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ABSTRACT 

Immunotherapy has revolutionized treatment for many hard-to-treat cancers but has yet to produce 

significant improvement in outcomes for patients with glioblastoma. This reflects the multiple and unique 

mechanisms of immune evasion and escape in this highly heterogeneous tumor. Glioblastoma engenders 

profound local and systemic immunosuppression and is remarkably effective at inducing T cell dysfunction, 

posing a challenge to any immunotherapy-based approach. To overcome these mechanisms, multiple 

disparate modes of immune-oriented therapy will be required. However, designing trials that can evaluate 

these combinatorial approaches requires careful consideration. In this review, we explore the 

immunotherapy resistance mechanisms that have been encountered to date and how combinatorial 

approaches may address these. We also describe the unique aspects of trial design in both pre-clinical and 

clinical settings and consider endpoints and markers of response best suited for an intervention involving 

multiple agents.  
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1 INTRODUCTION 

Patients with glioblastoma survive for 12-15 months on average despite treatment with surgery, focal 

irradiation, alkylating chemotherapy and tumor treating fields (1-4). While several immunotherapies are 

currently under investigation for glioblastoma, none have yet demonstrated a significant survival benefit (5-

7). Glioblastoma originates in an immune privileged compartment and is adept at escaping immune 

surveillance (8). Precision immunotherapy also requires a uniformly expressed tumor-specific antigen 

(TSA) which remains elusive in highly heterogeneous isocitrate dehydrogenase (IDH) wild type gliomas or 

glioblastoma (9). Further, glioblastoma disrupts immune function both locally and systemically, degrading 

the ability of immunotherapy to act (10).  

 

Given these significant obstacles, it is clear that a single agent will be insufficient. To unlock the true 

potential of immunotherapy, combinations with additive and/or synergistic mechanisms of action is 

required. However, testing these combinations poses unique technical, logistical, and regulatory 

challenges. In this review, we will explore current opportunities and describe strategies for conducting trials 

of combination immunotherapy. 

2 CURRENT AND FUTURE COMBINATORIAL STRATEGIES 

Glioblastoma induces immune dysfunction through multiple mechanisms (10-15). To overcome these, 

several immunotherapy classes are under investigation, including immune checkpoint blockade (ICB), 

chimeric antigen receptor T cells (CAR-Ts), bi-specific T cell engagers (TCEs), tumor antigen vaccination, 

oncolytic viruses, and immunomodulatory cytokines (16-21). Given the large number of permutations for 

combination therapy, we must rationalize the available options. 

2.1 Combinations of multiple immune checkpoint blockade 

Single agent ICB has failed to yield benefit in patients with glioblastoma (22). Given this, studies have been 

performed using multiple ICB agents, based on effective strategies in other difficult malignancies such as 

melanoma or advanced renal cell carcinoma (23). A well described combination in oncology is that of 

nivolumab (anti-PD1) and ipilimumab (anti-CTLA4) which has been explored in multiple trials 

(NCT02017717 – Checkmate 143, NCT040145115, NCT03233152, NCT04003649, NCT03422094, 

NCT02311920 and NCT3707457).  However, subsequent work has demonstrated that glioblastoma 

exhibits cancer lineage specific resistance to the reversal of T cell exhaustion, which may reduce the 

impact of this particular combination (24). Retrospective genomic and transcriptomic analysis of patients 

who received PD-1 inhibitors found that the degree of response to treatment was associated with specific 

evolutionary pathways resulting in certain molecular and immune expression profiles. This would indicate 

that only certain subsets of patient may benefit from this form of checkpoint blockade (25). The timing of 

checkpoint blockade therapies relative to standard of care treatment also may play a key role in efficacy. 

Cloughesy et al report upregulated T cell and interferon-γ (IFNγ) gene expression and downregulated cell-

cycle gene expression within the tumor when anti-PD1 therapy was used in the neoadjuvant setting. This 

effect was however not observed for those patients that received adjuvant therapy alone, suggesting a 

transient window of opportunity for checkpoint blockade (26). Schalper et al also found positive immune 
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effects associated with neoadjuvant PD-1 blockade, reporting enhanced levels of immune cell infiltration 

and greater TCR diversity amongst tumor infiltrating lymphocytes, suggesting that this may be a useful 

partner with other immunotherapies (27). 

 

Other checkpoint inhibitory molecules highly expressed by tumor infiltrating lymphocytes (TILs) in 

glioblastoma include indoleamine 2,3-doxygenase (IDO1), T cell immunoglobulin-mucin-domain containing-

3 (TIM-3) and lymphocyte activation gene 3 (LAG3) (28). Phase I clinical trials exploring combination 

approaches against both PD-1, LAG-3 (NCT02658981) and IDO1 (NCT03707457) are now underway. 

Despite this, experience of combinatorial PD-1 and IDO1 blockade in the CNS (albeit in metastatic 

melanoma) have failed to improve outcomes in phase III studies (29). Other combination approaches using 

IDO1 inhibitors with temozolomide (NCT02052648) remain under evaluation in glioblastoma. While these 

findings may suggest that combinatorial ICB may still struggle in the CNS, lack of success may actually 

reflect incomplete checkpoint blockade. Opitz et al have described metabolic pathways in glioma such as 

activation of the aryl hydrocarbon receptor (AHR) by tryptophan catabolites which results in enhanced 

malignancy and immunosuppression (30). While the AHR pathway was initially associated with IDO1 or the 

tryptophan-2,3-dixoygenase 2 (TDO2) enzyme, recent work has demonstrated that interleukin-4-induced-1 

(IL4I1) is more significantly associated with AHR activity. ICB can induce IDO1 and IL4I1, while IDO1 

inhibitors previously trialed in combination with ICB do not result in IL4I1 blockade (31). Future 

combinatorial pairings of ICBs should consider the potential for anti-PD1 agents to induce metabolic agents 

which upregulate metabolic pathways of immunosuppression. 

2.2 Immune checkpoint blockade and T cell directed immunotherapy 

Intratumoral heterogeneity in glioblastoma poses a significant barrier to antigen-specific immunotherapies 

such as CAR-T cells or bispecific T cell engagers. CAR-T cells specific for epidermal growth factor receptor 

variant III (EGFRvIII) have proven ineffective when treating recurrent tumors due to antigen escape (9). The 

intended selective targeting of cells or spontaneous elimination of target cells at recurrence produces an 

outgrowth of antigen negative cells resulting in recurrence (9,32,33). A high degree of clonality and, 

contrary to other cancer, a high mutational burden in glioblastoma has also been associated with resistance 

to ICB (34,35). Of note for clinical trials, high tumor mutational burden can be induced by temozolomide 

(TMZ) which causes defects in DNA mismatch repair genes. One potential approach to overcoming this is 

by targeting IDH1-R132H - a shared clonal neo-epitope in IDH mutated gliomas. This uniformly expressed 

TSA in a subset of glioma patients has been successfully targeted in recent Phase I trials (NCT02454634), 

and was found to be both safe and immunogenic (36). 

 

While prior phase Ib trials (NCT02287428) of neoantigen vaccination in glioblastoma have reported 

neoepitope-specific systemic immune responses with increased numbers of TILs, these have also been 

shown to express a profoundly exhausted phenotype (37). Combining ICB with a vaccine strategy targeting 

a shared clonal neoepitope may therefore work synergistically to overcome ICB resistance while enhancing 

the neo-epitope immune response. This is supported by pre-clinical evaluation of multivalent neoantigen 

vaccines with ICB which generated greater anti-tumor responses than monotherapy, even in models with 
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reduced anti PD-L1 sensitivity (38,39). Such an approach would therefore be logical to evaluate for other 

multi-epitope vaccine-based approaches such as that used in the GAPVAC trial (NCT02149225)(40). As 

mentioned previously, neoadjuvant anti-PD1 blockade has been associated with enhanced clonal 

expansion of T cells and greater immune infiltration/TCR diversity (26,27). This would also likely benefit 

immunotherapy approaches that rely heavily on T cell expansion such as vaccination or CAR-T cell 

therapy. Further, CAR-Ts targeting EGFRvIII have been shown to upregulate expression of programmed 

cell death ligand 1 (PD-L1) within gliomas, contributing to CAR-T cell dysfunction and treatment failure (9). 

The addition of anti-PD1 blockade to such approaches may therefore increase both the diversity and 

potency of the immune response to CAR-T therapy while reducing T cell exhaustion. This is supported by 

work by Choi et al who designed a CRISPR-Cas9 modified EGFRvIII CAR-T cell with the endogenous PD-

1 receptor knocked out, thereby preventing PD-L1 binding. This CAR-T-EGFRvIII PD-1- construct resulted 

in prolonged survival in mice bearing EGFRvIII+ glioma compared to CAR-T-EGFRvIII cells with an intact 

PD-1 receptor (41). In this vein, trials are underway evaluating CAR-T cell therapy (NCT04003649) and 

vaccination (NCT04201873, NCT02529072, NCT02287428) alongside ICB. Newer trial designs are also 

being deployed such as the AMPLIFY-NEOVAC surgical window-of-opportunity trial (NCT03893903). This 

will evaluate IDH1R132H vaccination with avelumab (anti-PD-L1) to explore predictive biomarkers for 

response to ICB in patients with IDH mutated gliomas.  

 

It is notable that studies such as that performed by Choi et al report prolonged survival with direct 

intracerebral or intraventricular delivery of CAR-T therapy but that this therapeutic effect is lost with 

peripheral administration. This finding serves to demonstrate that transiting the blood brain barrier (BBB) 

remains a formidable obstacle for many systemically delivered immunotherapies (42). Even in the 

pathological glioma state, regions of the BBB likely remain intact, shielding sections of tumor from 

immunotherapy which may then act as the focal point for recurrence (43). While systemic anti-PD1 therapy 

has been noted to induce changes in the CNS, it is unclear where this interaction with the immune system 

occurs and indeed what concentration is necessary to induce an effect at the intracranial tumor site (44). 

Although one solution may be direct intracranial delivery of agents, this highly invasive approach will not be 

suitable for all patients and faces significant challenges in achieving equal and persistent drug distribution 

throughout the tumor (33,45,46). Another potential approach may be the use of ex vivo activated 

autologous T cells combined with T cell engaging therapies. These activated T cells would theoretically 

adhere to the brain microvascular endothelium and traffic into the brain, carrying their immunotherapy 

payload on their surface (18,47). However, this effect has also been associated with neurotoxicity and must 

therefore be investigated with caution (48). Accordingly, such an approach is entering Phase I safety trials 

where a hEGFRvIII-CD3 Brain Bi-Specific T Cell Engager (BRiTE) will be evaluated alongside peripheral 

autologous T cell infusion (NCT04903795).  

2.3 Other strategies to enhance the T cell repertoire and overcome immunosuppression 

Combination of immunotherapy with radiotherapy has been demonstrated in melanoma to expand the 

compartment of effector memory T cells and TILs, while also inducing a more diverse T cell receptor 

population when combined with ICB (49). Similar promise has been demonstrated pre-clinically in 
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glioblastoma where TIM-3 and PD-1 antibodies combined with radiotherapy achieved long-term survival 

(50). Other strategies to expand TCR diversity may involve the use of dendritic cell vaccines which carry 

antigen from the tumor to draining lymph nodes, presenting them to effector T cells. Chemokines such as 

the macrophage inflammatory protein-1 alpha (MIP-1α, CCL3) may aid in enhancing lymph node 

chemotaxis of dendritic cell subsets both to tumor and from tumor to lymph node, resulting in greater 

diversity of antigen presentation and more potent antigen-specific T cell responses (51). Dendritic cells may 

also enhance the polyfunctionality of adoptively transferred T cells targeting tumor specific antigens in 

glioblastoma (52).  

 

Enhancing T cell functionality may be supported by the use of costimulatory agonists such as CD27, 4-

1BB, OX40 or CD40, which are now entering early clinical trials (e.g., NCT04547777, NCT02658981, 

NCT03688178) (53-56). Newer constructs that combine both anti-inhibitory and pro-stimulatory strategies 

are under development such as bispecific antibodies targeting both CD27 and PD-L1 (NCT04440943) or 

TGFβ and PD-L1 (57). Novel CAR-T constructs including synNotch and armored CARs with expression of 

cytokines such as IL-12 have also been demonstrated to enhance anti-tumor efficacy in the context of 

oncogenic immunosuppression (58,59). When considering immunosuppression, thought should also be 

given to the role of dexamethasone, which may induce systemic depletion of memory and naïve CD4/CD8 

T cells, reducing the efficacy of immunotherapy (60). In this context, agents that have failed to show 

efficacy when combined with checkpoint blockade such as bevacizumab (anti-VEGF) may also be worth re-

evaluating as an adjunct, specifically for its ability to reduce the need for immunosuppressive 

corticosteroids (61,62).  

 

A summary of potential combinatorial approaches is depicted in Figure 1. However, as described above, 

enhanced additive synergism between immunotherapies may well extend beyond a bimodal approach. It is 

reasonable to consider trial designs which involve 3 or more elements. This will require flexible trial designs 

to swiftly identify the optimal combinatorial schedule which are discussed in the following section. 

3 RECOMMENDATIONS FOR COMBINATORIAL CLINICAL TRIAL DESIGN 

3.1 Population Selection 

When considering any new combinatorial therapy, a proof-of-principle study is necessary to determine 

efficacy. Outcome measures in this context usually consist of specific biologic endpoints. However, these 

studies are typically performed on small numbers of patients with late-stage disease who have received 

highly variable treatment courses. This can make interpretation of said biologic endpoints difficult. Selecting 

patients earlier in the disease course with a less heterogeneous and slower growing pathology may make 

interpretation of biological markers easier, while also allowing combination immunotherapies sufficient time 

to synergize and induce maximal biological effect. Particular consideration should also be given to patients 

with an unmethylated O6-methylguanine-DNA methyltransferase (MGMT) promoter gene, who are less 

likely to respond to TMZ. In such cases, omission of TMZ entirely would be clinically justifiable and would 
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allow evaluation of new therapies without additional toxicities from TMZ or inducing hypermutation as 

described previously (63,64). 

3.2 Regimen selection 

The optimal dosing schedule may be extremely broad when designing trials for two or more agents and is 

further complicated by the fact that true synergy may exist at non-maximal doses. Although it is generally 

not acceptable to reduce doses of standard of care agents in combination, an appreciation for the unique 

pharmacodynamic interplay between combined immunotherapy agents is required. Although this might 

suggest a need for extensive pre-clinical testing, newer designs such as Phase 0, translational, surgical 

‘window-of-opportunity’ or neoadjuvant trials may offer a route to bypass potentially laborious steps (65,66).   

 

Phase 0 trials use a micro-dosing strategy to allow for assessment of potential pharmacodynamic (PD) and 

pharmacokinetic (PK) properties while minimizing risk. This allows for rapid determination of the biological 

activity of a potential combination and allows for early termination if said combination does not meet its 

predefined PD/PK endpoints. Window-of-opportunity studies take an alternative route, using a pre-defined 

therapeutic dose and typically aim to define target engagement and/or immune modulatory endpoints. Both 

trial approaches aim to determine biological and immunomodulatory impact, rather than clinical effect, 

although window-of-opportunity trials also allow for correlation with eventual patient outcomes. While these 

are both useful approaches for evaluating new combinations, perhaps the most sensitive way to determine 

synergism between two agents is by using neoadjuvant studies in which treatment is administered pre-

operatively and tumor samples are taken for analysis at time of resection.  

 

Neoadjuvant studies have already been used successfully to determine the effect of immune checkpoint 

inhibition on the intratumoral T cell compartment (26). The neoadjuvant approach may also be superior to 

post-surgical biopsies of tissue, which are prone to sampling error and often have limited tissue availability, 

resulting in a non-representative immune analysis. A large volume of tissue will allow for not just a 

determination of raw numbers of TILs but functional activity. Such analyses would be superior to peripheral 

immune interrogation which may not be equivalent to events occurring at the tumor site.  

3.3 Moving beyond Phase I 

If a combination proves safe and tolerable while also demonstrating evidence of immune response, trials 

should proceed to phase II trials to assess clinical benefit. However, traditional single-arm phase II trials 

often use response rates (RR) based on historical controls as the main endpoint, which may be 

inappropriate for combined immunotherapy. An efficient approach would be to use seamless phase I/II, II/III 

clinical trials, whereby the protocol specifies when to transition the study from a certain phase (e.g., phase 

II to III) without the need for a new protocol or regulatory process (67,68). Similarly, large phase Ib trials 

and ‘expansion baskets’ of the combination in phase I trials allow for increasing the number of patients 

enrolled once the recommended phase II dose has been determined. This allows for the phase I study to 

aid establishing preliminary efficacy in addition to determining the safety of the combination. Basket and 

platform trial designs using master protocols allow for within-basket immune monitoring depending on the 
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approaches being evaluated (e.g., markers of T cell activation if blocking regulatory T cell receptors) (69). 

The use of adaptive designs in this setting allows for adjustment according to evolving data so that poorly 

performing combinations can be abandoned early, while additional treatment cohorts which test other 

combinations to be added.   

 

Many basket trials to date (Lung-MAP, NCT02154490; NCI-MATCH, NCT02465060; and My Pathway, 

NCT02091141) use response rate (RR) to evaluate targeted therapies, as is typical for traditional single-

arm early phase trials. However, this may not be an appropriate endpoint for the evaluation of 

immunotherapies which can yield clinical benefit without a high RR. Indeed, immunotherapies have been 

noted to induce imaging changes interpreted as indicative of progression (70). To address this, adaptive 

designs have been initiated including the INSIGhT adaptive platform trial (NCT02977780), the glioblastoma 

AGILE phase II/III adaptive platform trial (NCT03970447) (64,71) in the US and the NCT neuro master 

match umbrella phase I/IIa trial (NCT03158389) in Germany. Overall survival (OS) can be used in these 

trials as the primary endpoint rather than RR (72,73). These designs are mostly used to evaluate targeted 

therapies to circumvent lengthy pauses between trial phases, but their usage still lags behind for 

immunotherapy based approaches (74).  

4 RECOMMENDATIONS FOR ENSURING SAFETY AND DETERMINING OUTCOMES 

In the context of combinatorial immunotherapy, toxicity considerations are complicated by the need to 

determine the appropriate regimen for commencing two or more agents at once. Multiple agents may act 

synergistically in both efficacy and toxicity, which could result in potentially fatal complications such as 

cytokine release syndrome (CRS) (75). Model-assisted designs are a useful tool to assess the pre-study 

probability of toxicity and can inform dose-escalation decisions using real-time adverse event data (76,77). 

These can maximize the number of patients treated at or near the maximum tolerated dose (MTD) and 

outperform traditional designs such as 3 + 3 dose-escalation which have yielded inconsistent dose-toxicity 

or dose-escalation correlations (78,79). However, while the flexibility and accuracy of model-assisted 

designs may be of particular use when evaluating immunotherapy combinations, these require sustained 

biostatistical collaboration, which can be time and resource intensive. A detailed evaluation of the dose 

escalation strategy and how best to determine response is therefore vital before commencing clinical trials.  

4.1 Determining the starting dose 

Many combinatorial trials use agents with a known safety profile and where the biologically active dose is 

known. For that reason, such trials could begin at the optimal dose rather than using conservative 

escalations. When neither component is known to be effective or approved for the indicated use, and when 

neither will be effective alone, a two-arm design comparing combination to a control agent (or placebo) can 

be considered (shown in Figure 2). However, while this minimizes exposure of patients to inactive 

therapies, this design may not demonstrate the inactivity of specific components. When the safety profile or 

optimal dose is unknown for either component in a combination, the optimal immune response may be an 

appropriate endpoint for early phase trials, providing there are no significant toxicities. However, 
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establishing response with multiple agents and titrating each element to maximize efficacy may not be 

practical. 

4.2 Measuring effect 

Patients in phase I trials are likely to have relapsed or progressed on previous therapies but preliminary 

signals of activity can still be noted using RR, (PFS), recurrence-free or OS. However, in an advanced 

disease population, immunotherapies may not induce a strong immune effect that manifests as a reduction 

in disease burden. Patients may also not survive long enough to have time to generate the immune 

response that would provide a clinical benefit. A further complication is that OS can be extended by 

immunotherapy without radiological response or pseudo-progression (80). The modified response 

assessment in neuro-oncology (mRANO) and immune specific RANO (iRANO) aim to standardize 

determination of response, but their utility in trials using experimental combinations is yet to be validated 

(70). To determine response more accurately and avoid premature treatment discontinuation, the definition 

of progression will need to require confirmation on two separate observations or to not consider early 

progression within a prospectively defined time-interval as per modified RANO (81). In patients who do 

respond after early progression, PFS should be based on the start of therapy.  

 

Determining potency, predicting clinical effects and understanding the impact of the manufacturing process 

on the final drug product and stability are all required for regulatory approval. However, demonstrating 

these effects in combination therapies poses practical and ethical problems. Evaluation of purity and 

potency can be difficult if a treatment is composed of a combination of heterogeneous components (e.g., 

autologous blood or tumor-derived cellular therapies) (82). One approach to overcome this is to use 

quantitative assessments such as the time to kill 50% of target tumor cells (KT50) (83). Other approaches 

may involve correlating outcomes with serial immune assays to quantitatively measure the relative 

immunogenicity of a combination. Statistical modeling using toxicity and anti-tumor toxicity have also been 

considered (84,85). However, many of the techniques used including cytokine release, tetramer, 

cytotoxicity and the enzyme-linked immune absorbent spot (ELISpot) assays are often only technically 

validated in the research laboratory, and the frequency with which they are performed vary widely, leading 

to variable results (86).  

To generate valid and transferable data based on immune assays, harmonization and standardization of 

techniques is required to establish the expected immune response from known effective immunotherapies, 

against which new combinations can be evaluated. Current FDA-approved biomarkers of tumor mutational 

burden (TMB) that are used to predict response to the checkpoint inhibition pembrolizumab in solid tumors, 

do not have the same predictive value in gliomas (35) and therefore a pathology specific assay is required.  

5 CONCLUSION 

Although immunotherapy holds significant promise for overcoming the challenges of immune dysfunction 

and tumoral heterogeneity, it is increasingly apparent that a single agent alone will not suffice. Exploration 

of combinations of ICB with neo-epitope vaccination strategies in IDH mutant gliomas is one promising 

approach, but IDH is expressed in a minority of glioblastomas. Further, the cancer-lineage specific ability of 
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glioblastoma to drive T cell anergy and apoptosis poses a significant obstacle for ICB therapies. Given this, 

more work is required on alternative strategies such as combinatorial T cell co-stimulation or blockade of 

tumoral metabolic pathways. Evaluating potential combinations in patients who may not benefit from TMZ 

and are therefore less prone to hypermutation will be helpful to accurately determine biological activity. The 

timing of administration relative to routine clinical interventions such as steroid administration, radiation 

therapy and the aforementioned alkylating chemotherapy, all of which possess varying immuno-modulatory 

effects, must also be weighed. Neoadjuvant and surgical window of opportunity studies (where tumor tissue 

can be collected after combinatorial immunotherapy) may offer the most sensitive pharmacodynamic and 

pharmacokinetic analysis, but other surrogate markers of effect such as KT50 are also useful. Model 

assisted trial designs may help assess dosage and schedules for different combinations, but it is important 

to consider that maximal synergistic effect may not occur at the maximal therapeutic dose. While 

combinatorial approaches may unlock the true potential for immunotherapy in glioblastoma, the lack of 

success in glioblastoma immunotherapy trials demands a tailor-made combinatorial approach. International 

collaboration will be necessary to develop trials which have the scope and recruitment necessary to 

integrate such biologic complexities into their design (see summary box).  

6 SUMMARY BOX AND KEY MESSAGES 
 

To date, immune based monotherapies have failed to improve survival of patients with glioblastoma. 

Glioblastoma exerts cancer lineage specific mechanisms of immune escape and can induce profound 
local and systemic immunosuppression 

Given the lack of efficacy seen when using combinations with anti PD1/ anti CTLA4 to date, cancer 
lineage specific checkpoint inhibition (e.g., IDO1, LAG3, TIM3) and costimulatory agonistic targets (e.g., 
CD40, CD27) are worth exploring.  

Timing of combinatorial immunotherapy relative to standard of care treatment must be carefully weighed.  

TMZ may induce hypermutation and drive heterogeneity, and drive resistance to immunotherapies and 
their combinations  

Bevacizumab may help to reduce edema and therefore reduce the need for immunosuppressive 
corticosteroids, and can be used as an adjunct to combination immunotherapy 

Harmonization, standardization of immune technologies and generation of reference values will help 
accelerate preclinical and early clinical development in glioblastoma 

Flexible trials such as model assisted and adaptive designs are required to rapidly assess potential novel 
combinations.  

Surgical window of opportunity, neoadjuvant and trials with primary biologic (PD, PK) endpoints are 
recommended as they may help shorten lengthy pre-clinical and often futile clinical investigation. 
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 FIGURE LEGENDS 

 

6.1 Figure 1: Combination approaches using checkpoint inhibition and other therapies for 
glioblastoma.   

1. TCR Diversity and Clonal Expansion. Combination radiation therapy and inhibitors of TIL exhaustion and drivers of 
apoptosis (PD-1, LAG-3, TIM-3) are being studied for synergistic effects on TIL expansion and clonal diversity. 2. 
VEGF Inhibitors. Anti-VEGF therapies such as bevacizumab are being utilized as steroid-sparing agents to harness 
immunotherapy-related toxicity in the CNS. 3. Tumor-Associated Macrophage Polarization. Glioma cells interact with 
and maintain a robust population of PD-1 expressing microglia with an anti-inflammatory phenotype (M2). Selective 
anti-PD-1 blockade on microglia populations is capable of inducing a tumoricidal M1 phenotype (87-89) 4. 
Neoadjuvant Checkpoint Inhibition. Treatment-naïve, IDH wild-type glioblastoma upregulates PD-L1 and CTLA-4 
offering enhanced sensitivity to immune checkpoint combination approaches. Neoadjuvant checkpoint blockade 
increases clonal expansion of T cells. Chemotherapy with temozolomide can alter tumor mutational burden resulting in 
both increased resistance to checkpoint blockade and increased sub-clone heterogeneity thus limiting the potency of 
antigen-specific immunotherapies such as CAR-T cells. 5. Dendritic Cell Costimulation. Costimulatory agonists for 4-
1BB, OX40, and CD40 and IDO inhibitors are being evaluated with checkpoint inhibitors to polarize cytotoxic T cell 
responses in the tumor microenvironment and within immunosuppressed tumor-draining lymph nodes. 6. Combination 
Immunotherapies. Multivalent neoantigen vaccines and CAR-T cell therapies in combination with checkpoint inhibitors 
are being evaluated for superior efficacy compared to single modalities even with reduced PD-L1 sensitivity. 
Abbreviations: CAR, chimeric antigen receptor; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DC, dendritic 
cell; IDH, isocitrate dehydrogenase; IDO, indoleamine 2, 3-dioxygenase; LAG-3, lymphocyte activation gene 3 
(LAG3); M1 and M2, macrophage pro-inflammatory and anti-inflammatory phenotype; PD-1, programmed cell death 
protein 1; PD-L1, programmed death-ligand 1; TCR, T cell receptor; TIM-3, T cell immunoglobulin-mucin-domain 
containing-3; TMZ, temozolomide; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth 
factor. Adapted from an image created with BioRender.com.  

 

 

9.2  Figure 2: Rationalizing Trial Designs for Combinatorial Immunotherapy 
Regulatory approval of combinations of therapeutic agents in medicine usually requires a demonstration of each 
component’s independent contribution. The ability to evaluate pharmacodynamic effects of single agents and/or 
combinations may help determine whether randomized studies require arms including both single agents and 
combinations. When neither component is known to be effective or approved for its indicated use, or when neither 
have efficacy as a single agent by itself, a two-arm design comparing the combination to a control agent (placebo) can 
be considered. Assessment of immune response must not only quantify the degree of immune activation but also the 
functional status of the response generated. Adapted from an image created with BioRender.com. 
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