
RESEARCH ARTICLE

Improving the support for XML dynamic updates using a

hybridization labeling scheme (ORD-GAP) [version 1; peer

review: awaiting peer review]

Su-Cheng Haw 1, Aisyah Amin1, Chee-Onn Wong1, Samini Subramaniam2

1Faculty of Computing & Informatics, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia
2AirAsia Berhad, Lapangan Terbang Antarabangsa Kuala Lumpur (KLIA2), Selangor, 64000, Malaysia

First published: 09 Sep 2021, 10:907
https://doi.org/10.12688/f1000research.69108.1
Latest published: 09 Sep 2021, 10:907
https://doi.org/10.12688/f1000research.69108.1

v1

Abstract
Background: As the standard for the exchange of data over the World
Wide Web, it is important to ensure that the eXtensible Markup
Language (XML) database is capable of supporting not only efficient
query processing but also capable of enduring frequent data update
operations over the dynamic changes of Web content. Most of the
existing XML annotation is based on a labeling scheme to identify
each hierarchical position of the XML nodes. This computation is costly
as any updates will cause the whole XML tree to be re-labelled. This
impact can be observed on large datasets. Therefore, a robust
labeling scheme that avoids re-labeling is crucial.
Method: Here, we present ORD-GAP (named after Order Gap), a
robust and persistent XML labeling scheme that supports dynamic
updates. ORD-GAP assigns unique identifiers with gaps in-between
XML nodes, which could easily identify the level, Parent-Child (P-C),
Ancestor-Descendant (A-D) and sibling relationship. ORD-GAP adopts
the OrdPath labeling scheme for any future insertion.
Results: We demonstrate that ORD-GAP is robust enough for dynamic
updates, and have implemented it in three use cases: (i) left-most, (ii)
in-between and (iii) right-most insertion. Experimental evaluations on
DBLP dataset demonstrated that ORD-GAP outperformed existing
approaches such as ORDPath and ME Labeling concerning database
storage size, data loading time and query retrieval. On average, ORD-
GAP has the best storing and query retrieval time.
Conclusion: The main contributions of this paper are: (i) A robust
labeling scheme named ORD-GAP that assigns certain gap between
each node to support future insertion, and (ii) An efficient mapping
scheme, which built upon ORD-GAP labeling scheme to transform XML
into RDB effectively.

Keywords
XML-RDB mapping, mapping scheme, XML databases, dynamic
updates, XML labeling scheme.

Open Peer Review

Reviewer Status AWAITING PEER REVIEW

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

https://f1000research.com/articles/10-907/v1
https://f1000research.com/articles/10-907/v1
https://orcid.org/0000-0002-7190-0837
https://doi.org/10.12688/f1000research.69108.1
https://doi.org/10.12688/f1000research.69108.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.69108.1&domain=pdf&date_stamp=2021-09-09

Corresponding author: Su-Cheng Haw (sucheng@mmu.edu.my)
Author roles: Haw SC: Conceptualization, Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review &
Editing; Amin A: Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation; Wong CO: Resources, Writing –
Review & Editing; Subramaniam S: Supervision, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: The author(s) declared that no grants were involved in supporting this work.
Copyright: © 2021 Haw SC et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Haw SC, Amin A, Wong CO and Subramaniam S. Improving the support for XML dynamic updates using a
hybridization labeling scheme (ORD-GAP) [version 1; peer review: awaiting peer review] F1000Research 2021, 10:907
https://doi.org/10.12688/f1000research.69108.1
First published: 09 Sep 2021, 10:907 https://doi.org/10.12688/f1000research.69108.1

This article is included in the Research Synergy

Foundation gateway.

Page 2 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

mailto:sucheng@mmu.edu.my
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.69108.1
https://doi.org/10.12688/f1000research.69108.1
https://f1000research.com/gateways/rsf
https://f1000research.com/gateways/rsf
https://f1000research.com/gateways/rsf

Introduction
Extensible Markup Language (XML) was introduced in the 1990s by theWorld WideWeb Consortium (W3C) to be the
standard for information exchange as it is self-descriptive. Similar to Hypertext Markup Language (HTML), XML is a
tag-based syntax, yet, XML can represent data within its context and is readable by machines and humans as it utilizes a
natural language.1,2 Since the emergence of XML, many approaches to map XML into Relational DataBase (RDB) have
existed.3,4

Dynamic Prefix-based Labeling Scheme (DPLS)5 extended the Dewey scheme6,7 and is based on a two stage approach:
(i) constructing the initial DPLS labeling and (ii) handling any updates. Alsubai andNorth8 proposed a Child Prime Label
(CPL) based on the prime number on the XML tree. The trees are traversed and annotated with labels (start, end, level,
CPL) based on depth-first traversals. Research by Khanjari and Gaeini9 proposed the FibLSS encoding scheme, which
uses binary bit values (0 and 1) to assign node labels. The authors conducted experimental evaluations of their approach
against Improved Binary String Labeling (IBSL),10 which indicated that FibLSS is capable of supporting insertion
without the need for relabeling.

More recently, Taktek and Thakker11 introduced the Pentagonal Scheme, a dynamic XML labeling scheme. Their
algorithms support dynamic updates without redundant labels or relabeling needed. Their evaluations showed that the
Pentagonal Scheme can handle several insertions yet showed a better initial labeling time as compared to some existing
schemes, especially on largeXMLdatasets. Azzedin et al.12 proposed theRLP-Scheme, which enrichedDewey labeling6

withmore information.With the RLP-Scheme, an ancestor node can be computed easily, yet the storage space and central
processing unit time can be minimised for XML with many identical sub-trees.

In the literature, most of the existing approaches support only static query processing by assuming that the structural
information will not have any changes over time.13 This situation is impractical as the data exchanged over the Web is
subject to very frequent updates. Due to this reason, we propose a mapping scheme called ORD-GAP that can support
updates dynamically. Updates and delete operations are simple as they will not change the existing labeling, thus, the
focus of this paper is on the insert operation as insertion will generate new or modify existing labeling.

Methods
Figure 1 depicts the architecture diagram of our proposed approach. Our proposed approach consists of the three main
components, namely, XML parser, XML Encoder, and XMLMapper. The XML document is the input, while the output
will be stored into RDB. The XML parser is responsible for validating XML to ensure it is well-formed before
any processing takes place. The XML Encoder annotates the XML tree via a labeling scheme so that the structural
relationships among the XML nodes can be identified easily even upon transformation into other underlying storage.
Subsequently, the XMLMapper maps or transforms the annotated XML tree into RDB storage. Subsequently, for query
retrieval, it will be issued via Structure Query Language (SQL).

Figure 1. Architecture diagram of the proposed approach.

Page 3 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

Tree annotation
Tree annotation of the proposed method includes both labeling and mapping schemes that work together to transform
the XML tree into RDB storage. This approach adopted the node indexing of range labeling and prefix-based labeling as
the initial annotation. Subsequently, we adopted the ORDPath14 labeling scheme for any dynamic update operations.
Henceforth, the proposed approach is named as ORD-GAP.

This labeling is in the format of (s-e)l. The s denotes the start range while the e denotes the end range. The l expresses the
level of each node position. These values for s and e are generated based on the gap g. The value g is calculated based on
the formula: g= Σ (maxfan-out+maxdepth).

Figure 2 illustrates the snippet view of the SIGMODRecord dataset15 labelledwith theORD-GAP scheme. This dataset is
commonly used for benchmarking purpose. It was chosen as it contains various fan-outs (number of children each node
has) andmany levels to better demonstrate how our proposed approach works. Firstly, we need to find out the value for g,
whereby we need to know the maxfan-out and maxdepth From the dataset, we observed that the maximum fan-out and
maximum level is 4 and 6 respectively. As such, the gap value calculated by our algorithm (see Figure 3(a)) is 10. The root
will always start with s as 1. The value of the following node is allocated from the gap value and the previous node’s value.
In this case, since the gap is 10 and the value on the previous node’s is 1 (the root node), so, the node “issue” is assigned
with 11 and tailed by node “author”with 21 for the s. The e value on node tree will be assigned once the s has reached the
leaf node. In this case, if the s label is 31 and is a leaf node, then the e label will be assigned with 41 (by adding the s value
with the gap value, such as 31+11), followed by the node “issue” with 51 as the e.

(1 – 851) 0

(11-641) 1 (651-841) 1

(741-831)2

11
(31-41) 3

1
(71-81) 3

11 1

SigmodRecord

Architect
ure of
Future

Database
Systems

30 44

Lawrence
A.Rowe

Michael
Stonebr

aker

Error in
‘Process

synchroni
zation in
Database
System’

(1
31

-1
41

) 5

(1
71

-1
81

) 5

issue issue

volume volumenumber numberarticles articles

article article article article

author author

title initPage endPage authors Science
direct

ieee

(8
01

-8
11

)4

(5
31

-5
61

) 5

Philip
A.Berstein

Marco
A.Casanova Nathan

Goodman

9
29

(5
81

-5
91

) 6

author author author

title initPage endPage

Figure 2. The ORD-GAP labeling scheme.

Page 4 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

Figure 3 shows the pseudocode for ORD-GAP. Figure 3(a) shows the calculation of g which is formulated based on
Σ (maxfan-out + maxdepth) of the tree while Figure 3(b) shows the algorithm to assign a label. In Function GetGap, parent
node and next level of current node is an input used to obtain g. The maxfan-out is the maximum number of child while
maxdepth is the deepest level of the tree.

Structural relationship determination
Mapping schemes of ORG-GAP contain two tables to map the XML data in RDB. The two tables are internal table and
text table. The internal table is called iTable, which is used for storing the node that does not contain a text value. A text
table is called tTable, and is used to store the leaf nodes. The attributes of both tables consists of Start, End, Level, PStart,
Value; Start node keeps the s value of node, End node keeps the e value of node, and Level node keeps the depth of a node
from the root. Tables 1 and 2 are the partial view of iTable and tTable based on outcome after the labeling scheme (see
Figure 2).

ORD-GAP supports all structural relationships which are level, P-C, A-D and sibling. A-D relationship is determined
based on the following conditions:

• if (A(s) < D(s) < A(e)) and (D (level) – A (level) > 1).

Figure 3(a). Algorithm for Function GetGap.

Figure 3(b). Algorithm for Function AssignLabel

Page 5 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

Table 1. iTable of Parent Table for initial labeling.

Start End Level Pstart Value

21 51 2 2 volume

61 91 2 2 number

121 151 4 6 title

161 191 4 6 initPage

201 231 4 6 endPage

251 281 5 10 author

291 321 5 10 author

241 331 4 6 authors

111 341 3 5 article

361 391 4 13 title

401 431 4 13 initPage

441 471 4 13 endPage

491 521 5 17 author

531 561 5 17 author

571 601 5 17 author

481 611 4 13 authors

351 621 3 5 article

101 631 2 2 articles

11 641 1 1 issue

661 691 2 21 volume

701 731 2 21 number

751 781 3 24 article

791 821 3 24 article

741 831 2 21 articles

651 841 1 1 issue

1 851 0 0 SigmodRecord

Table 2. tTable of Child Table for initial labeling.

Start End Level Pstart Value

31 41 3 3 11

71 81 3 4 1

131 141 5 7 Architecture of Future Data Base Systems.

171 181 5 8 30

211 221 5 9 44

371 381 5 14 Errors in 'Process Synchronization in Database Systems'.

411 421 5 15 9

451 461 5 16 29

671 681 3 22 11

711 721 3 23 3

761 771 4 25 science direct

801 811 4 26 ieee

Page 6 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

Example: Let node1 be volume (21-51)2 and node2 be SigmodRecord (1-811)0, (SigmodRecord (1) < volume (21) <
SigmodRecord (811) and volume (2) – SigmodRecord (0) > 1). As such, node1 and node2 has A-D relationship.

For P-C relationship, it is determined based on the following conditions:

• if (P(s) < C(s) < P(e)) and (C (level) – P (level) = 1)

• Pstart for C == Start for P (Mapping Scheme)

The level difference should be equal to one since the parent would be only one level higher than the child. Another
condition is the PStart value should be equal to P value.

Example:Let node1 be article (111-341)3 and node2 be authors (241-331)4, (article (111) < authors (241) < article (341)
and authors (4) – article (3)=1). As such, node1 and node2 have P-C relationship.

Lastly for Siblings, if the nodes have the same PStart from the table, they are siblings.

Example: Let node1 be endPage (201-231)4 and node2 be authors (241-331)4. From iTable, both have PStart ‘6’. As
such, node1 is a sibling of node2.

Results
The dynamic update of ORD-GAP was adapted from the ORDPath.14 ORDPath encodes the P-C relationship by
extending the parent's ORDPath label with a component for the child. However, inORDPath, the even number is reserved
for further node insertions. Generally, this approach is good as all four relationships could be determined easily. However,
we observed that the label size grows uncontrollable with the growth of the tree. Henceforth, it may not be scalable for a
huge dataset. Yet, we observed that dynamic insertion is not as huge as compared to initial tree labeling. Thismotivated us
to use ORDPath labeling to support the insertion updates, while keeping ORD-GAP as the initial tree labeling.

Insertion scenario with ORD-GAP
The insertion consists of left-most, right-most and in-between insertion. Each insertion includes an additional node
known as medium node which represents the insertion of dynamic update. Thus, this method creates an unlimited
insertion on XML tree which avoids node relabeling.

Figure 4 shows dynamic updates of left-most, in-between, and right-most insertion. The nodes represent the left-most
insertion (21.1), in-between insertion (641.1), and right-most insertion (831.1). The insertion contains internal node and

(1 – 851) 0

(11-641) 1 (651-841) 1

11 1 11 1

SigmodRecord

issue issue

volume volumenumber numberarticles articles

article article article article

21.1
831.1

641.1

date_is
sue

page

Figure 4. Left-most, in-between and right-most insertion on ORD-GAP.

Page 7 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

leaf node that will be mapped in the iTable (internal table) and tTtable (leaf node) as depicted in Tables 3 and 4,
respectively.

We have implemented ORD-GAP using Java Development Kit (JDK) 8.0.510.16 on Netbean IDE 8.0.2 compile.
Experimental evaluations were conducted tomeasure the performance of ORD-GAP as compared to ORDPath14 andME
Labeling16 approaches. These two existing approaches were taken for comparison because the technique does not require
node re-labeling.

In the first part of the evaluation, the XML document is stored and transformed into RDB storage. The data insertion time
and database storage size are recorded for all three approaches. After the storage is completed, we performed query
retrieval to measure the performance of ORD-GAP, ORDPath and ME Labeling.

Table 3. iTable of Parent Table for dynamic updates.

Start End Level Pstart Value Pvalue Type of insertion

21.1 - 1 - date issue Left-most

21.1.1 - 2 - date_issue date Left-most

831.1 - 1 - date issue Right-most

831.1.1 - 2 - date_article date Right-most

641.1 - 0 - addon SigmodRecord In-between

641.1.1 - 1 - page addon In-between

641.1.3 - 1 - sub_author addon In-between

Table 4. tTable of Parent Table for dynamic updates.

Start End Level Pstart Value Type of insertion

21.1.1.1 - 3 - 26 August 2019 Left-most

831.1.1.1 - 3 - 26 July 2019 Right-most

641.1.1.1 - 2 - 100 page In-between

641.1.3.1 - 2 - McDonald In-between

Table 5. XML data insertion on DBLP dataset.

Insertion time (ms)

Dataset ORD-GAP ORDPath ME labeling

SigmodRecord 1,926,947 6,111,816 2,491,407

Table 6. Database sizes of various approaches on DBLP.xml.

Approach Table Row Total
row

Database size
(KB)

Total database size
(MB)

ORD-GAP iTable 3332130 6337978 401736 749

tTable 3005848 366088

ME Labeling MeParenttable 3332130 6337978 392176 797

MeChildtable 3005848 424912

ORDPath ParentTablereed 3332130 6337978 328264 651

ChildTablereed 3005848 338448

Page 8 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

Lastly, our proposed approach ORD-GAP is put into evaluation to test for the dynamic update operations. All the
experiments are performed on i7-3770 @3.4 processor with 16GB of RAM running on Windows 7. In the subsequence
evaluations, we used the DBLP dataset17 to demonstrate the possibility of supporting larger dataset.

Data storing evaluation time
In this evaluation, insertion time was recorded four times. We discarded the first reading to omit the buffering effect for
consistency of execution time. The results recorded are the average time of the three consecutive times. Table 5 shows the
insertion time of ORD-GAP, ORDPath14 and ME labeling.16 ORD-GAP is the fastest followed by ME Labeling and
ORDPath.

Storage space evaluation
Database storage consumption was evaluated to determine the storage space using ORD-GAP, ORDPath and ME
Labeling approaches. From our experimental observation (see Table 6), we observed that ME Labeling requires higher
storage space volume as compared to ORD-GAP and ORDPath due to the larger labeling size required as the depth of the
XML tree increases.

As depicted, ORD-GAP reserved a gap between nodes, which delaying the initial node labelling, as ORD-GAP requires
some calculation on retrieving the initial nodes. While ORDPath uses dot separated component byte-by-byte, that
assigning node label is taken from the parent’s nodes toward the depth of XML tree. Whereas ME Labeling uses
multiplication that causes the increases of size labels. Themultiplication requiresmore time on the computation as the size
label increase. Thus, both ORDPath and ME Labeling take less time for node labeling.

Table 7. XPath Notation of DBLP dataset.

Query Query Node XPath Notation

PQ1: /dblp/mastersthesis/author

PQ2: //dblp//title

PQ3: //phdthesis/title

TQ4: /dblp[/article/www]/title

TQ5: //dblp[//title]//editor

TQ6: /dblp[/www]//title

Page 9 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

Query retrieval evaluation
Table 7 displays the query node in tree representation and XPath notation for each query.

Figure 5 shows the query execution performance on various approaches. ORD-GAP is leading, followed byME labeling
andORDPath. ORDPath requiremore time as compared toORD-GAP andMELabeling due to the number of elements in
a node in DBLP. Although DBLP tree contains only three levels, it has multiple siblings in a node. Thus, the data model
grows horizontally. ORDPath is prefix-based labeling that traverses using breadth-first search traversal. Likewise,
ORDPath did not performwell. As the sibling’s node increases, the size label is increased. Hence, it requires more time to
retrieve data in the database.

Conclusion
In this paper, we propose a labeling scheme named ORD-GAP that enables dynamic insertion by adopting ORDPath
techniques. ORDPath generates unrestricted insertion of large XML trees. We carried out evaluations to compare ORD-
GAP with ORDPath and ME Labeling. The performance of ORD-GAP was evaluated based on the database size,
insertion, query retrieval and dynamic updates. We showed that ORD-GAP has a better performance than ORDPath and
ME Labeling. However, we were not able to test ORD-GAP on a dataset size beyond 1.2GB due to hardware limitations
such as hardware processor and available RAM.

0

500

1000

1500

2000

2500

PQ1 PQ2 PQ3

)s
m(

e
miT

DBLP Query retrieval

Path Query for DBLP Dataset

ORD-GAP

ORDPath

ME Labeling

0

1000

2000

3000

4000

5000

6000

7000

TQ4 TQ5 TQ6

)s
m (

e
miT

DBLP Query retrieval

Twig Query for DBLP Dataset

ORD-GAP

ORDPath

ME Labeling

Figure 5. Query retrieval time on DBLP dataset.

Page 10 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

In our future work, we will look into XML compression and optimization to ensure the further reduce the label size.

Data availability
Underlying data
SIGMOD Record dataset available from: http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.
html#sigmod-record.15

DBLP dataset available from:

http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#dblp.17

References

1. Singh P, Sachdeva S: A Landscape of XML Data from
Analytics Perspective. Procedia Computer Science. 2020; 173:
392–402.
Publisher Full Text

2. Brahmia Z, Hamrouni H, Bouaziz R: XML data manipulation in
conventional and temporal XML databases: A survey. Computer
Science Rev. 2020; 36: 100231.
Publisher Full Text

3. Song E, Haw SC: XML-REG: Transforming XML Into Relational
Using Hybrid-Based Mapping Approach. IEEE Access. 2020; 8:
177623–177639.
Publisher Full Text

4. Oliveira A, Kohwalter T, Kalinowski M, et al. : XChange: A semantic
diff approach for XML documents. Information Syst. 2020; 94:
101610.
Publisher Full Text

5. Liu J, Zhang XX: Dynamic labeling scheme for XML updates.
Knowledge-Based Systems. 2016; 106: 135–149.
Publisher Full Text

6. Tatarinov I, Viglas SD, Beyer K, et al.: Storing andquerying ordered
XML using a relational database system. ACM SIGMOD
International conference on Management of data. 2020: 204–215.
Publisher Full Text

7. Al-khazraji S, North S: A relevance comparison between interval
and prefix labeling schemes. IEEE International Conference on
Engineering and Technology. 2017: 1–6.
Publisher Full Text

8. Alsubai S, North S: A Prime Number Approach to Matching an
XML Twig Pattern including Parent-Child Edges. Int Conf Web
Information Systems Technol. 2017: 204–211.
Publisher Full Text

9. Khanjari E, Gaeini L:Aneweffectivemethod for labeling dynamic
XML data. J Big Data. 2018; 5: 1–17.
Publisher Full Text

10. Chemiavsky JC, Smith CH:ABinary StringApproach forUpdates in
DynamicOrderedXMLData. IEEE Transactions Knowledge Data Eng.
2010; 22: 602–607.
Publisher Full Text

11. Taktek E, Thakker D: Pentagonal scheme for dynamic XML prefix
labeling. Knowledge-Based Syst. 2020; 209: 106446.
Publisher Full Text

12. Azzedin F, Mohammed S, Ghaleb M, et al. : Systematic
Partitioning and Labeling XML Subtrees for Efficient
Processing of XML Queries in IoT Environments. IEEE Access.
2020; 8: 61817–61833.
Publisher Full Text

13. Florescu D, Kossmann D, Manolescu I: Integrating Keyword
Search into XML Query Processing. Computer Networks. 2000, 33:
119–135.

14. O’Neil P, O’Neil E, Pal S, et al. : ORDPATHS: Insert-Friendly XML
Node Labels. ACM SIGMOD. 2004: 903–908.
Publisher Full Text

15. University of Washington, XML Repository, Sigmod dataset.
Reference Source

16. Samini S, Haw SC: ME Labeling: A Robust Hybrid Scheme for
Dynamic Update in XML Databases. IEEE International Symposium
Telecommunication Technologies. 2014: 126–131.
Publisher Full Text

17. University of Washington, XML Repository, DBLP dataset.
Reference Source

Page 11 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#sigmod-record
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#sigmod-record
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#dblp
https://doi.org/10.1016/j.procs.2020.06.046
https://doi.org/10.1016/j.cosrev.2020.100231
https://doi.org/10.1109/ACCESS.2020.3026006
https://doi.org/10.1016/j.is.2020.101610
https://doi.org/10.1016/j.knosys.2016.05.039
https://doi.org/10.1145/564691.564715
https://doi.org/10.1109/ICEngTechnol.2017.8308211
https://doi.org/10.5220/0006225602040211
https://doi.org/10.1186/s40537-018-0161-4
https://doi.org/10.1109/TKDE.2009.87
https://doi.org/10.1016/j.knosys.2020.106446
https://doi.org/10.1109/ACCESS.2020.2984600
https://doi.org/10.1145/1007568.1007686
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#sigmod-record
https://doi.org/10.1109/ISTT.2014.7238190
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#dblp

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 12 of 12

F1000Research 2021, 10:907 Last updated: 09 SEP 2021

mailto:research@f1000.com

