col-
lection of distribution-level data with higher temporal and locational resolution
could help address these questions.

VII. Conclusion

Most policy recommendations from economists for responding to the challenge
of climate change focus on “getting the prices right.” But in retail electricity mar-
kets, the prices are wrong for many reasons beyond greenhouse gas emissions. In
this paper, we have analyzed the direction and degree of mispricing in residential
electricity.

We find that with the current generation capacity and remuneration mecha-
nisms for generation, the short-run private marginal cost was quite low during
2014-2016, a (quantity-weighted) average of less than 4 cents per kWh, which is
below most estimates of the long-run average cost that generation must cover to
support new investment. Estimates of the average externalities associated with
generation are nearly twice the level of private marginal costs. We show that
distribution-level marginal line losses significantly increase both of these costs,
by about 9% on average. Accounting for private and external marginal costs,
and adjusting for distribution line losses, we find large variation in full societal
marginal cost from a (quantity-weighted) 10th percentile of 6.5 cents per kWh to
a 90th percentile of 13.7 cents per kWh.

Somewhat surprisingly, we find that across the country about 39% of residential

35



sales at a time-invariant marginal electricity price are below the utility’s average
social marginal cost of providing electricity. But we find wide variation, with
prices well above average SMC in California and the Northeast, and below in
much of the Midwest and the South.

That comparison, however, captures only part of the inefficiency, because social
marginal cost varies hour to hour while price does not for nearly all residential
customers. Using median short-run and long-run demand elasticity estimates
from a recent meta-study, we find that about three-quarters of the total DWL
from electricity mispricing is due to setting a time-invariant price at an inefficient
level while the other one-quarter is attributable to the failure to change retail
prices dynamically as SMC changes. These proportions, however, are highly
dependent on relative short-run and long-run elasticities, which we note are likely
to change as consumer technologies evolve.

Nonetheless, the largest DWL today likely results from a small number of util-
ities, mostly in California, setting prices well above average SMC. In most of the
country, we find that retail price is fairly close to SMC, creating relatively little
DWL. We show, however, that this is a serendipitous outcome of the two pricing
wrongs referenced in our title, with underpricing due to unpriced externalities on
average about balancing out overpricing due to the recovery of significant fixed
costs through volumetric prices. Our analysis suggests that if either there were
no unpriced externalities or fixed costs were recovered through other charges or
revenues so that price equaled private marginal cost, (quantity-weighted) average
DWL would be about five times greater.

Our findings have implications not just for standard deadweight loss analysis
of consumption, but also for common related policies on residential energy ef-
ficiency and distributed generation. Many states have aggressive programs to
encourage such investments, but if prices already exceed social marginal cost,
the value of additional investments beyond those that well-informed individuals
would already choose to make is questionable. It is perhaps not politically sur-
prising, but nonetheless economically concerning, that we find these programs are
most prevalent in areas where retail prices are already substantially above social
marginal cost.
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Appendix for Online Publication
The data used in this analysis come from a diverse range of sources. The con-

struction of the data necessary for this analysis can be divided into the following
categories:

• The annual sales of electricity to residential customers

• The marginal retail price paid by residential customers

• The location of residential customers as determined by utility service terri-
tories

• The private marginal costs of serving electricity demand

• The external marginal costs of serving electricity demand

• The hourly load shapes to distribute annual residential demand throughout
the year

• The losses associated with distributing electricity from the transmission grid
to residential customers

Each of these categories is covered by a section below. All results were converted
to constant 2016 dollars using Consumer Price Index data (US Census 2018). The
last section covers the details of the deadweight loss calculations.

1. Residential Electricity Sales

The starting point for this analysis was the Form EIA-861 survey published by
the US Energy Information Administration (EIA) (Energy Information Administration
2017a). This survey collects a range of valuable annual data on every electric
utility in the US. Of primary interest for this work was the dataset on “Sales to
Ultimate Customers” which contains annual data on kilowatt-hour sales of elec-
tricity, numbers of customers and retail revenues. These data are broken down
by state, so there can be multiple entries for a single utility if it has customers
in multiple states. These data are also broken down by customer class, such that
the sales, revenues and customer numbers are reported separately for residen-
tial, commercial and industrial customer types.33 There is also some other key
information available through the EIA-861 including data on the ownership struc-
ture of a utility (e.g., Investor Owned, Municipal, Cooperative, etc.); the various
regulatory regimes each utility belongs to (e.g., reliability regions or balancing
authorities); the counties that are part of a given utility’s service territory; and
operational data such as the peak load in each utility’s service territory, numbers
of distribution circuits and line losses.

33Strictly speaking a Transportation customer class is also included, although during our analysis
period this represents a negligible volume and so is largely ignored.
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The analysis here is focused on residential customers, so all information on
industrial and commercial customers was dropped. Only utility-state pairs serving
at least some residential customers were retained. The analysis here also focuses
on the continental 48 states and the District of Columbia because the necessary
private and external marginal cost data are not available for Hawaii, Alaska or
the US territories. We also opted to drop the very small number of utilities that
were classed as “Behind the Meter” as we are interested in comparing residential
customers receiving a standard electricity service throughout the US.

Finally, the data were reformatted to appropriately deal with the different ways
that residential customers receive their electricity. Roughly 85% of customers
still receive their electricity through a vertically integrated utility that provides
“bundled” service. This means the utility that is procuring the electricity that
customers consume is also the company that owns and operates the distribution
network that delivers the electricity to customers homes. However, in some states
the electricity sector has been restructured such that customers can choose their
electricity provider. In this case the service has been “unbundled” such that one
company provides the electricity procurement service (i.e., the “energy” service)
and another company distributes the electricity to the customer (i.e., the “deliv-
ery” service). The company providing the energy service is subject to competition
from other providers, and will be referred to here as the “retail choice provider”.
The utility providing the delivery service continues to be a public or regulated
monopoly and will be referred to hear as the “local distribution company”. Var-
ious states take different approaches to handling which of these two entities is
in charge of the other aspects of electricity service, such as billing and customer
service. Roughly 32% of customers have the option to receive their electricity
this way, although only about half of these actually do have a retail provider that
is not integrated with their local distribution company. A large number of these
customers are concentrated in a few states such as Texas, Ohio, Pennsylvania and
New Jersey.

To ensure these customers can be correctly incorporated into the analysis, the
data were reformatted such that each entry had a “delivery” utility and an “en-
ergy” utility. For vertically integrated utilities providing “bundled” service these
two entries were the same. For customers receiving “unbundled” electricity ser-
vice these two entries would necessarily differ. Unfortunately, the EIA-861 data
do not include information on how a given retail choice provider’s customers and
sales are divided among the various local distribution companies that are pro-
viding delivery-only service in a given state. As such, new entries were created
for all possible state-by-state combinations of retail choice providers and local
distribution companies. The sales and customer numbers were then allocated
proportionally. In the limited cases where we had prior knowledge about the
operations of a retail provider this was included before any proportional alloca-
tion.34 Where there were discrepancies between the state totals for energy-only

34For example, Marin Clean Energy is effectively a retail choice provider in California and there
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and delivery-only customer numbers and sales the convention was adopted that
the energy service totals were correct and the delivery service totals were re-scaled
accordingly. In general any discrepancies were relatively small and likely due to
errors in reporting.

One final wrinkle in completing this reformatting was the approach taken to
reporting in the EIA-861 by utilities in Texas. Unfortunately, the Texas utilities
do not break out their reporting between “energy” and “delivery” service. Instead,
the retail choice provider reports the sales, customer numbers and revenues as if
they were providing a complete “bundled” service. This also means that the
six local distribution companies that offer delivery services to the retail choice
providers in Texas do not report any information in this part of the survey.35 To
remedy this and make the data for Texas consistent with the other retail choice
states, additional data were collected from the Texas Public Utilities Commission
on the residential customer numbers, sales and revenues for these six missing local
distribution utilities (Public Utility Commission of Texas 2017b). These data
were then matched with the retail choice providers using the same proportional
allocation process used for the other retail choice states.

2. Residential Marginal Retail Prices

Once the EIA-861 data were collected and reformatted, it was then straight-
forward to calculate the annual average retail price paid by every residential
customer. To do this, total revenues were divided by total kWh sales to get the
average cents per kWh price. However, this is almost certainly not a good reflec-
tion of the marginal retail price faced by each customer for three reasons. First,
electricity tariffs are usually designed as two part tariffs, with a fixed monthly
charge and a variable per-kWh charge. Because fixed charges are so prevalent
and can comprise a substantial portion of customers’ bills, simply using the av-
erage price would overstate the marginal rate customers actually face. Second,
for many utilities, there is variation in the variable per-kWh price individual cus-
tomers pay even after accounting for fixed charges. The most common reason is
that the per-kWh price a customer pays depends on the amount that a customer
consumes (i.e. tiered rates where prices increase or decrease in discrete blocks
of cumulative consumption). Less common reasons are that the price may vary
by time of day (i.e., “time-of-use” or “dynamic” pricing), or time of year (i.e.,
seasonal pricing where winter and summer rates differ). Third, the structure of
retail tariffs themselves are also not static over time and are updated as utilities’
new regulatory cases are approved, as changes in certain costs are automatically
passed through to customers or as retail choice providers alter their tariffs in an

are many local distribution companies that provide delivery service in the state. However, Marin Clean
Energy’s operations are limited to Marin County and nearby counties, so delivery service is only provided
to its customers by Pacific Gas & Electric.

35These six utilities are Oncor Electric Delivery Company LLC, CenterPoint Energy, AEP Texas
Central Company, AEP Texas North Company, Texas-New Mexico Power Company and Sharyland
Utilities LP.
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effort to win new customers.
To deal with fixed charges, we have collected information on the retail tariffs

actually offered by utilities and extracted the monthly fixed charges. Our main
source for this information is the National Renewable Energy Laboratory’s Utility
Rate Database (URDB) (National Renewable Energy Laboratory 2017b). This
is an open-access repository for rate structure information for utilities operat-
ing in the US. The fixed charges for residential tariffs active during our analysis
period were extracted, and the utility names were cleaned so that their corre-
sponding identifiers and states matched those in the EIA-861 data. At the time
of writing, the URDB only contained tariffs for utilities providing “bundled” ser-
vice. This presented us with a similar challenge to the EIA-861 data in dealing
with the roughly 15% of customers with a retail choice provider that differs from
their local distribution company. To resolve this, we manually collected addi-
tional fixed charge information for the largest retail choice providers in the states
with substantial numbers of retail choice customers (Public Utility Commission
of Texas 2017a).36

Once we had finished collecting all the necessary data on fixed charges, we
found that it was almost always the case that a given utility operating in a given
state had many different residential tariffs. The average fixed charge paid by
a given utility’s residential customers must therefore be some weighted average
of the fixed charges in each of these tariffs, with the weights determined by the
number of customers on each tariff. Unfortunately we know of no comprehensive
data source that could give us this breakdown of customers by tariff. As such we
summarized the fixed charges in these tariffs by identifying the standard tariffs
that were most likely to have many customers on them, as compared to the more
niche non-standard tariffs that few customers were likely to be on. We did this by
searching for keywords in the names of the tariffs. Tariffs containing words like
“vehicle”, “solar”, “medical” or “three-phase” were identified as non-standard.
This tended to leave us with a set of more standard tariffs with names containing
words like “default”, “residential” and “general”. Full details of the keywords used
can be found in the accompanying code. Once these standard tariffs had been
identified, we took the median, giving us a single estimate of the residential fixed
charge for each utility-state pair. We considered other approaches to combining
these (e.g. mean or mode), but this did not significantly affect our results. It was
also often the case that utilities had similar or identical fixed charges on many
or all of their residential tariffs. We checked our selection of standard rates for
166 large utilities that report in FERC Form 1 the number of customers on each
paragraph. For those utilities, 92% of our selected standard rates matched the
rate with the most customers on FERC Form 1. Over 95% differed by less than
$2 per month in absolute value.

36In collecting these data we sought to capture whether the fixed charges offered by a given retail choice
provider varied depending on the local distribution company whose service territory their customer was
located in. In general though we found very little evidence of utilities having much variation in their
fixed charges for this reason.
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Once this exercise was complete, these rates were matched with the utility-state
pairs in our reformatted version of the EIA-861 data. At this point it was now
possible to estimate the second part of the two part tariff - namely the average
variable per kWh price. To do this, the fixed charge was multiplied by the number
of residential customers to get fixed revenues, these were subtracted from total
revenues to get variable revenues, and these were then divided by total kWh sales
to get the average variable cents per kWh price.

The second issue in identifying the marginal retail price was dealing with the
fact that utility tariffs often do not contain just a single flat per-kWh variable
price. This could mean that the average variable per kWh price calculated using
the fixed charge information described above does not reflect the actual marginal
price paid by customers. The URDB does in fact contain some information on
the structure of the per kWh prices in each tariff (e.g. tier sizes and prices for
increasing- or decreasing-block rates, or peak vs off-peak rates and timings for
time-of-use pricing). However, these data are necessarily complex, and they are
less complete than the fixed charge information we had already extracted. As
already noted, these data also don’t cover retail choice providers, so significant
additional manual collection would be required to make these data complete.
Furthermore, to properly use this information we would need to know both how
many customers are on each tariff and the consumption patterns of the customers
on each tariff. To the extent that these data are held by individual utilities they
are confidential.

Thus, we have opted here to conduct the analysis assuming that all utilities
charge a single flat variable per kWh price. While this is obviously not strictly
true, we believe it is not an unreasonable assumption for the purposes of our anal-
ysis. To look at the issue of variation in prices due to seasonal factors changing
flat or tiered rate structures we calculated monthly estimates of the variable per
kWh rate. To do this we used the EIA-861M survey which is a monthly version
of the annual EIA-861 survey that covers a sample of the complete population of
utilities (Energy Information Administration 2017b).37 For this subset of utilities,
we found that the variation is fairly small compared to average variable prices,
with the vast majority of monthly implied average variable prices within 10% of
the annual average variable price. Given the cost drivers and regulatory arrange-
ments in the electricity sector, it is unclear whether accounting for more frequent
retail rate changes would align retail rates with contemporaneous marginal cost
more closely. To look at the possibility of hourly variation in retail prices during
the day we examined evidence from the “Demand Response” and “Dynamic Pric-
ing” sections of the EIA-861 survey. These sections provide data on the numbers
of customers participating in demand response programs or subject to some form
of dynamic pricing tariff. We find that around 4% of residential customers in
the US are on tariffs with time-varying prices. This includes time-of-use, real

37In 2015 the EIA-861M contained information on utilities accounting for 67% of residential customers
and sales.
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time, variable peak and critical peak tariffs. Demand response programs are also
limited in scope with less than 6% of customers enrolled in a demand response
rebate program during 2014-2016. There is also likely substantial overlap in the
customers exposed to these two forms of price variability. Roughly three quar-
ters of the customers on tariffs with time-varying prices or in demand response
programs are served by the same set of 96 utilities.

A closely related issue for many utilities is that a share of customers are on
low-income rates, which in many cases are lower marginal rates than the standard
tariff. Our analysis captures the average variable payment (assuming that we have
correctly characterized the fixed charges), but it is possible that some customers
pay a higher marginal rate and others pay a lower marginal rate. We are not able
to capture such variation in marginal rates across customers. It is worth noting,
however, that because DWL increases with the square of the price deviation,
such variation would almost certainly mean that our analysis understates the
deadweight loss associated with marginal rates deviating from average SRSMC.

3. Utility Service Territories

To match up our data on retail rates with information on social marginal costs,
we had to represent the spatial distribution of residential customers. For this
we used information on the service territories of the local distribution companies
that distribute electricity to end consumers.

Our main source for this was a lookup file provided as part of the URDB
(National Renewable Energy Laboratory 2017a). This provides a list of ZIP
Codes served by each local distribution company. These lookups were created
using a proprietary set of shape files detailing the actual service territories of
major electric utilities, which were converted to a list of ZIP Codes falling within
those service territories. Unfortunately the ZIP Code lookups did not cover all the
utilities in our dataset. To fill in any gaps we relied on the “Service Territory”
section in the EIA-861 survey. This provides a list of counties served by each
local distribution company. For consistency these were converted to ZIP Code
lookups by assuming any local distribution company serving a given county also
served all the ZIP Codes in that county. Our spatial data on US ZIP Codes
were downloaded from Environmental Systems Research Institute and included
polygons for 30,105 ZIP Code areas, and central coordinates for the full universe
of 40,552 ZIP Codes (Environmental Systems Research Institute 2017).38 These
data were used as they were more comprehensive than the Zip Code Tabulation
Area data available from the US Census Bureau.

To increase the accuracy of our geographic allocation of residential customers
within a given service territory we also collected data on population counts by
ZIP Code. The vast majority of these data were from the ESRI spatial data

38The latter is larger because it includes ZIP Codes that have no associated area such as post office
box ZIP Codes and single site ZIP Codes (e.g. government, building, or large volume customer).
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we downloaded, as this also included estimates of population for each ZIP Code
based on ESRI’s analysis of US Census Bureau data. However, there were a few
ZIP Codes where the population data were missing but where we were confident
that people lived. To remedy this, county-level population data were downloaded
from the US Census Bureau, along with spatial data on US counties and a set
of lookups from counties to ZIP Codes (US Census 2017a, US Census 2017b, US
Census 2017c). The ZIP Codes with missing data were then assumed to have a
population density equivalent to the county they belonged to. Missing ZIP Code
population counts were then calculated as the county-level population density
multiplied by the ZIP Code area.

The matching of utility service territories to ZIP Codes, or counties, was used
to assign LMPs and load to zip codes before aggregating the zip codes to the
utility level (described below). For the final mapping of the data, we use utility
service territory boundary shapefiles from HIFLD, as described in the paper.

affects only the visual representation of results in maps. It does not affect any
of the underlying results by utility, or the calculations of deadweight loss and its
decomposition.

4. Private Marginal Costs

The primary source of the data for calculating private marginal costs was the
price information provided by the seven major US Independent System Opera-
tors (ISOs).39 These are Electric Reliability Corporation Texas (ERCOT), the
New England ISO (ISO-NE), the New York ISO (NYISO), the California ISO
(CAISO), the Southwestern Power Pool (SPP), the Midcontinent ISO (MISO)
and the PJM Interconnection (PJM). Each of these manages the operation of
the electricity transmission grid over a large geographic area, most encompass-
ing multiple states. These organizations calculate wholesale locational marginal
prices (LMPs) for major locations in their covered territories, reflecting the value
of electricity supplied at different points in the power grid. Each ISO has LMPs
for thousands of pricing nodes within their system, such that across all seven
ISOs there are in excess of 30,000 nodes with hourly price data available.40 We
did not consider it necessary to utilize data from all these nodes in our analysis.
This was in part because prices at nodes located very close to one another are
usually very highly correlated, so selecting a smaller number should still allow us
to create a sufficiently robust picture of the main spatial and temporal variation.
In light of this we selected a total of 157 key LMPs. All of these were aggre-
gated “zonal” LMPs that represent averages of many individual nodal prices. In
selecting these we were also mindful that different nodes can refer to a range of
important locations in the power grid, such as power stations, load substations

39Strictly speaking some of these, such as PJM, are classed as Regional Transmission Organizations
(RTOs) but for the purpose of this paper the distinction is largely immaterial, so we refer to all as ISOs.

40Often pricing data are available at even finer temporal resolutions (e.g., 15 minute) but for this
analysis we have used hourly data as they are consistently available across all seven ISOs.
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or major interconnection points with neighboring systems. Wherever possible
our selection focused on zones that were aggregates of load nodes or were used
by regulators in their determinations of utilities’ wholesale costs for supplying
their customers. This clearly fits with our interest in finding the marginal cost
of serving residential customer demand. These data were downloaded from SNL
Financial (SNL Financial 2017b). This is a proprietary source of financial data
and market intelligence and includes a convenient centralised database of LMP
data from all seven ISOs.41 All data were converted to Eastern Standard Time
(EST) for consistency.

These seven ISOs cover large parts of the US. However, their coverage is not
complete and they are most notably absent from the most of the Southeastern U.S.
To remedy this and provide a secondary source of corroborating data we also used
data from the Federal Energy Regulatory Commission’s Form-714 survey (Federal
Energy Regulatory Commission 2017). This survey collects data from electric
utility balancing authorities (or control areas) in the United States. The seven
ISOs are also classed as balancing authorities, so their aggregate system-wide
data appear in the FERC-714 data. Importantly though, balancing authorities
also include approximately 200 additional utilities and regulatory entities that
undertake a similar electricity system operation role. This includes major utilities
in the Southeastern U.S. The FERC-714 data used are the hourly system lambda
data. Here respondents are supposed to report hourly values of the incremental
cost of energy in their system. In principal this seems ideal. In practice, a
check of the data reported by the ISOs shows that ISOs simply report LMPs as
the system lambdas at various locations. Unfortunately, visual inspection of the
system lambda data provided by the other balancing authorities reveals a range
of suspect data, including respondents providing no data, respondents providing
all zeros, respondents providing data that remain unchanged over long periods,
and respondents providing data that differ substantially from LMPs at nodes in
nearby ISOs. To deal with these weaknesses in the system lambda data, each
series was individually inspected to determine if it was sufficiently robust to be
included. This left just 19 balancing authorities (besides the seven ISOs) with
reliable system lambda data. Fortunately this still included a number of balancing
authorities in Southeastern states such as Florida and Alabama. As with the ISO
data, all series were converted to EST for consistency. Unfortunately, the quality
of the reporting of time zones and daylight saving time for these data is often
unreliable such that it is not always clear what time format these data are in.
In some cases respondents even left the time zone section blank. Where there
were clear errors or gaps we sought to identify the reporting time zone and the
presence of daylight saving time by visual inspection and the location of the
reporting entity. We then manually corrected for this and adjusted to EST as
appropriate. Lastly, the system lambda data do not account for transmission

41It should be noted that these data are freely available directly from each ISO. We have opted to
utilize SNL Financial’s database purely due to ease of accessing and compiling the data.
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losses, while LMP data implicitly do. To remedy this, all system lambda prices
were increased by an assumed transmission loss rate of 2%.

Figure A1: Locations of ISO zonal price points and Balancing Authority area
system lambdas in 2015

Once the ISO and balancing authority data had been collected, we next sought
to use these data to calculate hourly ZIP Code level estimates of the marginal
private costs of supplying electricity. We chose to do this at the zip code level in
order to accurately assign wholesale prices within a utility service territory. We
then aggregated the zip code level prices by taking population-weighted averages
of the wholesale prices across the zip codes within a utility service territory. To
begin this process of creating ZIP Code-level prices we first had to determine
where each ISO zone or balancing authority area was located. Unfortunately, we
were unable to get access to the necessary spatial polygon data files detailing the
areas covered by the ISO zones. Instead SNL Financial were able to provide us
with a list of coordinates they use to represent the location of each ISO node,
including the zonal nodes we had chosen for this analysis (SNL Financial 2017a).
Strictly speaking, the ISO zonal nodes are themselves representing many individ-
ual nodes, but for our purposes the central coordinates of these zones are likely
sufficient. For consistency we also represented the locations of the FERC-714
balancing authorities using the central coordinates of their respective network
areas. These coordinates were calculated using the polygon centroid from spatial
data on electricity balancing authorities downloaded from the Homeland Infras-
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tructure Foundation-Level Data website, which is part of the US Department
of Homeland Security (Department of Homeland Security 2017a). These spatial
coordinates can be seen in Figure A1. Once these had been collected we calcu-
lated the distance to each ZIP Code centroid.42 The price for each ZIP Code
was then calculated as the inverse distance-weighted average of the prices at the
three closest price nodes.43 While the system lambda data can be considered
a less accurate measurement of private marginal costs, less than 10% of utility-
states (weighted by load) rely exclusively on system lambda pricing points. As
another check, we also dropped all of the system lambda values and set prices for
every utility purely on ISO pricing hubs. The result are almost indistinguishable
from figure 9, though there are slight changes in some states, such as Florida,
Georgia, South Carolina, Washington, Oregon, Idaho and Arizona. Comparing
the results with and without system lambda values on a utility-by-utility basis,
the (quantity-weighted) mean absolute difference in PMC is 0.07 cents, the 95th
percentile is 0.49 cents and the maximum is 1.32 cents.

Average wholesale electricity costs are made up of energy costs, capacity costs,
ancillary services costs and other uplift payments. Our use of LMP and system
lambda data captures the energy cost component. Table 4 shows the relative
contributions of each of these four categories across the seven ISOs (Electric Reli-
ability Council of Texas 2015, California Independent System Operator 2016, In-
dependent System Operator New England 2016, Midwest Independent System
Operator 2015, New York Independent System Operator 2016, PJM Interconnection
2016, Southwest Power Pool 2016).44

The end product of the private marginal cost data collection process was a
dataset of hourly estimates for each US ZIP Code. These data were then merged
with the reformatted retail rates data using the information on the ZIP Codes
served by each local distribution company. The hourly price assigned to a utility-
state was an average of each of the ZIP Code prices, weighted by the total popu-
lation of each ZIP Code.

5. External Marginal Costs

The AP3 model (see (Clay et al. 2018)) provides estimated marginal damage
by county/pollutant/smoke stack height for 2014. This is an updated version of
the AP2 model used in Holland, Mansur, Muller, and Yates (2016). The model

42This was done using the geodesic on a WGS84 ellipsoid to properly account for the curvature of the
earth.

43Prior to calculating these averages we winsorized any extermely negative prices at a cutoff of -
$150/MWh. This only affected prices at a few nodes in a small number of hours and was done to avoid
the calculations of deadweight loss being distorted by unusual outliers.

44These values are taken from the annual reports of each ISO. The one exception to this is capacity
costs in the CAISO. Capacity payments in California are primarily agreed through bilateral contracts
overseen by the CPUC’s Resource Adequacy program, so do not show up as capacity costs levied by
the ISO. To account for this we have calculated capacity costs using data from the CPUC’s Resource
Adequacy Report (California Public Utilities Commission 2015). This yields an additional capacity cost
of approximately $4/MWh, or approximately 9% of total wholesale costs.
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does not differentiate marginal damage by season or time of day, or by location
within county. The data contain estimates of the environmental externality costs
in dollars per marginal ton for four pollutants associated with the generation and
supply of electricity: particulate matter (PM), nitrogen oxides (NOx), sulphur
dioxide (SO2) and carbon dioxide (CO2). Baseline damages assume pollutants
are emitted at a height of 200-500m. This is classed as a “medium” height in the
model and is in line with the smoke stack height for most fossil fuel power plants.
The dataset also then has individual plant-specific marginal damage values for a
small number of large power plants that have “tall” smoke stacks.

The data on power plant emissions are from the Environmental Protection
Agency (EPA) Continuous Emissions Monitoring System (CEMS) (Environmental
Protection Agency 2018a). The data are comprised of hourly emissions of NOx,
SO2 and CO2 from large stationary sources. For our purposes this includes more
than 90% of the (output-weighted) fossil fuel power plants in the US. As well as
emissions, the CEMS data also include hourly information on fuel energy inputs
and electricity generated. These data do not include hourly emissions of PM. To
resolve this we follow an approach suggested by Holland, Mansur, Muller, and
Yates (2016). We use annual total emissions data by power plant from the EPA’s
National Emissions Inventory (NEI) (Environmental Protection Agency 2018c).
We divide annual PM emissions by annual fuel energy inputs to get a PM emis-
sions rate for each power plant. We then use the hourly fuel energy inputs infor-
mation in the CEMS data to calculate hourly PM emissions, thereby assuming
the annual rate is constant throughout the year. To match plants to counties and
NERC regions (show in figure A2) we use plant characteristics data from EPA’s
Emissions & Generation Resource Integrated Database (eGRID) (Environmental
Protection Agency 2018b).

The data on hourly load are from the FERC-714 survey described earlier
(Federal Energy Regulatory Commission 2017). It contains hourly load data for
planning areas in the US. These planning areas have a regulatory responsibility to
ensure resources are available to meet customer load. There is considerable over-
lap with the balancing authorities discussed above for the system lambda data.
The coverage and quality of the planning area load data are much better than for
the balancing authority system lambda data, resulting in 122 planning areas with
usable load data. Again we converted all data to EST using the same approach
as the one set out above for the price and system lambda data. We then divided
the contiguous U.S. into nine regions, in line with the approach taken by Holland,
Mansur, Muller, and Yates (2016). These correspond to the eight reliability re-
gions of the North American Electric Reliability Coorporation (NERC), with the
exception of the Western Interconnection region which is split into a California
region and a non-California region. Each planning area was then assigned to one
of the nine regions - the regions cover the Eastern Interconnection (NPCC, RFC,
MRO, SERC, SPP, FRCC), the Western Interconnection (CA, non-CA-WECC)
and Texas (TRE). Each planning area was assigned to one of the nine regions.
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The one exception here was MISO which actually spans several regions in the
Eastern interconnect. To deal with this we collected data on kWh sales from the
EIA-861 survey described earlier. We then identified both whether a given utility
was in MISO, and also which of our nine regions it was in. We then used this
to proportionally allocate the hourly MISO load across our nine regions. This
primarily resulted in MISO being split fairly evenly between MRO, RFC and
SERC.

To run the regressions to estimate marginal dollar per kWh damages we first
combine the hourly emissions data for each plant with the relevant dollar per ton
of marginal damages. For most plants this merge is done based on the county
the plant is located in. For the small number of large plants with taller smoke
stacks this is done using a plant-specific identifier. We then multiply emissions
in each hour by marginal pollutant damages to get hourly dollar damages by
pollutant for each plant. Next we sum together damages by pollutant for all
plants in a given region, yielding a total dollar damages value for each region in
each hour. We aggregate damages by pollutant to the region level, because we do
not differentiate the location of load within a region for the marginal generation
and emissions.

The basic externality regressions are, for each region and pollutant, a regression
of the dollar-value damage of the pollutant in a given hour on the level of load in
that region and the aggregate level of load in all other regions that are in the same
interconnect (except for Texas, where there is no other region in the interconnect).
In all, we estimated four regressions – one for each pollutant – for each of the
nine NERC regions. Because the generation technology that provides marginal
output varies systematically with the level of output in the region, we allowed
the marginal pollution damages to be a nonlinear function of the “own region”
and “other region” loads. We split the “own” region load data into terciles and
created three variables that allow us to estimate a piecewise linear response to
own-region load with separate slopes for the lowest, middle, and highest terciles
of load. To be precise, if we define Q33

own and Q67
own as the 33.3rd and 66.7th

percentiles in the distribution of “own region” load, and Qown as the own region
load, then the three variables used to estimate a piecewise linear function are:
Q1 = min{Qown, Q33

own}
Q2 = 0 if Qown < Q33

own else Q2 = min{Qown −Q33
own, Q

67
own −Q33

own}
Q3 = 0 if Qown < Q67

own else Q3 = Qown −Q67
own

We handle the terciles of “other-region” load differently, because we assume
that own-region load is the primary determinant of the impact of incremental
generation in a region on pollution. Thus, other region load is assigned to one of
three variables depending on the tercile into which own-region load falls in that
hour:
Q4 = Qother if Qown < Q33

own else Q4 = 0
Q5 = Qother if Q

33
own ≤ Qown < Q67

own else Q5 = 0
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Q6 = Qother if Qown ≥ Q67
own else Q6 = 0

While we could estimate each of the 36 regressions separately, we instead esti-
mate the coefficients in a single “stacked” regression. That is, define yprt to be
the damage from pollutant p released in region r in sample hour t. And define
Ir to be an indicator variable that is equal to 1 if the dependent variable is from
region r. Then the regression can be written as:

yprt =
9∑
r=1

Ir · (
6∑
j=1

βjprQjrt)

where j indexes the quantities defined above and their associated coefficients.
We then cluster the standard errors on the day of sample, thereby accounting for
correlated errors within the day for a given region/pollutant, and correlated errors
across regions/pollutants on a given day. We do this because the errors are almost
certain to be correlated across the regions/pollutants. Furthermore, as explained
below, we need to construct estimates and standard errors of parameters that are
linear functions of coefficients from different regressions. Unbiased estimates of
the standard errors require accounting for the error correlation across regressions
and the covariances of the coefficient estimates, which is straightforward to do in
a stacked regression.

Once the dependent and independent variables are constructed in this manner,
we 24-hour difference the data.45 We estimate the linear regressions with three
years of hourly observations (26,304 hours) for each of the 36 region/pollutants.46

Due to the 24-hour differencing, the regression does not include a constant term,
or hour-of-day or month-of-sample fixed effects.

From this regression, we then construct the marginal pollution damage due to
marginal load in each region for each hour. The marginal pollution damage from
marginal load in region A is the sum of the marginal pollution caused by that
load from generation in region A and the marginal pollution caused by that load
from generation in all other regions that are part of the same interconnect as
region A. In each case, the appropriate coefficient is determined by the tercile of
the load in which the generation resides.

For instance, assume that in hour h the CA region load is in tercile 1 (lowest)
and the WECC region load is in tercile 2. Then the marginal damage from
marginal load in CA from that pollutant would be βCA1 + βWECC

5 , where the
superscripts indicate the regressions from which each coefficient is taken.47

45So for example, the dependent and all of the independent variables for hour 3 today are differenced
with their values from hour 3 yesterday.

46One minor modification, as noted earlier: the Texas region is not interconnected with any other
regions, so the variables Q4, Q5, Q6 are zero when the dependent variable is a pollutant in Texas.

47To possibly belabor the point, but hopefully avoid confusion in the much more complicated Eastern
interconnect, assume that in hour h, the NPCC region is in tercile 1 (lowest), FRCC is in tercile 2,
MRO is in tercile 3, RFC is in tercile 1, SERC is in tercile 2, and SPP is in tercile 3. Then the marginal
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The estimated marginal damage (in dollars) from marginal load with demand
in each tercile is presented in table A1.

These calculations produced values for the dollar-value marginal external dam-
age per kWh for each region for each hour. We made a small set of adjustments
to our estimates of external marginal costs to avoid double counting. This can
arise where the private marginal costs data already incorporate some portion of
external marginal costs due to environmental policies that put a price on exter-
nalities. The two main instances of this that are relevant here are California’s
Cap and Trade Program and the Regional Greenhouse Gas Initiative (RGGI)
that covers nine states in the Northeastern US. Our external marginal cost es-
timates were created using a social cost of carbon (SCC) of $50/ton of CO2.
The California and RGGI carbon prices in 2014-2016 averaged $12.70/ton and
$6.00/ton respectively. We therefore multiply the $/kWh external damages from
CO2 by approximately ($50− $12.70)/$50 = 75% for the state of California and
by approximately ($50− $6.00)/$50 = 88% for the states that participate in the
RGGI.48

Another potential complication is the impact of zero-carbon renewable energy
resources that produce intermittently and with seasonally varying patterns. Note
that our primary specification differences our variables of interest with the value
from 24 hours prior. This accounts for any systematic seasonal variation in re-
newable energy output. However, to confirm that our analysis was not being
affected by fluctuations in renewable generation we also gathered data on hourly
renewables (wind and solar) for each of our nine regions. First we downloaded
monthly generation data by plant from the EIA-923 survey (Energy Information
Administration 2018). This includes generation from all plants including wind
and solar (unlike the CEMS data which is focused on fossil fuel plants). We then
matched information on the state and NERC region each plant is located in to
aggregate the plant-level values and get monthly total wind and solar generation
for our nine regions. Next, we used hourly data on renewable generation from the
ISOs to allocate this monthly generation across the hours of each month and get
our desired estimates of hourly renewable generation by region (Electric Reliabil-
ity Council of Texas 2018, California Independent System Operator 2018, Midwest
Independent System Operator 2018, Southwest Power Pool 2018, New York Inde-
pendent System Operator 2018, PJM Interconnection 2018, Independent System
Operator New England 2018). For each region we identified the most relevant ISO
(or combination of ISOs) with which to do this within-month allocation.49 Once

damage from marginal load in NPCC from the pollutant would be βNPCC
1 +βFRCC

5 +βMRO
6 +βRFC

4 +

βSERC
5 + βSPP

6 . And the marginal damage from marginal load in SPP from the pollutant would be

βNPCC
4 + βFRCC

5 + βMRO
6 + βRFC

4 + βSERC
5 + βSPP

3 .
48These are Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York,

Rhode Island and Vermont.
49The CA region used CAISO for wind and solar. The TRE region used ERCOT for wind and solar.

The SPP region used SPP for wind and solar. The MRO region used MISO for wind but solar was assumed
negligible. For the SERC region both wind and solar were assumed negligible. The RFC region used
PJM for wind and solar was assumed negligible. For the FRCC region both wind and solar were assumed
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Region Tercile Marginal Damages

CO2 NOX SO2 PM2.5 Total

CA 1 17.25 1.29 0.82 4.36 23.72

(0.92) (0.19) (0.21) (1.62) (2.08)

CA 2 16.87 1.40 0.83 5.29 24.40
(0.82) (0.19) (0.21) (1.16) (1.60)

CA 3 20.66 1.84 0.91 9.57 32.98
(0.77) (0.23) (0.21) (1.15) (1.60)

FRCC 1 25.76 2.51 14.48 2.78 45.53

(0.54) (0.17) (1.37) (0.09) (1.82)

FRCC 2 25.82 3.26 15.57 2.72 47.37
(0.53) (0.19) (1.34) (0.09) (1.80)

FRCC 3 26.39 4.88 16.49 2.91 50.67

(0.53) (0.20) (1.43) (0.09) (1.86)

MRO 1 58.85 9.78 43.66 2.08 114.38

(3.71) (0.71) (2.76) (0.14) (6.89)

MRO 2 52.45 9.77 43.55 1.88 107.65
(3.67) (0.78) (2.92) (0.14) (7.08)

MRO 3 42.19 8.71 31.75 1.69 84.33

(2.84) (0.64) (2.65) (0.13) (5.80)

NPCC 1 15.25 1.58 0.72 2.80 20.34
(0.63) (0.22) (1.43) (0.13) (2.03)

NPCC 2 17.52 2.30 4.40 2.97 27.19

(0.62) (0.24) (1.39) (0.13) (1.96)
NPCC 3 20.59 5.32 11.48 3.67 41.06

(0.62) (0.34) (1.44) (0.15) (2.14)

RFC 1 29.88 5.99 44.04 3.99 83.90
(0.77) (0.25) (2.52) (0.15) (3.23)

RFC 2 29.39 6.21 44.55 4.24 84.40

(0.92) (0.26) (2.69) (0.19) (3.58)
RFC 3 27.01 6.69 39.44 4.97 78.11

(0.65) (0.26) (2.28) (0.16) (2.81)

SERC 1 27.12 3.92 22.53 2.00 55.56

(0.65) (0.22) (1.70) (0.12) (2.28)
SERC 2 28.41 4.42 26.34 2.20 61.38

(0.64) (0.23) (1.78) (0.12) (2.40)
SERC 3 28.67 5.65 24.23 2.24 60.78

(0.67) (0.38) (2.05) (0.13) (2.89)

SPP 1 27.72 4.30 18.05 1.44 51.51

(1.34) (0.25) (1.51) (0.10) (2.71)
SPP 2 25.80 4.64 15.57 1.40 47.42

(1.41) (0.27) (1.47) (0.10) (2.76)

SPP 3 22.46 5.01 12.34 1.33 41.14
(1.06) (0.25) (1.37) (0.10) (2.29)

TRE 1 26.86 2.14 17.23 2.03 48.25

(1.26) (0.12) (1.15) (0.11) (2.45)
TRE 2 24.88 1.84 13.38 1.84 41.95

(0.96) (0.11) (0.95) (0.08) (1.92)
TRE 3 24.69 3.14 6.38 1.60 35.82

(0.71) (0.12) (0.69) (0.06) (1.29)

WECC 1 26.48 4.94 4.80 1.23 37.45

(0.91) (0.20) (0.26) (0.72) (1.46)

WECC 2 22.82 4.13 3.97 1.14 32.06
(1.04) (0.23) (0.32) (0.73) (1.65)

WECC 3 18.82 2.91 2.61 0.98 25.32
(0.96) (0.22) (0.28) (0.73) (1.53)

Table A1: Marginal External Costs by Region and Load Tercile



we had assembled these data on renewables we conducted a sensitivity analysis
by subtracting from hourly total load to get load net of renewables (i.e. “net
load”). We then repeated our regression analysis using net load instead of load.
Reassuringly this did not meaningfully alter our estimates of marginal dollar per
kWh damages, so the analysis presented here just uses load as the independent
variable in all regressions.

As of 2021, it appears that the most common estimates of the SCC, around
$50/ton, may be revised upward significantly as our understanding of climate
change continues to evolve. For comparison purposes, we have recalculated exter-
nalities and the gap between price and SMC based on a $100/ton SCC. Figure A3
presents the gap under this assumption. Though it obviously shifts the colors to
be redder than in figure 9, the change in the bluer areas is more modest, because
these are areas with relatively low marginal CO2 emissions to begin with.

Figure A3: Marginal Price minus Average SMC per kWh with SCC=$100/ton

6. Hourly Load Shapes

Residential customer demand for electricity is not constant, nor is the devia-
tion between residential retail price and the social marginal costs of supplying

negligible. The NPCC region used ISONE for wind (2014-2015) and combined NYISO/ISONE for wind
(2016) but solar assumed was negligible. The non-CA-WECC region used combined CAISO/MISO for
wind and combined CAISO/SPP for solar.
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electricity. In fact, it is likely the case that these will sometimes be strongly
correlated (e.g., periods of peak wholesale electricity prices tend to coincide with
peak residential electricity demand). It is therefore important to be able to deter-
mine how annual residential sales are distributed across the hours in our analysis
period. The ideal dataset for this would likely be some form of hourly metered
consumption data for the universe of residential households in the US. Clearly
such a dataset does not exist - customers’ meter data are confidential and held
by their individual utility, and many residential households still do not even have
meters that can record this information at an hourly frequency. To tackle this
challenge our preferred approach involved using hourly load data from a selection
of ISO zonal nodes and planning areas. These data were used to represent the
shape of hourly residential load profiles at the ZIP Code level up to a scale factor,
and then once again we used our dataset of ZIP Code service territory lookups
to match these up to utilities.

To do this, we again used the ISO zonal data from SNL Financial (SNL Financial
2017b). Unlike pricing nodes, load is only available for a limited number of zonal
nodes, and is not available for the many thousands of individual load nodes where
LMPs are calculated. Fortunately many of these are the same nodes that we al-
ready chose to use in our selection of LMPs. In total this gave us load data for 66
ISO zonal nodes. The FERC-714 survey was then used to supplement this with
additional hourly load data for planning areas. All series were then normalized
to hourly shares of annual load by dividing each hour by the annual total for that
ISO zone or planning area.50 On average this would mean the load share in a
single hour should be 1/8760, or 0.0114%. Above average hours (e.g., 6pm on
weekdays) should be above this and below average hours (e.g., 3am on weekends)
should be below this. Normalizing the data in this way helped account for the
fact that ISOs and planning areas differ massively in size (as measured by total
load) and is also consistent with our intended use of these data to apportion an-
nual kWh sales across each hour of the year. As with the private marginal cost
data, these shares of annual load needed to be assigned to the utility-state entries
in our reformatted retail rates dataset. We employ the same approach as for the
private marginal costs analysis. This involves assigning each ISO zone or planning
area series to a central coordinate (SNL Financial 2017a, Department of Home-
land Security 2017b). These spatial coordinates can be seen in Figure A4.51 We
then calculated load shares for each ZIP Code using the inverse distance-weighted
averages of the three nearest load points.

The end product of the residential load profile data collection process was a

50There were some series with data missing for some hours of the year. If an ISO zone or FERC
balancing authority had more than 10% of the hours in a year missing, shares were not calculated and
that series was dropped. The concern here was that shares calculated using a subset of the hours in
the year may not produce accurate shares if the hours for which there were missing data were not
representative of all hours. This only led to data for 3 planning areas being dropped.

51The figure depicts selected load points for ISO-NE (orange), NYISO (purple), PJM (red), MISO
(blue), SPP (brown), ERCOT (green), CAISO (pink) and FERC planning areas (grey)
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Figure A4: Locations of ISO load zones and load Planning Areas in 2015

dataset of estimates of hourly shares of annual residential electricity demand for
each US ZIP Code. These data were then merged with the reformatted retail rates
data using the information on the ZIP Codes served by each local distribution
company. Where a utility served multiple ZIP Codes in a given state, we again
weighted the ZIP Code values for the load shares by the total population of each
ZIP Code. A final adjustment was made to ensure that each of the newly created
series correctly summed to one over the year.

It is important to note that our preferred approach of using system load profiles
as a proxy for residential load profiles has a clear drawback in that it likely
underestimates the peakiness of residential load. This is because system load is
made up of all demand for electricity from residential, commercial and industrial
customers. Differences in the load profiles of residential versus commercial and
industrial customers mean that the combination of these three customer classes
tends to lead to a smoother total system load profile. It is true that residential
customers make up the largest customer class, accounting for over 37% of all kWh
sales in 2015, so are an important driver of total system load. Even so, where
commercial and industrial customers have significantly different load profiles to
residential customers and where they make up a significant portion of total load,
our hourly allocation of residential load will almost certainly be biased towards
less volatility.

To test the robustness of using these system load profiles as a proxy for res-
idential load profiles, we conducted a sensitivity analysis using an alternative
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source of residential load profile data. For this, we collected modeled residential
load profiles produced by NREL (National Renewable Energy Laboratory 2013).
This dataset uses an engineering model to estimate hourly residential electric-
ity demand profiles for a set of representative residential households at different
locations throughout the US. To construct the dataset NREL classified the US
into five climate zones and made assumptions about building characteristics that
varied by climate zone (e.g., source of space heating, presence of air condition-
ing, square footage, construction materials etc.). NREL also made additional
assumptions about operational conditions, such as occupancy rates and weather.
An hourly weather profile was used based on NREL’s “typical meteorological
year” (TMY3) dataset. This provides hourly averages for a range of weather vari-
ables (e.g., temperature, humidity, precipitation etc.) based on up to 30 years of
historical data from 1976 to 2005. The engineering model then takes these as-
sumptions and weather data and estimates a residential electricity demand profile
at over 1,400 TMY3 locations throughout the US (National Renewable Energy
Laboratory 2008). The clear advantage of the NREL dataset is that it is a more
explicit measure of fluctuations in residential load, rather than system load. The
main disadvantages are twofold. First, the dataset is comprised of estimates of
residential load based on a 2008 engineering model that necessarily makes strong
assumptions about building performance, customer behavior and the nature of
the housing stock. As such this may be a poor proxy for the performance of the
actual housing stock in our analysis period. Second, the dataset is produced using
averaged weather data from well before our chosen period of analysis. As such
the weather profile used may differ substantially from the actual weather that
prevailed during our analysis period.

To conduct our sensitivity analysis we carried out the same processing steps
described earlier to get a second set of estimates of residential load profiles for
each US ZIP Code, in this case based on the NREL simulation data. To assess the
actual performance of the load profiles based on the NREL dataset relative to our
load profiles based on observed system load we compared both approaches against
the very few datasets of actual metered residential load we were able to find. In
general we found that the load profiles based on system load understated the
peakiness of residential load and the load profiles based on the NREL modeling
data overstated the peakiness of residential load. We also found some limited
evidence that the profiles based on system load were more strongly correlated
with the actual residential load data. Finally, we conducted the entire analysis
using both approaches to estimating the residential load profile to see how this
would move the results. We found that the choice of residential load profile had a
very small impact on the final results (e.g., on the extent of estimated deadweight
loss) so we have opted throughout to use the approach based on system load.
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7. Distribution Losses

Our estimation of private and external marginal costs gives the marginal cost of
electricity delivered in the high-voltage transmission system. However, our anal-
ysis is concerned with the marginal costs of serving residential customers. It is
therefore important that we account for losses incurred as power is carried through
the low-voltage distribution system to residential households. We estimate av-
erage annual residential distribution losses for each local distribution company
using data in the EIA-861 survey. Unfortunately, the only data on losses that are
available report total losses for a given utility across all types of customers (i.e.,
residential, commercial and industrial). This is problematic because losses to res-
idential customers are likely higher than for any other customer type. This is
because residential customers are located at the furthest ends of the distribution
network at the lowest voltage levels. Industrial customers, on the other hand,
likely have the lowest losses because they are connected to more centralized por-
tions of the distribution network at higher voltage levels. Sometimes industrial
customers are even connected directly to the transmission network, so incur zero
distribution losses. A second issue with these data on total losses is that they are
not exclusively distribution system losses; some utilities own and operate both
transmission and distribution system infrastructure, so their reported losses cover
both these parts of the power grid.

(a) Residential share (b) Density of load (c) Peak/average load

Figure A5: Losses plotted against three key covariates

To address these shortcomings, we estimate average annual residential distribu-
tion losses. We compile data on the following variables for each local distribution
company, i: total losses in kWh, Li; total sales in kWh, Qi, sales for residential
customers in kWh, Qresi, commercial customers, Qcomi, and industrial cus-
tomers, Qindi; the density of customer load, Di, as measured by the log of total
kWh sales divided by the service territory area in square kilometers; the share of
distribution circuits with voltage optimization, V oltOpti, and the ratio of peak
load to average load, Pi.

52 We also created dummies for each state, Statesi, utility

52The log of the density of kWh sales was used as it provided a much better fit, likely due to the very
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type, UtilityTypeui, and a dummy variable representing whether the utility is in-
volved in electricity transmission, Transmissioni.

53 Table A2 presents summary
statistics on these variables.

Mean StDv Min Max N
Avg. Proportion Total Losses 0.05 0.03 0.00 0.27 5088
Share of Sales (Residential) 0.46 0.21 0.00 1.00 5796
Share of Sales (Commercial) 0.30 0.17 0.00 1.00 5796
Share of Sales (Industrial) 0.24 0.23 0.00 1.00 5796
Log(Sales per sq. km) -2.29 2.02 -12.73 3.44 5791
Share of Circuits w. Volt. Optim. 0.23 0.39 0.00 1.00 5761
Ratio of Peak to Average Load 1.97 0.49 1.00 5.90 5184
Transmission 0.17 0.38 0.00 1.00 5274

5001 out of 5796 observations have complete information (observations are utility-state-years)

Table A2: Summary Statistics of Variables in the Distribution Losses Regression

The equation for annual losses of a utility could be written as

Li = α0Qtoti + α1Qresi + α2Qcomi + α3QtotiDensityi(1)

+ α4QtotiV oltOpti + α5Qtoti(Qpeak/Qavgi)

+ α6QtotiTransmissioni

+
U∑
u=1

γuUtilityTypeuiQtoti +
S∑
s=1

βsStatesiQtoti + εi

where the Qs are total, residential, and commercial electricity delivered, Density
is log(Qtot/area), V oltOpt is the share of circuits with voltage optimization equip-
ment, Qpeak/Qavgi is the ratio of the utility’s peak to average load, and Trans-
missioni is an indicator that the utility also owns transmission lines (and reported
losses include losses from transmission). The equation includes fixed effects for
type of utility (investor-owned, municipal, cooperative, etc.) and state. The co-
efficient α0 alone would represent the losses associated with an additional unit
of electricity delivered to an industrial customer. The derivative of equation (1)
with respect to Qres (recognizing that dQtot/dQres = 1) would then give the

large range of density values in the data.
53All utilities in our sample were involved in distribution. We also chose to aggregate the State,

Federal and Political Subdivision utility types into a single “Other Public” category as some of these
classifications only contained a very small number of observations. The Retail Power Marketer utility
type was also not relevant for this analysis because we are focused on local distribution companies. This
left us with four utility type categories for our distribution losses analysis: Investor Owned, Cooperative,
Municipal, Other Public.
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change in annual losses from delivering one additional unit of electricity.

dLi/dQresi = α0 + α1 + α3Densityi(2)

+ α4V oltOpti + α5(Qpeak/Qavgi)

+ α6Transmissioni

+

U∑
u=1

γuUtilityTypeui +

S∑
s=1

βsStatesi + εi

Equation (1), however, would be highly heteroskedastic in the form shown, so
we normalize (1) by total quantity and estimate

Lavgi = α0 + α1Qresi/Qtoti + α2Qcomi/Qtoti + α3Densityi(3)

+ α4V oltOpti + α5(Qpeak/Qavgi)

+ α6QtotiTransmissioni

+
U∑
u=1

γuUtilityTypeui +
S∑
s=1

βsStatesi + εi

where the interpretation of the coefficients is the same as in (1) and (2).

We estimate (3) on annual observations for the 1669 distribution utilities for
which these data are available for the years 2014 through 2016. A few of the
utilities are not in the data for all three years, so the total number of observa-
tions is 5001. The results, presented in table A3, suggest that distribution to
residential customers exhibits about 3 percentage point higher losses than to in-
dustrial customers, and that higher geographic density of customers significantly
lowers distribution losses. Voltage optimization also lowers distribution losses,
while more volatile load raises distribution losses for a given average level of load.
Utilities that also own transmission may exhibit somewhat higher losses, though
that effect is not estimated precisely.54

From this regression, we then impute average distribution losses for residential
customers of all utilities in the dataset by calculating the predicted value of Lavgi
with Qresi/Qtoti = 1, Qcomi/Qtoti = 0 and Transmissioni = 0.55 The vast
majority of our estimates fall between 4% and 8%, as can be seen in the histogram
below.

Clearly, this is an imperfect approximation to average distribution losses for
residential customers. It assumes implicitly that the relative losses of residential
versus commercial and industrial customers are the same for all utilities. Fur-

54Even though this is a (short) panel, it is worth noting that identification of the parameters in this
regression comes almost entirely from the cross-sectional variation. If one includes utility fixed effects,
only the density effect remains statistically significant.

55We predict losses for all utilities in the data set. For those for which some of the right-hand side
variables are not available, we use the average value of the variable from the 1669 utilities in the regression.
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Li/Qtoti
Share of Sales (Residential) 0.0284∗∗∗

(0.0064)
Share of Sales (Commercial) 0.0059∗

(0.0034)
Log(Sales per sq. km) −0.0065∗∗∗

(0.0006)
Share of Circuits w. Volt. Optim. −0.0019∗

(0.0010)
Ratio of Peak to Average Load 0.0076∗∗∗

(0.0020)
Transmission 0.0022

(0.0015)
R2 0.2916

Standard errors in parentheses

N=5001 (observations are utility-state-years)

Dependent Variable: Avg. Proportion Total Losses

Fixed Effects: State, Utility Type and Year

Cluster Variable: State

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A3: Estimates of Average Distribution Losses

thermore, we have no information on the extent to which voltage optimization
or variation in hourly sales relates to residential circuits. Without making very
strong assumptions about the correlates of residential losses, it is unclear how to
improve on this estimate.

Once we had estimates for average annual distribution losses for residential
customers, the final step was to convert these to marginal losses and account
for how losses vary throughout the year. As explained in the paper, we use the
common characterization that 25% of losses are independent of flow on the line –
and therefore not associated with any marginal losses from increased consumption
– and the engineering result that the other 75% resistive losses increase with the
square of flow on the line.56

We adapt the approach taken in Borenstein (2008) and assume that utility i’s
losses in each hour are:

(4) Lit = αi1 + αi2Q
2
it

56See Lazar and Baldwin (1997) and Southern California Edison’s methodology for calculating Distri-
bution Loss Factors, as set out in filings to the California Public Utilities Commission (California Public
Utilities Commission 1997).
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Figure A6: Histogram of Predicted Average Residential Distribution Losses

We have already estimated average annual losses for each local distribution
company, which we call γi. Because the α terms are constant across all hours we
can convert the equation to annual sums and substitute for Lit. If we also assume
that the static no-load losses, as represented by the αi1 term, constitute a quarter
of a utility’s total losses, we can then solve for α2 for each local distribution
company.

(5)
T∑
t=1

Lit = γi

T∑
t=1

Qit = αi1 + αi2

T∑
t=1

Q2
it ⇐⇒ αi2 = (1− 0.25)γi

∑T
t=1Qit∑T
t=1Q

2
it

Finally, our interest is in marginal losses so we take the derivative of our original
losses expression such that:

(6)
dLit
dQit

= 2αi2Qit

Thus, equation (6) produces our estimate of marginal line losses as a fraction
of energy that enters the distribution system of utility i in hour t. For each
hour, private and external marginal costs were then scaled up by 1

1−dLit/dQit
to

give our complete estimate of the social marginal cost of residential electricity
consumption.
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8. Calculation of Deadweight Loss in the Short Run and the Long Run

To evaluate DWL while recognizing that short-run and long-run demand elas-
ticities for electricity may differ substantially, we consider a two-stage consumer
decision process. In the first stage, the consumer chooses the devices to buy, en-
ergy efficiency investments to make, and household habits for using the devices,
all based on the average price they expect to face.57 We refer to all of these
choices collectively as the consumer’s investment in devices. In the second stage,
the customer uses the devices, responding to hourly prices, which will generally
deviate from the average price.

Figure A7 illustrates the short-run demand functions that a household might
have during a specific hour for the electricity to use individual devices 1, 2, 3, and
4. The household makes the long-run investment decisions – adding, removing
or shifting a short-run demand function for a type of device – by comparing the
price, energy efficiency and other device attributes with the consumer surplus that
the household expects to receive by owning it. The consumer’s gross consumer
surplus from a device is calculated as the area under the short-run demand out
to the quantity consumed, aggregated over the life of the device. We assume that
the long-run demand elasticity reflects the household’s optimized response to
different average prices through the device investments they make and the extent
to which they use them on average. The short-run demand elasticity reflects the
household’s change in hourly usage in response to changing hourly prices.

Efficient purchase and hourly usage of devices results when the hourly price is
set equal to hourly social marginal cost, which implies that the average price is
the average social marginal cost. In figure A7, assume that when that occurs the
household purchases devices 1, 3, and 4, and has a household short-run demand
function of D134 for this specific hour. The household’s demand function varies
hour to hour, but in the short run it will always reflect owning devices 1, 3, and
4.

The change in total surplus from a change in pricing regime is equal to:

∆ Total Surplus = ∆ Gross Consumer Surplus

−∆ V ariable Costs−∆ Investment Costs

where ∆ Gross Consumer Surplus occurs as a result of changing usage of current
devices in the short run and changing the household’s device investments in the
long run. Measurement of the first two terms is fairly straightforward given
assumptions about electricity price and costs, along with long-run and short-
run demand elasticities. Recognizing that consumers will make investments only

57We implement this using the quantity-weighted average price for the utility. A sophisticated buyer
facing time-varying prices could do a more granular calculation, taking into account the timing of their
expected device usage and ability to shift consumption in response to price differences, but we abstract
from this for simplicity, and because none of the long-run demand elasticity estimates in the literature
reflect such optimization.
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Figure A7: Illustration of Consumer Choices of Electrical Devices and Their
Usage

if the additional consumer surplus from use is at least as large as the cost of
the investment implies that long-run demand can be used to analyze the cost of
adopting a device. For example, if this consumer chooses not to adopt device 1
when P = P , but does choose to adopt it when P = SMC, then for device 1∑

h∈H
CSP=P < Cost of Adoption <

∑
h∈H

CSP=SMC

where the appropriately discounted consumer surpluses are summed over all hours
in which the device will be used. Adopting device 1 would then change this
consumer’s short run demand function in the illustrated hour from D34 to D134.58

Applying this approach to a continuum of devices, the marginal consumer surplus
associated with the long-run response to changes in the average electricity price
traces out the cost of incremental investments.

Though figure A7 illustrates the analysis with linear demand curves, we imple-
ment the calculations using modified constant-elasticity demand. Linear demand
has the unfortunate property that an elasticity at P that is in the range of com-
mon empirical estimates yields implausibly low choke off prices and potentially
understates price responsiveness at extremely low prices. On the other hand,

58Similarly, the fact that this consumer does not adopt device 2 at a price of P = SMC implies that
the sum of discounted future consumer surpluses for device 2 at P = SMC does not exceed its cost of
adoption.
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constant-elasticity demand yields implausibly high, or infinite, quantities as price
goes to zero or below, and unbounded willingness to pay for small quantities. In
an attempt to model a more realistic demand setting, we take demand to be con-
stant elasticity up to a price of $2/kWh, about 20 times the average retail price,
and then horizontal at $2/kWh down to zero quantity. We also modify the func-
tion at low prices, imposing a quantity cut off at twice the quantity demanded
when P = $0.05/kWh for each hour, which is about half the sample average
retail price. In every hour, the demand function is determined by the assumed
elasticity and the observed point (P ,Q), through which both the short-run and
the long-run demand curves are assumed to run.

DWL calculations are also potentially a function of how SMC changes with
quantity. Following the discussion of externalities above, we have estimated the
slope of SMC at the NERC region level. For each region, we regressed hourly
average region SMC on hourly region quantity and month-of-sample dummies to
capture variation in availability of wind, solar, and hydroelectric supply. The po-
tential endogeneity of quantity is not a significant concern here, because virtually
all customers face prices that are invariant to market conditions, as discussed ear-
lier.59 For eight of the nine regions, the estimated slope of the SMC(Q) function
is positive and statistically significant, but economically extremely small, particu-
larly compared to the slope of the demand function. For one region, the estimated
slope is still positive, but even smaller and not statistically significant. For the
utilities in our sample, a one standard-deviation increase in the quantity supplied
is estimated to increase SMC by a quantity-weighted average of $0.000006. For
99% of utilities, the change is less than $0.0015, and for no utility is the change
larger than $0.005. Thus, for computational simplicity, we assume that SMC is
constant over the range of the quantity changes considered.60

Table A4 presents the average DWL per normalized quantity for the U.S.,
the annual total DWL per customer, and the share of DWL attributable to the
long-run mispricing (P 6= SMC) for combinations of short-run and long-run
elasticities. The table suggests that the change in each type of deadweight loss
is approximately linear in the elasticity, and that the basic finding that average
DWL is small – compared to SMC or retail price – is robust to even fairly large
elasticities.

59There is a second concern that high demand hours might be associated with larger or smaller
production from wind and solar – likely larger for solar and smaller for wind – therefore shifting the
SMC function. As discussed in appendix section 5 on external marginal costs, however, we did not find
that accounting for supply from intermittent resources meaningfully changed the analysis of external
marginal costs, so we did not make further adjustments to this regression.

60Incorporating non-constant SMC implies that there is no closed-formed solution for the intersection
of SMC and the constant-elasticity demand functions, so requires an approximation to the intersection.
When we solved for the intersection using a linear approximation of the constant-elasticity short-run de-
mand functions around the value of SMC at P , nearly all of the quantity changes in the DWL calculations
were within 1% of the changes that result from assuming a constant SMC.
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LR Elasticity

S
R

E
la

st
ic

it
y

-0.1 -0.2 -0.3 -0.5 -0.7 -0.9

-0.1
DWLtotal per kWh (c|) 0.131 0.207 0.283 0.435 0.587 0.738
DWLtotal per customer ($) 14.39 23.04 32.08 51.41 72.65 96.10
DWLLR/DWLtotal 0.565 0.721 0.794 0.863 0.896 0.915

-0.2
DWLtotal per kWh (c|) 0.180 0.256 0.332 0.486 0.639 0.790
DWLtotal per customer ($) 19.78 28.56 37.74 57.41 79.06 103.00
DWLLR/DWLtotal 0.412 0.582 0.675 0.773 0.823 0.853

-0.3
DWLtotal per kWh (c|) 0.226 0.303 0.379 0.534 0.688 0.840
DWLtotal per customer ($) 24.81 33.72 43.05 63.04 85.08 109.49
DWLLR/DWLtotal 0.328 0.493 0.591 0.704 0.765 0.803

-0.5
DWLtotal per kWh (c|) 0.311 0.388 0.465 0.621 0.778 0.932
DWLtotal per customer ($) 34.06 343.22 52.81 73.42 96.19 121.48
DWLLR/DWLtotal 0.239 0.384 0.482 0.604 0.676 0.724

-0.7
DWLtotal per kWh (c|) 0.387 0.465 0.544 0.702 0.860 1.017
DWLtotal per customer ($) 42.46 51.85 61.69 82.89 106.36 132.47
DWLLR/DWLtotal 0.192 0.320 0.413 0.535 0.612 0.664

-0.9
DWLtotal per kWh (c|) 0.459 0.537 0.617 0.776 0.937 1.096
DWLtotal per customer ($) 50.28 59.89 69.98 91.73 115.87 142.79
DWLLR/DWLtotal 0.162 0.277 0.364 0.484 0.562 0.616

Note: For each elasticity pair, the DWLtotal, DWLLR, number of customers, and normalized quantities

are summed across the 6,215 utility-state-years, then the relevant sums are divided to obtain each statistic.

Table A4: Average Deadweight Loss Measures Under Alternative Elasticity As-
sumptions

*
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