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Surface EMG signal segmentation based on HMM
modelling: Application on Parkinson’s disease

Hichem Bengacemi, Abdenour Hacine Gharbi, Philippe Ravier, Karim Abed-Meraim, and Olivier Buttelli

Abstract—The study of burst electromyographic (EMG) activity periods during muscles contraction and relaxation is an
important and challenging problem. It can find several applications like movement patterns analysis, human locomotion
analysis and neuromuscular pathologies diagnosis such as Parkinson disease. This paper proposes a new frame work
for detecting the onset (start) / offset (end) of burst EMG activity by segmenting the EMG signal in regions of muscle
activity (AC) and non activity (NAC) using Discrete Wavelet Transform (DWT) for feature extraction and the Hidden
Markov Models (HMM) for regions classification in AC and NAC classes. The objective of this work is to design an
efficient segmentation system of EMG signals recorded from Parkinsonian group and control group (healthy). The
results evaluated on ECOTECH project database using principally the Accuracy (Acc) and the error rate (Re) criterion
show highest performance by using HMM models of 2 states associated with GMM of 3 Gaussians, combined with LWE
(Log Wavelet decomposition based Energy) descriptor based on Coiflet wavelet mother with decomposition level of 4. A
comparative study with state of the art methods shows the efficiency of our approach that reduces the mean error rate
by a factor close to 2 for healthy subjects and close to 1.3 for Parkinsonian subjects.

Keywords—surface EMG signal, EMG signal segmentation, muscle activity, wavelet analysis, HMM models, Parkinson
disease.

NOMENCLATURE

sEMG surface Electromyographic.
HMM Hidden Markov Modelling.
GMM Gaussian Mixture Models.
DWT Discrete Wavelet Transform.
DWE Discrete Wavelet decomposition

based calculus Energy.
LWE Log Wavelet decomposition based Energy.
WCC Wavelet Cepstral Coefficients.
LPC Linear Prediction Coefficients.
HTK Hidden Markov Model Toolkit.
NAC No-Activity.
AC Activity.
MUAP Motor Unit Action Potentials.
STD Standard Deviation.
ALE Absolute Latency Error.
Acc classification accuracy.
Re Error Rate.
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I. INTRODUCTION

Muscle activity generates electric fields that can be picked up
by means of electrodes located on the skin above the muscle
under study. This signal and this technique are referred to as
surface electromyographic activity (sEMG). Electromyography
has been widely used to gain fundamental knowledge on neuro-
muscular control and muscle operating conditions (central and
peripheral properties of this system, respectively) [1]. sEMG is
also a relevant tool for the kinesiological analysis of movement
disorders and for the evaluation of gait and posture such as for
Parkinson’s disease [2]. Accurate determination of the sEMG
burst activation timing is an important consideration in motion
analysis and remains a challenge and all the more so as sEMG
recording are being done from patient with motor disorder. Tim-
ing features of the burst activation are the starting (onset) and
the ending (offset) points which are relevant indicators to de-
fine motor coordination and its modifications during dynamic
exercise such as during walking activity. This paper is dedicated
to this key task, known in the literature under different narmes:
signal segmentation or signal activity monitoring, or even burst
detection.

A. Related work

The automatic methods for EMG signal segmentation can be
divided into two categories. The first category covers the unsu-
pervised methods like single and double threshold based meth-
ods [3, 4], statistical optimal decision-based methods [5–8],
probabilistic-based methods [9] where the authors character-
ize the muscle activity using EMG burst presence probability
(EBPP) estimated from HMM parameters, wavelet transform-
based methods [10], clustering based methods [11], nonlinear
energy operator-based methods [12–14] and adaptive energy
method [15]. Performance of these methods considerably vary
as they have different properties, computational complexities
and tuning parameters. Moreover, all these methods are user-
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dependent since at least one of their tuning parameters must be
set by the user for each considered sEMG signal.

The second category covers the supervised methods which learn
from signals with segmentations (labels). In order to achieve
the learning task, these methods need labelled dataset for the
training phase. A testing dataset is used in a second phase for
evaluating the performance of the method. The authors in [16]
proposed to select the best one among a pool of onset estimators,
given the measured features. The authors in [17] use Gaussian
Mixture Models (GMM) clustering and Ant colony classifier
(AntCC) as supervised method to automatize the processing of a
large amount of sEMG signals. When applied to sEMG signals,
these approaches clearly show improvement with respect to
unsupervised methods. The proposed work falls within this
category where we exploit the ECOTECH dataset [18] with
Hidden Markov Modelling (HMM) to construct an automatic
segmentation system for muscle activity monitoring.

B. Our contribution

The proposed system is based on HMM modelling combined
with feature extraction based on Discrete Wavelet Transform
(DWT). Several features descriptors extracted from discrete
wavelet analysis have been studied such as Discrete Wavelet
decomposition based calculus Energy (DWE), Log Wavelet
decomposition based Energy (LWE) and Wavelet Cepstral Coef-
ficients (WCC). The main task consists of looking for optimal
parameters of HMM and wavelets descriptors to achieve the
best EMG activity monitoring performance.

The HMMs have been widely investigated and employed in the
automatic speech recognition. Recently, it has been successfully
used for both medical monitoring and diagnosis system applica-
tions such as ECG classification [19], EEG classification [20],
electrical appliances identification [21]. Especially, this method
is also used for the PD classification using the raw gait data [22].
The HMM has been also combined with support vector machine
(SVM) classifier for natural gesture recognition using EMG
signals for upper limb prostheses control [23]. In [24], the au-
thors have combined the HMM and the multilayer perceptrons
(MLP’s) for classifying six motions based on EMG signals. A
HMM based classifier is used for speech recognition using my-
oelectric signals from the muscles of vocal articulation [25].
In [9], the authors have used the HMM on EMG signals to mea-
sure the EMG burst presence probability (EBPP). the study was
limited to simulated signals and to one experimental signal just
for illustration purpose. In this paper, we use HMM to classify
EMG activity versus no EMG activity.

In brief, the main contributions of our work are: firstly, this work
exploits the principal advantage of wavelet decomposition that
is better adapted than Fourier decomposition for extracting the
impulsive information of the action potentials (AP) of the motor
units (MU). Secondly, this work adapts the HMM to automatic
EMG signal segmentation . Note that HMM is one of the best
tools to model signal state transitions and, to the best of our
knowledge, this is the first time it is used for the considered
supervised segmentation task. Finally, based on the ECOTECH
data base, we provide a thorough performance analysis and
comparative study with the state of the art methods.

The paper is organized as follows: section II. presents the prob-

lem formulation and the proposed method. Section III. is dedi-
cated to the performance analysis and discussions while section
IV. is dedicated to the concluding remarks.

II. MATERIAL AND METHOD

In this section, we present in details the methodology of our
proposed work. More precisely, after defining thoroughly the
problem and work objectives, we introduce gradually the pro-
posed method starting by the description of Hidden Markov
Model (HMM) for EMG signal modelling. Then, the discrete
wavelet transform and the proposed feature extraction technique
are introduced. After that, we briefly describe the data base used
in this study.

A. Problem formulation of EMG signal segmentation

We consider N measurements (samples) {y[n]}n=1:N of sur-
face EMG signal. Given a chosen analysis window length, these
observations are divided into overlapping frames. For each sig-
nal’s frame, we are interested in determining whether it contains
a signal s[n] embedded in a random background noise w[n]
(EMG activity) or, on the contrary, it is just the confusing man-
ifestation of the noise (no EMG activity). Hence, we have a
binary decision problem expressed as:

Γ :

{
H0 : no EMG activity

H1 : EMG activity
(1)

This task is known as EMG signal segmentation. In this work,
the HMM method has been adapted to resolve the muscle activ-
ity detection problem or equivalently the EMG signal segmenta-
tion.

In addition, the visual inspection for activation tags (bursts on-
set and offset) was done by taking into account biomechanical
indicators of the gait cycle calculated from accelerometer mea-
surement. We were thus able to recalibrate the EMG activity
with respect to the gait cycle. This is why the burst of activity
defined in our recordings corresponded to a functional activation
for walking and not to a non-voluntary activation.

B. Hidden Markov Model (HMM) for EMG signal modelling

Signal segmentation is the process of identifying the boundaries
between segments of different classes. Signal segmentation sys-
tem can be carried out using statistical modelling techniques
such as Gaussian Mixture Models (GMM) and Hidden Markov
models (HMM). Such system can be seen as pattern recognition
system which requires a training phase for modelling the tem-
poral pattern classes and recognition phase for identifying the
different classes of segments of input signal. Hence, training
and testing databases of signals are required to design the seg-
mentation system. Both phases require feature extraction step
to convert each signal in sequence of features vectors obtained
by dividing the signal into overlapping windows and computing
from each window a set of features that constitutes the feature
vector (see Fig.1). This sequence of vectors can be considered
as input sequence of observations in modelling or classification
steps.

In this work, we used 50% overlapping windows.
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Fig. 1: Features extraction steps for HMM modelling. The blue
arrows specify the authorized sequence of classes which defines
constraints embedded in the language model for HMM design.

Particularly, in speech recognition task, the signal segmentation
process has the aim to identifying the boundaries of segments of
phonemes, word or sentences using respectively acoustic model,
lexical model and language model. HMM models based sys-
tem can be implemented using the HTK tools library (Hidden
Markov Model Toolkit) which was designed firstly for speech
recognition system including acoustic, lexical and language
modelling [26]. This toolkit permits to model each phoneme
by an HMM model of Nstates states each one associated to
GMM model of NGMM Gaussian components for modelling
the observation probability density function. The parameters of
HMM models are estimated using the embedded Baum-Walsh
algorithm which is implemented in HTK software using the
HEREST command. The recognition phase can be carried out
with the Viterbi algorithm using the HVITE command with re-
spect to a language model and dictionary [26]. Nevertheless,
the HMM models based system using HTK tools library has
been used for others applications such as electrical appliance
identification [27], speech recognition [28] and emotion recog-
nition [29].

In this work, we use this toolkit to segment the EMG signal in re-
gions (patterns) of activity (AC) class and regions of No-activity
(NAC) class. The EMG signal is considered as a sequence of
successive regions of AC and NAC classes, each one being
represented by an observations sequence (sequence of features
vectors) and modelled by HMM (see Fig.1)). The parameters
of each model of AC class or NAC class are estimated from
the training phase. By considering the same approach as for
speech signal segmentation, the EMG signal segmentation uses
the Viterbi algorithm to recognize the classes sequence using the
trained HMM with respect to a language model that represents
the constraint about the authorized sequence of classes.

1— HMM models: The HMM is a statistical model used to rep-
resent the evolution of temporal dynamics in time series or
temporal observations sequence. The modelled phenomenon
by HMM is a random and unobservable process that generates
random observations. Thus, an HMM model results from the as-
sociation of two stochastic processes: an unobservable process
Q(t) (states process) and an observable process O(t).In general,

the Q(t) is a Markov chain which is supposed to be at each in-
stant t in a state qt = i(1 ≤ i ≤ K) which emits an observation
ot with probability distribution bi(o) = P (o\q = i) [30, 31].

Let each region be represented by a sequence of feature vectors
or observations sequence O(t), defined as:

O = o1, o2, ...., oT (2)

Where ot is the features vector observed at time t and let the
states sequence Q given by:

Q = q1, q2, ...., qT (3)

HMM model can be considered as a probabilistic machine of fi-
nite states described by a set of nodes (or states) related together
by arcs of transitions (see Fig.2). Each state i(1 ≤ i ≤ K)
at time instant t is associated with a probability distribution
bi(o) = P (o\qt = i) of observation o and with each transi-
tion from state i to state j is associated a transition probability
aij = P (qt = j \qt−1 = i) [30, 31]. If the observations are de-
fined in a continuous space, then the probability density function
of observation emission in state j can be represented by a Gaus-
sian mixture model(GMM) of M components, given by [26]:

bj(ot) =

M∑
i=1

ci√
(2π)

d |
∑

i |
exp(−1

2
(ot − µi)

∗.
∑−1

i
.(ot − µi))

(4)

Where: µi and
∑

i represent the mean and the covariance ma-
trix of the ith Gaussian component, ci is the weight of the ith

Gaussian satisfying the condition:
∑M

i=1 ci = 1

Fig. 2: Example of left- Right HMM Model [31].

The basic parameters of an HMM model are given as follows:

• The states transition matrix A = {aij}.

• The matrix of observation probability distribution B =
{bi(o)}.

• The initial state probability π = {πi\ = P (q1 = i)}
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HMM can be written as λ = (A,B, π)

Given several HMM models λ and given an input observations
sequence O, the training phase consist to estimate the appropri-
ate parameters of the HMM model that maximize the likelihood
P (O\λ). Practically, the re-estimation of the HMM model pa-
rameters can be carried out using the Baum-Welch algorithm.
The recognition phase has the objective to find the best HMM
model that maximizes the probability P (λ\O). This phase can
be carried out using the Viterbi algorithm.

2— HMM models based segmentation system : Fig.3 illustrates
the diagram of our segmentation system. In the training phase,
each region class is modelled by left-right HMM model of
Nstates, each one being represented by GMM model of NGMM

Gaussian with diagonal covariance matrices. The parameters
of HMM and GMM models are estimated using the HEREST
command of the HTK tool, applied on the sequence of feature
vectors extracted from the EMG signals of the training database.
Furthermore, this estimation requires the reference text tran-
scription that contents the class’s sequence of each signal. The
sequences of feature vectors are extracted using wavelet analysis
applied on each EMG signal. This section will be described in
the following section.

In the segmentation phase, the HVITE command of HTK tool
uses the trained HMM models and constraints model (language
model) for transcribing each input features vectors sequence in
sequence of classes (AC and NAC) and detecting the boundaries
of their segments [26, 32]. The constraints problem consists
to accept only the classes‘s sequence in which each AC label
(class) is followed by NAC label is followed by NAC label (see
Fig.1).

Fig. 3: HMM-models-based EMG signal segmentation.

Finally, the performance evaluation can be done using the HRE-
SULTS command of HTK tool which compares each testing
transcription of an EMG signal with its corresponding reference
transcription [26]. The result of the segments identification is
evaluated using the accuracy Acc defined in subsection A..

C. Discrete wavelet transform based feature extraction

Wavelet transform has largely been used as signal analysis tech-
nique in pattern recognition systems in order to extract a set
of features from each analysis window (frame) of the signal of
interest. The success of this technique essentially relies on the
flexibility provided by the mother wavelet which choice depends
on the properties of the data as well as on the targeted application.

For example, the orthogonality property between members of a
wavelet family is desirable for compression purpose whereas the
compactness property is desirable for the analysis and detection
of impulsive data. Moreover, wavelet transform is particularly
suitable for the analysis of data stemming from the real world be-
cause of its scale property that is compliant with many physical
behaviors: long time events should be analyzed with slow long
waveforms whereas short time or impulsive events should be
analyzed with rapid short waveforms. The tool is thus suitable
for correctly extracting the impulsive information of motor unit
action potentials (MUAP) generated by EMG activation. Im-
pulsive information can therefore be precisely localized and the
information content precisely analyzed. To that aim, the authors
of [10] proposed to use the first-order Hermite–Rodriguez func-
tion. The continuous wavelet transform has been used in [33] for
the identification of the single action potentials in the time scale
domain. The authors argue that the filtering effect of the volume
conductor occurring between source signal taking its deep origin
at the fiber level and MUAP detected signal at the skin surface
produces different MUAP’s that can be considered as dilated
and attenuated versions of one single shape. This observation
motivates the use of wavelet provided a mother wavelet with
similar shape exists or can be created.
In the discrete form of the wavelet transform (DWT), decom-
position coefficients are computed at different scales up to the
maximum dyadic decomposition depth p (to be a priori cho-
sen or maximally fixed as log2(N) where N is the number of
data samples in the analysis window). At each scale or de-
composition level j, a set dj [n] (indexed by n) Nj = N

2j of
wavelet coefficients is computed (the name d is for detail coeffi-
cients). The last decomposition level p produces the set ap[n]
(the name a is for approximation coefficients). Therefore, a
discrete wavelet energy (DWE) can be computed at each scale
as:


E(dj) =

Nj−1∑
n=0

|dj [n]|2 for j = 1, ..., p

E(ap) =

Np−1∑
n=0

|ap[n]|2
(5)

Finally, the set of features extracted from each analysis win-
dow of a signal is composed of wavelet coefficient energies
E(d1), E(d2), ..., E(dp), E(ap), which makes an energy analy-
sis on consecutive spectral bands of the data (from the highest
to the lowest when j goes from 1 to p). In order to extract other
possible descriptors, the authors in [27] have used the DWE
normalized on total energy of window analysis, the logarithm
of wavelet energy (LWE) and the Wavelet Cepstral Coefficient
(WCC) computed from the discrete cosine transform (DCT)
of LWE (see Fig.4). In this work, we investigated the impact
of these descriptors on the performance results of EMG signal
segmentation. Hence different experiences have been carried
out to search for the optimal configuration.

D. Data base description

The HMM based method is applied to real sEMG signals. It
has been recorded on different muscles which characterize the
gait. These signals have several EMG activity bursts and are
recorded in ecological conditions within the French National



ENP Engineering Science Journal, Vol. 1, No. 1, July, 2021 67

 

Ed(1),…,Ed(p),E(a) Frames 
  sEMG   
Signal Windowing  and 

frame formation DWT Log DCT 

Sequence of 
LWE vectors 

Sequence of 
DWE vectors 

Sequence of 
WCC vectors 

Sequence of 
LPC vectors 

LPC 

Fig. 4: Process for the extraction of LPC / DWE / LWE / WCC
features [27].

Project ECOTECH [18]. The group was constituted of nine
healthy subjects and eight Parkinsonian subjects recorded
during the ECOTECH project. This study was approved by the
local ethics committee and subjects provided written consent
prior to commencement.

We have tested the proposed method for surface EMG signals
recorded during the ECOTECH experiment. Patients were pre-
pared for electrodes placement by shaving the skin and cleaning
it with alcohol wipes. Differential EMG sensors were placed on
the muscle belly parallel to the main direction of muscle fibres
in accordance with study on the innervation zone [34]. Data
were collected using an on board system of 16 wearable sensors
(bandwidth 20-450 Hz, 16 bits per sample, 1926 Hz sampling
rate, Delsys Trigno, Natick, USA) with SNR = 3.31 dB. Each
sensor recorded the activity of a single muscle. In this work, we
selected the data collected from the right soleus muscle (RSol)
which is predominantly involved in gait and shows high energy.
For this muscle, all EMG bursts were previously manually seg-
mented by an expert. The data base description is reported in
tables I and II.

The group of eight Parkinson’s patients had a median age of
59.5 years [54-65.7, first and third quartiles] and was composed
of two women and six men with a moderate bilateral deficit
and a median UPDRS score of 7.5 [3.75-13.25], score obtained
under anti-parkinsonian medication (ON state). The control
group of nine healthy people had a median age of 38 years
[38-49] and consisted of one woman and eight men. No motor
disability or dysfunction were a prerequisite to be part of this
latter. The electromyographic activities were collected during
continuous walking sequences for which the conditions were the
same between groups: free (natural gait), rectilinear and without
obstacles or obstructions. More specifically for the patients, the
gait tests were carried out in ON state.

III. RESULTS AND DISCUSSION

The proposed HMM based method was applied to segment
the real sEMG signals automatically. The following section
describes the performance tools used for an objective compar-
ison of the segmentation results. Then, an experimental setup
is carried out in order to get the optimal configuration of the
segmentation system. Statistical segmentation results are also
provided and the obtained results are compared with those of
the state-of-the-art methods reported in [15].

This expertise was conducted within the ECOTECH project [18]
where the EMG signal segmentation has been achieved by biomedical
researchers using visual inspection.

A. Performance evaluation tools

In order to evaluate the performance of the segmentation task,
we have considered two main criteria, namely the classification
accuracy (Acc) and the error rate (Re). The Acc is defined in
Eq.(6) and is used to evaluate the number of correctly detected
EMG burst activities using the HRESULTS command of HTK
tool [26].

Acc =
N −D − S − I

N
(6)

N represents the total number of segments labels in the reference
transcriptions of EMG signals,D is the number of deleted labels,
S is the number of substituted labels and I is the number of
inserted labels.

The Re performance criterion is used for the fine detection of
the beginning (onset) and the end (offset) of each EMG burst
activity. In order to evaluate Re (%), we have used a binary
representation of our sEMG signal according to:

B[n] =

{
0 if the decision made for the n-th sample is ’no activity’
1 if the decision made for the n-th sample is ’activity’

Re = Prob(B[n] 6= Bex[n]) (7)

where Bex[n] refers to the exact value of our binary signal
representation given by the expert and Prob refers to the
probability of a given event.

In this work, we have also achieved the performance’s analysis
by computing the mean and standard deviation (STD) values
of the burst duration values as well as the corresponding abso-
lute latency error (ALE) between the mean of the experimental
duration and the mean of the expert duration as given in Eq.(8).

ALE = |Mean of real bursts durations − Mean of estimated bursts durations|
(8)

B. Optimal configuration of the segmentation system

The purpose of this section is to describe the experimental setup
that will give the best configuration of our system by evaluating
the proposed HMM method’s performance for two types of
signals, namely real EMG signals of healthy subjects and real
EMG signals of Parkinsonian subjects.
We present in this section a number of experiments we carried
out to find the optimal configuration of our framework that
gives the best performance To find the optimal parameters of
the HMM (state number and gaussian components number).

Three experiments are processed in order:

(1) to compare the performance of the DWE, LWE and WCC
descriptors to other features commonly used in the litera-
ture such as prediction analysis (LPC: Linear Prediction
Coefficients);
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Subjects Number of EMG bursts Mean of real EMG burst duration (ms) STD of real EMG burst duration (ms) Signal length (samples) Signal duration (s)

Training phase

Control1 22 1037.7000 98.5539 50206 26.0685
Control2 10 1059.7000 288.3023 21595 11.2128
Control3 11 1068.1000 85.4207 27733 14.3998
Control4 11 1069.3000 103.7267 28396 14.7441
Control5 11 809.9091 33.3090 21500 11.1635

Testing phase

Control6 6 1031.7000 73.5193 14853 7.7121
Control7 6 1013.3000 321.9687 12576 6.5298
Control8 12 898.0833 48.5264 27629 14.3458
Control9 26 969.2308 104.8490 55024 28.5702

Table. I
DESCRIPTION OF SEMG SIGNALS FOR HEALTHY SUBJECTS.

Subjects Number of EMG bursts Mean of real EMG burst duration (ms) STD of real EMG burst duration (ms) Signal length (samples) Signal duration (s)

Training phase

Park1 10 1225.3000 65.0898 55024 28.5702
Park2 10 959.2000 121.2910 17587 9.1317
Park3 5 1362 233.4309 9371 4.8657
Park4 37 933.8108 128.3433 76296 39.6152

Testing phase

Park5 10 766.2000 53.1012 21739 11.2876
Park6 9 990.5656 55.1750 17170 8.9152
Park7 5 773.8000 157.9421 8617 4.4742
Park8 5 652.2000 80.6021 8953 4.6487

Table. II
DESCRIPTION OF SEMG SIGNALS FOR PARKINSONIAN SUBJECTS.

(2) to find the optimal analyzing frame duration;

(3) to search for the optimal combination of decomposition
level and mother wavelet;

(4) to analyze the performance results of our framework and
to compare them with the results obtained using other
state-of-the-art existing methods.

In order to deeply evaluate the performance of our method, we
carried out the first experiment for different numbers of HMM
states Nstates, different numbers of Gaussians for GMM mod-
elling NGMM and different levels of wavelet decomposition
Ldecomp or P order for LPC descriptor. The mother wavelet
’Sym4’ was chosen with 66.45ms window durations as rec-
ommended in [35] for EMG pattern recognition. The best
descriptors with the optimal parameters were chosen for the
second experiment of window duration study then for the opti-
mal wavelet configuration. Finally a comparison with state of
the art methods is carried out.

1— Performance comparison of the descriptors: This section
shows evaluation results of the DWE descriptor for the task of
surface EMG signal segmentation. The performance analysis
is compared to LPC descriptor, LWE (Log Wavelet decom-
position based Energy) descriptor and WCC descriptor. In
this experiment, we search for the optimal parameters con-
figuration that gives the best Acc and Re. For each descrip-
tor, we have varied the state number for each experiment
Nstates = (2, 3, 4, 5, 6, 7, 8, 9, 10), the number of components
in GMM modelling NGMM = (1, 2, 3, 6, 12, 24, 48) and the
order P = (2, 3, 4, 5, 6, 7, 8, 9, 10) of LPC descriptor. The anal-
ysis frame duration is fixed to 66.45 ms (which represents 128
samples) and the mother wavelet is chosen to ’Sym4’ and the
wavelet decomposition level Ldecomp = 4. The obtained results
are given in Table III. The latter shows the optimal configura-
tions in terms of number of Gaussians NGMM and number of
statesNstates for each wavelet descriptor DWE, LWE and WCC
as well as the optimal order P added for the LPC descriptor. The

Acc and Re values are given for these optimal configurations.
In order to evaluate the robustness of each descriptor regarding
the variations of NGMM and Nstates, the mean and STD values
of Re are reported by computing the Re values when consider-
ing all the values of the tested parameter sets. From all these
results, we adopted the following rules in order to identify the
best configuration of the system. First, we examine the best
accuracy results. Second, when multiple best configurations
exist, the best Re values are considered also taking into account
the robustness results. Results shown in Table III highlight the
performance gain of the wavelet descriptors that all show 100%
of Acc compared to the LPC descriptor showing the bad score
of 87.34%. Now, the best descriptor is WCC with 4.88% for the
Re value. However, the WCC descriptor requires more calculus
and is more influenced by the variations of the state number
and the gaussian number (mean of 7.41 and standard deviation
of 0.51). The next candidate with a weak Re value is LWE
also showing better Re statistics than WCC (in particular with
an STD value which is about 4 times lower). Hence, in the
following sections, we choose the LWE descriptor by taking a
2-states number and a 3-gaussians number.

2— Influence of the window duration: After choosing the fea-
ture’s descriptor, we investigate the appropriate analysis frame
duration. This section aims at investigating performance im-
provements by taking into account the advantages of wavelet
analysis appropriate for the non stationary case of EMG sig-
nals. We have varied the analysis frame duration with ’Sym4’
wavelet, number of GMM NGMM = 3, number of states
Nstates = 2 and decomposition level equal to Ldecomp = 4
for LWE (Log Wavelet decomposition based Energy) descriptor.
Table IV shows the Acc and Re values for different values of
analysis frame duration. The best performance is obtained for
analysis frame duration equal to 66.45 ms which gives Acc and
Re values equal to 100 % and the lowest Re equal to 5.37 %.

The following subsection focuses on the performance analysis
for the optimal choice of mother wavelet.
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Descriptors LPC∗ DWE LWE WCC
Optimal parameters NGMM = 24 NGMM = 3 NGMM = 3 NGMM = 48

Nstates = 2 and P = 2 Nstates = 3 Nstates = 2 Nstates = 2
Acc % 87.34 100 100 100
Re % 43.48 6.16 5.37 4.88

Mean of Re % 49.14 6.24 6.23 7.41
STD of Re % 0.731 0.083 0.138 0.510

Table. III
PERFORMANCE COMPARISON OF THE Acc % FOR DWE, LPC, LWE AND WCC FEATURES USING ’Sym4’ AND Ldecomp = 4
WITH ANALYSIS FRAME DURATION EQUAL TO 66.45 ms FOR THE HMM OPTIMAL PARAMETERS.THE MEAN AND STD
VALUES ARE STATISTICAL RESULTS EVALUTED BY CONSIDERING NGMM AND Nstates RANGES PLUS P RANGE FOR LPC
DESCRIPTOR. THE STAR * INDICATES THAT Re WAS CALCULATED ONLY TAKING INTO ACCOUNT CORRECTLY CLASSIFIED

SEQUENCES
.

Analysis frame duration (ms) 16.61 33.22 49.84 66.45 83.07 99.68 116.30 132.91
Acc % 80.38 91.14 97.47 100 100 99.37 100 100
Re % 6.41 5.39 5.33 5.37 5.505 5.61 5.81 8.46

Table. IV
PERFORMANCE COMPARISON OF THE Acc (%) AND Re (%) FOR DWE FEATURES USING ’Sym4’ FOR DIFFERENT ANALYSIS

FRAME DURATIONS FOR THE HMM OPTIMAL PARAMETERS.

3— Choice of the mother wavelet: Many studies of surface
EMG analysis have concluded that the Daubechies (Db) wavelet
family is the most suitable wavelet for sEMG signal analy-
sis [36–38]. In [35], the authors have concluded that the ’Sym4’
is the most appropriate one for EMG pattern recognition. This
experiment aims at selecting the optimal mother wavelet or-
der within its family for an analysis window durations equal to
66.45 ms, a number of GMM NGMM = 3, a number of states
Nstates = 2 with a decomposition level varying between 1 to
log2 of samples number of analysis window (max level=7). In
this work, we consider the following wavelet families:

• the Daubechies family with orders 1 to 8: Db1, Db2, ... ,
Db8;

• the Symlets family with orders 1 to 8: Sym1, Sym2, ...,
Sym8;

• the Coiflets family with orders 1 to 5: Coif1, Coif2,...,
Coif5.

The Acc, Re and Ldecomp values are reported in Tables V, VI
and VII for each of the three wavelet families, respectively.
For all the families, the optimal decomposition level decreases
with the augmentation of the mother wavelet order. The results
highlight the performance robustness of the proposed approach
in terms of Acc value where we notice that the mean values
of Acc are greater than 97.47 % and the mean of error rate Re
are lower than 5.70 %. In particular, we also notice that the
’Coif5’ wavelet for decomposition level equal to Ldecomp = 4
leads to the minimum of Re = 4.68 % and the maximum of
Acc = 100 %. This latter result shows improved performance in
terms of error rate compared to WCC performance as reported
in Table III. The improvement of the results is consistent with
the step by step experimental strategy we follow, which purpose

is to propose a tuned set for the configuration of the system,
without requiring too much exhaustive empirical calculus. We
thus retain this last result as a new starting point for further
comparison studies that will be presented in section C.

C. Statistics of the bursts duration estimation

In this part of our work, we conduct a performance analysis of
the segmentation task using statistics on the segmented bursts
duration values (mean, STD and ALE). The results are obtained
with an analysis frame duration equal to 66.45 ms, a number
of GMM NGMM = 3, a number of states Nstates = 2 and
a decomposition level equal to Ldecomp = 4 with the mother
wavelet ’Coif5’.

Table VIII presents the mean and the STD of the estimated
bursts duration values, the estimated number of EMG activity
bursts and ALE for the healthy’s and Parkinson’s subjects from
the sEMG records of right soleus muscle. The table shows that
the estimated numbers of bursts are compliant with the expert
numbers. The results also show low ALE values (less than 46
ms for all subjects) except for one Parkinson’s subject (showing
80 ms).

Fig.5 and Fig.6 show illustrative examples of a real sEMG signal
for right Soleus muscle of control and Parkinson’s subjects
respectively. The signal is segmented in AC and NAC parts
using HMM method for NGMM = 3, Nstates = 2, Ldecomp = 4,
wavelet = Coif5 and frame length = 66.45ms for an error rate
equal to Re = 2.71% for control subject and for Parkinson’s
subject Re = 6.06%.

D. Performance comparison with some state-of-the-art segmen-
tation methods

In order to compare our method with state-of-the-art segmenta-
tion methods, we have considered the five methods presented
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Daubechies Db1 Db2 Db3 Db4 Db5 Db6 Db7 Db8 Mean STD

66.45 ms
Ldecomp 7 5 5 5 4 4 4 4 // //
Acc % 97.47 100 100 100 100 100 100 100 // //
Re % 5.20 5.08 5.28 5.47 5.53 4.98 5.23 5.02 5.22 0.199

Table. V
PERFORMANCE RESULTS IN TERMS OF Acc (%), Re (%) AND OPTIMAL Ldecomp FOR LWE FEATURES USING DAUBECHIES

WAVELET FAMILY.

Symlets Sym1 Sym2 Sym3 Sym4 Sym5 Sym6 Sym7 Sym8 Mean STD

66.45 ms
Ldecomp 7 5 5 5 4 4 4 4 // //
Acc % 100 100 100 100 100 100 100 100 // //
Re % 5.20 5.08 5.28 5.21 5.18 5.70 5.20 5.30 5.268 0.186

Table. VI
PERFORMANCE RESULTS IN TERMS OF Acc (%), Re (%) AND OPTIMAL Ldecomp FOR LWE FEATURES USING SYMLETS

WAVELET FAMILY.

Coiflets Coif1 Coif2 Coif3 Coif4 Coif5 Mean STD

66.45 ms
Ldecomp 6 4 4 4 4 // //
Acc % 100 100 100 100 100 // //
Re % 4.91 4.99 5.26 5.23 4.68 5.014 0.2399

Table. VII
PERFORMANCE RESULTS IN TERMS OF Acc (%), Re (%) AND OPTIMAL Ldecomp FOR LWE FEATURES USING COIFLETS

WAVELET FAMILY.

Subject Control6 Control7 Control8 Control9 Park5 Park6 Park7 Park8

Real burst duration
Mean(ms) 1031.7000 1013.3000 898.0833 969.2308 766.2000 990.5556 773.8000 652.2000
STD (ms) 73.5192 321.9687 48.5264 104.8490 53.1012 55.1750 157.9421 80.6021
Number 6 6 12 26 10 9 5 5

Estimated burst duration
Mean (ms) 1003.7020 1044.0991 925.2054 1003.3472 719.77 959.2504 693.7117 616.0029
STD (ms) 57.2459 350.6888 48.3647 121.5427 125.0333 49.9449 124.7589 72.9712
Number 6 6 12 26 10 9 5 5

Performance ALE (ms) 27.95 31.09 27.12 34.11 46.43 31.30 80.0883 36.1971

Table. VIII
MEAN, STANDARD DEVIATION (STD) AND ABSOLUTE LATENCY ERROR (ALE) OF EMG BURST ACTIVITY DURATION FOR

RSOL RIGHT soleus MUSCLE FOR HEALTHY AND PARKINSON’S SUBJECTS.

in [15]. Table IX presents Re values for the healthy and Parkin-
son’s subjects of sEMG records from the right Soleus mus-
cle. The results highlight the performance gain of the proposed
HMM approach compared to the other existing methods. In
order to facilitate the reading of the results, the Mean and STD
values are graphically displayed in Fig.7. In order to highlight
the differences between the two classes, the graphical statistical
results are also presented in Fig.8 for both categories. From
these graphs, we notice that, the HMM method seems to be the
most appropriate for an automatic EMG activity monitoring for
all the subjects (Fig.7). More specifically, by comparison with
the other state-of-the-art methods, the segmentation is far better
for the control subjects and also shows a slight improvement for
the Parkinsonian’s subjects (Fig.8).

Table X presents the comparative ALE values and estimated
numbers of EMG activity bursts for the Control6 and Park5
subjects of sEMG records from the right Soleus muscle. The
results highlight the performance gain of the proposed HMM
approach compared to the other existing methods, in particular
w.r.t. the number of EMG activity bursts. For the Parkinson case,
all methods except our failed in estimating the right number of
bursts. The ALE values for our method are also always the
lowest among the concurrent methods.

E. Recommendation and discussion

Several techniques already exist for EMG signal activity seg-
mentation, but the detection performance is far from being satis-
factory in difficult cases like in neurodegenerative EMG activity.
This work represents a further step towards developing efficient
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Subject DoubleTh Wavelet TKEO RMS SampEn FM-ALED HMM
Park5 20.11 22.04 18.96 18.09 17.65 9.78 6.06
Park6 22.00 20.63 22.54 12.90 14.54 5.83 3.16
Park7 19.82 18.65 15.27 9.40 14.50 7.92 10.35
Park8 17.08 21.94 17.59 16.06 13.72 10.77 5.55
Control6 22.96 14.42 10.81 8.03 7.53 4.38 2.71
Control7 18.04 17.77 12.27 11.14 8.83 5.07 3.07
Control8 19.74 20.43 15.76 15.27 23.46 7.62 3.02
Control9 17.08 22.75 15.47 18.92 9.55 7.60 3.52

Table. IX
COMPARISON OF ERROR RATE Re WITH THEIR MEAN AND STANDARD DEVIATION VALUES OF EMG ACTIVITY BURST

DETECTION FOR RSOL RIGHT soleus FOR HEALTHY AND PARKINSON’S SUBJECTS.

Subject Real burst duration DoubleTh Wavelet TKEO RMS SampEn FM-ALED HMM

Estimated burst duration for Control6
Mean (ms) 1031.70 209.47 604.67 549.00 904.29 891.00 986.47 1003.70
STD (ms) 73.52 157.85 434.41 604.15 394.28 520.51 128.60 57.24
Number 6 19 9 14 7 8 6 6

Performance for Control6 ALE (ms) // 822.22 427.03 482.70 127.41 140.07 45.18 27.95

Estimated burst duration for Park5
Mean (ms) 766.20 281.18 327.46 284.20 300.88 327.55 667.56 719.77
STD (ms) 53.10 201.96 180.38 177.59 281.33 105.15 16.33 125.03
Number 10 17 13 15 34 11 9 10

Performance for Park5 ALE (ms) // 485.02 438.73 482.00 465.31 438.65 98.64 46.43

Table. X
MEAN, STANDARD DEVIATION (STD) AND ABSOLUTE LATENCY ERROR (ALE) OF EMG BURST ACTIVITY DURATION FOR

RSOL RIGHT soleus MUSCLE OF Control6 AND Park5 SUBJECTS USING DIFFERENT SEGMENTATION METHODS.

0 5000 10000 15000
−500

−400

−300

−200

−100

0

100

200

300

400

Samples

A
m

p
lit

u
d
e
 (

m
V

)

 

 

sEMG signal

Reference segmentation 

HMM segmentation 

Fig. 5: Automatic segmentation of real sEMG signal of the
control subject (Control6) with HMM method for right Soleus
muscle with Re = 2.71 % (NGMM = 3, Nstates = 2, Ldecomp=
4, wavelet = Coif5 and frame length = 66.45ms.)

automatic segmentation solution which is an important task in
raw data processing in order to be able to exploit massive EMG
datasets necessary for the development of systems that can be
used as genuine medical diagnosis supports in future, especially
in Parkinson’s disease diagnostic. The proposed approach can
be seen as an improvement of the EMG activity detection prob-
lem in particular because the study has been carried out on the
ECOTECH dataset gathering ecological difficult situations close
to conditions that can be encountered in the targeted applications.
In this context, our proposed HMM method has been applied to
real EMG signals recorded for healthy and Parkinson’s subjects.
Different experiments have been carried out to find the optimal
configuration of the segmentation system that gives the best per-
formance in terms of accuracy and error rate. The results have
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Fig. 6: Automatic segmentation of real sEMG signal of the
Parkinson’s subject (Park5) with HMM method for right Soleus
muscle with Re = 6.06 % (NGMM = 3, Nstates = 2, Ldecomp=
4, wavelet = Coif5 and frame length = 66.45ms.)
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Fig. 7: Comparison of error rate Re showing mean and standard
deviation of burst EMG activity detection for RSol right soleus
for healthy and Parkinson’s subjects.
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Fig. 8: Comparison of error rate Re showing mean and standard
deviation of burst EMG activity detection for RSol right soleus
for healthy and Parkinson’s subjects.

shown clear improvements of the system performance gained
step by step from consecutive experiments. We summarize and
discuss here the main improvements made out of this study and
highlight some perspectives for this research work.

• The DWT analysis presents the first improvements com-
pared to the LPC analysis whatever the wavelet descriptor
type (DWE, LWE and WCC). This analysis gives the accu-
racy of 100%. Particularly, the LWE descriptor is shown
to be more appropriate for the segmentation task. These
results have been obtained by taking the best configuration
of HMM models of 2 states associated each one with a
GMM model of 3 gaussian components, analysis window
of 66.45ms duration and giving error rates around 5%
whatever the family of mother functions.

It can be noticed that the optimal decomposition level de-
creases by increasing the order of the Daubechies wavelet
family (this is also true for the other families). This can
be explained by the fact that the length of the associated
filter used for wavelet coefficients computation increases
with the Daubechies order. At the first Daubechies orders,
filter lengths are rather small which remains applicable for
filtering purpose with a small number of data samples that
are considered at the deepest decomposition levels. The
order increasing, the filter length increasing thus requiring
data with a higher number of samples for a correct filtering
application. Therefore limiting the optimal decomposition
level values to 4 seems to be a appropriate choice in this
context. Experimental results show that the Coiflet wavelet
function with level decomposition of 4 presents the best
error rate of 4.68 %. Also the Sym2 and Db6 give a good
performance too.

• The obtained segmentation performance in terms of error
rate, absolute latency error and the number of burst EMG
activity out performs those of the existing methods from
the literature used in our comparative study (see Tables IX
and X). A key point stemming from these results is the abil-
ity of the proposed method to estimate the correct number
of bursts whatever the subjects under study. Having access
to the number of bursts with their durations is essential for
the monotoring of pakinsonian subjects and particularly
in the frame of the following of a rehabilitation protocol.
To that aim, we also recommend the use of supervised
techniques even if labelling data can be controversial and
difficult to obtain from experts. These methods are far

less common than current state-of-the-art unsupervised
methods.

• The proposed HMM technique is most appropriate for
EMG signal segmentation of healthy subjects where we
have observed a significant performance gain in terms of
error rate (see Fig.8).

• In this study, we have used the discrete wavelet transform
as feature descriptor because this decomposition is more
adapted than the Fourier decomposition to extract the im-
pulsive information of the action potentials of the motor
units (provided that the mother wavelet is well selected).

• Our proposed HMM method is robust to the choice of the
mother wavelet type since we have concluded that all the
tested mother wavelets family gave an error rate close to 5
% and classification accuracy close to 98 %.

IV. CONCLUSION

Muscle activity detection of human skeletal muscle has impor-
tant clinical applications. In this paper, we have proposed a
novel framework for muscle activity detection based on the
EMG signal segmentation using Hidden Markov models com-
bined with DWT analysis. Different descriptors extracted from
this analysis have been used and the results have shown that the
HMM models combined with LWE descriptor extracted using
the Coiflet 5 with decomposition level 4 give the best perfor-
mance in terms of accuracy and error rate. A comparative study
with state-of-the-art methods confirms the effectiveness of our
approach. The proposed approach offers a good detection perfor-
mance suitable for clinical applications. It may be a useful tool
for analysing the EMG signals recorded during the assessment
of postural adjustment of patients suffering from Parkinson’s
disease. As perspectives, we believe the use of an enlarged
EMG dataset including all the EMG channels of ECOTECH
distribution would be necessary to reinforce these first results
and move a step towards the real-life application of the method.
Another important issue (not treated in this work) would be to
analyze the method’s performance for EMG signals relative to
other types of neurodegenerative diseases, e.g. Huntington and
ALS (Amyotrophic lateral sclerosis).
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