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ABSTRACT The application of digital technologies in agriculture can improve traditional practices
to adapt to climate change, reduce Greenhouse Gases (GHG) emissions, and promote a sustainable
intensification for food security. Some authors argued that we are experiencing a Digital Agricultural
Revolution (DAR) that will boost sustainable farming. This study aims to find evidence of the ongoing DAR
process and clarify its roots, what it means, and where it is heading. We investigated the scientific literature
with bibliometric analysis tools to produce an objective and reproducible literature review. We retrieved
4995 articles by querying the Web of Science database in the timespan 2012-2019, and we analyzed the
obtained dataset to answer three specific research questions: i) what is the spectrum of the DAR-related
terminology?; ii) what are the key articles and the most influential journals, institutions, and countries?; iii)
what are the main research streams and the emerging topics? By grouping the authors’ keywords reported
on publications, we identified five main research streams: Climate-Smart Agriculture (CSA), Site-Specific
Management (SSM), Remote Sensing (RS), Internet of Things (IoT), and Artificial Intelligence (AI). To
provide a broad overview of each of these topics, we analyzed relevant review articles, and we present here
the main achievements and the ongoing challenges. Finally, we showed the trending topics of the last three
years (2017, 2018, 2019).

INDEX TERMS Agriculture 4.0, bibliometrics, climate-smart agriculture, digital agriculture, literature

review, precision agriculture.

l. INTRODUCTION

A worldwide ever-growing population has to cope with the
limited resources of our planet. The Food and Agriculture
Organization (FAO) stated that in 2050 we would be 9 billion
people, and the food demand will grow by 70% [ 1]]. However,
arable land is limited, and climate change endangers crop
yields. Reacting to these threats is of paramount importance.
Indeed, the UN 2030 agenda within its 17 Sustainable Devel-
opment Goals (SDGs) has planned, among other objectives,
to reach sustainable food production systems via agricultural
practices that increase productivity and that adapt to climate
change [2].

Reaching more productive and sustainable agriculture
within a changing climate is a tough challenge; agricul-
tural practices need to be revolutionized to meet the SDGs
by 2030. The ongoing process of agricultural digitalization
seems promising to face the upcoming challenges. This rev-
olutionary process is called DAR and is bringing innova-
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tions to support the farmers by increasing crop yields while
reducing the environmental impact [3]. In 2019, the FAO
stated that “market forecasts for the next decade suggest
a “digital agricultural revolution” will be the newest shift
which could help ensure agriculture meets the needs of the
global population into the future” [4]].

To respond to the challenges mentioned above, interna-
tional institutions like the World Bank and the FAO have
recommended a global transition to the CSA framework.
The CSA framework can be defined as “a strategy to ad-
dress the challenges of climate change and food security
by sustainably increasing productivity, bolstering resilience,
reducing GHG emissions, and enhancing achievement of
national security and development goals™ [5]]. Since its origin
in 2007, the CSA concept has appeared in many forms. The
advent of digital technologies in agriculture has shaped CSA
giving birth to new terms like Smart Agriculture, Digital
Agriculture, and Agriculture 4.0.
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Digital technologies like AI, Robotics, and the IoT are
expected to be game-changers to achieve the CSA objectives.
Digital technologies allow for detailed real-time data analy-
sis. Data are collected by smart sensors, ground robots (Un-
manned Ground Vehicle (UGV)), aerial drones (Unmanned
Aerial System (UAS)), or satellites [|6]. This big amount of
data is analyzed by Al algorithms producing information.
Thus, farmers can make decisions both by exploiting their
in-field experience and data analysis. Digital technologies
have the potential of increasing productivity while decreasing
costs and being more environmentally friendly.

The DAR is a growing trend in the research community
and the private sector. However, there is no general agree-
ment about when the DAR started or about its enabling
technologies. In the scientific literature, authors refer to the
DAR in different ways. Many authors use the term Precision
Agriculture (PA), introduced in the *90s [7]], [8]. Others pre-
fer the more modern terms “Smart Agriculture” or “Digital
Agriculture” [9], [[10]. Most recently, the use of Agriculture
4.0 is becoming commonplace [[11]], [[12]].

In this work, we relied on bibliometrics tools to give a
complete description of the DAR research field’s bound-
aries and dynamics. Bibliometrics is applying quantitative
analysis and statistics to published articles to measure their
impact [13]]. Traditionally, the two main methods for syn-
thesizing past research findings have been the qualitative
approach of a structured literature review and the quantitative
approach of meta-analysis. While the qualitative approach
suffers from the subjective biases of the researchers involved
in the process [14]], bibliometrics is a method to perform a
systematic, objective and reproducible analysis of the sci-
entific activity. This is particularly useful in a fragmented
domain such as that of DAR [15]].

Literature reviews are increasingly becoming important
due to the fast-growing pace of scientific production. Syn-
thesizing the existing knowledge base is crucial for ad-
vancing the line of research. Bibliometric methods become
particularly useful to provide an objective analysis of an
unstructured and large body of information. They can be used
to detect the emerging and trending topics, the most influ-
ential journals/institutions/countries, the principal research
streams, and to show the “big picture” of a research field [[15]].

According to our best knowledge, there are still no liter-
ature reviews that exploited bibliometric analysis for sum-
marizing the entire DAR research field. Existing bibliometric
studies are based on incomplete queries that do not account
for word combinations or lack relevant terms. For instance,
the authors of [[16] made a bibliometric analysis review of
information and communication technologies (ICT) in agri-
culture. However, they limited their research to a subset of
the literature. Also, they did not perform a data preparation
and cleaning phase, which is crucial for identifying relevant
groups of words (topics). Similarly, the authors of [[7], [8]],
focused their query only on the PA field. Other bibliometric
analysis works are focused on more specific themes: in [17]],
the authors did a review about Big Data in agriculture;
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in [[18]] the authors made a bibliometric analysis regarding the
digital technologies for plant phenotyping; in [[19] they did
a bibliometric literature review about the digital agricultural
techniques in the coffee sector; in [20] the authors focused on
the use of UAS in agriculture.

This paper aims to a comprehensive analysis of the DAR
research field with the tools of bibliometrics to answer three
specific research questions:

1) What is the spectrum of the DAR-related terminology?
2) What are the key articles and the most influential
Journals, institutions, and countries?

3) What are the main research streams and the emerging

topics?

By answering the above research question, this paper aims
to provide researchers a comprehensive and objective view of
the DAR research field. It also supports the research process
by identifying potential collaborations, the key journals to
publish on, and giving research directions by identifying the
emerging topics. This paper is also helpful for policy-makers
to have a complete view of the possibilities, advantages, and
challenges associated with the DAR.

The outline of the paper is as follows. In Section [[I, we
present an overview of the DAR related terminology. In
particular, we focused our analysis on the recently emerging
“Agriculture 4.0” term. We summarized the different authors’
opinions about its definition and origin. In Section we
present the methodology and the tools used for the biblio-
metric analysis. We motivated the choice of the publication
database and clarified the data preparation process. In Sec-
tion we present the bibliometric analysis results along
with our interpretation. We grouped the author’s keywords
to obtain the main research streams, and for each one, we
selected and presented some relevant review articles. Finally,
in Section [V} we provide research directions and draw some
conclusions.

Il. DAR TERMINOLOGY AND BOUNDARIES
PA, CSA, Smart Farming, Digital Agriculture, and Agricul-
ture 4.0 are only part of the names used to refer to the DAR.
To make some order, we analyzed the literature employing
the Web of Science (WoS) database. We aimed at figuring
out how these terms’ popularity evolved over the years.

We retrieved from the WoS database the yearly number of
studies in the time-span 1993-2019 (being 1993 the year of
the oldest publication in the database) that contained one or

EEINNT3

more of the following terms: “precision agriculture”, “pre-
cision farming”,*“climate-smart agriculture”, “smart agricul-
ture”, “smart farming”, “intelligent agriculture”, “intelligent
farming”, “digital agriculture”, “digital farming”, “agricul-

ture 4.0”.
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Acronyms
Al Artificial Intelligence
CSA Climate-Smart Agriculture
DAR | Digital Agricultural Revolution
FAO Food and Agriculture Organization
FMIS | Farm Management Information System

GC Global Citations
GHG | Greenhouse Gases

GIS Geographic Information System
GNSS | Global Navigation Satellite System
IF Impact Factor

IoT Internet of Things

JCR Journal Citation Reports

LC Local Citations

ML Machine Learning

NDVI | Normalized Difference Vegetation Index
PA Precision Agriculture

PLF Precision Livestock Farming
RS Remote Sensing

SCR Standard Competition Ranking
SSM | Site-Specific Management
UAS Unmanned Aerial System
UAV | Unmanned Aerial Vehicle
UGV | Unmanned Ground Vehicle
VRT Variable Rate Technology
WoS Web of Science

WSN | Wireless Sensor Network

Figure [I] shows the year-wise smoothed distributions of
the number of studies published between 1993-2019 that
contain each of the terms above. We smoothed the year-wise
distributions by using the R loess() function that is based
on Local regression, a kind of non-parametric regression
model [21]]. In the figure, note that the distribution of the
“Digital Farming” term overlaps that of “Agriculture 4.0”.
Also, the terms “Intelligent Agriculture” and “Intelligent
Farming” have been excluded from the following analysis
since they showed similar year-wise distributions (even if of
a smaller entity) to those of the terms “Smart Agriculture”
and “Smart Farming”, respectively. Indeed, “intelligent” and
“smart” are synonyms, being the latter more used in the DAR
research field.

From Figure [I] it is possible to see that the term PA is
the most used in the literature. PA, “or information-based
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management of agricultural production systems, emerged in
the mid-1980s as a way to apply the right treatment in the
right place at the right time” [22]. PA has been enabled
by technologies such as Global Navigation Satellite System
(GNSS), Geographic Information System (GIS), and micro-
computers. These technologies led to innovations like Vari-
able Rate Technology (VRT) or the auto-guidance systems.

VRT consists in spreading a variable quantity of resources
(water, fertilizers, and pesticides) by considering the soil and
crop variability across the field. The auto-guidance systems
exploit GNSS signal and fields’ maps to compute smart
routes for agricultural machines. Routes are computed to
minimize multiple coverages of the same field area, a well-
known agricultural problem that causes waste of resources.

The first appearance of the term PA in the WoS database
dates back to 1994. However, technology is now only ad-
vanced enough to realize the PA concepts in practice. Thus,
digital technologies are supporting the application of PA
practices. In the scientific literature, PA can also be found
with its synonym Precision Farming.

In Figure[T]it is also possible to recognize a set of trending
terms: “Climate-Smart Agriculture”, “Smart Agriculture”,
and “Smart Farming”. They all saw a rapid increase since
2012, two years after the formalization of the concept of CSA
from the FAO in 2010 [23]]. CSA is one of the five main
research streams that we identified in this study, and it will
be treated in depth in Section [I[V-DI]

The temporal evolution of the terms “Climate-Smart Agri-
culture”, “Smart Agriculture”, and “Smart Farming” suggests
a connection between them since they show a similar year-
wise distribution. We could not find review articles with a
broad perspective on the Smart Agriculture term in the sci-
entific literature. Thus, we relied on articles treating specific
applications to extract the authors’ definitions of the Smart
Agriculture term. From these definitions, it can be stated that
Smart Agriculture shares the same objectives of CSA while
having a focus on digital technologies.

CSA it is a general framework for promoting sustainable
agricultural practices that adapt to climate change. However,
CSA does not specify which are the means for reaching
its objectives. Conversely, the entirety of analyzed studies
regarding “Smart Agriculture” are based on digital tech-
nologies [9-[|12f], [24]]-[27]]. “Smart Agriculture” (or “Smart
Farming”) can be defined as the application of digital tech-
nologies for reaching the CSA objectives.

The term “Digital Agriculture” appeared for the first time
in the WoS database in 2002. Since then, it has only gained
relatively little attention in recent years. From an inspection
of the literature, it can be stated that the terms “Digital
Agriculture” and “Digital Farming” are neither more than
synonyms of “Smart Agriculture”. Again, we could not find
review articles with a broad perspective on the Digital Agri-
culture term, and thus we relied on the definitions found in
specific studies. From an inspection of the literature, it can
be stated that Digital Agriculture, similarly to Smart Agri-
culture, shares the same objectives of CSA while showing a
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FIGURE 1. Yearly smoothed number of studies published in the WoS database from 1993 to 2019 containing the corresponding term.

focus on digital technologies [[12], [28]]-[30].

Finally, the emerging term “Agriculture 4.0” has appeared
for the first time in the WoS database in 2016. Even if
this term’s popularity is still in its infancy, the FAO for-
mally adopted it for the first time in 2020 [31]. Thus, it is
foreseeable that “Agriculture 4.0” will gain more attention
in future years, with a diffusion similar to that of CSA
after its formalization in 2010. Following this reasoning, we
investigated the scientific literature to clarify the brand-new
“Agriculture 4.0” concept.

A. WHAT IS AGRICULTURE 4.0?
In November 2020, the FAO published an article about Agri-
culture 4.0 [31] describing it as “agriculture that integrates a
series of innovations in order to produce agricultural prod-
ucts. These innovations englobe precision farming, IoT and
big data in order to achieve greater production efficiency”.
However, a commonly accepted definition of the term
“Agriculture 4.0” still does not exist. To give the reader a
context and the boundaries of the emerging Agriculture 4.0
concept, we analyzed studies that used this term. We found
45 studies by querying all the WoS database’s indices on the
26th of November 2020. We used “agriculture 4.0” as the
query “Topic” without any filter. Of these 45 studies, 13 did
not explain the term “Agriculture 4.0, 7 were not accessible
by us or duplicated. Thus, we analyzed the remaining 25
studies and collected the explanations the authors gave of
Agriculture 4.0. By summarizing all these explanations, in
the following, we report a description of Agriculture 4.0.
Agriculture 4.0 is a neologism coming from the concept
of Industry 4.0. It is associated with the Digital Agricultural
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Revolution since its pillars are digital technologies such as
Al, Big Data, Cloud Computing, Robotics, IoT, RS, and
the Blockchain [26], [32]. The aim of Agriculture 4.0 is
of optimizing agricultural tasks by reducing inputs (water,
fertilizers, pesticides) [33|] and increasing farms productiv-
ity coping with climate change [26]], [34]. Agriculture 4.0
provides tools to increase the profit margin for farmers and
reduce the risk of environmental contamination.

According to Agriculture 4.0, farmers are assisted by a
Decision Support System that guides them in programming
the treatments [26[, [35]-[38]. They will no longer have
to apply water, fertilizers, and pesticides uniformly across
entire fields. On the contrary, farmers will use the minimum
quantities of resources that the plants require. VRT [39]
enables for precise and targeted spraying of substances with
a centimeter accuracy [40], [41]].

Data are collected in a multi-sensorial way by operating
at different scales, spatial (where) and temporal (when).
Regarding imaging sensors, there is another scale to consider,
that is, spectral (what). Indeed, imaging data can be collected
at different light wavelengths [39]. Sensors are installed in
the fields and on robotics platforms like UGV or Unmanned
Aerial Vehicle (UAV). Satellites data are also employed, and
multiple-source data integration is performed [35].

Agriculture 4.0 stands for the combined internal and ex-
ternal integration of farming operations [35], [42]. Predic-
tion models help to handle better external factors such as
weather conditions, market behaviors, and current trends
in needs [43[]. Moreover, information is collected along
the entire supply chain for integration and traceability pur-
poses [34], [44].
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Agriculture 4.0 envisages the entire value chain, from
the farmer to the distribution, connected via the internet to
coordinate and share information. The value chain’s actors
are connected with a continuous and data-rich communi-
cation thanks to the virtualization of the processes [42].
Physical and virtual objects can interconnect and interact
autonomously [37].

Agriculture 4.0, thanks to wideband connection technol-
ogy and cloud storage, allows a real-time view on the farm
and creates agro-ecosystems of connected farms and machin-
ery [45]], [46]. Agriculture 4.0 brings a new concept of whole-
farm management based on the cross-industry cooperation of
stakeholders, infrastructures, and technologies [37]]. Thus, all
the involved actors can decide even on issues outside their
expertise area [47].

Finally, some authors include in Agriculture 4.0 ad-
vances from other disciplines beyond those related to digital
technologies. These advances are genetic engineering, 3D-
printing-based food supply, meat culturing, vertical farming,
aquaponics, and circular agriculture [36], [47], [48].

B. ORIGINS OF AGRICULTURE 4.0

It is still not completely clear where the term Agriculture 4.0
comes from. It is explained by many authors as an analogy to
the Industry 4.0 revolution [19], [33[], [35], [37], [42], [43,
[45]], [46], [48]-[50]. Indeed, the Industry 4.0 revolution has
been characterized by the automation of traditional industrial
practices by the integration of advanced digital technologies
like the IoT and processes virtualization.

Other authors say that Agriculture 4.0 is a fourth of a
sequence of agricultural revolutions and eras. However, there
are multiple schools of thought (SoT) about this historical
view:

e SoT1 - The Agriculture 1.0 era was labor-intensive and
characterized by animal forces. Simple tools were used
in agricultural activities. The Agriculture 2.0 era orig-
inated with the mechanization process brought by the
combustion engine. Farmworks significantly increased
in productivity and efficiency. The Agriculture 3.0 era
was that of PA, starting when military GPS signals
were made accessible for public use. PA helped reduce
chemicals through innovations like the VRT [26], [32],
[42]].

e SoT2 - The Agriculture 1.0 era was characterized by
motorization. The Agriculture 2.0 era originated from
mechanization. The Agriculture 3.0 era was driven by
humanism and electronics [50].

e SoT3 - The first agricultural revolution was character-
ized by mechanization (Agriculture 1.0), the second
was constituted by the Green Revolution and its genetic
modifications (Agriculture 2.0), and the third agricul-
tural revolution was PA (Agriculture 3.0) [51].

o SoT4 - The first revolution is the transition from hunter-
gathers to settled agriculture (Agriculture 1.0). The
second originated from the innovations of the British
Agricultural Revolution (Agriculture 2.0), and the third
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was characterized by the Green Revolution (Agriculture
3.0) [L1], [48]].

SoT1 seems to be the most supported by researchers based
on the number of studies that reported it. However, it is diffi-
cult to determine which SoT is correct since naming an event
as a revolution is subjective. Also, agriculture did not evolve
in the same way in every part of the globe. Thus, every SoT
can be considered correct apart from SoT4. In this case, the
transition from hunter-gathers to settled agriculture cannot be
considered an agricultural revolution since it is, in fact, the
birth of agriculture. One of the proposed SoT can be used
to explain the origin of the Agriculture 4.0 term. However,
such plurality of different hypotheses suggests that the term
“Agriculture 4.0” is more likely an analogy of Industry 4.0
than the fourth in a series of agricultural revolutions.

C. ETYMOLOGY OF DAR

The term PA first appeared in the literature in the 1990s, and
it is today the most used to refer to the DAR as showed by
Figure [T] In the same Figure, it is also possible to note a
clear rising trend of three terms: CSA, Smart Agriculture, and
Smart Farming. From an inspection of the literature, it is pos-
sible to conclude that Smart Agriculture (and Smart Farming)
is applying digital technologies for reaching CSA objectives.
An inspection of the literature suggests that Digital Agricul-
ture (or Digital Farming) is used interchangeably with Smart
Agriculture without showing any relevant difference.

The term “Agriculture 4.0” has been described by an
FAQ’s publication for the first time in 2020. However, more
contributions are needed to define its definition and bound-
aries clearly. The literature analysis presented in Section [[I-Al
shows that Agriculture 4.0 is similar to the concept of Smart
Agriculture while stressing the beyond-farm information us-
age.

From the description we gave in Section we can
observe that some authors include in Agriculture 4.0 in-
novations from other disciplines beyond those related to
digital innovations. Genetic engineering, 3D-printing-based
food supply, meat culturing, vertical farming, aquaponics,
and circular agriculture are all considered part of Agriculture
4.0. In this perspective, Agriculture 4.0 contains but is not
limited to the DAR. Thus, Agriculture 4.0 could describe a
broader revolution characterized by digital technologies and
disruptive innovations in many fields.

In conclusion, the CSA framework gives a purpose to the
DAR. The DAR is most commonly called PA, but terms like
Smart Agriculture, Smart Farming, Digital Agriculture, and
Digital Farming are becoming commonplace. Agriculture 4.0
is the most recently appeared term. More investigation is
needed to understand if it affirms a new technological and
paradigm shift or just a marketing buzzword reflecting a new
fashion.

lll. MATERIALS AND METHODS
Despite naming conventions, it is undoubted that digital tech-
nologies are revolutionizing traditional agricultural practices
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in a process that we called DAR. The number of contributions
is rapidly increasing over the years. In 2019, studies using the
term PA reached an impressive number of 784 publications.
At such a publication pace, it is not easy to keep track of the
significant advances in the field. Systematic literature reviews
are limited by the human capability of reading and analyzing
studies.

In this framework, bibliometric analysis tools can help
speed up the review process by quantitatively analyzing
publications data. Also, by analyzing a comprehensive set of
publications, bibliometrics helps scientists not miss research
streams outside their actual knowledge. In the DAR research
field, authors use many different terms to refer to the same
concepts. The bibliometric analysis becomes particularly
useful in such a fragmented field.

We adopted bibliometrics tools to discover the key articles,
the most influential sources, institutions, and countries. We
also aimed at highlighting the main research streams and
presenting the main achievements and ongoing challenges.
Finally, we presented the trending topics.

A. MATERIALS

To perform the bibliometric analysis, we used the open-
source bibliometrix R package (version 3.0.4) [15]]. The bib-
liometrix package allows researchers to import a publications
dataset and convert it into R format. The package contains al-
gorithms for analyzing publications datasets with bibliomet-
rics techniques. bibliometrix allows performing co-citation,
coupling, collaboration, co-word, and network analysis. The
unit element of the dataset is a publication. Each publication
has associated several variables: authors, document title,
document type, authors’ keywords, source (publisher name),
cited references, year, times cited, author address, and others.

B. METHODS

A typical bibliometric analysis workflow is composed of
several steps [14]:

o Study design: research questions are defined, and the
proper time span is selected

« Data collection: the publications database is chosen, and
a proper search query is formulated

o Data preparation: the dataset is cleaned and pre-
processed for being analyzed

« Data analysis: the data selected are analyzed with bib-
liometric tools

o Data visualization: the proper visualization method is
chosen

« Interpretation: the visualized results are interpreted

In the following, we enter in more detail about each of the
steps to better understand the choices we have made in our
bibliometrics analysis.

1) Study design
We reported the research questions of this works in Section/I}
The time span chosen is 2012-2019. We chose the year 2012
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as the beginning of the time span because we noticed a clear
growth in usage of DAR related terms since 2012 (Figure [I).
These terms are CSA, Smart Agriculture, and Smart Farming.
In Figure[T]it is also possible to recognize a faster-rising trend
of the terms PA and Precision Farming around the year 2012.
We provide other reasons for the year 2012 as the beginning
of the time span in Section [[V] 2019 was the last year for
retrieving complete bibliographic data when working on this
article.

2) Data collection

There exist many sources of publication data: WoS, Sco-
pus, Dimensions, Crossref, Microsoft Academic, and Google
Scholar are the most common. Publications databases can
be classified along a one-dimensional line that indicates
the intensity of selection policy applied by the database’s
Content Selection Board. In one direction, they lie databases
more focused on selectivity, while in the opposite direction,
they lie databases more focused on comprehensiveness.

The authors of [[52] made a large-scale comparison of the
five most common publications databases, namely, Scopus,
WoS, Dimensions, Crossref, and Microsoft Academic. They
did not include Google Scholar for difficulties in retrieving
large-scale data. Using the results reported in [52]], we plot-
ted the publications databases on a one-dimensional line in
Figure[2] We took a database’s total number of documents as
a proxy of its selection policies’ intensity. Web Of Science
showed to be the most selective while Microsoft Academic
being the more comprehensive. Scopus showed to be still
focused on selectivity but with broader coverage than Web
of Science.

WoS and Scopus are the two most used publication
databases. Indeed, in the past, there were no other alterna-
tives [53]]. However, still today, they retain the best quality
and completeness of the data along different dimensions [52]],
and for this reason, they are the most used for bibliometric
analysis. The choice between the two is not neutral, and it
conditions the final results [[15]]; differences between these
databases are still not completely clear, and they are con-
tested [54].

Some authors showed that Scopus has a general broader
coverage than WoS [52], [55]]. Despite its broader coverage,
Scopus presents some issues. Firstly, Scopus does not pro-
vide pre-processed standardized reference lists as WoS does.
Indeed, Scopus returns the complete references as written on
the documents. It is a significant problem since the same
reference is usually written in different ways in different
documents. Thus, to use them for bibliographic analysis,
they need a complex and error-prone matching procedure.
Moreover, Scopus’s higher coverage (relative to WoS) con-
sists of low citation impact and more nationally oriented
journals or conferences, leading to an over-representation of
geographically-specific or less-influential literature [54]].

For the aforementioned reasons, we collected the data for
this work on the WoS database with the following query:
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« Topic: ((precision OR smart OR digital OR intelligent)
NEAR/1 (agriculture OR farming)) OR “agriculture
4.0”

« Timespan: 1985-2019

+ (Refined by) Languages: English

¢ Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-

S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-
EXPANDED, IC

In this way, we retrieved 7257 documents on the 15th of
December 2020.

The first part of the query contains terms related to the dig-
italization process in agriculture. These terms are connected
with the NEAR/n operator to the second part of the query.
The NEAR/n operator allows searching for terms that are
separated by at most n words. For example, with the oper-
ator NEAR/1, we retrieved results like “Precision Livestock
Farming”. “Precision” must be separated by “Farming” by
no more than one word. The higher n is, the more unrelated
studies are retrieved. After few tests, we found that n=1
was a good compromise between the total number of studies
retrieved and the number of unrelated studies.

3) Data preparation

In general, it is not possible to directly use the data collected
from the publications databases. Most of the time, raw data
need a pre-processing phase before being ready for the analy-
sis. Using data without any cleaning or pre-processing phase
could lead to worthless results. Indeed, the quality of the
results depends on the quality of the data [15]].

The first operation we did was to remove rows containing
missing values in necessary variables. Web of Science data
is already pre-processed and standardized in many fields.
However, the authors’ keywords needed further processing
before use. Indeed, different authors use different keywords
to express the same concept. To solve this problem, we first
performed lemmatization the process of reducing a word to
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its base form); secondly, we matched the acronyms with their
full forms; and lastly, we matched the synonyms.

Finally, we removed the terms used in the query, such
as “Precision Agriculture”, “Smart agriculture”, “Agriculture
4.0”, and all the others, since we wanted to map topics
regardless of what terms the authors use to refer to the DAR.

4) Data analysis

Bibliometrics is an ensemble of many methods: citation anal-
ysis, co-citation analysis, bibliographic coupling, co-author
analysis, co-word analysis. Each method has its pros and
cons, the proper unit of analysis, and specific objectives [14].
Only some of the bibliometrics methods were exploited in
this work, and they are briefly explained.

Some of the analyses are based on citation counts. Cita-
tions are a measure of a publication’s influence. This influ-
ence can be associated with the publication elements such as
source, authors’ institutions, authors’ countries. In this way,
it is possible to find the key articles and the most influential
sources, institutions, and countries. However, newer publica-
tions have less time to be cited. Therefore, citation counts are
biased toward older publications.

When considering a subset of an entire publication
database, citations can be calculated locally or globally.
Local Citations (LC) are computed by only considering citing
articles of the local subset. Global Citations (GC) are com-
puted by considering the citing articles of the entire publi-
cations database (in our case, WoS). In bibliometric studies,
LC are usually preferred since they come from articles of the
same research field. Thus, they are considered more relevant
than GC.

Other impact indicators are based on the number of pub-
lications. It is then possible to build rankings of the most
productive sources, institutions, and countries. However, a
higher number of publications does not necessarily imply
a higher contribution to the research field’s advancement.

7
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Thus, a commonly used citation impact indicator is the
average number of citations per publication of a research unit.
If the research unit is a journal, the indicator is called Impact
Factor (IF).

In this study, we reported the Journal Citation Reports
(JCR) IF computed by Clarivate Analytics. The JCR IF is
a ratio between citations and recent citable items published.
Thus, it is calculated by dividing the number of current year
citations to the source items published in a journal during the
previous two years by the number of publications in those
two years. For example, the 2019 JCR IF of journal X is
calculated by dividing the total number of citations from
2019 articles to 2017-2018 articles of journal X by the total
number of publications in 2017-2018 of journal X.

Beyond the basic impact indicator, we also performed a
collaboration and co-word analysis. Collaboration analysis
is based on publications co-authorships. In our case, we
aimed at mapping collaborations between countries. Thus, if
a couple of a publication’s authors belong to institutions in
different countries, this is considered a collaboration between
those two countries. Co-word analysis, instead, is based on
the co-occurrence of terms in the same publication.

Both collaboration and co-word analyses are based on co-
occurrence network analysis. A co-occurrence network is
represented by a matrix:

B=A"4,

where B is the co-occurrence network matrix, and A is a
binary matrix representing a bipartite network Documents
x Attribute. Attribute equals Author for a collaboration
network and Keyword for a co-word network.

For collaboration networks, the generic element a;; of
matrix A is equal to 1 if document i has been authored by
author j, O otherwise. Instead, the generic element b;; of
matrix B indicates the number of collaborations between
author ¢ and author j. The diagonal element b;; indicates the
number of documents authored or co-authored by researcher
i.

For co-word networks, the generic element a;; of matrix
A is equal to 1 if the document 4 contains keyword j, 0 oth-
erwise. Instead, the generic element b;; of matrix B indicates
the number of co-occurrences of keyword 7 and keyword
7. The diagonal element b;; is the number of documents in
which the keyword ¢ appeared.

Once the network is built, it is clustered by Louvain algo-
rithm [56]]. Louvain clustering is a simple method to extract
the community structure of large networks. It consists of a
greedy optimization of a value called modularity. Modularity
measures the density of links inside communities compared
to links between communities. Once we have clustered the
collaboration network, we can plot it. For co-word analysis,
we plotted the network clusters on a thematic diagram [57].
Clusters are positioned on the diagram based on Callon’s
centrality and density measures [358]. Callon’s centrality
reads as the relative importance of a topic compared to the
others. Callon’s density reads as the development, in terms of

8

numerousness of publications, of a topic. Each of the topics
(or themes) is then classified based on its positioning in one
of the four quadrants composing the thematic diagram:

o Upper-right quadrant - Motor themes: well-developed
and important themes that structure a research field.
They have a high density and centrality.

o Upper-left quadrant - Niche themes: themes that are
well developed but are on the research field’s borders.
They present a high density but low centrality.

o Lower-left quadrant - Emerging or declining themes:
themes characterized by low density and centrality.

o Lower-right quadrant - Basic themes: transversal themes
in the research field but less developed than others.
Basic themes are characterized by low density but high
centrality.

5) Data visualization and interpretation
Data visualization consists of graphically showing the results
of the bibliometric analysis. Depending on the data, many
kinds of visualization can be used: bar plots, line plots, net-
works, diagrams, and others. Once a proper visualization for-
mat is chosen, the results are interpreted by the researchers.
Prior knowledge of the research field is necessary for in-
terpreting the findings. Researchers with in-depth knowledge
have a clear advantage. However, they must not fit their
preconceptions to the bibliometric analysis results, but the
opposite. They should use their prior knowledge to enhance
the findings [14].

IV. DATA ANALYSIS AND INTERPRETATION

In this section, we show the results of the bibliometric anal-
ysis. We made a preliminary analysis of the entire dataset
with the publications in the time span 1985-2019. Since
we identified that DAR related studies began their diffusion
in 2012, we then restricted the analysis to the time span
2012-2019. We first provide some general information about
the data. Afterward, we list the most influential sources
and institutions according to citation impact indicators. We
also list the most cited articles and the most influential
countries in terms of contributions and citation impact. To
further understand the geographical dynamics, we analyzed
the countries’ collaboration network. Finally, we identified
five main research streams, and we give a broad overview of
them by analyzing the key articles for each. We conclude by
presenting the trending topics of the last three years (2017,
2018, and 2019).

A. PRELIMINARY ANALYSIS

Figure (3| shows the year-wise distribution of the number
of publications in the period 1993-2019 (1993 is the year
of the first publication in the dataset). The annual growth
rate was on average 30.5%. We can spot a turning point in
2014 when scientific production started to increase faster.
The application of digital technologies in agriculture likely
opened new research possibilities. In 2019, the DAR annual
scientific production reached the number of 1324 documents.
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FIGURE 3. DAR annual scientific production in the period 1993-2019.

Such a large amount of studies requires the use of algorithmic
bibliometric tools to be analyzed.

To restrict the analysis to a proper time span, we made
a plot of the year-wise frequency of the ten most frequent
authors’ keywords in Figure [] In the figure, it is possible
to recognize three groups of terms. A group of terms began
their diffusion in the *90s; it then reached a plateau, if not a
decline: Spatial Variability, Geostatistic, SSM, Variable Rate
Application, GPS, and GIS. These terms are mostly related
to PA.

Another group of terms began their diffusion around 2012:
IoT, CSA, Machine Learning (ML), and UAS (that began its
diffusion in 2010). Since these technologies and frameworks
are pillars of the DAR, we decided to take the year 2012
as the beginning of our time span (2012-2019). Finally, the
third group of terms began its diffusion before 2010 and
saw new popularity since 2012: RS, Hyperspectral Imaging,
Vegetation Index, and Sensor. The renewed diffusion of these
terms is likely due to the introduction of UAS in agriculture
and on-the-go proximal sensing systems.

B. GENERAL INFORMATION

In Table [T we give some general information about the the
data. The subset 2012-2019 contains 4995 documents from
2152 sources. The publications derive from 15139 authors,
and the average number of authors per document is 3.03.
The average citations per document are 10.03, and the total
number of unique authors’ keywords is 10333.

The percentage composition by document types is illus-
trated in Figure 5] The documents are for most articles
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TABLE 1. General information about the dataset we used in our analysis.

General information about the data

Timespan 2012:2019
Sources (Journals, Books, etc.) 2152
Documents 4995
Authors 15139
Authors per Document 3.03
Average citations per document 10.03
Average citations per year per doc  1.81
References 124277
Authors’ Keywords 10333

(53.59%). It has to be noted the high percentage (36.38%)
of proceedings papers that are characteristic of some research
areas such as computer science. Reviews count for 5.16% and
book chapters for 2.83%.

Figure [6] shows the percentage composition by research
area. Of course, the principal research area is agriculture,
with 27.7% on the total number of documents. The other
main research areas are computer science (21.6%), engineer-
ing (19.4%), remote sensing (9.2%), and telecommunications
(6.1%). It is possible to note a clear prevalence of research
areas related to digital technologies.
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FIGURE 5. Percentage composition by document types of DAR related
publications.

C. MOST INFLUENTIAL SOURCES, INSTITUTIONS,
ARTICLES AND COUNTRIES

Table [2] shows the most influential sources (journals, confer-
ences, books, etc.). We reported the most relevant sources by
the number of documents ranked according to the Standard
Competition Ranking (SCR). In SCR, items that compare
equal receive the same ranking number, and then a gap is left
in the ranking numbers. The first item that does not compare
equal to a sequence of two or more equally ranked items
receives a rank equal to its ordinal position. We also reported
the 2019 JCR IF for journals listed in the same table.
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FIGURE 6. Percentage composition by research area of DAR related
publications.

The top three relevant sources by number of documents are
“Computers and Electronics in Agriculture” (259 documents
- 5.11%), “Precision Agriculture” (143 documents - 2.82%),
and “Sensors” (132 documents - 2.61%). Among the top
twenty relevant sources, the top three 2019 JCR IF sources
are “Geoderma” (4.848), “Remote Sensing” (4.509), and
“Precision Agriculture” (4.454). In Table [2] we also made a
SCR of the most local cited journals. The top three ranked
journals are “Computers and Electronics in Agriculture”
(6290), “Remote Sensing of Environment” (4318), and “Pre-
cision Agriculture” (3739).
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TABLE 2. Most relevant sources ordered according to the Standard Competition Ranking. Each relevant source has associated its 2019 JCR IF. Sources for which
a JCR IF was not available has been given the “NA” value. The most cited sources has been ordered by LC.

SCR by N 2019 SCR by .
Relevant Sources N. of documents %o Most Cited LC
N. of documents JCRIF LC
1 COMPUTERS AND ELECTRONICS IN AGRICULTURE 259 511%  3.858 1 COMPUTERS AND ELECTRONICS IN AGRICULTURE 6290
2 PRECISION AGRICULTURE 143 2.82% 4.454 2 REMOTE SENSING OF ENVIRONMENT 4318
3 SENSORS 132 2.61% 3.275 3 PRECISION AGRICULTURE 3739
4 REMOTE SENSING 122 241%  4.509 4 AGRONOMY JOURNAL 2339
5 PROCEEDINGS OF SPIE 113 223% NA 5 REMOTE SENSING 2119
6 BIOSYSTEMS ENGINEERING 60 1.18%  3.215 6 BIOSYSTEM ENGINEERING 1950
IEEE INTERNATIONAL SYMPOSIUM ON GEOSCIENCE AND
7 55 1.09% NA 7 SENSORS 1802
REMOTE SENSING IGARSS
8 INTERNATIONAL CONFERENCE ON AGRO GEOINFORMATICS 51 1.01% NA 8 GEODERMA 1664
9 GEODERMA 41 0.81%  4.848 9 TRANSACTIONS OF THE ASABE 1514
10 SUSTAINABILITY 40 0.79%  2.576 10 INTERNATIONAL JOURNAL OF REMOTE SENSING 1500
11 TRANSACTIONS OF THE ASABE 38 0.75%  1.156 11 SOIL SCIENCE SOCIETY OF AMERICA JOURNAL 1475
INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY
12 37 0.73% NA 12 FIELD CROPS RESEARCH 1377
REMOTE SENSING AND SPATIAL INFORMATION SCIENCES
13 ENGENHARIA AGRICOLA 36 0.71%  0.603 13 JOURNAL OF DAIRY SCIENCE 1164
14 APPLIED ENGINEERING IN AGRICULTURE 34 0.67%  0.973 14 AGRICULTURAL SYSTEMS 1121
14 IFAC PAPERSONLINE 34 0.67% NA 15 SOIL & TILLAGE RESEARCH 1052
INTERNATIONAL JOURNAL OF AGRICULTURAL AND
14 34 0.67%  1.731 16 AGRICULTURAL WATER MANAGEMENT 989
BIOLOGICAL ENGINEERING
IEEE TRANSACTIONS ON GEOSCIENCE AND
17 AGRICULTURAL SYSTEMS 33 0.65% 4212 17 968
REMOTE SENSING
17 IEEE ACCESS 33 0.65%  3.745 18 AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 888
19 AGRONOMY BASEL 31 0.61%  2.603 19 SCIENCE 877
19 LECTURE NOTES IN COMPUTER SCIENCE 31 0.61% NA 20 PLOS ONE 846

Table [3] shows the most productive institutions. We made
a SCR by ordering institutions according to the number of
published documents. The number of published documents
per institution has been computed with the Organizations-
Enhanced WosS field. Indeed, institutions usually have many
name variants. If these variations are not considered, the
total counts do not reflect an institution’s real productivity.
The Organizations-Enhanced WoS data are computed by
merging the different variations of an institution’s name. The
number of documents of systems of institutions contains the
number of documents of single institutions. For example, the
60 documents from the University of Florida are contained
in the 73 documents from the State University System of
Florida. The top five productive institutions are the “United
States Department of Agriculture USDA” (133 documents),
the “CGIAR” (120 documents), the “Chinese Academy of
Sciences” (103 documents), the ‘“Wageningen University
Research” (93 documents), and the “Consejo Superior de
Investigaciones Cientificas CSIC” (88 documents). CGIAR
is a global partnership of many international organizations,
like the FAO and the World Bank, engaged in food security
research.

Table 4| shows the ten most local cited articles. The first
ranked article is “David J. Mulla, 2013” [6] with 180 LC,
followed by “Wolfert et al., 2017” [9] with 93 LC and
“Bendig et al., 2014 [59] with 58 LC. These three articles
are also the most globally cited. We discuss in detail some of
the articles listed in Table M in the remainder of this section.

The twenty most productive countries are shown in Fig-
ure [/l The country associated with each publication is the
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institution’s country of the corresponding author. A coun-
try’s total number of publications is divided into Single
Country Publications (SCP) and Multiple Country Publica-
tions (MCP). Thus, if a publication’s authors are all of the
same nationality as the corresponding author, this publication
shows as an SCP for that nation; vice versa, it shows as an
MCP. The most productive countries are the USA, with 653
publications (of which 524 SCP and 129 MCP), followed
by China with 621 publications (of which 489 SCP and
132 MCP), and India with 445 publications (of which 403
SCP and 42 MCP). Among these twenty countries, the most
internationally collaborating country is the United Kingdom
with an MCP ratio (MCP/TP, where TP is the total number
of publications) of 0.47, followed by Belgium with an MCP
ratio of 0.41 and Canada with an MCP ratio of 0.36. It has to
be noted that the number of a country’s publications can be
biased towards its population size.

Figure [§] shows the twenty highest cited countries. The
first-ranked country is the USA with 7351 total citations,
followed by Spain with 4821 citations and China with 4402.
Among these twenty countries, the top three for average
article citations are the Netherlands, with 26.6 citations per
article, Finland with 22.5 citations, and Spain with 21.2
citations.

Figure [9] shows a clustered network of countries collabo-
rations in a circular shape. The size of edges is proportional
to the number of collaborations between countries. A collab-
oration between two countries comes from the co-authorship
of two different authors’ countries. The size of the network’s
nodes is proportional to the number of publications of that
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TABLE 3. Most productive institutions in terms of number of publications. The number of documents of systems of institutions contains the number of documents of

single institutions.

SCR by L SCR by -
Organization N. of documents Organization N. of documents

N. documents N. of documents

1 UNITED STATES DEPARTMENT OF AGRICULTURE USDA 133 11 UNIVERSIDADE DE SAO PAULO 57

2 CGIAR 120 12 ALLIANCE 51

3 CHINESE ACADEMY OF SCIENCES 103 13 BEIJING ACADEMY OF AGRICULTURE FORESTRY 50

4 WAGENINGEN UNIVERSITY RESEARCH 93 14 UNIVERSITY OF BONN 49

CONSEJO SUPERIOR DE
5 88 15 INDIAN COUNCIL OF AGRICULTURAL RESEARCH ICAR 48
INVESTIGACIONES CIENTIFICAS CSIC

COMMONWEALTH SCIENTIFIC INDUSTRIAL

6 CHINA AGRICULTURAL UNIVERSITY 86 16 47
RESEARCH ORGANISATION CSIRO

7 STATE UNIVERSITY SYSTEM OF FLORIDA 73 16 INRAE 47
INTERNATIONAL CENTER FOR

8 CONSIGLIO NAZIONALE DELLE RICERCHE CNR 65 18 44
TROPICAL AGRICULTURE CIAT
EMPRESA BRASILEIRA DE PESQUISA

9 UNIVERSITY OF FLORIDA 60 19 43
AGROPECUARIA EMBRAPA

10 UNIVERSITY OF CALIFORNIA SYSTEM 58 19 UNIVERSITY OF NEBRASKA LINCOLN 43

TABLE 4. Most cited articles according to LC counts. LC are those received from articles in our dataset. GC are those received from articles in the entire WoS

database.
SCR by .
Authors(s) Year Title LC GC
LC
X Twenty five years of remote sensing in precision agriculture:
1 David J. Mulla 2013 180 553
Key advances and remaining knowledge gaps
2 Sjaak Wolfert, Lan Ge, Cor Verdouw, Marc-Jeroen Bogaardt 2017  Big Data in Smart Farming — A review 93 350
. . . . e . Estimating Biomass of Barley Using Crop Surface Models (CSMs)
3 Juliane Bendig, Andreas Bolten, Simon Bennertz, Janis Broscheit, Silas Eichfuss, Georg Bareth 2014 58 239
Derived from UAV-Based RGB Imaging
4 Eija Honkavaara, Heikki Saari, Jere Kaivosoja, Ilkka Polonen, 2013 Processing and A of Sp ic, pi 55 4
Teemu Hakala, Paula Litkey, Jussi Mikynen, Liisa Pesonen ) Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture )
5 José Manuel Peiia, Jorge Torres-Sanchez, Ana Isabel de Castro, 2013 Weed Mapping in Early-Season Maize Fields Using 5 163
Maggi Kelly, Francisca Lépez-Granados ) Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images
B . N . . Multi-temporal mapping of the vegetation fraction
6 Jorge Torres-Sdnchez, José Manuel Pefa, Ana Isabel de Castro, Francisca Lépez-Granados 2014 50 173
in early-season wheat fields using images from UAV
. . R . . L - . . Evaluating Multispectral Images and Vegetation Indices for
7 Sebastian Candiago, Fabio Remondino, Michaela De Giglio, Marco Dubbini, Mario Gattelli 2015 49 202
Precision Farming Applications from UAV Images
8 Mare Srbinovska, Cvetan Gavrovski, Vladimir Dimcev, Aleksandra Krkoleva, Vesna Borozan 2015  Environmental parameters monitoring in precision agriculture using wireless sensor networks 48 179
. . Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for
9 Anne-Katrin Mahlein 2016 47 238
Precision Agriculture and Plant Phenotyping
. . . . Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images
10 Jakob Geipel, Johanna Link, Wilhelm Claupein 2014 43 119
and Crop Surface Models Acquired with an Unmanned Aircraft System
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FIGURE 7. Most productive countries in the DAR research field in terms of
number of publications. Each country’s productivity is divided in two parts,
Single Country Publications (SCP) and Multiple Country Publications (MCP).

country. Also, we imposed the number of countries to twenty.
From the network of Figure [9] we can recognize two
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FIGURE 8. Most cited countries in the DAR research field. The number of
citations is the sum of all the GC received by publications of a certain country.

main clusters: a European cluster dominated by Italy, Ger-
many, Spain, and the United Kingdom; a “multi-continent”
cluster dominated by the USA, China, India, and Brazil.
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We also recognize a third minor cluster composed of Iran
and Malaysia with 3 collaborations between them. Likely,
the last cluster will increase in size by imposing a higher
number of countries in the network. The most robust col-
laboration worldwide is between the USA and China with
99 collaborations, followed by the USA and Canada with 39
collaborations and the USA and the United Kingdom with 32
collaborations.

In the European cluster, the most robust collaborations
are between Italy and Germany with 21 collaborations, Italy
and Netherlands with 21 collaborations, followed by Italy
and United Kingdom with 19 collaborations. In the “multi-
continent” cluster, the most robust collaboration is between
the USA and China (99 collaborations), the USA and Canada
(39 collaborations), and the USA and India with 31 collabo-
rations.

D. MAIN RESEARCH STREAMS

In this section, we elaborate on the thematic diagram showed
in Figure [I0] The thematic diagram has been built (as ex-
plained in Section from the clustering of a co-word
network. Each node of the network is an authors’ keyword,
and the degree of an edge is proportional to the number of
co-occurrences of two words (vertices) in publications. Then,
the network has been clustered via the Louvain algorithm,
and we obtained five clusters: CSA, SSM, RS, IoT, and Al
We have attributed the clusters’ names based on the clusters-
related terms. The ten most frequent words associated with
each cluster are reported in Table 5]

In the following, we give a broad overview of each clus-
ter by presenting the most relevant publications. The most
relevant publications are those with the highest Cluster Rele-
vance (C'R) score. The C'R of publication ¢ for cluster j is:

CR;; = LC; x n_matches;;,

where LC; is the number of local citations of publication ¢,
and n_matches;; is the number of common authors’ key-
words between publication ¢ and cluster j related keywords.

We analyzed at least five publications between those with
the highest C'R preferring reviews as document types for
each cluster. We analyzed more publications if we deemed
it was necessary to cover some key aspects that remained
untreated by the five publications selected at first. In the
following, we first present the concept of CSA since its
objectives are shared by the majority of the DAR studies.
Then, we present the SSM cluster since it contains literature
that has been historically developed first. After, we present
the RS and IoT clusters as they are the two motor themes.
Finally, we conclude by presenting the AI cluster that has
been categorized as an emerging theme on the thematic
diagram.

1) Climate-Smart Agriculture

CSA is the set of agricultural practices to adapt to climate
changes, reduce GHG emissions, and promote a sustainable
intensification for food security [60]. These three pillars
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of CSA are usually condensed in the terms adaptation (or
resilience), mitigation, and productivity (sustainable intensi-
fication) [61].

The authors of [61] made a systematic literature review
on the institutional perspectives of CSA. They found that
mitigation of GHG was predominantly addressed in high-
income countries, while adaptation and productivity were
prioritized in middle and low-income countries. Similarly,
in [3], they found that mitigation options were less likely
profitable for smallholder farmers.

CSA has roots in the 2007 Intergovernmental Panel on
Climate Change (IPCC). Indeed, the IPCC (2007) clearly
stated the dual nature of the agricultural sector, that is, being
at the same time a significant contributor to global GHG
emissions and subject to the threats of climate changes. It
became then evident the need for a transition to climate-
friendly agricultural practices. CSA was then formalized in
2010 by the FAO and the World Bank [5].

CSA has received some critiques that remain un-
folded [[62]]. The main critique of CSA is the lack of clear
attributes and performance criteria for an agricultural practice
to be considered part of CSA. Without such clarity, it is
easy for unsustainable practices to be labeled as CSA. In
the literature, this risk is referenced with the term green-
washing [5].

Another concern is that scientists’ attention is centralized
on technological advancement while social, institutional, and
economic issues are poorly considered [5]]. In [62] and [61]]
the authors highlighted that a technology-push approach does
not always lead to the expected outcomes because of un-
derestimating the local context. Thus, they underscored the
importance of a paradigm shift from a technology-oriented
approach to a system-oriented approach.

Also, the DAR could further increase the digital divide
between the different countries and social groups. If not
properly regulated, digital technologies can translate into
the consolidation of power of few companies that own the
data [29]. A literature gap consists in the lack of research
about the synergies and trade-offs among the three CSA
pillars (productivity, adoption, and mitigation) [61]], [63]].

A branch of the CSA research field is dedicated to studying
the barriers and drivers of the adoption of DAR technologies.
In particular, a focus is made on the economic, sociological,
environmental, and entrepreneurial aspects. The most impor-
tant factors influencing the adoption of DAR technologies are
explained in [64].

2) Site-Specific Management

SSM is a topic that lies between declining and basic themes
in the thematic map of Figure [I0] It is interesting to note
that this cluster’s studies use the term PA rather than Smart
or Digital Agriculture. The SSM literature is focused on
spatial variability with particular attention on soil variability.
Typical data analysis tools are those from the field of geo-
statistic. SSM techniques aim to define crop field sub-units
to manage them in a targeted way. Then, field sub-units (or
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TABLE 5. List of the top ten keywords by the number of occurrences for each of the thematic clusters.

1 - Climate-Smart Agriculture ~ Occurences | 2 - Site-Specific Management Occurences | 3 - Remote Sensing Occurences | 4- Internet of Things Occurences | 5 - Artificial Intelligence Occurences
climate - smart agriculture 161 geostatistic 65 unmanned aerial system 367 internet of things 433 machine learning 117
climate change 88 spatial variability 59 remote sensing 205 wireless sensor network 293 precision livestock farming 101
food security 44 variable rate application 52 hyperspectral imaging 117 sensor 133 image processing 83
adaptation 39 geographic information system 50 vegetation index 100 big data 66 deep learning 70
sustainability 30 global positioning system 46 normalized difference vegetation index 80 cloud computing 59 computer vision 59
mitigation 27 management zone 44 multispectral imaging 62 decision support system 57 artificial neural network 50
sustainable agriculture 26 site - specific management 44 leaf area index 46 zigbee 42 convolutional neural network 38
adoption 23 yield mapping 42 plant phenotyping 37 irrigation 40 classification 37
optimization 18 global navigation satellite system 33 nitrogen 33 automation 39 machine vision 37
integrated pest management 17 soil 31 partial least squares regression 26 soil moisture 38 support vector machine 31

Homogeneous Management Zones - HMZ) are handled with
Variable Rate Applications of substances (water, fertilizers,
pesticides). Popular SSM technologies are the GNSS, the
GIS, and yield mapping.

SSM sees its roots in the birth of PA during the mid-
1980s. At that time, two main practices were diffusing. One
of these was “farming by soil”, which consisted of estimating
the field’s spatial variability by analyzing samples from soil
units. At the same time, a practice that we now call SSM was
developing. In SSM, fields are divided into homogeneous
sub-units to receive customized treatments. In the years, SSM
superseded the other practice since it showed the advantages
of a finer sub-units mapping compared to the larger and more
heterogeneous soil units of the “farming by soil” practice [6].

SSM was at first conducted with RS technologies, like
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satellite imaging. The aim was to map the organic matter,
soil phosphorus, and crop yield for defining HMZs. More
recently, sensors are mounted on tractors, UGV, or UAV
to detect soil properties. A breakthrough was brought by
apparent electrical conductivity (EC,) sensors. Apparent
electrical conductivity is a parameter influenced by many
soil physical-chemical properties [65]]. In [66], they found
principal-components groups (consisting of soil properties
and some exchange cations) that explained >50% of the
variability in EC,,.

One of the few SSM studies performed on large-scale
data is that of [67]. The authors analyzed multiple-years
data of 571 fields, from 110 farmers, in eight different USA
states and regarding four different crops (corn, soybean,
wheat, and cotton). They aimed at analyzing spatial patterns
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by correlating yield and four covariates (red band spectral
reflectance, NDVI, plant surface temperature, and historical
yields). In [68]] they obtained higher net income and yields
by reducing the environmental impact in a nitrate vulnerable
zone. They divided a field into three HMZs by merging
multiple data layers with geostatistical algorithms. They also
exploited sand content, Soil Organic Matter, EC,,, and crop
yield maps. The three HMZ were, in turn, divided into two
sub-zones to compare uniform and variable-rate applications.

In [[69], they reviewed the methods for improving Nitrogen
Use Efficiency (NUE). NUE measures plants’ efficiency in
uptaking nitrogen compared to the amount left in the soil or
lost. Worldwide, NUE is relatively low; world cereal crops
have an average NUE of 33%. Reasons for low NUE are
multiple and are explained in [69].

3) Remote Sensing

The RS topic has been categorized as a motor theme in the
thematic map of Figure RS consists of non-contact mea-
surements of the reflected or emitted radiation from agricul-
tural elements like plants or soil. Plants can emit energy in the
form of fluorescence or thermal emission beyond reflected
radiation [6]]. The amount of reflected radiation is inversely
related to the radiation absorbed by plant pigments like
chlorophyll. Consequently, the amount of reflected radiation
in specific wavelengths can be used to compute Vegetation
Indices [6]]. Vegetation Indices (also called Spectral Indices)
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are dozens; a comprehensive list and comparison can be
found in [70].

Vegetation Indices are utilized for assessing plants’ mor-
phometric and physiological parameters. The measuring of
these plant characteristics is called Plant Phenotyping. A
complete review on sensors for Plant Phenotyping and mea-
surable plant characteristics is that of [[71]].

There are different kinds of platforms for carrying RS sen-
sors, such as satellites, UAV, tractors, UGV, and hand-held
sensors. Measurements performed with ground platforms
like tractors, UGV, or hand-held sensors are also known as
Proximal Sensing [6].

The RS platforms and their associated imaging systems
can be differentiated by the platform’s altitude, spatial res-
olution, spectral resolution, and temporal resolution (or min-
imum return frequency). Satellite imaging is among the
first technologies adopted in RS. Many satellites have been
launched since the early 1970s; a list updated till 2013 can be
found in [6]]. The spatial and spectral resolutions of satellite
imaging are of great relevance and depend on the specific
application as explained in [[72].

In recent years we noted a rising trend of works exploiting
Sentinel-2 data. Sentinel-2 are two satellites (Sentinel-2A
and Sentinel-2B) launched by the European Space Agency
for earth observation. These satellites are equipped with
multispectral sensors, including 13 spectral bands, with a
spatial resolution ranging from 10 m to 60 m. In [73] they
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investigated the differences between uniform and variable ni-
trogen fertilization treatments in wheat by computing NDVI
images from two Sentinel-2 spectral bands.

Despite the ease of retrieving data through satellite imag-
ing, there are also some cons. Indeed, satellite imaging is
limited by cloud cover and is most reliable when irradiance
is relatively consistent. Other challenges are the correction
of atmospheric interference and off-nadir view angles, the
geo-rectification of pixels, and the calibration of raw digital
numbers to true surface reflectance [6]].

Given the limitations of satellite imaging, more emphasis
has recently been given to UAS. UAS are also called, or
include, UAV, Remotely Piloted Vehicles (RPV), Remotely
Operated Aircrafts (ROA), or Remotely Controlled Heli-
copters (RC-Helicopters). UAS have higher flexibility than
satellites since they allow higher spatial and temporal resolu-
tions. UAS can reach up to a centimeters accuracy and near
real-time acquisition at relatively low operational costs [[74].

Limitations of UAS are the platform reliability, the limited
sensor payload, and the image processing. Unstable vehicle
positioning makes image processing difficult because of dif-
ferent spatial resolutions and different viewing angles. Also,
the low flight altitude causes geometric distortion. Finally,
aviation regulations are an obstacle that hinders the applica-
tion of UAS.

Alternatives to UAS are ground vehicles such as UGV or
tractors equipped with sensors. They have the same advan-
tages of the UAS of high spatial resolution and real-time
sensing. Moreover, they can carry a heavy payload sensor,
and they are not affected by winds and turbulence. However,
they are affected by unstable movements and vibrations due
to the coarse ground of agricultural fields.

To date, the dominant imaging technologies for RS are
RGB imaging, hyperspectral imaging, and multispectral
imaging. Besides, Synthetic Aperture Radar (SAR) has been
demonstrated to be useful for crop conditions assessment.
The limited diffusion of SAR imaging is probably due to the
costs, timing, and interpretation of the data [74]]. Proximal
Sensing also includes other sensing technologies such as
LiDAR sensors, range cameras, fluorescence sensors, and
thermography. For a thorough explanation, refer to [[71].

In recent years, spectral sensing is gaining new attention
thanks to the growing popularity of UAS systems. Spectral
technology has improved, resulting in smaller and lighter
sensors that can be mounted on UAV platforms. The main
difference between hyperspectral and multispectral technolo-
gies is the number of bands and their width [75]. While
multispectral imaging usually ranges between five to twelve
bands (10-40 nm each), hyperspectral imaging consists of
hundreds of bands arranged in narrowed bandwidth (1-10 nm
each).

Spectral sensing is used for a variety of applications,
including food quality and crop conditions assessment. How-
ever, multispectral data does not enable the reaching of the
same level of detail as hyperspectral sensing. Thus, some
details might pass unnoticeable by multispectral sensors.
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Along with this improvement, hyperspectral sensing also
increases the data processing complexity. Hyperspectral data
can be challenging to analyze in real-time with reduced
computational resources. A review on hyperspectral data
handling pipelines can be found in [75]].

4) Internet of Things

The IoT, together with RS, is another motor theme in the the-
matic diagram of Figure[I0] The IoT has been defined by the
International Telecommunication Union (ITU) -a specialized
agency of the United Nations- as “a global infrastructure for
the information society enabling advanced services by inter-
connecting (physical and virtual) things based on, existing
and evolving, interoperable information and communication
technologies” [76].

A more extended definition is that of Kranenburg [77]]
who defined the IoT as “a dynamic global network infras-
tructure with self-configuring capabilities based on standard
and interoperable communication protocols where physical
and virtual “things” have identities, physical attributes, and
virtual personalities and use intelligent interfaces, and are
seamlessly integrated into the information network, often
communicate data associate with users and their environ-
ments”.

The author of [25] made an in-depth and broad review
on the IoT technologies for agriculture. This review article
explains the many functional blocks composing IoT sys-
tems and the most common hardware platforms and wireless
communication standards. Also, various case studies are
presented.

In [10] the authors developed an IoT system and a related
data analysis pipeline for improving the yield of lime and
homegrown vegetables. They equipped three study fields
with humidity and soil moisture sensors, and they get the
temperature from a web service.

The typical agricultural IoT systems centralize the whole
management in a single controller or computer (at the
farmer’s premises or elsewhere). However, these systems
lack modularity, delocalization, and the flexibility provided
by virtualization. A trending paradigm that is still not widely
adopted in the agricultural IoT is fog and edge computing.
This paradigm consists of improving the system reaction by
moving the computation close to the end devices. The authors
of [24] proposed a three-tier architecture composed of a local,
an edge, and a cloud plane.

IoT sensors communicate most of the time through wire-
less technologies. Multiple interconnected IoT sensors are
called Wireless Sensor Network (WSN). WSN nodes are
battery-powered, and the energy consumption is a major con-
cern in the WSN research field. The state-of-the-art energy-
efficient schemes for agricultural applications are presented
in 78]

The massive amounts of data produced by IoT devices
and other sensing technologies are usually referred to with
the term Big Data. The authors of [9]] made a review of the
state-of-the-art Big Data applications in agriculture. Also,
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they identified the socio-economic challenges to be addressed
related to the use of Big Data.

IoT data are usually collected by a master node and
conveyed to a centralized database. However, single and
centralized databases could be more prone to cyber-attacks,
asynchronous inaccurate data, censorship, data distortion,
and scientific misconduct. An alternative way of storing data
is through blockchain technology. A blockchain is organized
as a linear sequence of small datasets called “blocks”, con-
taining timestamped batches of transactions. The transac-
tion records are distributed across a network of computers
or databases. The blockchain infrastructure is immutable
and decentralized for transparent data management. How-
ever, scalability remains the fundamental problem within
blockchain networks. There exist a trade-off between block
processing time and network propagation [79].

Agricultural Big Data comes from many sources and
requires ad-hoc analytics and management software called
Farm Management Information System (FMIS). FMISs al-
low the integration of spatial and temporal historical data,
real-time farm data, knowledge sources, and economic mod-
els into a coherent management information system [80].
[81]] defined a FMIS “as a planned system for the collecting,
processing, storing and disseminating of data in the form of
information needed to carry out the operations functions of
the farm”.

In [80] the authors analyzed 141 commercial software
packages, and they recognized eleven functions. The au-
thors exploited these eleven functions to group the software
packages into four clusters. Then they compared the main
characteristics of each cluster and highlighted the lacks and
weaknesses.

5) Artificial Intelligence

Al is commonly described as an ensemble of techniques to
make machines mimic humans’ intelligence. Al has been
defined in many ways. However, it is out of the scope of this
paper to give a formal definition of it. In the thematic diagram
of Figure [I0] Al it is certainly an emerging theme instead
of a declining theme. Indeed, Al appeared in the DAR field
only in recent years. Thus, it is still not very well-developed
and central in the DAR literature as other themes. The Al
field is composed of different sub-fields, and in this paper,
we present the ML sub-field since it is the most frequent in
the DAR research field.

ML methods are booming in recent years since they
showed to improve both the speed and accuracy of the data
analysis compared to traditional statistical tools [82]. ML
is used to identify biotic and abiotic stress in crops. Crops
stresses affect the yields, and their early detection leads to
more efficient and effective interventions.

ML algorithms aim is to detect task-relevant patterns in
the data without relying on (sometimes unjustifiable) as-
sumptions. New information can be automatically obtained,
and the algorithms learn in an automated way. This allows
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the patterns detection from data even if the underlying data
model is unknown [82].

Data are usually arranged in matrices where each row is a
sample composed of a certain number of features. A feature
is a measurement of a characteristic of the data sample. For
example, in the DAR field, features could be the spectral
intensity along different wavelengths. Additionally, each el-
ement can be associated with a label. Common agricultural
labels could be discrete like the plant’s health state (e.g.,
healthy or diseased) or continuous like a crop unit yield.

ML methods are used for two main tasks: supervised and
unsupervised learning. In supervised learning, a model is
“trained” with labeled data and then used to predict labels of
new unseen data. In unsupervised tasks, data are unlabeled,
and the task is to find unknown patterns to obtain a new and
more compact representation of the information [82].

The typical ML process is composed of many steps:
data acquisition, data preparation, features selection, model
selection, parameters selection, training, and scoring [83|.
In particular, data acquisition, data preparation, and feature
selection strongly influence the quality of the data. Data with
a high level of noise, errors, outliers, biases may significantly
reduce the model’s prediction accuracy [84].

ML models are many, and the model choice is not unique
and differs with tasks and crops. Typical ML algorithms are
k-means clustering, Support Vector Machines (SVM), Deci-
sion Trees (DT), and (Artificial) Neural Networks ((A)NN).
For detailed information about these methods, refer to the
textbooks [85]-[87].

The authors of [28] made a review of ML applications
in agriculture. In particular, they presented works grouped
into four categories, and they made comparisons between
them. These four categories are crop management, livestock
management (known as Precision Livestock Farming (PLF)),
water management, and soil management. Also, a good
review of ML methods for crop yield and nitrogen status
estimation is that of [84]].

When ML algorithms are used to analyze images, the term
Computer Vision is usually adopted. The authors of [83]]
reviewed agricultural Computer Vision applications related
to disease detection, grain quality, and phenotyping. They
also highlighted the main challenges for each of these tasks.

PLF is seeing a fast diffusion in recent years. PLF has
“the objective to create a management system based on
continuous automatic real-time monitoring and control of the
production/reproduction, animal health and welfare, and the
environmental impact of livestock production” [88]]. Meat de-
mand is increasing worldwide and has been projected growth
of 40% from 2015 to 2030. Major concerns are related to
the transmission of diseases to humans and the uncontrolled
use of antibiotics leading to antibiotic resistance. The use
of digital technologies in livestock production can be just
as beneficial as in crop farming. PLF leads to a range of
applications, from the monitoring of respiratory pathologies
in intensive pig farms to the automatic detection of lame-
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ness problems in dairy cows. PLF applications are reviewed
in [88].

Future trends regarding ML in agriculture foresee a greater
integration of spatial, spectral, and temporal information
with expert knowledge. Also, the integration of different
ML techniques is expected to exploit different methods’
strengths better. Finally, it is foreseeable the integration of
multiple sources of data, from stationary (ground probes,
weather stations) and mobile (UAV, UGV, satellites, tractors)
platforms [84].

6) Trending topics

The trending topics of the last three years (2017, 2018,
2019) are showed in Figure [T} The authors’ keywords are
vertically plotted on the corresponding year line and ordered
by their frequency. For each year are plotted the twenty most
frequent keywords. Each unique keyword in the dataset was
associated with the median year based on the number of times
that keyword has appeared in publications. In the following,
the keywords showed in Figure [IT|are emphasized.

The year 2017 has been characterized by WSN and RS.
Relative to the latter topics, hyperspectral imaging received
much attention. The NDVI showed to be the most common
spectral index adopted and widely used for crop nitrogen
mapping and yield mapping tasks. The use of spectral sensors
in RS gave a renovated attention to the SSM topic.

The year 2018 has been dominated by the /oT, the UAS,
and the concept of CSA. The latter has likely gained much
attention by the Fridays for Future movements related to cli-
mate change and sustainability issues. Other trending topics
of 2018 are the PLF and the Big Data.

The year 2019 has been dominated by Al related topics
like ML, Deep Learning, and Convolutional Neural Network.
There has also been an interest on IoT related topics like the
edge and fog computing concepts and IoT communications
technologies like LoRa, the 5G and LPWAN. Also, it is
interesting to note the presence of the Industry 4.0 term that
is related to concept of Agriculture 4.0.

V. CONCLUSIONS

In the last decade, digital technologies saw a rapid diffusion
in the agricultural research field. Around the year 2012, there
has been a steep increase in the number of publications re-
lated to the DAR themes. The yearly number of publications
passed from about 250 in 2012 to more than 1250 publica-
tions in 2019. We showed how this growth is associated with
the increased popularity of authors’ keywords connected to
the CSA, RS, IoT, UAS, and Al themes.

The concept of PA, which appeared in the literature since
the '90s, is the basis on which other concepts like CSA
and Agriculture 4.0 were built. The PA is the term that
saw the more relevant increase in use (based on the number
of publications) since 2012. This means that most authors
have since now used the term PA to refer to the DAR.
Digital technologies allow (or at least promise) to realize the
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PA concept in practice more efficiently and accurately than
possible in the past.

After the 2007 IPCC, the need for climate-friendly agricul-
tural practices became evident, and the new concept of CSA
saw its birth. CSA expects agricultural practices to adapt to
climate changes, reduce GHG emissions, and be sustainable.
By examining the scientific literature, we realized that the
CSA concept was most realized through digital technologies
and referred to as Digital Agriculture or Smart Agriculture
terms.

Finally, the popularity of the Industry 4.0 concept was
mimicked in the agricultural sector, and in 2016, we saw
the first appearance of the term Agriculture 4.0. Agriculture
4.0 ties together the concepts of PA and CSA, with a strong
focus on digital technologies as tools to realize them. Also,
Agriculture 4.0 focuses on the beyond-farm system, thus
exploiting the information from the entire value chain, from
the farmer to the consumer.

By clustering the authors’ keywords reported on publica-
tions, we mapped five main topics in the DAR literature, that
is, CSA, SSM, RS, IoT, and Al The AI cluster classified
as an emerging theme will likely become a motor theme
in the following years, with high centrality and density in
the DAR literature. Indeed, from the trending topics of the
year 2019, we noted a strong presence of Al-related terms.
Due to the always more incumbent necessity of a climate-
friendly transition, it is also likely that the concept of CSA
will gain centrality in the DAR literature. Instead, the SSM
theme could get less attention in favor of a concept of per-
plant management instead of homogeneous ground zones.
The IoT and RS clusters that have been categorized as motor
themes do not show any sign of getting less central in the
near future. Based on the trending topics, the IoT field will
likely experience a shift to the edge and fog computing
paradigm. At the same time, the use of hyperspectral sensors
will characterize RS in the following years.

This review article presented evidence of an ongoing DAR,
what the DAR means, and where it is heading. However,
some literature gaps are still present. Indeed, no articles
provide an in-depth and broad analysis of Smart Agriculture,
Digital Agriculture, and Agriculture 4.0 topics. Other sources
of information, apart from the scientific literature, could be
used too. Further investigation is needed to understand if the
concepts of Smart Agriculture and Agriculture 4.0 are just a
rebranding of PA or represent positive agricultural practices
changes. Finally, more attention should be paid to develop
objective metrics to prove that DAR technologies can meet
the sustainability requirements and the extent to which digital
technologies enable them.
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