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Cell coculture strategies can promote angiogenesis within tissue engineering constructs.
This study aimed to test the angiogenic potential of human umbilical vein endothelial cells
(HUVEC) cocultured with gingiva-derived progenitor cells (GPC) as spheroids in a xeno-
free environment. Human platelet lysate (HPL) was used as a cell culture supplement and
as a hydrogel matrix (HPLG) for spheroid encapsulation. HUVEC and HUVEC + GPC (1:1
or 5:1) spheroids were encapsulated in various HPLG formulations. Angiogenesis was
assessed via in vitro sprouting and in vivo chick chorioallantoic membrane (CAM) assays.
HUVEC revealed characteristic in vitro sprouting in HPL/HPLG and this was significantly
enhanced in cocultures with GPC (p < 0.05). A trend for greater sprouting was observed in
5:1 vs 1:1 HUVEC + GPC spheroids and in certain HPLG formulations (p > 0.05). Both
HUVEC and HUVEC + GPC spheroids in HPLG revealed abundant and comparable
neoangiogenesis in the CAM assay (p > 0.05). Spheroid coculture of HUVEC + GPC in
HPLG represents a promising strategy to promote angiogenesis.
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INTRODUCTION

In the context of bone tissue engineering (BTE), timely vascularization of in vivo implanted
constructs is critical for cell survival, especially in regions distant from the host vasculature,
since diffusion of oxygen and nutrients is only limited to a distance of 150–200 µm (Jain et al.,
2005; Nguyen et al., 2012). Angiogenesis is an essential component of the bone regeneration cascade
and its insufficiency is a major limiting factor for the clinical translation of BTE strategies (Kanczler
and Oreffo, 2008). Mesenchymal stromal cells (MSC) are increasingly being used for BTE (Pittenger
et al., 2019; Shanbhag et al., 2019), and one strategy has been to coculture MSC with endothelial cells
(EC), to create in vitro “pre-vascularized” constructs with a network of primitive vessels that
functionally anastomose with the host vasculature when implanted in vivo (Levenberg et al., 2005;
Rouwkema et al., 2006). MSC are reported to stabilize these networks by adopting a pericyte-like
phenotype, thereby enhancing EC-mediated angiogenesis and in turn, bone regeneration (Keramaris
et al., 2012; Loibl et al., 2014; Shanbhag et al., 2017a).
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MSC derived from bone marrow (BMSC) are the most widely
tested. However, progenitor cells from less-invasive sources, e.g.,
adipose and oral tissues, are being explored (Friedenstein et al.,
1968; Pittenger et al., 2019). Oral tissues, such as dental pulp,
periodontal ligament and gingiva, represent alternative sources of
“MSC-like” progenitor cells (Sharpe, 2016). Gingiva, in
particular, can be harvested with minimal morbidity and
contains a subpopulation of multipotent progenitor cells
(GPC), which demonstrate an MSC-like phenotype,
immunomodulatory properties, and osteogenic potential both
in vitro and in vivo (Fournier et al., 2010; Mitrano et al., 2010),
thus representing promising alternatives to BMSC for BTE
applications (Stefanska et al., 2020).

A critical aspect in the clinical translation of cell therapies is
the use of safe and standardized culture conditions. Although
commonly used for MSC expansion, several limitations of
xenogeneic fetal bovine serum (FBS) supplementation have
been highlighted, and current recommendations from health
authorities advocate the use of “xeno-free” protocols whenever
possible (Bieback et al., 2019a). Accordingly, xeno-free
alternatives such as pooled human platelet lysate (HPL), have
emerged and have been shown to be comparable, and often
superior, to FBS for the proliferation and differentiation of
various types of MSC (Fekete et al., 2012; Shanbhag et al.,
2017b; Shanbhag et al., 2020a). We have recently reported that
xeno-free culture of human GPC in HPL vs FBS media results in
enhanced growth, gene expression and differentiation (Shanbhag
et al., 2020b). Moreover, the proliferation and tube formation of
EC is reported to be enhanced in HPL (Tasev et al., 2015) and
other xeno-free media (Bauman et al., 2018).

Current BTE strategies rely mainly onmonolayer expansion of
MSC in plastic-adherent cultures (Rojewski et al., 2019).
However, this two-dimensional (2D) culture system is not
representative of the 3D in vivo microenvironment of MSC
and may therefore alter their phenotype and diminish their
regenerative and immunomodulatory potential (Banfi et al.,
2000; Hoch and Leach, 2015; Ghazanfari et al., 2017). Similar
observations have been reported in EC; single dissociated EC are
reported to be more likely to undergo apoptosis (Korff and
Augustin, 1998). In contrast, the self-assembly or spontaneous
aggregation of cells into 3D spheroids is mediated by unique cell-
cell and cell-extracellular matrix (ECM) interactions,
biomechanical cues and signaling pathways, which more
closely simulate the in vivo microenvironment (Sart et al.,
2014; Cesarz and Tamama, 2016). In contrast to 2D
monolayers, 3D spheroid culture has been reported to enhance
survival, stemness, paracrine activity, immunomodulation and
multi-lineage differentiation of MSC (Follin et al., 2016; Petrenko
et al., 2017) (Kale et al., 2000; Chatterjea et al., 2017). In the
context of BTE applications, we have observed particular
advantages of spheroid vs monolayer culture via a strong
upregulation of osteogenesis-related genes in BMSC and GPC
(Shanbhag et al., 2020b).

Traditional cell delivery methods involve direct seeding and
attachment of cells on biomaterial scaffolds before in vivo
transplantation. However, direct seeding may not be the
optimal method for delivery of cell spheroids because the

3D structure, essential to maximize their in vivo effects, is
lost. To preserve the 3D structure, encapsulation of spheroids
in hydrogels represents an effective delivery system (Murphy
et al., 2014; Murphy et al., 2015; Ho et al., 2018). Moreover, in
the context of angiogenesis, when EC are cultured as spheroids
in a hydrogel matrix, either alone or in coculture with MSC, 3D
network formation occurs by closely mimicking in vivo
sprouting angiogenesis (Korff and Augustin, 1999; Heiss
et al., 2015). Since HPL is increasingly being used for
clinical-grade MSC culture (Bieback et al., 2019b),
extending its application as a hydrogel carrier represents a
cost-effective strategy for tissue engineering. Furthermore,
HPL gels may offer the added advantage of sustained
cytokine release at regeneration sites (Robinson et al.,
2016). Indeed, recent studies have demonstrated the
potential of HPL hydrogels for encapsulating EC and MSC
to create microvascular networks (Fortunato et al., 2016;
Robinson et al., 2016).

Previous studies have investigated the capacity of MSC to
support or enhance EC-mediated angiogenesis in monolayer
cultures, most often in xenogeneic conditions (Steffens et al.,
2009; Verseijden et al., 2010; Chen et al., 2013; Ucuzian et al.,
2013; Strassburg et al., 2016). Others have studied angiogenesis-
related outcomes in spheroid cocultures of MSC or fibroblasts
with EC in xeno-free, i.e., human serum-supplemented, media
(Eckermann et al., 2011; Bauman et al., 2018). In the former
study, MSC-EC cocultures in xeno-free media (vs FBS) resulted in
enhanced angiogenesis in an in vivo chick chorioallantoic
membrane (CAM) assay. With this background, the objective
of the present study was to test the in vitro and in vivo angiogenic
potential of EC cocultured with GPC as 3D spheroids
encapsulated in HPL hydrogels.

MATERIALS AND METHODS

Cell Culture
The use of human cells and tissues was approved by the Regional
Committees for Medical Research Ethics (REK) in Norway
(2016–1266, REK sør-øst C). Monolayer cultures of primary
human GPC isolated from healthy donors were established in
5% HPL (Bergenlys®, Bergen, Norway). Details of isolation and
characterization of GPC have been reported elsewhere (Shanbhag
et al., 2020b). Early passage human umbilical vein EC (HUVEC)
were purchased and cultured in EGM-2 growth medium (both
from Lonza Inc., Walkersville, United States) supplemented with
either 2% FBS, as per the manufacturer’s recommendations, or
with 5%HPL; all other media components were maintained. Cells
were sub-cultured and expanded under humidified 5% CO2 at
37°C; passages 2-4 were used in experiments. Functionality of
HPL cultured HUVEC was tested in an in vitro tube formation
assay on matrigel (Corning, NY, United States), as previously
described (Fujio et al., 2017). Phase contrast images (Nikon
Eclipse TS100, Tokyo, Japan) were analyzed using ImageJ
software (NIH, Bethesda, United States) and angiogenesis-
related parameters (tube length, branching, segments and
junctions) were automatically quantified using the
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Angiogenesis Analyzer plugin, as previously described
(Carpentier et al., 2020).

3D Spheroid (co)Culture
3D aggregate spheroids of HUVEC were formed via guided self-
assembly in microwell plates as recently described (Shanbhag
et al., 2020b). Briefly, suspensions of dissociated monolayer
HUVEC cultured in FBS or HPL, were seeded in microwell
plates (Sphericalplate®, Kugelmeiers Ltd., Erlenbach,
Switzerland) for 24 h to form spheroids of ∼1000 cells each.
Cell viability in spheroids was assessed via the LIVE/DEAD® kit
(Invitrogen). Sprout formation in FBS and HPL cultured HUVEC
spheroids was assessed using phase and confocal microscopy: for
the latter, immunofluorescence (IF) staining with CD31 was
performed (Supplementary methods). For subsequent
experiments, all cell culture was performed in HPL media. For
coculture spheroids, microwells were seeded with suspensions of
dissociated HUVEC and GPC in two different ratios, 1:1 and 5:1
(HUVEC:GPC), based on previous work (Ma et al., 2011;
Pedersen et al., 2013). After 24 h, HUVEC and HUVEC-GPC
spheroids were collected by gentle pipetting and encapsulated in
HPL hydrogels (HPLG).

Encapsulation in Hydrogels
Since HPL was used to establish xeno-free cultures of GPC and
HUVEC, its application as a hydrogel scaffold was also
investigated. Initially, HPLG were produced via addition of
thrombin solution [1 IU/ml human thrombin and one TIU/ml
aprotinin in 40 mM CaCl2 solution (all from Sigma-Aldrich)] to
sterile-filtered HPL followed by incubation at 37°C for 15 min.
The resulting hydrogel was referred to as “unmodified” HPLG
(0F). For encapsulation, HUVEC or coculture spheroids were
suspended in HPL solution, quickly mixed with the thrombin
solution, and added to culture plates with gentle shaking to ensure
uniform distribution of the spheroids. The plates were transferred
to the incubator for 15 min to ensure complete gelation and
thereafter supplemented with EGM-2 growth medium for the
indicated culture periods.

Subsequently, to improve the hydrogels mechanical
properties, HPL was supplemented with fibrinogen (Sigma-
Aldrich) in concentrations of 1.25 (1.25F), 2.5 (2.5F), 6.25,
12.5, and 25 mg/ml. Gelation and spheroid encapsulation was
performed using the same thrombin solution as described above.
These hydrogels were referred to as “modified” HPLG.
Rheological properties of modified HPLG were assessed as
described in the Supplementary methods. Only 0, 1.25 and
2.5F HPLG were used in subsequent experiments (see
Hydrogel Properties Influence HUVEC Sprouting).

Sprouting Angiogenesis Assay
The in vitro angiogenic potential of mono- and coculture
spheroids was tested in a sprout assay, as previously described
(Nakatsu and Hughes, 2008). Briefly, HUVEC or HUVEC-GPC
spheroids were encapsulated in HPLG and cultured for 72 h in
EGM-2 medium to observe sprout formation. In selective
experiments, HUVEC spheroids (encapsulated in 0F HPLG)
were cultured with a monolayer of GPC on top of the gel,

i.e., “indirect” cocultures – to test whether paracrine factors
from GPC influenced HIUVEC sprouting. In “direct”
cocultures, prior to spheroid formation, dissociated GPC and
HUVEC were labeled with fluorescent green (DiO, 5 μL/ml) and
red (Dil, 5 μL/ml) dyes (Vybrant® cell-labelling solution,
Invitrogen), respectively. HUVEC-only spheroids (only red-
labelled cells) were formed as controls. Spheroids of HUVEC
or HUVEC-GPC (1:1 or 5:1 HUVEC:GPC) were encapsulated in
modifiedHPLG (0, 1.25 or 2.5F), and cultured in EGM-2 for up to
72 h in 8-well μ-slides® (ibidi, Munich, Germany). Subsequently,
the constructs were fixed in 4% paraformaldehyde (PFA) and
permeabilized using 0.2% Triton X-100 (Sigma-Aldrich). Prior to
imaging, nuclei were stained using 4′,6-diamidino-2-
phenylindole (DAPI, Sigma-Aldrich).

Confocal Microscopy
Whole mount imaging of HPLG-encapsulated spheroids was
performed using an Andor Dragonfly 5050 high-speed
confocal microscope and Fusion software (both from Oxford
Instruments, Abingdon, United Kingdom). Z-stacks were
acquired from the top of each gel, with steps of 4 μm to a
depth of up to 200 μm. Each image was captured with a high-
speed iXon 888 Life EMCCD camera with 1024 × 1024 resolution
at 100–200 × magnification. Green (GPC) and red (HUVEC)
stained cells/sprouts, and their nuclei (DAPI), were scanned in
the corresponding channels using 546, 647 and 405 lasers,
respectively. Images were processed using the Imaris software
(Oxford Instruments) and transferred to ImageJ (NIH) for
analysis. Using the Sprout Morphology plugin, segmentation
and thresholding of images was performed to separate GPC,
HUVEC and nuclei. Images were calibrated using scale bars and
sprout lengths (in μm) were automatically or manually calculated
using ImageJ, as described elsewhere (Eglinger et al., 2017), on
segmented images showing only HUVEC in the red-channel.

CAM Assay
The in vivo angiogenic potential of mono- and coculture
spheroids was tested in an ex ovo CAM assay in developing
chick embryos, in accordance with the Norwegian Animal
Research Authority (Mattilsynet), where an experimental
period < 14 days did not require formal ethical approval.
Briefly, fertilized chicken eggs were incubated at 37°C for 72 h
with intermittent rotation. On embryonic day 3, the eggs were
carefully opened, their contents transferred into petri dishes and
incubated in humidified air at 37°C. On day 7, HUVEC or
HUVEC-GPC spheroids encapsulated in 1.25F HPLG (50
spheroids in 50 µL gel; 1:1 HPL:EGM-2) were implanted on
the CAMs avoiding pre-existing blood vessels. To maintain
their positions on the CAMs, the gels were contained within
silicone O-rings (⌀ 10 mm). During the incubation period, some
embryos were terminated as a result of embryonic death
unrelated to the implants. Implants from these terminated
embryos were harvested for live cell-staining using Calcein
AM (Invitrogen). On day 14, the regions within the O-rings in
the remaining embryos were recorded using a digital
stereomicroscope (Leica Biosystems, Heerbrugg, Switzerland).
Subsequently, the CAMs were fixed in 4% PFA and regions
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around the O-rings were harvested, embedded in paraffin and
analyzed histologically following hematoxylin and eosin staining.
Quantification of angiogenesis-related parameters (vessel density,
vessel length, segments and branching points) in CAM images
was performed using the Wimasis® automated image analysis
software (Onimagin Technologies, Cordoba, Spain) (Montali
et al., 2017).

Statistical Analysis
Statistical analysis was performed using the Prism 9.0 software
(GraphPad Software, San Diego, CA, United States). Data are
presented as means ± SD, unless specified. Normality testing was
performed via the Shapiro-Wilk test. The student t test, Mann-
Whitney U test and one-way analysis of variance (ANOVA),
followed by post-hoc Tukey’s or Dunn’s test for multiple
comparisons, were applied when appropriate and p < 0.05 was
considered statistically significant.

RESULTS

HPL Supports Xeno-free Culture of HUVEC
Monolayer HUVECwere successfully cultured by substituting 2%
FBS with 5% HPL in EGM-2 media. When cultured on tissue
culture plates coated with unmodified HPLG, spontaneous tube-
like organization of HPL cultured HUVEC was observed
(Figure 1A). In the matrigel assay, a trend for superior tube
formation was observed in HPL vs FBS cultured HUVEC;
quantification of all angiogenesis-related parameters revealed a
higher trend in HPL, without significant differences (p > 0.05;
Figure 1B). Spheroids of HUVEC in HPL and FBS media were
formed and encapsulated in unmodified HPLG; high cell viability
in the spheroids was observed after 48 h (data not shown). Sprout
formation was initiated at 24 h and increased over time in both
FBS and HPL cultured HUVEC; detection of CD31 in HUVEC
sprouts was confirmed via IF and confocal microscopy

FIGURE 1 | Xeno-free HUVEC culture in HPL. (A) Comparison of HUVEC morphology in HPL and FBS on tissue culture plastic (TCP) and HPLG, and
corresponding tube formation on Matrigel after 24 h; scale bars 100 µm. (B) Analysis of tube formation parameters; data represent means ± SD (n � 3). (C) Comparison
of in vitro sprouting by HUVEC spheroids in HPL and FBS after 24 and 48 h in HPLG; IF staining for CD31 (HUVEC, red) and DAPI (nuclei, blue) in 48 h-spheroids; scale
bars 100 µm. (D) Analysis of sprout formation parameters; data represent means ± SD (n � 3 or more).
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(Figure 1C). A trend for increased sprouting (sprout numbers
and length) was observed in HPL vs FBS cultured HUVEC
spheroids, without significant differences (p > 0.05; Figure 1D).

Spheroid Coculture Promotes Sprouting
Angiogenesis
HUVEC sprouting was assessed first in unmodified (and later in
modified) HPLG. Generally, sprouts appeared as narrow tube-
like structures after 24 h, guided by characteristic “tip” cells,
extending from the spheroid surface into the gel matrix and
progressively increasing in length (Figures 2A,B). After 72 h,
abundant network formation was observed between the sprouts
of adjacent spheroids. In “indirect” cocultures, i.e., when
monolayer GPC were seeded on top of HPLG encapsulating
HUVEC spheroids, a trend for increased sprouting was observed
in HUVEC with vs without overlying GPC (p > 0.05;
Supplementary Figure 1).

In “direct” coculture spheroids, sprout formation by HUVEC
was accompanied by spreading/migration of GPC within HPLG
(Figure 3A). Both HUVEC and GPC showed high viability
(Supplementary figure 2A). When testing different coculture
ratios, spheroids of 5:1 HUVEC:GPC revealed significant
increases in sprout length vs HUVEC-only spheroids (p <
0.05; Figure 3B). No significant differences were observed
between 1:1 and 5:1 coculture spheroids (p > 0.05). Dual cell-
labelling revealed GPC to be organized along, and in direct
contact with, HUVEC sprouts (Figure 3C). GPC spreading
preceded HUVEC sprouting and appeared to provide a
substrate for HUVEC migration and sprouting
(Supplementary figure 2B).

Hydrogel Properties Influence HUVEC
Sprouting
Modified HPLG were produced by supplementing HPL with
fibrinogen (Figure 4A). High cell viability and favorable
sprouting of HUVEC spheroids were observed in HPLG with
≤ 2.5 mg/ml fibrinogen (Figures 4B,C). Spheroids in HPLG with
>2.5 mg/ml fibrinogen showed no sprouting and many dead cells
(Supplementary figure 4A–C). Therefore, only unmodified
HPLG (0F) or 1.25 and 2.5F modified HPLG were used in
subsequent experiments. Rheology revealed corresponding
increases in storage and loss moduli of HPLG with increasing
concentrations of fibrinogen (Supplementary figure 4). In 1:1
HUVEC:GPC cocultures, sprouting was comparable in 0F and
1.25F HPLG, and significantly greater than in 2.5F HPLG after
72 h (p < 0.05; Figure 5A). In 5:1 HUVEC:GPC cocultures, a non-
significant trend for superior sprouting was observed in 1.25F
HPLG (p > 0.05, Figure 5B). Thus, the combination of 5:1
HUVEC:GPC and 1.25F HPLG was considered optimal and
used in the CAM assay.

Spheroid Coculture Supports Angiogenesis
in vivo
HUVEC and HUVEC-GPC (5:1) spheroids in 1.25F HPLG were
implanted on developing chicken embryo CAMs. In vitro sprout
formation by the encapsulated spheroids was confirmed
(Supplementary figure 5). Live cell-staining of gels harvested
24 h after implantation revealed high cell viability. While
HUVEC spheroids appeared to dissociate and organize into
networks, HUVEC-GPC spheroids retained their 3D structure
and showed characteristic sprouting on the CAMs (Figure 6A).

FIGURE 2 | HUVEC sprouting in HPLG. (A) Representative phase-contrast images showing the progression of sprout formation in xeno-free HUVEC spheroids in
HPLG; scale bars 100 µm. (B) Representative confocal images showing sprout formation by HUVECmonoculture spheroids in unmodified HPLG; initiation by sprouting
by “tip cells” (white arrows) after 24 h; scale bars 100 µm.
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After 7 days of implantation, active angiogenesis with dense
vascular networks was observed in the regions of both
HUVEC and HUVEC-GPC implants. Although the spheroids
were evenly distributed in the gels at the time of implantation,

after 7 days they appeared to be aggregated to one side of the
O-rings and the HPLG was almost completely degraded
(Figure 6A). Histology revealed a high density of vessels at
the CAM surface, to a similar degree in both groups

FIGURE 3 | Coculture of GPC and EC in HPLG. (A) Representative images of HUVEC sprouting (and GPC spreading) in HUVEC monoculture and 1:1 and 5:1
(HUVEC:GPC) coculture spheroids after 72 h in unmodified HPLG (scale bars 100 μm). (B) Quantification of corresponding sprout lengths based on dual-staining and
confocal imaging – only red-stained HUVEC sprouts were measured; *p < 0.05; data represent means ± SD of at least three experimental repeats (n ≥ 5 spheroids per
experiment). (C) Representative confocal images showing sprout formation in 1:1 and 5:1 HUVEC:GPC coculture spheroids; white arrows indicate GPC (green)
organization along HUVEC sprouts (red;); nuclei are stained with DAPI (scale bars 100 µm).
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(Figure 6A). Degradation of HPLG precluded the detection of
construct integration via penetration of CAM vessels into the gels.
Quantification of angiogenesis revealed no significant differences
between HUVEC and HUVEC-GPC spheroids for any of the
tested parameters (p > 0.05; Figure 6B).

DISCUSSION

3D cocultures of MSC and EC can promote angiogenesis and
potentially overcome the challenges of in vivo vascularization in
BTE constructs (Rouwkema et al., 2006; Nguyen et al., 2012). The
aim of this study was to test whether GPC, as an alternative to
BMSC, supported EC-mediated sprouting angiogenesis in xeno-
free HPL cultures.

HUVEC represent a feasible and frequently used model to
study EC behavior in experimental settings (Morin and
Tranquillo, 2013). Consistent with previous reports, tube
formation and sprouting by HUVEC was improved in HPL vs

FBS. Sprouting angiogenesis by 3D-cultured EC in vitro is
considered to be a close representation of the in vivo
angiogenic cascade, recapitulating all the key events during
which quiescent EC become activated to proteolytically
degrade their surrounding ECM, e.g., hydrogels, directionally
migrate towards the angiogenic stimulus, proliferate, and
organize into new 3D capillary networks (Korff and Augustin,
1999; Chappell et al., 2012; Nowak-Sliwinska et al., 2018).
Moreover, these sprout-networks have revealed functional
lumenized capillaries, which anastomose with host
vasculatures when implanted in vivo (Alajati et al., 2008;
Finkenzeller et al., 2009; Morin and Tranquillo, 2011). A
recent study reported superior sprouting of EC in human
serum vs FBS supplemented media (Bauman et al., 2018).
Consistently, a trend for superior sprout formation by HPL vs
FBS cultured HUVEC spheroids was observed herein. Thus, HPL
appears to be a feasible xeno-free alternative for HUVEC culture.

The formation and stability of in vitro and in vivo capillary-
like networks by EC can be enhanced via coculture with MSC

FIGURE4 |Optimization of HPLG. (A)Representative photographs of unmodified (0F) andmodified HPLG supplementedwith 1.25 (1.25F) or 2.5 mg/ml fibrinogen
(2.5F). (B)Representative phase contrast images of HUVEC sprouting after 72 h in the corresponding HPLG (scale bars 100 μm). (C)Cell viability via LIVE/DEAD assay in
HUVEC spheroids after 72 h in the corresponding HPLG (scale bars 100 μm).
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(Pedersen et al., 2012; Pedersen et al., 2013; Ma et al., 2014). We
have previously reported that GPC demonstrate MSC-like
phenotype and properties in xeno-free cultures (Shanbhag
et al., 2020b). Accordingly, 3D cocultures of HUVEC and
GPC were established herein. To test whether GPC promoted
HUVEC sprouting via cell-to-cell contact or paracrine
mechanisms, direct and indirect cocultures were established,
respectively. While indirect coculture with GPC revealed a
trend for greater HUVEC sprouting, direct coculture with
GPC in a 5:1 ratio significantly improved HUVEC sprouting.
These results are consistent with previous studies of HUVEC
spheroids cocultured with BMSC (Hsu et al., 2014; Robinson
et al., 2016; Bauman et al., 2018), and studies highlighting the
importance of direct cell-to-cell contacts, rather than paracrine
interactions, in coculture settings (Ball et al., 2004; Liang et al.,
2017).

To optimize the 3D cocultures, two different coculture ratios
were tested. While a 1:1 ratio of MSC and EC is most frequently
reported (Ma et al., 2011; Shanbhag et al., 2017a), previous studies
from our group and others have suggested that higher
proportions of EC may improve angiogenesis in cocultures
(Verseijden et al., 2010; Pedersen et al., 2012; Pedersen et al.,
2013). However, no significant differences in HUVEC sprouting
were observed between high (5:1) and low (1:1) coculture ratios
herein. Notably, only the 5:1 cocultures showed significantly
greater sprouting vs HUVEC only spheroids. Considerably
greater spreading or migration of GPC was observed in
spheroids with relatively more GPC, i.e., in 1:1 spheroids.

Spreading preceded HUVEC sprouting and may have
provided a substrate for sprout growth and elongation. Indeed,
MSC are reported to show signs of pericytic differentiation, e.g.,
via expression of smooth-muscle markers, in EC cocultures
(Lozito et al., 2009). Similar patterns of spreading by MSC
have been reported in 3D cocultures embedded in collagen
gels (Shah and Kang, 2018). This is in contrast to non-
embedded 3D cocultures, where MSC do not spread, and EC,
in the absence of an ECM, organize into internal networks within
the spheroids rather than external sprouts (Rouwkema et al.,
2006; Verseijden et al., 2010; Eckermann et al., 2011; Marshall
et al., 2018). In the present study, an “embedded” spheroid model
was selected to recapitulate angiogenic sprouting by using HPL
hydrogels as ECM scaffolds to deliver the “pre-vascularized”
constructs in vivo (Robinson et al., 2016).

Recent studies have demonstrated the benefits of HPLG for
EC-mediated angiogenesis (Fortunato et al., 2016; Robinson et al.,
2016). HPLG are produced by simulating the in vivo coagulation
cascade, i.e., via addition of thrombin and/or CaCl2 to convert
fibrinogen to fibrin, and thus represent highly biomimetic
scaffolds for tissue engineering applications. Together with cell
culture in HPL supplemented media, this would represent a fully
xeno-free coculture system with a high potential for clinical
translation. Although HPLG can support capillary-like
network formation by EC, their mechanical properties may be
considered insufficient for in vivo implantation, especially in non-
contained bone defects. Thus, the HPLG were supplemented with
fibrinogen for more predictable in vivo delivery. Fibrin gels are

FIGURE 5 |Optimization of coculture ratios. Representative confocal images of HUVEC-sprouting (red) and GPC-spreading (green) after 72 h in 1:1 (A) and 5:1 (B)
HUVEC:GPC coculture spheroids in 0, 1.25 and 2.5F HPLG (scale bars 100 μm) and corresponding quantification of sprout lengths; **p < 0.001; data represent
means ± SD of at least three experimental repeats (n � ≥ 5 spheroids per experiment).
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routinely used as scaffolds in a range of applications including
BTE (Soffer et al., 2003). Moreover, fibrin gels have been
extensively used to study EC sprouting angiogenesis (Morin
and Tranquillo, 2013). Notably (unmodified) HPLG have been
shown to be superior to fibrin gels in this regard (Robinson et al.,
2016). However, the mechanical properties of unmodified HPLG
may only allow injectable delivery due to their highly liquid
nature. In the present study, it was hypothesized that
supplementation of HPLG with fibrinogen would enhance the
mechanical properties of the gels, while retaining the biological
activity of HPL. Although the addition of fibrinogen seemingly
improved the mechanical properties of HPLG, the biological
activity (HUVEC viability and sprouting) declined beyond a
concentration of 2.5 mg/ml. Interestingly, HUVEC sprouting
in 1.25F gels was slightly enhanced vs unmodified HPLG and
significantly enhanced vs 2.5F HPLG. This contrasted with a
previous study comparing unmodified HPLG and 1.25 or 2.5 mg/
ml fibrin gels (Robinson et al., 2016). In the context of BTE,
hydrogel stiffness is also reported to influence MSC fate-

determination and osteogenic differentiation (Hwang et al.,
2015; Sun et al., 2018; Zigon-Branc et al., 2019). Our findings,
together with previous reports (Rao et al., 2012; Hsu et al., 2014;
Robinson et al., 2016), highlight the importance of ECM/scaffold
properties on EC-mediated angiogenesis within tissue engineered
constructs.

To test the in vivo angiogenic potential of spheroid-HPLG
constructs, a CAM assay in the developing chick embryo was
used. This offers a relatively rapid and cost-effective model for in
vivo biomaterial/xenograft testing, particularly for angiogenesis,
in a naturally immunocompromised host with a rapidly
developing vascular bed (Moreno-Jimenez et al., 2016; Ribatti,
2016). Cell viability and sprouting of both HUVEC and HUVEC-
GPC spheroids was confirmed after 24 h in excised CAMs.
Interestingly, in the absence of GPC, HUVEC appeared to
dissociate from spheroids and organize into tube-like networks
as observed in monolayer cultures. Seven days after implantation,
a dense network of capillaries was observed macroscopically in
the CAM-regions implanted with both HUVEC and HUVEC-

FIGURE 6 | CAM angiogenesis assay. (A) Comparison of HUVEC (EC) and HUVEC-GPC coculture (CO) spheroids seeded in HPLG (L to R): cell viability after 24 h
[green colour indicates viable cells, note the dissociation of HUVEC (EC) spheroids into tube-like networks; scale bars 100 μm], stereomicroscope images showing
neoangiogenesis in CAMs after 7 days (black arrows indicate condensed HPLGwithin the O-rings; scale bars 200 μm) and corresponding histological images with H & E
staining (black arrows indicate newly formed vessels; scale bars 50 μm). (B) Analysis of angiogenesis-related parameters based on stereomicroscope images; n �
number; data represent means ± SD (n � 3).
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GPC spheroids. This is consistent with previous studies reporting
angiogenesis in CAMs implanted with xenogeneic (Steffens et al.,
2009; Strassburg et al., 2016) or xeno-free coculture spheroids
(Bauman et al., 2018). In the latter study, the integration of
sprouts with the CAM vasculature was confirmed via
immunohistochemistry (Bauman et al., 2018). However, no
significant advantage of HUVEC-GPC coculture was observed
in the CAM assay herein, and therefore, the benefits of coculture
observed for in vitro sprouting were not translated in vivo.

Some limitations of our study must be acknowledged. While
most previous studies have reported the in ovo “eggshell window”
method for the CAM assay (Steffens et al., 2009; Liu et al., 2012;
Strassburg et al., 2016; Bauman et al., 2018), a complete ex ovo
method was used in our study. In the former, the construct is
placed on the CAM through an opening in the eggshell; retention
of the embryo within the egg and coverage of the window during
the experimental period are advantageous in terms of hydration
and reduced risk of contamination. Exposure of the CAMs in our
method contributed to dehydration and faster resorption of the
HPLG, which may have compromised existing sprout-networks
and precluded the formation of new sprouts. Moreover, a longer
observation period was used herein (7 days) compared to
previous reports (3 days) (Liu et al., 2012; Bauman et al.,
2018), which may also have masked any “early differences”
between the groups; a single “end-point” was selected herein
to minimize disturbance and exposure of the CAMs. An in ovo
model with shorter/multiple observation periods may offer a
more reliable picture in future studies. Moreover, ectopic
implantation of the constructs in more relevant animal
models, e.g., immunocompromised mice, may provide further
clues regarding hydrogel degradation and vascular anastomosis.

It has been reported that in the absence of supporting cells, EC
networks are stable for a shorter duration in vitro (Pedersen et al.,
2012; Pill et al., 2018). When implanted in vivo, the engineered
vessels must remain stable long enough to anastomose with the
native vasculature and sustain the implanted cells (Pedersen et al.,
2013). In the present study, GPC were found to be organized in
close contact with HUVEC sprouts and appeared to provide a
“substrate” for sprout formation/elongation. Thus, it may be
hypothesized that GPC could help to stabilize EC networks in
more challenging in vivo conditions (Zhang et al., 2020). In the
context of BTE, it is unclear whether MSC/GPC in cocultures
serve dual functions of supporting angiogenesis and promoting
osteogenesis, i.e., osteogenic differentiation and/or paracrine
stimulation. In a meta-analysis of MSC-EC co-transplantation
studies in vivo, we observed a significant benefit of coculture for
bone, but not vessel, regeneration (Shanbhag et al., 2017a).
Further research is needed to clarify whether MSC, and other
supporting cells, adopt a pericyte- and/or osteoblast-like
phenotype when cocultured with EC. Finally, further
optimization of culture conditions, e.g., cell ratios, media,
ECM/scaffolds, etc., to promote both osteogenesis and
angiogenesis, and not one or the other, is needed prior to
clinical application.

CONCLUSION

In summary, HPL represents a suitable xeno-free alternative for
HUVEC culture. HUVEC spheroids in HPL/HPLG
demonstrated in vitro sprouting angiogenesis, which was
significantly enhanced via direct coculture with GPC. A 5:1
HUVEC:GPC ratio in a specific HPLG formulation appeared
to be optimal in terms of in vitro sprouting. Further optimizations
of coculture conditions are needed to translate these in vitro
findings in the appropriate in vivo models.
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