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Summary: Translational systems immunology approaches to infectious diseases will enable 

the switch from reactive to precision treatment of patients, improving clinical outcomes while 

reducing the use of prophylactic antibiotics and incidence of infection in high-risk individuals. 
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Abstract  

The field of infectious diseases currently takes a reactive approach, treating infections as 

they present in patients. Although certain populations are known to be at greater risk of 

developing infection (e.g., immunocompromised), we lack a systems approach to define the 

true risk of future infection for a patient. Guided by impressive gains in -omics technologies, 

future strategies to infectious diseases should take a precision approach to infection through 

identification of patients at intermediate and high-risk of infection and deploy targeted 

preventative measures (i.e., prophylaxis). The advances of high-throughput immune profiling 

by multiomics approaches (i.e., transcriptomics, epigenomics, metabolomics, proteomics) 

holds the promise to identify patients at increased risk of infection and enable risk-stratifying 

approaches to be applied in the clinic. Integration of patient-specific data using machine 

learning improves the effectiveness of prediction, providing the necessary technologies 

needed to propel the field of infectious diseases medicine into the era of personalized 

medicine.   

Keywords: infectious diseases, systems immunology, invasive fungal infections, high-

throughput technologies 
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Reactive Versus Precision Medicine 

Infectious diseases (ID) currently takes a reactive approach in which we provide diagnostic 

and therapeutic advice on patients with established infection. For example, Staphylococcus 

aureus bacteremia is commonly encountered in inpatient settings. While S. aureus 

colonization and unsterile techniques contribute to incidents of infection, there is clearly a 

role for host factors in modulation of potential infection and disease severity. The most 

common conditions that portend increased risk for S. aureus bacteremia are diabetes, 

intravenous drug use, presence of central lines in patients requiring dialysis, cancer 

chemotherapy, and corticosteroid use. The underlying assumption is that bacteremia in this 

patient population cannot be accurately predicted, and therapeutic approaches are purely 

reactive – treatment begins once the infection is established and subsequently diagnosed. 

Unfortunately, this approach permits widespread host damage from metastatic infection. 

Mortality rates of 20-40% have not changed in the past several decades, indicating that 

another approach is required. The goal for the field of ID in the 21st century should be to 

predict and prevent infections in individual patients before they occur by interrogating the 

patients’ immune system using multiomics approaches. We have focused this review on the 

human immunology as the pathogen virulence and its impact has been discussed 

elsewhere. 

The need for a preemptive, risk-modifying approach to infections in ID is evident by 

the increasing number of high-risk individuals due to advances in immunosuppression 

enabling solid organ transplantation, chemotherapy for cancer, and immunomodulatory 

therapeutics for autoimmune diseases. Evidence based prophylaxis has reduced ID burden 

in immune compromised patient (e.g., PJP prophylaxis in HIV patient with CD4 count of 

<200 cells/µL). However, total T cell counts do not account for specific effector T cell 

populations of function, rendering this approach less precise. The future of ID medicine 

should predict and prevent infection to avoid severe outcomes (e.g., delay of therapy for 

underlying processes and death). As a field, we are poised to leverage our understanding of 

basic mechanisms in microbiology and immunology to learn how to risk-stratify patients and 
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judiciously deploy prophylactic antimicrobials to prevent infections using a personalized 

medicine approach.  In the near term, multiomics studies can nominate specific molecular 

and cellular biomarkers that can be measure using platforms currently deployed in patient 

care that will inform clinical decisions. 

Medical mycology would greatly benefit from a precision approach to infection. 

Invasive fungal infections (IFIs) are dreaded complications in immunocompromised 

populations, often carrying morality rates exceeding 50%. Clinical data and current literature 

implicate certain components of the immune system as critical for swift clearance of fungal 

pathogens. Yet, the rules governing an inflammatory response that contributes to the broad 

spectrum of clinical outcomes in immunocompromised patients are not known. For example, 

individuals that receive a single- or double-lung transplant due to end-stage pulmonary 

disease are at high-risk of developing and succumbing to IFIs. The opportunistic fungal 

pathogen Aspergillus fumigatus is the most commonly diagnosed fungal pathogen in lung 

transplant recipients (LTRs), with lower incidence of infection by Mucor, Cryptococcus, and 

endemic fungi (Histoplasma, Blastomyces, Coccidioides). Furthermore, A. fumigatus 

colonization in these patients is associated with accelerated chronic rejection. Understanding 

the underlying factors that predict development of fungal infection in LTRs, and consequent 

rejection, will enable targeted preventative strategies (e.g., vaccine, prophylactics, and/or 

alteration in immunosuppression) in those at the greatest risk of poor outcome.  

Application of precision ID approaches benefits not only relatively small, highly 

defined cohorts (~4,000 lung transplants annually), but also larger, more heterogenous at-

risk populations. Risk of infection in healthcare settings is amplified by the need for invasive 

procedures (e.g., insertion of central venous catheters) leading to a break in the skin barrier 

and disruption of commensal fungal populations. Candida spp. is the seventh most 

prominent pathogen in healthcare-associated infection (HAI; <10% of all pathogens) and is a 

leading cause of bloodstream infection (~22% of all pathogens). The observation that only a 

subset of at-risk patients develop candidemia despite ubiquitous exposure indicates that 

host factors potently modulate risk for this infection. Precision ID enables identification of 
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patients at the highest risk of developing invasive candidiasis so that a targeted prophylaxis 

approach will lead to less morbidity and improved outcomes. It is not hard to imagine the 

benefits of a screen to identify hospitalized patients at-risk of not only Candida infection, but 

also common bacterial pathogens contributing to HAIs (e.g., Clostridium difficile, S. aureus, 

Pseudomonas aeruginosa). Although the idea of personalized medicine is not new, 

technologies and bioinformatic approaches required to advance precision ID are becoming 

available and broadly applied to other fields of medicine (e.g., oncology). 

 

Potential Application of Next-Generation Technologies in the Clinical Setting 

The immune system, one of the most complex and dynamic biological systems in mammals, 

comprises diverse cell types with varying functional states. Advances in high-throughput 

profiling technologies, particularly single-cell -omics platforms, enable comprehensive 

characterization of immune components at multiple scales. However, immunity is not merely 

a sum of its components, and its behavior cannot be explained or predicted solely by 

examining individual components. Therefore, systems biology approaches are essential for 

decoding the cellular complexity, plasticity, and functional diversity of the immune system. 

The emerging field of systems immunology enables physician-scientists to better understand 

how the immune system works in health and disease. Evaluation of clinical samples from 

known high-risk populations will empower future risk-stratification of these populations and 

improve our ability to deliver precision ID care. Additionally, there is increasing evidence that 

local immunity provides a better window into immune responses than interrogating 

peripheral blood alone. Interrogation of tissue resident memory cells has provided significant 

insight into host responses and autoimmune diseases. Specifically, group 3 innate lymphoid 

cells and T helper type 17 (Th17) cells may serve as key components of tissue-resident 

memory cells acquired over time or elicited by mucosal immunization that provides the host 

with enhanced immunity against specific pathogens. For example, LTRs are often diagnosed 

with pulmonary infection, and therefore it is critical to interrogate both systemic (i.e., 

peripheral blood) and local (i.e., bronchoalveolar lavage fluid and lung biopsies) patient 
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samples to provide a fuller picture of immunity in response to infection. Understanding local 

and systemic immune response to infection at such a large-scale will enable refinement of 

future clinical assays and identification of relevant biomarkers in susceptible patient 

populations. We envision an even closer relationship between the ID/transplant physicians 

and oncologists/rheumatologists whereby ID physicians assists the treating physician to 

select appropriate preventative strategies to avoid life-threatening infections in at-risk 

patients. 

 

Transcriptional Genomics 

Development of systematic transcriptomic profiling and computational analyses have 

provided meaningful translational insights into various disease states and immunological 

response in infections. In the immune system, cell populations may appear homogeneous, 

but analysis by single-cell sequencing of RNA (scRNA-seq) or examination of epigenetic 

modifications can reveal cell-to-cell variability that may help sub-populations of cells to 

rapidly adapt to evolving environments. Resulting in quantitative and high-resolution 

snapshots of thousands to millions of cells, single-cell -omics approaches interrogate human 

systems and underlying phenotypes that may contribute to disease. While less expensive, 

bulk RNA-sequencing remains a lower powered approach since results generated reflect an 

average of all cells, which may lead to critical changes in rare cell populations being 

overlooked. scRNA-seq analysis provides an unbiased, data-driven way to systematically 

detect cellular states to reveal diverse simultaneous facets of cellular identity, from discrete 

cell types to continuous dynamic transitions, which cannot be defined by a handful of pre-

defined markers or for which markers are not yet known (Figure 1A). For example, scRNA-

seq identified rare epithelial cells, ionocytes, as the major source of cystic fibrosis 

transmembrane conductance regulator (CFTR), reshaping the cystic fibrosis field. 

Additionally, a recent study demonstrated a monocyte phenotype, termed MS1, associated 

with bacterial sepsis which appears to be a hallmark of severe infections. Having defined 

MS1 marker genes from scRNA-seq studies, there was evidence of its presence in dozens 
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of bulk transcriptional studies of sepsis with diverse anatomic sources and microbiological 

causes, underscoring the power of this approach. 

 Methodological adaptations such as T cell receptor (TCR) or B cell receptor (BCR) 

repertoire profiling and cellular indexing of transcriptomes and epitopes by sequencing 

(CITE-seq) further increase the power of scRNA-seq. T cell responses are essential to 

adaptive immunity to pathogens, including in IFIs. For example, investigations in HIV 

patients demonstrate that a loss of T cell immunity is closely tied to incidence of cryptococcal 

meningitis. Impaired T cell responsiveness in other immunologically vulnerable populations 

have also been observed in invasive Aspergillus and Candida infections. Additionally, the 

importance of B cells in ID has been well documented in viral and bacterial infections, 

including SARS-CoV-2, Klebsiella, and Haemophilus influenzae. RNA-seq paired with TCR 

or BCR repertoire analyses enables investigators to interrogate expansion of T and B cell 

populations in disease. In addition to these paired receptor analyses, CITE-seq, which has 

been implemented in large-scale translational human immunology projects, enables 

simultaneous single-cell measurements of a predefined array of surface proteins and 

unbiased gene expression. CITE-seq utilizes oligonucleotide barcoded antibodies to 

quantitate protein expression through flow cytometry measurements in tandem with mRNA 

information provided my RNA-seq. Coupled with scRNA-seq, these paired analyses provide 

a comprehensive look at immune cells and tissues in disease. 

While scRNA-seq provides ample information about the transcriptome in different cell 

populations, there is a loss of spatial data due to the required step of tissue dissociation. 

Through advances in sequencing and imaging technologies, understanding expression of 

transcripts at the single-cell level in their spatial layout provides better understanding within 

the distinct microenvironment in infected regions and tissues (Figure 1B). Numerous novel 

spatial transcriptomics approaches have been reviewed previously. Additional 

complementary approaches such as multiplexed cytometric imaging (CODEX) and in situ 

hybridization (RNAscope) may be utilized to improve power of spatial transcriptomics. A key 

advantage to spatial transcriptomics is the ability to determine the impact of local immune 
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response in tissue, with temporal resolution. In infection, development of a granuloma occurs 

during infection to contain pathogens. Use of spatial transcriptomics of these granulomas 

may provide insight into the molecular and cellular mechanisms that govern pathogen 

containment. Thus, complementary scRNA-seq and spatial transcriptomics approaches may 

provide ample information on host-pathogen responses during infections and insights into 

prognosis.  

 

Epigenomics 

Although studies investigating genetic susceptibilities have identified polymorphisms 

associated with infection (e.g., CARD9 mutations in IFIs), translation to the clinic does not 

provide the whole story for risk and development of infection. Common genetic traits do not 

produce consistent phenotype, but epigenetic modifications may bridge the gap between 

phenotype and genes. Epigenetic modifications alter gene expression and function through 

DNA methylation and histone modification (e.g., acetylation, methylation, phosphorylation). 

Methodology to interrogate epigenomic changes utilize chromatin conformation studies (e.g., 

assay for transposase-accessible chromatin using sequencing; ATAC-seq) and histone 

modification profiling (e.g., chromatin immunoprecipitation; ChIP) of clinical samples (Figure 

2). Longitudinal studies examining epigenetic modifications paired with scRNA-seq in high-

risk patients may provide a roadmap to infection susceptibility and ability to effectively clear 

pathogens. Epigenetic-based treatments are being explored in the context of HIV infections, 

leading to preclinical and clinical trials for cART therapy.  

Historically, immune memory has been considered a function of the adaptive immune 

system (e.g., T cells and B cells), providing highly specific, long-lasting protection against 

invaders. Trained immunity is the concept of long-term functional reprogramming (namely 

through epigenetic processes) in early immune responders, also known as innate immune 

cells (e.g., neutrophils, monocytes, dendritic cells). Interaction with these innate cells and a 

pathogen leads to altered response during a second challenge with the same pathogen, 

contributing to innate-mediated short-term (ranging from 3 months to a year) protection 
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against foreign invaders. Histone methylation or acetylation are hallmarks of trained 

immunity in innate immune cells following stimulation with the fungal cell wall carbohydrate 

β-1,3-glucan, a major component of Candida spp.. Expansion of these studies into 

individuals with an elevated risk of infection may provide insights into novel preventative and 

therapeutic strategies to preemptively treat infections. 

 

Metabolite Profiling 

Metabolomics systematically quantifies metabolites in biological samples. These 

metabolites are derived from metabolic processes as well as complex biological interactions 

within an organism. Clinical metabolomics detects the direct result generated by a 

biochemical response to a variety of factors, including invading pathogens. The benefit of 

metabolite profiling is well demonstrated in the fields of cardiovascular disease, kidney 

disease, cancer metabolism, and emerging in the field of ID. Identification of circulating 

metabolites offers biomarker profiles that precede disease and track severity of disease. 

Technology platforms for metabolic profiling typically utilize mass spectrometry coupled with 

chromatographic separation (including liquid chromatography [LC-MS] and gas 

chromatography [GC-MS]) and/or nuclear magnetic resonance spectroscopy (NMR). Since 

there is ample diversity of metabolites, priority should be made to process through 

complementary detection methods. LC-MS, which has emerged as the workhorse for  large-

scale metabolomics, enables quantification of a broad range of metabolites including lipids, 

sugars, organic acids, amino acids, amines, nucleotides, bile acids, and acylcarnitines  

based on the detection method utilized (Figure 3). While there are hundreds of known 

compounds through reference libraries, follow-up protocols (including NMR and other MS 

approaches) are necessary to identify thousands of unknown peaks. One barrier to keep in 

mind with respect to comprehensive metabolomic profiling is the dynamic nature of 

metabolism and metabolite signatures, requiring immediate processing to accurately dissect 

patient profiles. That said, an advantage of metabolomics is the ability to identify metabolites 
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from small sample volumes (as little as 10 µL), contributing to the potential to provide early 

clinical measurements leading to preventative strategies and treatments of disease. 

It has become evident that immune cells rely on changes in cellular metabolism to 

mount effective antimicrobial responses, with glucose metabolism being a central player in 

immune cell function, although data from actively infected human patients remain limited. 

Recent studies have demonstrated a role of metabolism in trained immunity to fungal 

pathogens. Emerging data suggest an increase in glycolysis and glutaminolysis used in the 

TCA-cycle and a corresponding decrease in oxidative phosphorylation are important to host 

defense against fungal pathogens. Unfortunately, these studies primarily utilize ex vivo 

stimulation of peripheral blood samples from healthy individuals. Expansion of large-scale 

nontargeted metabolomics in high-risk patient populations is warranted. Limited studies into 

metabolic changes in organ transplantation identified an increase in glycolysis during 

transplant rejection, which provides rapid ATP generation and biosynthetic intermediates 

that support anabolic processes. Expansion of these data in primary clinical samples (both 

systemic and locally) will provide novel monitoring strategies for LTRs for rejection and 

development of IFIs.  

Considerations for timing of clinical sample collection, particularly in ID medicine, is 

critical and further studies are needed. In sepsis, metabolism rapidly changes throughout 

progression of disease. Metabolic profiles differentiated patients who developed sepsis in 

adults admitted to the Intensive Care Unit due to traumatic injury. Thus, these profiles could 

be applied to precision medicine approaches to identify patients most likely to develop 

infection. Understanding longitudinal changes in infection would license clinicians to better 

predict the course of disease. Furthermore, examination of the metabolome may be applied 

to prediction of drug response. Investigation into novel therapeutics and treatment strategies 

is essential with the emergence of more multidrug resistant pathogens. Metabolomics could 

be applied as an indicator for the pathogen, which currently relies on culture methods. A 

study of fungal infections in neonates identified elevations of the amino acid, serine, during 

active infection, which declined following antifungal therapy, when compared to healthy 
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controls. Thus, large-scale metabolomics to identify diagnostic biomarkers, monitor progress 

of infection, and development of new treatment is warranted. 

 

Proteomic Analyses 

The proteome encompasses the overall protein content within a cell, including protein-

protein interactions and post-translational modifications (e.g., phosphorylation) at a particular 

time point. Measurements of global protein expression within cells or tissues encompass a 

variety of approaches ranging from targeted, high-dimensional panels to large-scale, 

unbiased techniques. Protein phosphorylation is an essential post-translational modification 

that enables regulation of most biological processes. In one sense, the recipe for a 

successful immune response to an invading pathogen is timely activation and inhibition of 

distinct signaling pathways in immune cells to provide efficient antimicrobial effect without 

inducing excessive tissue damage. Correlating these changes by monitoring phosphorylation 

status of key intracellular signaling molecules with clinical outcome may provide critical 

insights into the mechanism of protective immunity. Mass-cytometry-based (i.e., Cytometry 

by Time of Flight [CyTOF]) phosphoproteomics methodology provides a platform to globally 

study activation or inhibition of multiple signaling pathways across the entire immune system 

with single-cell resolution. Indeed, novel insights into TLR signaling and T cell activation 

have been uncovered by phosphoproteomics analysis (Figure 4A). Insights into the 

distribution and activation or inhibition of intracellular signaling pathways by targeting 

phosphorylation states of known signaling molecules in immune cells provides mechanistic 

understanding of disease states and infection. Targeted profiling via the CyTOF platform 

enables investigators to tailor a panel of ~50 markers to dissect specific cell subsets and 

activation states of different proteins. For example, the CyTOF panel examining differences 

in innate immunity from invasive candidiasis HAI may include proteins associated with 

Candida immunity, such as iNOS, Arg1, Ym1, Ym2, IL-4 and Egr2.  

Secretion of proteins to the external environment is critical in maintaining cell-cell 

communication and recruitment of immune cells in response to pathogens. These secreted 
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proteins include hormones, cytokines, chemokines, and growth factors. Measurement of 

these secreted proteins (secretome) can be done through a targeted multiplex array 

approach (e.g., multi-analyte assay). Multiplex assays allow for simultaneous detection and 

quantification of multiple proteins (Figure 4B). Stimulation of PBMCs or tissues from patients 

with a pathogen may provide insights in the variations of the secretome in patients with high-

risk of infection compared to healthy controls. Multi-analyte assays have been used to 

investigate numerous infections. 

While a targeted approach may provide single cell resolution and insights into known 

immune factors, application of large-scale, unbiased proteomic approaches contributes to 

identification of novel proteins associated with disease. Furthermore, this type of approach 

may identify biomarkers of disease and clinical severity. The SomaScan assay developed by 

SomaLogic is an aptamer-based approach that measures up to 7,000 unique human 

proteins (Figure 4C). Although optimized for a set of core sample types (plasma, serum, 

urine), the SomaScan assay sample source has the ability to interrogate non-core sample 

sources (bronchoalveolar lavage, cell conditioned media, cerebrospinal fluid, exosomes, 

sputum, tissue homogenates). Aptamer-based proteomics is widely used in 

neurodegenerative disease, cardiovascular diseases, and infections. Indeed, use of Slow 

Off-rate Modified Aptamers (SOMAmers) in the SomaScan assay and RNA-seq was utilized 

to identify tissue-specific clinical markers of heart, kidney, liver, and skeletal muscle damage 

in COVID-19 patients. These biomarkers can be used upon presentation to the hospital 

using blood samples to detect COVID-driven organ damage. Together, these proteomic 

approaches identify activated pathways and biomarkers of infection critical for 

implementation of precision ID medicine into clinical practice. 

Precision Medicine in ID 

Transcriptional expression, epigenetic forms, metabolites, and protein expression are all 

interwoven to directly impact immune responses in disease. Individually, high-throughput -

omics approaches provide a window into immune responses and phenotypes that portend 

increased risk of infection and may foretell clinical course. Given the complex interplay 
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among different aspects of the immune system, combining multiomics modalities into a 

computational framework increases predictive power and reveals crosstalk between different 

layers of biological profiling (Figure 5). However, merging transcriptomic, epigenomic, 

metabolomic, and proteomic features into predictive models will require continued 

development of new statistical tools designed to study high-dimensional datasets. Recent 

advances in bioinformatic processes overcome many analytic challenges that previously 

prevented the development of models to accurately predict patient outcomes. Regularized 

regression methods such as the Elastic Net algorithm have proven useful for selection of key 

predictive features and development of clinical models. A stacked generalization method that 

combines multiple regularized regression models developed from individual -omic datasets 

has also been recognized as a valuable approach for data integration and can improve 

overall model performance. This approach has been successfully implemented for the 

prediction of various clinical outcomes, including development of insulin resistance, onset of 

spontaneous labor, survival of persons with pancreatic cancer, and severity of COVID-19 

infections. Furthermore, development of effective visualization methods for these integrated 

machine learning models improves understanding of results. Together, these analytic 

approaches provide mechanistic information regarding the crosstalk between various 

biological systems that could not otherwise be identified from each assay individually. 

Implementation of precision ID medicine requires immune profiling of well-phenotyped 

human cohorts, particularly patients with known risk factors (e.g., solid organ transplantation, 

cancer, invasive procedures). Although recent advances have improved cost effectiveness 

and availability of these -omics technologies, there is still a heavy burden on resources. To 

realize the full potential of these technologies, there needs to be significant reduction in cost 

of processing and analyzing each sample to ensure access to all patients. Major funding 

agencies acknowledge this need as demonstrated by new funding mechanisms through the 

National Institutes of Health (Human Immunology Project Consortium) and European 

Research Council (Horizon Program). Further multiomics studies are warranted to make 

precision ID a clinical reality. 
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Conclusions 

Translational systems immunology provides the framework to shift from reactive to 

proactive precision ID medicine, improving the quality of life and dampening complications in 

high-risk populations (Figure 5). Although many -omics approaches have been employed to 

understand host response to pathogens, barriers remain that need to be addressed. One 

major barrier to our understanding is the reliance on animal models to study human disease, 

as these often do not recapitulate the complexity of disease. Furthermore, many reports 

using these -omics approaches utilize samples from healthy patients exposed ex vivo to 

pathogens. Previous efforts have attempted to understand initial immune responses in C. 

albicans stimulated PBMCs using RNA-seq and unveiled the predominance of interferon 

responses and activation of major innate cell populations (e.g., neutrophils, macrophages, 

monocytes). While foundational, the generalizability of these ex vivo stimulations of blood 

from normal volunteers is limited. Additionally, single-cell resolution permits identification of 

the precise cell types driving observed transcriptional changes, thus suggesting candidate 

immune pathways/circuits for precision diagnostics and therapeutic targeting. Thus, there is 

a need for multiomics investigations using well-defined clinical cohorts at greater risk of 

infections. Integration of these data will result in the necessary information to apply risk-

stratification to high-risk populations, preventive strategies to reduce the burden of infection, 

and allow for targeted rather than prophylactic antibiotic strategies. 
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Figure Legends 

Figure 1. Workflow of transcriptional genomics from patient samples through single-cell 

RNA sequencing [scRNA-seq] (A) and spatially resolved transcriptomics (B). (A) Samples 

for scRNA-seq require dissociation of cells to ensure cells are not clumped together. Cells 

are sorted via antibody labeling to sort immune cells and non-immune cells. Samples 

undergo reverse transcription and cDNA amplification and profiled by sequencing through 

selected sequencing technologies. These libraries often achieve 50,000 reads, providing 

detailed readouts of cell populations and substates, T cell and B cell receptor (TCR & BCR, 

respectively) profiling, and underlying immune pathways in disease correlating with disease. 

(B) Tissue samples from infected regions, in this example lung tissue from LTRs infected 

with Aspergillus, are snap frozen and sectioned into thin slices for spatial transcriptomics. 

Following permeabilization, tissues are exposed to probes designed to target specific RNA 

sequences followed by amplification that enables visualization of transcripts. While 

methodology differs depending on the approach used, the current example of these probes 

requires a ligation and crosslinking with a fluorescent tag. The resulting data allows analysis 

of transcripts in their spatial location.  

Figure 2. Epigenomic approaches utilizing clinical local (e.g., lung tissue and BAL) and 

systemic (e.g., blood) samples. (A) Assay for transposase-accessible chromatin using 

sequencing (ATAC-seq) measures chromatin conformation differences. The hyperactive 

transposase Tn5 loaded with a next-generation sequencing library enables for fragmentation 

of open chromatin regions. These fragments are amplified and sequences to provide 

physician-scientists with accessible chromatin regions at the single-cell level. (B) Histone 

modifications profiling through chromatin immunoprecipitation (ChIP) is an antibody-based 

technology that selectively enriches DNA-binding proteins and their respective DNA targets 

(e.g., histone modifications by methylation or acetylation). DNA and its associated proteins 

on the chromatin are first crosslinked followed by fragmentation by sonication or a nuclease 

digestion. These fragments are then immunoprecipitated via antibody selection, which 

removes remaining cellular debris. While there are multiple downstream analyses that can 

D
ow

nloaded from
 https://academ

ic.oup.com
/ofid/advance-article/doi/10.1093/ofid/ofab483/6375269 by guest on 26 Septem

ber 2021



Acc
ep

ted
 M

an
us

cri
pt

 

18 
 

be run on ChIP precipitates, sequencing following DNA purification provides information on 

genome-wide binding in health and disease. 

Figure 3. Metabolite profiling through nontargeted approaches of known and unknown 

peaks. Patient samples for metabolomics require quick processing to extract metabolites 

prior to them being changed by biological mechanisms. Because the metabolome consists of 

molecules with very different physical properties, for example both cationic and anionic 

compounds ranging from very polar to very nonpolar, it is necessary to devise distinct 

sample preparation and LC-MS procedures to optimize metabolite coverage. These methods 

utilize different settings for separation via gas (GC) or liquid chromatography (LC) step. 

Mass spec (MS) analysis in the positive (C8-pos or HILIC-pos) or negative (C18-neg or 

HILIC-neg) ion mode provides a wide array of metabolic peaks. These peaks can be 

compared to known metabolite library for identification. In addition to matches to known 

metabolites, there are often thousands of unknown peaks which requires rigorous 

methodology to identify and authenticate metabolites. Identification and authentication 

approaches rely of MS/MS-based structure prediction as well as compound isolation and 

subsequent processing through GC or nuclear magnetic resonance spectroscopy (NMR) 

methodologies. Interrogation of the metabolome loops back to the patient by identification of 

metabolic biomarkers of disease. 

Figure 4. Workflow for mass cytometry (A), multi-analyte array (B), and aptamer-based 

assay (C) proteomic approaches utilizing human patient samples. (A) To interrogate 

activated and inhibited pathways through phosphoproteomics, biological samples are briefly 

(15 min to 6 h) stimulated with pathogen (e.g., Aspergillus) of interest as well as with proper 

controls (e.g., unstimulated and LPS). Stimulated samples are then incubated with metal-

labeled antibodies targeting immune cells (cell surface antibodies), intracellular signaling 

proteins (phosphor-specific antibodies), and/or cytokines (intracellular cytokine antibodies). 

Cytometry by Time of Flight mass spectrometry (CyTOF) merges traditional flow cytometry 

with inductively coupled mass spectrometry to assess over 50 simultaneously measured 

parameters on a cell-by-cell basis. (B) Targeted multi-analyte arrays enable measurement of 
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multiple proteins within a 96- or 384-well plate. Cell supernatants are put in individual wells 

containing color-coded beads pre-coated with antibodies for multiple analytes of interest. 

Detection antibodies for each target analyte as well as streptavidin-PE are added for 

biotinylated detection. Detection and quantification of each analyte can be determined using 

a flow-based instrument or magnetic beads. Panels can be created to target specific 

secreted proteins. (C) Aptamer-based proteomics enables aptamers (e.g., SOMAmers) 

labeled with a fluorophore, photocleavable linker, and biotin to be immobilized on 

streptavidin-coated beads and incubated with patient samples. Following a biotin-tagging 

step, these aptamer-protein complexes are released by UV light-mediated photocleavage of 

the linker. The biotin labeled- aptamer-protein complexes are captured by a second set of 

streptavidin-coated beads and aptamers are released following incubation with denaturing 

buffer. A microarray chip is utilized to quantify fluorescence intensity within to total protein 

amount of the initial sample. Throughout this process, unbound proteins and non-specific 

interactions are removed.  

Figure 5. Workflow of reactive (A) and precision (B) infectious disease (ID) medicine. A 

precision approach would enable clinicians to employ preventative strategies, leading to 

fewer infections and infectious complications, including targeted prophylaxis or therapies that 

enhance immunity to specific pathogens. (C) Incorporation of multiomics approaches into an 

integrative machine learning model more accurately predicts clinical outcomes. Multiomics 

include transcriptomics (bulk or single-cell RNA sequencing [with or without paired analyses] 

and spatial transcriptomics), epigenomics (chromatin immunoprecipitation [ChIP] and assay 

for transposase-accessible chromatin using sequencing [ATAC-seq]), metabolomics (liquid 

chromatography tandem mass spectrometry [LC-MS] and one-dimensional proton nuclear 

magnetic resonance spectroscopy [NMR]), and proteomics (cytometry by time-of-flight 

[CyTOF], aptamer-based methods [SomaScan], and multi-analyte array). Combining these 

multiomics methodologies across longitudinal samples of local and peripheral immune 

responses provides insight into relevant pathways and predicts clinical outcomes in disease. 
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