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If the mean colors or color excesses without 
regard to magnitude are taken over successive 
values of esc \ß\ for northern and southern lati- 
tudes separately, they show linear relations with 
esc \ß\. The difference in slope must, in view of 
the present results, be attributed to the greater 
mean z distances of the stars in northern lati- 
tudes, but the difference between the intercepts is 
not compatible with uniform reddening. With 
the present more inclusive observational mater- 
ial, this anomaly still persists. Taking for the 
intrinsic colors of the B2 and earlier stars — .24, 
the median color is found, for esc \ß\ < 12.0, as 

Cm = - .24 + .018 esc \ß\ ß > o, 
Cm = - .24 + .013 esc |ß| ß < o. ^ 

If this is broken up, the percentages having colors 
> Cm are : 

CSC |/S| ß >0 /S<o 
I- 6 41 50 
6-12 57 51 
1-12 50 50 

In order to equalize the percentages for ß > o, 
the constant in the first line of (5) should be de- 
creased to —.26 (which raises the coefficient to 
+ .021), and this reaffirms the very same differ- 
ence in the intercepts found before. The only 
way out seems that it should be ascribed to ir- 
regular absorption which would be expected to 
be more noticeable at the higher latitudes, i.e., 
shorter distances than at lower latitudes, because 
whereas the effect of distance dispersion in- 
creases with esc \ß\, the effect of irregular ab- 
sorption increases only with (esc \ß\)K 
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THE EARTH’S EQUATORIAL RADIUS AND THE DISTANCE OF THE MOON 

By JOHN A. O’KEEFE and 

Introduction. B. Lindblad has remarked that 
geodetic measurements made by the eclipse 
method are sensitive to the assumed value of the 
lunar parallax.1 Hence, an accurate measurement 
of the lunar parallax appeared to be useful, now 
that the eclipse technique is coming into wider 
use. 

The instruments for this program are to be 
described elsewhere by D. D. Mears. It is suffi- 
cient here to say that, with the kind help of 
A. E. Whitford of the University of Wisconsin, 
Mr. Mears constructed a photoelectric system 
for recording the instants of occultation. The 
system was attached to a portable 12-inch Casse- 
grain telescope having an equatorial mounting. 
The output of the photocell was fed to a pen 
oscillograph constructed by the Brush Recorder 
Co. 

It has been thought best to present the theory 
before the observations, in order that the pro- 
gram may be more easily understood, since it 
contains an unfamiliar combination of familiar 
ideas. 

Theory. The theory of the method is a modifi- 
cation of that usual in the calculation of occul- 

J. PAMELIA ANDERSON 

tations. Let 

O-2 = (£ - x)2 + (v - y)2, (1) 

where x, y, £, rj have the meanings given to them 
in the Nautical Almanac, except that they are 
here supposed to be calculated in meters. Spe- 
cifically 

x — p sin (cx( — a*) cos 5^, 

y := ^[sin cos <5* 
— cos ^ sin ô* cos (c^ — a*)], (2) 

where 8^ refer to the moon; a*, 8* to the star; 
and p is the moon’s distance in meters. Instead 
of the expressions in the Nautical Almanac for 
£ and rj, in terms of h, 4>f and p, let us employ a 
system of rectangular coordinates u, v, and w, 
fixed in the earth. The w axis coincides with the 
earth’s mean axis of rotation; the u axis is per- 
pendicular to the w axis and is parallel to the 
plane of the mean astronomical meridian at 
Greenwich; the v axis is perpendicular to the 
other two, and positive toward India in order to 
yield a right-handed coordinate system. For the 
same reason, longitudes, X, are counted eastward 
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from Greenwich. If 0' is the geocentric latitude, 
and p the geocentric radius in meters, 

u = p cos 4>' cos X, 
v = p cos (j)' sin X, 

w = p sin </>. (3) 

It is considerably more practical, however, to 
make use of the radius of curvature v of the 
ellipsoid perpendicular to the meridian, called 
the radius of curvature in the prime vertical, or, 
sometimes, the great normal. In terms of v 

u = (v + h) cos (j> cos X, 
v = (v h) cos (¡> sin X, 

w — [(1 — e2)v + h'] sin </>, (4) 

where h is the height in meters above the ellip- 
soid, and </> is the geodetic latitude. The advan- 
tages of employing v are: 

1. 10-figure tables of v are available.2 

2. The direction of the great normal coincides 
with the vertical, whereas the geocentric radius 
is inclined to the vertical at an angle of about 
iT in middle latitudes. It follows that the effect 
of elevation can be taken into account by adding 
the elevation to the length of the great normal, 
leaving the value of </> unchanged. The value of 
(j)', on the other hand, varies by a significant 
amount with a change in the elevation. 

The absolute values of u, v, and w are uncer- 
tain by several hundred meters, chiefly because 
of uncertainties in the dimensions of the earth. 
On the other hand, differences of u, v, w between 
points in a single triangulation scheme, probably 
have errors of the order of 10 meters. The error 
can be considered as amounting to 5 meters in 
each of the two horizontal directions, due to 
errors in the triangulation,3 and 5 meters in the 
vertical direction, due to errors in the determi- 
nation of the form of the sea-level surface as 
extrapolated under the land. This surface is 
known as the geoid; its form is determined by 
the process known as astronomical leveling.4 The 
measurement of heights above the geoid by the 
process of spirit-leveling may be regarded as 
error-free. 

In considering a section of the geoid such as 
that which underlies the United States, it is 
customary to say that although its form is well- 
known, nevertheless the actual orientation may 
differ from the measured orientation by a tilt, 
either in the north-south direction or in the east- 
west direction. The tilts so described are with 
reference to the center of the earth ; the orienta- 

tion of the given region of the geoid with respect 
to a stellar frame of reference is well-established 
by astronomical observations. It is better to 
say that the direction of the center of the earth 
from the given region of the geoid is not known 
accurately. 

The orientation of the known region of the 
geoid around a vertical axis is fixed by astronomic 
measurements of azimuth, A. Since the Laplace 
equation relating astronomic measurements (sub- 
script A) to geodetic measurements (subscript G), 

sin 0(Xa — Xq) = Ax — Aq (5) 

is used in the adjustment of the U. S. net, it can 
be shown that the orientation of the net is like- 
wise accurate as referred to the stars, within the 
accuracy of measurement. We conclude that for 
all points on 1927 North American datum for 
which geoidal heights are known as well as ordi- 
nary elevations the corrections Aw, Ay, àw to the 
u,v,w coordinates are approximately constant. 

In addition, these three corrections are inde- 
pendent. This would not be true of AX, Ac//, Ap, 
for example; a change of the assumed value of 
Ac/)', keeping the measured lengths the same, 
implies changes of AX which vary from point to 
point, owing to the convergence of the meridians. 

By substituting equations (3) in the Nautical 
Almanac equations for £ and 77, it can easily be 
shown that: 

£ = w sin p* + y cos p*, 

r] — w cos <5* — w sin 5* cos p* 
+ y sin 5* sin p*, (6) 

where p* is the star’s Greenwich hour angle. 
Referring to Eq. (1), we set 

Act = cr — k, (7) 

where k is the moon’s radius in meters. 
We shall now seek an equation of the form : 

Act = b\Nu T -f- bsAw -f- b^Ace^ 
+ bbA8( + beAp + &7A&, (8) 

in which the b’s are coefficients whose expressions 
are found below. In equations of this type for 
the discussion of occultations it is customary to 
let the quantities Au, Ay, etc., represent correc- 
tions to the computed quantities. On the other 
hand, the quantity Aa represents the distance 
measured outward from the calculated position 
of the moon’s limb to the calculated position of 
the star. It has the nature of an error, rather 
than a correction. Thus if we form the coeffi- 
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cients b\, &2, &3, etc. from the equation 

da da 
da = T- du T 77~ dv T ■ * * i 

du dv (9) 

we must notice the minus signs in the equation 

7 do- da 
ôi = - — , 52 = - — , • • • etc. (io) du dv 

Substituting (14) and (16) into (13), we obtain 

Ao- = + ( — sin ju* sin x+sin ô* cos ¿c* cos x)àu 

+ ( — cos /i* sin % — sin 5* sin ¡x* cos x) Ay 

+ ( — cos ô* cos x)Aw + (p cos bi sin x)A^ ( 17) 

+ (^cosx)AÔi-f 
xsinx+^cosx 

A£+A&. 

and similar equations for A£, Ax, etc. We differ- 
entiate (7), keeping (1) in mind, and find, using 
the above fact about the difference of sign: 

Ao- = —     (A£ — Ax) 

—     (Arj — Ay) + Ak. (11) 
a 

Setting 
¿ - x . v - y ...s 
  = sin x,   = COS X, (12) 

a a 

and rearranging 

Ao- = (Ax — A£) sin x 

+ (Ay — Arj) cos x + Ak. (13) 

The plan is now to evaluate Ax, A3;, A£, and Arj 
in terms of Au, Av, Aw, Aa^, Aô^, and Ap. In this 
process, we shall ignore the effect of the errors 
Aa*, Aô*, and Aju*. These errors are probably of 
the order of o''1, or 5 X io-7 radians according 
to the errors in the Zodiacal Catalog. It will be 
seen at once from Eq. (6) in which u, v, and w 
are of the order of 5 X io6 meters that the net 
effect on £ and r] is of the order of a few meters. 
Hence, we may write 

A£ = sin p*Au + cos n*Av, 

Ar] = cos Ô*Aw — sin 8* cos n*Au 
+ sin 5* sin ju*Ay. (14) 

In the Eqs. (2), let us first differentiate, including 
Aa* and Aô*. We find 

x 
Ax = p cos 8AAa<r — Aa*) + - Ap, 

P 

A3; = p (A8( — A8*) + ^ Ap. 
(IS) 

Here, we can get rid of the Aa* and A5* by de- 
fining Aa( and A8( as measured relative to the star 
which is to be occulted. This yields 

Ax = p cos £(rAa!( + - Ap, 
P 

Ay = pAb^ + ^ Ap. 
(16) 

Equation (17) is of the form (8), as sought; the 
Vs may be identified as follows: 

61 = — sin /x* sin x + sin 8* cos /z* cos x» 

bz = — cos /x* sin x — sin 8* sin ju* cos x> 

— cos 8* cos x, 

^cos^sinx, fi8) 

P cos x, 
x sin x y cos x 

P \ 

+ I. 

For a single occultation of a single star ob- 
served at several places, the quantities ¿z*, and 
y vary markedly; the quantities p, 8^, 8* vary 
only slightly. Hence, along a line of constant x> 
the quantity 

U = bzAw + b^Aa^ T b§A8<^ -f- b’jAk (19) 

is a constant, provided that the Aw, Aa^, A8^, and 
Ak can be considered constant. It has been noted 
above that this is a reasonable assumption for 
Aw. It is obvious for Aa^ and A8(, provided that 
the lunar tables are sufficiently accurate. For 
Ak, this condition implies that the lunar radius 
is constant at the point where the occultation 
takes place. If the moon did not librate, this 
could easily be insured by making contact at the 
same position angle at all stations which observe 
a given occultation. This can be done within a 
certain degree of accuracy; for the moment let 
us take Ak also as constant. We thus find, for 
each station at which a lunar occultation is ob- 
served, an equation of the form: 

Ao- = biAu + b2Av + hAp + U. (20) 

Equation (20) can be understood if we con- 
sider the calculated position of the edge of the 
moon’s shadow, as projected on the fundamental 
plane, at the instant of occultation. See Figure 1. 
This line bears a certain resemblance to a line of 
position, as it is used in navigational astronomy. 
From the observation of the occultation at the 
first site, we find the correction to the position 
line, in the direction perpendicular to the edge 
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of the shadow. We do not care about the correc- 
tion in a direction parallel to the edge of the 
shadow, since the other measurements will also 
be made at the position angle %• Thus what might 

Figure I. Relations in the fundamental plane. 

appear to be a problem in 2 unknowns is reduced 
to one. 

Equation (20) expresses rather precisely the 
real situation; we are uncertain about Au, Av, 
and Ap by significant quantities. It is unfortu- 
nately not possible from the present material, 
consisting of only 9 observations on 4 different 
occultations to solve for 7 unknowns, namely, 
Au, Av, Ap, and the 4 values of U. 

It may be shown, however, that each of the 
three physically significant unknowns, namely, 
Au, Av, and Ap is uncertain largely because of 
the uncertainty in the earth’s equatorial radius, 
or more exactly the uncertainty in the position 
of the center of the International Ellipsoid. This 
ellipsoid is taken tangent to the geoid at Meade’s 
Ranch, but its relation to the earth’s center is 
unknown. In the first place, since, according to 
Eq. (4) 

u = (v h) cos <¡> cos X, 

we find by differentiation 

Au — A(v + h) cos 4> cos X 
— (v h) sin </> cos XA0 

— (V +/z) cos </> sin XAX. (21) 

In this equation, in which A</> and AX are 
understood to be in radians, we can reasonably 
estimate their uncertainties as 1/200000. The 
trigonometric functions are each of the order of 
unity. Hence, each of the second terms is likely 
to be less than 30 meters. On the other hand, the 
uncertainty of the earth’s radius, A(v h) which 

111 

appears in the first term, is 300 meters, as judged 
by the difference between the International and 
the Jeffreys ellipsoids; and again the coefficient 
is of the order of unity. 

The difference A(V + h) in turn is largely due 
to the uncertainty in Aa. Since 

v = a(i — e2 sin2 (22) 

by the usual geodetic formula, in which a is the 
length in meters of the earth’s equatorial radius, 
and e is the eccentricity, or, omitting terms of 
the fourth order and higher in e, 

v = a{i + \e2 sin2 0), (23) 
we have 

A(v + h) = Aa(i + \e2 sin2 </>) + Ja sin2 <j)Ae2 

+ ae2 sin </> cos <£A</> + Ah. (24) 

In this equation, the error of Ah, including the 
geoidal height, may be estimated as 5 meters. 
The error Ae2 may be estimated as about 1 part 
in 600 of the value of e2, or about 1 X io~5. 
Hence, the value of Ja sin2 ÿAe2 will be about 
15 meters. The term ae2 sin 4> cos 0A<£ will have 
a value of a few tenths of a meter only. Thus 
the last 3 terms may be ignored, and we may set 

A(v + h)=Aa^. (25) 

We find, substituting in Eq. (21), and neglecting 
the difference between (v + h)/a and v/a, 

Aa / Au = u — — vA\ — u tan <£A0. (26) 

By exactly similar steps, we may establish that 

Aa / x Av = v — + uA\ — v tan <£A</>. (27) 

As pointed out above, it is reasonable to be- 
lieve that the values of Au and Az; are constant 
for the whole U. S. triangulation. Hence, they 
may be evaluated at any point. It is convenient 
to evaluate them at the triangulation station 
Meade’s Ranch, the datum-point for the tri- 
angulation of North America. At this point 

<i> = 39° 13' 26':686 N., X = - 98o 32' 30''506. 
The height may conveniently be taken as zero, 
even though the station itself is at a considerable 
elevation. We thus find 

^0 = — 734 meters, 

flo = — 4 892 974.0 meters. 

From Rice’s study of the deflections of the ver- 
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tical in the United States,5 we find the values: 

A0" = - i?2, AX" = - o'is. 

The value of — o''5 for AX is not explicitly given 
by Rice; it is obtained from his value of —o'!3 
for Arj after allowing for the cosine of the latitude. 
Before substituting these values into Eqs. (26) 
and (27) they must, of course, be reduced to 
radians. The resulting numerical values are : 

Au = — 0.1151 Aa — 14.94 meters, 

Av = — 0.767 Aa — 21.45 meters. 

The correction to the moon’s distance, Ap is 
a function of the correction Aa to the earth’s 
equatorial radius and the correction Att in radians 
to the moon’s parallax, tt, 

a 
sin tt ’ (29) 

Aa a 
Ap = — ; cot ttAtt. 

sin tt sin 7T (30) 

To show that the uncertainty of Att is chiefly due 
to the uncertainty in a, we make use of the 
expressions for the dynamical parallax.6 

Att 
tan tt 

3« 
Aa 

tan tt tan tt 
 Age — r An 

3&e 3n(n - 1) 

(31) 

where ge is the mean equatorial acceleration of 
gravity; n is the reciprocal of the flattening, /, 
and is related to e by the equation : 

— (32) 

and ¡i is the mass of the moon in units of the 
earth’s mass. Substituting numerical values, and 
taking Att in seconds instead of radians, Aa in 
km, and Age in cm/sec2, Lambert6 found 

Att = 0.179 Aa — l.l7Age 

— 0.0130 Atz + 0.170 A (0 • (33) 

Lambert’s reference value tt = 57' 02". 682 corre- 
sponds to 

a = 6 378 388 meters, 

ge = 978-052 gals, 
I 

M = 

n = 297.0. 

Applying the well-known correction of approxi- 
mately 16 milligals, chiefly due to the error of 
the absolute determination of Potsdam, the value 

ge = 978.036 gals 

is accepted. Its uncertainty may be roughly esti- 
mated as 2 milligals ; the effect of the uncertainty 
of the new value on the parallax may be esti- 
mated at o'!002. 

With respect to n, the uncertainty mentioned 
above of 1 X 10-5 in e2 corresponds to an uncer- 
tainty of J unit in n, and hence to an uncertainty 
of o'!ooy in tt. The best value appears to be that 
quoted above. 

With respect to /x, the new value by Spencer 
Jones7 is 

- = 81.27. 

The uncertainty is not greater than 0.05, leading 
to an uncertainty in tt of o'!008. 

The uncertainty of a, on the other hand, is 
about 0.3 kilometers (the difference between the 
International Ellipsoid and the ellipsoid of Jef- 
freys), which leads to an uncertainty in Att of 
o'!o5. Hence, we are justified in ignoring the 
other uncertainties, after making use of the best 
values; and regarding Att as a function of a alone, 
as follows: 

tan tt 7 N 
Att =  ; 77 Aa — 0.025. (34) 

3a sin i " ü 

The constant term in (34) includes a change of 
the reference value from that of Lambert’s paper, 
57' 6'!682, to the value employed as the basis for 
Brown’s Tables of the Moon, 57'2^70. Hence: 

Ap 
2 

3 sin TT 
Aa + 0.7731 

cot 7T 
sin 7T ’ (35) 

Substituting the values of Au, Av, and Ap in 
Eq. (20), we have 

Ao-= ( — 0.1151 Aa — 14.94)01 

+ ( - 0.767 Aa - 21.45)62 

+(rfr;i“+om,S5)i,‘+c,• (36) 

The Eq. (36) will be put in a more compre- 
hensible form if we transpose the quantities 

—14'94 ¿h. 
7 . cot x, -21.45 &2, +0-773I¡777rfr6' 
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to the left-hand side, and regard them as correc- 
tions to Act. Let us denote the corrected value of 
Aa by Aa' ; then 

Aa' = QAa + U, (37) 
where 

0 = — 0.1151 b1 — 0.76762 

, 2 * sin % + :y cos % 
i 3 a • 

Equation (37) is the one finally employed in the 
solution. 

Ephemerides. The ephemerides of the moon 
required for these calculations must be extremely 
precise. The error in the moon’s position, in feet, 
is equal to the error in the ground position of its 
shadow. At the moon’s mean distance, an error 
of o!ooi86 equals 1 meter. Since the Nautical 
Almanac tabulates the moon’s position only to 
the nearest o'f i, a request was placed, through 
the Superintendent of the U. S. Naval Observa- 
tory, for the original values. These are calculated 
at the Greenwich Observatory to the nearest 
o''oi before rounding for publication. The un- 
rounded values, kindly supplied by D. H. Sadler 
of the Greenwich Observatory, were interpolated 
by Aiken’s method to ten-thousandths of a sec- 
ond of arc, using ten values of the argument. 
Of course the ten-thousandths were not correct; 
but the positions so obtained were believed to be 
consistent with each other within a few thou- 
sandths of a second of arc since the longest 
interval in time between occultations of the same 
star was about 17 minutes, whereas the tabular 
interval is 12 hours. As noted in the section on 
theory, an error of the moon’s position which is 
the same at all stations will lead to no first-order 
terms in Aa. 

Recently, under the supervision of W. J. 
Eckert, the Watson Scientific Computing Lab- 
oratory has worked out a procedure, using elec- 
tronic calculators, to obtain a precise lunar 
ephemeris directly from Brown’s theory, bypass- 
ing the Tables. Dr. Eckert and Dr. E. W. Woolard, 
of the U. S. Naval Observatory, have discovered 
that there are sensible discrepancies between 
Brown’s theory and the Tables. Hence, it was 
considered advisable to check the values inter- 
polated from the Greenwich ephemeris by com- 
paring them with the positions from the Watson 
Computing Laboratory. The latter were first 
corrected for nutation and the empirical term of 
Brown. The comparison is shown in Table I. 
The significant columns, so far as celestial lati- 
tudes and longitudes are concerned, are the 
columns headed 6^, b\, giving the failure of the 
constancy of error. The largest value, o''0026, 
corresponds to nearly 5 meters; it is thus fully 
comparable with the errors of the observations 
themselves. 

Librations. The application of the theory of 
librations to the present problem can be greatly 
simplified by considering the problem from a 
point of view situated at the star. From this 
point of view, the optical and the diurnal, or 
topocentric librations can be combined as a 
simple rotation of the moon, with a period of a 
nodical month, around an axis which, in turn, is 
inclined to the ecliptic at an angle of i?75, and 
which precesses around the pole of the ecliptic 
in a period equal to that of one revolution of the 
moon’s nodes. By the Cassini relationship, the 
descending node of the moon’s equator on the 
ecliptic coincides with the ascending node of the 
orbit. Instead of considering the observer’s seleno- 
graphic latitude and longitude, we consider the 
selenographic latitude and longitude of the center 

TABLE I. COMPARISON OF EPHEMERIDES 
Celestial Latitude 

Brown’s Tables A/3^ 5/3 
unit ^oooi 

-4° 47' 19' 
-4 47 39> 
+3 50 45' 
+3 51 2. 
+2 45 31 ■ 
+2 45 37' 
+ 5 13 56. 
+ 5 13 56. 
+ 5 13 56. 

5134 - 839 
5569 - 832 +7 
9237 +2123 
1067 +2123 o 
4709 +1751 
1232 +1755 + 4 
IO8O +I258 
3899 +1265 + 7 
5368 +1276 +18 

1. Antonito, Colo. 
2. Clay Center, Kans. 
3. El Paso, Tex. 

Celestial Longitude 
Brown’s Tables 

264o 52' 38''7i88 
265 2 21.4235 

55 14 3-8855 
55 18 26.5378 
38 46 17-7490 
38 47 29.3913 
96 24 14.2653 
96 28 27.5356 
96 30 51.2846 

4. Seguin, Tex. 
5. Lubbock, Tex. 
6. Alvarado, Tex. 

AAç «X 
unit Toooi 

— II89 
-1215 
+ 494 
+ 485 
+ h 
+ 15 
— 891 
- 873 
- 866 

— 26 

- 9 

+ i 

+ 18 
+ 25 

Parallax 
Brown’s Tables Att/t 

unit .0001 
57' 29-3403 +69 
57 28.8594 +65 -4 
54 20.3305 +10 
54 20.4192 +15 +5 
54 3.0712 +32 
54 3.0668 +32 o 
55 1-5878 +46 
55 I-7695 +46 o 
55 1-8730 +44 -2 

7. Hughson, Calif. 
8. Desert Center, Calif. 
9. Arivoca, Ariz. 
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of the lunar shadow; or better, the coordinates 
of the star, which is diametrically opposite the 
center of the shadow. The star’s selenographic 
latitude varies slowly, owing to the motion of the 
node; the selenographic longitude increases at 
the rate of I revolution per nodical month. 

Since the angular libration, as seen from the 
star, is small in any one series of observations, 
it is sufficient to consider differential librations. 
This permits the neglect of the physical libra- 
tions. It also permits the neglect of the variation 
of the star’s selenographic latitude ; and it permits 
representation of the star’s selenographic longi- 
tude as a simple increase with time in a period 
of one sidereal month, instead of a rotation in 
one nodical month combined with a precession 
with the period of the nodes. 

A further simplification of the problem is 
possible. S. W. Henrikson has proved that the 
angular velocity around the center of the moon’s 
face is the same for all points on the moon’s 
limb, and is given by 

. dx 27T . . 
x = Tt=Tsmh (39) 

where T is the moon’s sidereal period and i is the 
inclination of the moon’s axis to the fundamental 
plane. 

We may regard this as a resolution of the 
moon’s angular velocity along an axis parallel to 
the direction to the star. There is likewise a 
component whose axis lies in the fundamental 
plane, and coincides with the projection of the 
moon’s axis on the fundamental plane. Let us 
call this j and take y as the angle between the 
physical feature of the moon which cuts off the 
star and a plane through the moon’s center par- 
allel to the fundamental plane. If the moon were 
smooth and spherical, 7 would be zero; the limb 
of the moon as seen from the star would be a 
great circle. 

It has been found by trial that it is possible 
and relatively easy to calculate x, and hence to 
follow the variation of x from station to station, 
in such a way that the occultation is always pro- 
duced by the same feature of the limb. On the 
other hand, it is not necessary to take account of 
the variations due to 7. This is because, if the 
distance from the center of the moon to the given 
lunar feature be denoted by &o, and the projec- 
tion of this distance on the plane of the sky be 
denoted by k, then 

k = kn cos 7. 

For a small change Ay in 7, the corresponding 
change in k is 

A& = &o sin 7A7. (40) 

For a value of 0.003 radians, or about ii', for 
Ay and 1 740 000 meters for 

A& = 5500 sin 7 meters. 

Unless sin 7 becomes greater than 0.005, or T 
greater than 17', then the change of k will not 
exceed 30 meters. 

In the original plans for this work, it was 
assumed that the Hayn13 charts of the moon’s 
limb could be used to obtain adequate values 
of 7. Values were determined for peaks which 
appeared, on the Hayn charts, to be isolated. 
These were applied; the results were grossly in 
error. A reexamination of the Hayn charts showed 
that they were based on too few measurements, 
spaced too far apart, to give any assurance that 
the principal crests could be located from them. 
A marked improvement of the residuals resulted 
when the Hayn charts were rejected in toto, and 
a constant value of & of 1 737 987.6 meters was 
adopted. Since the observation sites had been 
chosen in order to obtain certain values of 7, not 
small, the result was totally unexpected. The 
stars must have missed altogether the peaks 
which were chosen; and must have been cut off 
by the relatively level surrounding areas. What- 
ever the explanation, the procedure of ignoring 
the variation of k due to changes of 7 appears to 
work satisfactorily. 

Considerations governing the choice of time and 
place. The tape which records an occultation 
always contains noticeable irregularities in the 
channel which records the starlight. By custom, 
such irregularities are called noise ; they are to be 
contrasted with the drop in deflection produced 
by the occultation, which is called the signal. 
The ratio of signal to noise is obviously a most 
important quantity. If this ratio is very low, the 
signal may be indistinguishable from other tape 
irregularities ; if the drop is barely distinguishable 
the measured time may be adversely affected. 
The signal-to-noise ratio is practically unaffected 
by the amplification which is applied. Since the 
signal for a given star is usually an approximately 
fixed quantity, the signal-to-noise ratio is con- 
trolled by the noise. 

The sources of noise are as follows: 

I. Statistical irregularities in the number of 
electrons leaving the cathode surface due to the 
star’s light. 
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2. The same for the background light due to 
moonlight scattered in the air, in the tube, etc. 

3. Dark current in the photocell. 
4. Scintillation of the star. 
5. Noise produced in higher stages of ampli- 

fication. 

Item i may be evaluated by reference to Kron.8 

From Kron’s figures it can be inferred that an 
Ao star of magnitude 6.0 gives a current 2.5 X 105 

electrons per second. The Fresnel diffraction pat- 
tern at the limb of the moon passes over in a few 
hundredths of a second. In one hundredth of a 
second there will be 2500 electrons coming from 
the cathode; hence the natural uncertainty will 
be 2500^ or 50 electrons, corresponding to an 
error of 2 per cent. For a 9th magnitude star, 
the error is 8 per cent. In both cases, it is 
negligible. 

Item 2 is the most dangerous. Background 
illumination in a one millimeter aperture due to 
the close proximity of the nearly full moon often 
equals that of a star of magnitude 0.5, or one 
million electrons in o?oi. The fluctuation in osoi 
amounts to 1000 electrons, which is equal to the 
total light of a 7th magnitude star. 

Item 3 is nearly always negligible compared to 
Item i or 2, as is Item 5. Item 4, the star scin- 
tillation, is comparable in amplitude with the 
signal. It does not have the effect of masking 
the signal, because in case of violent scintillation 
the tape before the occultation looks very differ- 
ent from the tape after the occultation. It does, 
however, undoubtedly distort the form of the 
drop and thus contributes to the errors of meas- 
urement. The amount of this effect has not been 
analyzed. 

A more serious problem than any of the above 
is the practical problem of retaining the star 
image in the aperture of the diaphragm up to the 
moment of occultation. If the sky is very bright 
the star image will soon become invisible in the 
finder telescope. This may be delayed by using 
a relatively high magnification. After the star is 
lost to view in the finder, it can be followed in 
the field of the main telescope, usually without 
serious difficulty. But when it becomes necessary 
to view the star in a small aperture, other con- 
siderations take hold. The light becomes a small, 
very bright spot on a dark field ; it then becomes 
difficult to distinguish gradations of light and 
dark in the spot. A ring of light is seen at the 
edge of the aperture, due to some physiological 

115 

phenomenon analogous to the Eberhard effect. 
Under the nervous tension, there is a tendency 
to a slight blurring of vision. The star is easily 
lost. 

Evidently, both from the practical and the 
theoretical point of view it is most important to 
reduce the background illumination. Instru- 
mental changes for this purpose fall outside the 
scope of this paper; but the computer must evi- 
dently do his best to choose occultations in such 
a way that the best possible ratio of star light 
to background light is attained. With the equip- 
ment used in these observations, it was usually 
found that occultations were not successful if the 
difference between moon and star exceeded 17.5 
magnitudes. The moon’s brightness can be ob- 
tained from a table,9 remembering that the mag- 
nitude of the full moon is approximately —12. 

Since it is also not possible to work in strong 
twilight, nor when the moon is less than 150 

above the horizon, it follows that we can indicate 
the area on the earth’s surface where an occulta- 
tion can be observed by drawing two large circles 
on the globe. The first, with a radius of 75°, is 
centered on the point opposite the sub-solar 
point. The other, with the same radius, is cen- 
tered on the sub-lunar point. The area common 
to these circles is that in which occultations can 
be observed, provided the moon is not too bright. 
Evidently, the breadth of the area is greatest in 
the tropics. Evidently, also, since only immer- 
sions at the dark limb are easily observed, it will 
be best to work near first quarter. Since, at this 
time, the moon will have a right ascension about 
6h less than the anti-sun, the most favorable time 
for observations in the northern hemisphere is 
when the anti-sun is 3h following the summer 
solstice, and the waxing moon is 3h preceding it; 
i.e., about the first of February. The worst time 
is about the first of August. Since the weather in 
the temperate latitudes in winter is usually 
cloudy, the argument for the application to 
tropical latitudes is reinforced. 

Calculation of the path. The procedure here 
described for the calculation of the path is that 
which was found best after the completion of 
these observations; the procedure actually used 
was very much more complicated, but led to 
approximately the same results. 

The first step is to determine approximately 
for each of the possible days, the moon’s path 
in the sky, as seen from the area proposed, 
throughout the time from twilight to the setting 
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of the moon below 150 altitude. Stars falling 
within 15' of this path should be examined to see 
whether they can be used. At this stage graphi- 
cal methods are best. Having found a likely star, 
a plot is made of the predicted positions of the 
moon’s shadow at several times during the occul- 
tation, and the value of the position angle of 
the occultation is marked off on the trace of the 
shadow of the limb. A line is chosen along which 
the position angle is constant. If possible, the 
northern half of the moon’s limb should be em- 
ployed, since this is smoother than the southern 
half. 

In making the next approximation to the posi- 
tions, it is possible to use the relation of Henrik- 
son to take care of the change of x from station 
to station. Hence one station can be chosen 
arbitrarily, somewhere in the vicinity of the line 
determined graphically. It goes without saying 
that this station should be the one at which it is 
most difficult to satisfy the other conditions such 
as accessibility, availability of survey control 
and the like. For each of the other stations, we 
begin by estimating the time graphically. For 
the estimated time, we calculate x and y; next, 
from relation (39) we calculate the value of x; 
and thence the values of £ and 77. The procedure 
of passing from £, rj to latitude and longitude is 
covered in the standard texts. 

In order to apply this solution to the practical 
problem of fixing on a position for the telescope, 
the field surveyor needs more information. For 
one thing, the time calculated as above is valid 
for points at sea-level ; but for any elevation more 
than a few meters, a correction is needed. Again, 
the point calculated as above may well happen 
to fall in a lake or a marsh, or some inaccessible 
part of the mountains. To find a more convenient 
spot along the chosen path, the surveyor needs 
the azimuth of the path. Once the location has 
been changed, the astronomer will wish to know 
the velocity along the path in order to predict 
the time accurately. 

All of these quantities are easily obtained if 
we obtain the 9 components of the transforma- 
tion from coordinates in the fundamental plane 
to local coordinates near the point. Let us denote 
the direction cosines of a given vector in terms of 
the £, 77, f system (f being perpendicular to the 
fundamental plane and positive toward the star) 
as /1, /2, h, respectively. In the horizontal system, 
let us take ni as positive to the east, n2 positive 
to the north, and positive upward. We desire 
the 9 cosines of the angles between the /-axes 

and the n-axes. These in turn are most easily 
obtained by way of a third system of direction 
cosines, Mi, m2, m3, giving the components along 
the u, v, w axes. The 9 components giving the 
relation of the /’s to the first system of m’s are 
shown in Table II. The first two lines of this 

TABLE II. SYSTEMS OF DIRECTION COSINES 

h 
h 
h 

mi 
+sin ix* 
— sin ó* cos ¡X* 
+cos 8* cos ix* 

m2 
+ COS IX* 
+sin 8* sin ß* 
— cos 8* sin ix* 

im 
O 

+cos 8* 
-j-sin 8* 

m 
mi — sin X 

-feos X 
niz o 

112 
— sin <p cos X 
— sin <p sin X 
-feos <p 

m 
-feos <p cos X 
-feos <p sin X 
-f sin ip 

m 
h Cn 
h C21 
h £31 

C12 
C22 
C32 

£13 
£23 
£33 

table have already been found in equation (6). 
The second system gives the relation between 
the m’s and the ris. The third column of this 
array contains the coefficients used in (4). To 
form the system relating the /’s to the ris it is 
only necessary to combine the two arrays by the 
usual rule for matrix multiplication to form the 
array such as that in the third system of Table II. 

If the height of the station above sea-level is 
h meters, then it is required to make a change 
h/Czz in f, without changing £ or 77. The corre- 
sponding changes in easting (E) and northing 
(N) referred to geodetic north are 

= Cyjii/Czz, AN = Czzh/Czz. (41) 

These are usually converted to latitude and longi- 
tude before being given to the surveyor. The 
velocity of the shadow on the fundamental plane, 
relative to the observer, is 

x' — £' in the h direction, 

y' — r]' in the /2 direction, 

o in the /3 direction, 

in the usual Nautical Almanac notation, but here, 
of course, expressed in meters. In order to cal- 
culate the components of the velocity E' and Nf, 
in the eastward and northward direction, respec- 
tively, it is necessary to invert the matrix whose 
determinant is the minor of C33; i.e., to replace 
each element by its minor, divided by the deter- 
minant and multiplied by — 1 raised to a power 
equal to the number of transpositions required 
to bring the element to the upper left-hand 
corner. It happens that the determinant of the 
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minor of C33 equals C33; hence the end result can 
be expressed as follows : 

£' = 7^ ÍC22(x' - r) - C12(y' 
CSS 

= -Í- 1 -c12(x' - r) + Cn(y' - V)}. 
C33 

(42) 

From (42) the azimuth and speed along the path 
can be deduced immediately. The equations are 
in a handy form for computation. If x' and y' 
are not given in the Almanac, they can be de- 
duced by differencing the values of x, y, obtained 
at the stations, and then dividing by the time 
differences. They are not required to more than 
4 figures. 

The star’s altitude ^ and azimuth A* are 
given, respectively, by 

and 
siniA* = C33, (43) 

tan A* = ~ . (44) 
^32 

The correction made in (41) is applied by the 
office computer and based on a map elevation 
obtained at the estimated position of the site. 
A further small correction, to take up the second 
approximation, is best obtained by specifying 
the displacement AT perpendicular to the path. 
To obtain AT we resolve AÉ and AN from (41) 
perpendicular to the path, as follows: 

AT = KAh, 
where 

TT- CW . C32 . . K = — cos Ap — — sm Ap, 
C33 C33 

Ah being the height correction and Ap being the 
azimuth of the path. The quantity K should be 
supplied to the surveyor. Much trouble will be 
avoided if the path of the chosen lunar feature 
is drawn on a large-scale map, beginning with a 
line of azimuth Av through the calculated initial 
position and then displacing by the amount AT 
on the side toward the star’s calculated position 
at occultation if the assumed height is too small ; 
on the other side if it is too large. The result will 
be an irregular line passing over the terrain, from 
which the site can be chosen with some assurance 
that it will not be seriously changed by the 
survey. 

Reductions. The 9 tapes which form the basis 
of this paper are reproduced in Figures 2 and 3. 
In examining Figures 2 and 3 it will be found 
useful to hold up the page so as to look along 

the graph, in order to see the drops more dis- 
tinctly. It should be noted that the star 996 is 
228 B Aurigae, not previously known to be double ; 
but evidently, on the basis of the last 3 tapes, 
a close double with a separation of about o''05 
at a position angle of 255 °. The other component 
of the separation cannot be determined from 
these measurements. With these figures plus the 
arm corrections and the positions of the stations 
and their heights, it is possible to recalculate 
everything in this paper and verify the results. 
The procedure in measuring the tapes was to 
measure the time of the drop at a point 3^3 of the 
distance between the mean level before the occul- 
tation and the mean level after the occultation. 
Where the point appeared to be in doubt due to 
the irregularity of the curve, a smooth curve was 
drawn free-hand and measurements made to it. 
The difference between the two arms was meas- 
ured at the end of the tape. The cut-off of the 
current provokes a simultaneous movement of 
both arms; this is measured at a point ^3 of the 
way from the level before the cut-off to the level 
after the cut-off. An exception was made in the 
case of Antonito, where the cut-off was measured 
at the level of the time ticks themselves, because 
the tape was not accurately centered in the 
guides; and hence the curved ordinates drawn 
on the tape did not correspond to the actual 
path of the pen. 

Table III summarizes the computation. In the 
first section, the fourth column gives the time as 
read from the tape. The next three columns are 
corrections: (a) taken from the published values 
of the time correction;11 (b) the arm correction; 
(c) the transmission time, calculated from the 
map distance using a value of 300,000 km/sec for 
the velocity of transmission. The sum of these 
corrections applied to the tape time is given in 
the eighth column. The last two columns give, 
respectively, the latitude and longitude on the 
International Ellipsoid. In the central section of 
the table, Column 2 gives the height as obtained 
by the survey party. The levelling was done by 
second-order methods from a first-order level 
point of the U. S. Coast and Geodetic Survey 
level net. The error of this net is probably less 
than 30 cm at every point in the U. S. ; and the 
error of the connection is also less than 30 cm. 
The height so obtained represents the height of 
the terrain above the geoid. The four columns 
of corrections give (d) the height of the geoid 
above the Clarke spheroid of 1866, obtained from 
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Kurman, and XL C arr_ 

THE 8F?GsH DEVELOPMENT" CO. 

BRUSH DE V ELOPME NJ1 CHART NO BL 909_ 

THE BRUSH DEVELOPMENT CC 

Star 2540 observed at Antomto, Colo, on Aug. 31, 1949 by R. Kekoo and D. Molitor 
I9h MSI 

Slot 501 observed at Seguin, Tenas on Fel> 23, 1950 - by W-. Kufoeen -and O Carn - - — 
r*i CST ■ Í ■ 2sh 35"’oe* j i ' - tp ‘ ' ï L ;eeh' “m 091 I ' Z 
J ¿    1 v- 

35 07 

1 1 \1; z ":-rrb . : : : 

Figure 2. Occultation tapes. Upper channel, time by radio (WWV); lower channel, 
photocell output, increasing downward. 

Duerksen’s deflections12 starting from Rayford’s4 

geoidal contours; (e) the height of the Clarke 
spheroid of 1866 above the International, the 
two being assumed tangent at Meade’s Ranch; 
(f) the height of the center of motion of the 
instrument above the ground. At the moment 
of the occultation, the instrument’s declination 
axis is parallel to the x-axis of the fundamental 
plane, since it is perpendicular to the polar axis 

and perpendicular to the direction to the star. 
Hence, the position of the instrument was fully 
taken into account by adding the height of the 
center of motion to the ground height and cor- 
recting the value of £ by the distance from the 
center of motion to the axis of the instrument, 
+ if the telescope is east, — if the telescope is 
west. The fourth correction (g) is the refraction 
height.10 The other columns are self-explanatory 
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Figure 3. Occultation tapes. Upper channel, time by radio (WWV); lower channel, 
photocell output, increasing downward. 
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TABLE III. OBSERVATIONAL AND REDUCTION DATA 

Sta- 
tion Star 

1 
2 
3 
4 
5 
6 
7 
8 

Time Corrections 

254O 
2540 

501 
501 
348 
348 
996 
996 
996 

Date 
1949 Sept, i 
1949 Sept, i 
1950 Feb. 24 
1950 Feb. 24 
1950 Mar. 22 
1950 Mar. 22 
1950 Apr. 23 
1950 Apr. 23 
1950 Apr. 23 

Sta- 
tion 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Surveyed 
Height 

(meters) 
2530-32 
413-44 

III5.12 
178.40 
904.83 
216.45 
37-83 

370.48 
IO99.08 

Station 
1 
2 
3 
4 
5 
6 
7 
8 
9 

(meters) 
I 740 130 
I 740 I47 

740 954 
740 947 
740 068 
740 096 
739 867 
739 860 
739 873 

Tape Time (a) (b) (c) Corrected Time Latitude 
2h50m20?i77 + 0^032 —o?oi2 +o?oo6 2h5om2o?203 36057'24''i37 

7 47-213 
26 16.823 
35 7-449 
20 31-991 
22 57.628 
37 42.441 
45 58.509 
50 40.044 

+ 32 
- 35 
- 35 
— 12 
— 12 

18 
18 

+ 18 

+ 
+ 

+ 

+ 

(d) 
(meters) 
12.80 
4.17 

26.00 
22.00 
18.OI 
20.00 
23.00 
29.00 
30.00 

Height Corrections 
(e) 

(meters) 
— I .00 
— .21 
-3-90 
-3-70 
— 2.01 
-3.00 
-5.60 
-4.70 
— 4.00 

Atr 
(meters) 
2 I42 
2 I59 
2 966 
2 960 
2 081 
2 IO9 
i 879 
I 872 
I 885 

(f) (meters) 
I .28 
I-52 
I .28 
1-52 
1.28 

(g) (meters) 
12.89 
24-99 
6.70 

12.30 
21.00 

I.52 34.OO 
I.28 5.80 
I.28 8.9O 
I.52 I3.50 

A<t' 
(meters) 

2 I34 
2 I46 
2 95I 
2 942 
2 O72 
2 O99 
i 875 
i 865 
i 877 

Longitude W 
106° 3' 5ro23 
96 48 24.974 

106 16 59.842 
o 50.176 

37 54-583 
12 10.453 

120 49 I9.622 
------ _ .   US H 19-455 

8 + ii 4 50 40.065 31 38 39.369 in 32 2.359 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

9 
8 
8 
7 

13 
ii 

7 47-255 
26 16.795 
35 7-'4i6 
20 31.985 
22 57.616 
37 42-479 
45 58-538 

39 22 39.817 
31 40 33-382 
29 36 59-767 
33 9 8.536 
32 19 33-927 
37 34 24.186 
34 3 39-901 

98 
IOI 
97 

Total 
Height 

(meters) 
2556.29 

443-91 
1145.20 
210.52 
943-11 
268.97 
62.31 

404.96 
1140.10 

© 
.226740 
.173032 
.218319 
•179565 
.364183 
.351636 
.409422 
.365826 
.340648 

(meters) 
1076 598 
2148 390 
4815415 
5 303 806 
5 221 126 
5 350 525 
4 488 093 
4 974 602 
5250714 

Coefficient 
of Aa 

—.026854 
+ .026854 
-.019377 
+ .OI9377 
- .OO62735 
+ .OO62735 
-.037457 
+ .OO6139 
+ .O31317 

V (meters) 
5 751 784 
5 672 321 
2 IO4 719 
2 263 376 
2 993 965 
3 050 539 
2 299 570 
2 277 530 
2 265 061 

Constant 
(meters) 
- 6 
+ 6 
+ 5 
- 5 
-14 
+ 14 
+ 3 
- 7 
+ 4 

(meters) 
-536 571 
+534 979 
3 305 044 
3 793 508 
3490415 
3 619 792 
2 800 378 
3 286 960 
3 563105 

Aa 
(meters) 
+ 215 
+ 215 
- 244 
- 244 
+ 2161 
+ 2161 
- 74 
-1143 
+ 136 

y (meters) 
5 099 297 
5 020 389 
i 238 866 
1 397 410 
2 813 744 
2 870 267 
1876 777 
1854 475 
i 841 819 

Residuals 
(meters) 
+ 4 
- 4 
- 6 
+ 6 
+ 13 
-13 
- 5 
+ 7 
— 2 

(a) Adopted correction WWV, (b) Arm correction, (c) Transmission time, (d) Geoid above ellipsoid, (e) Clarke 
1866 above International Ellipsoid, (f) Height of instrument, (g) Refraction height. 

1. Antonito, Colo. 
2. Clay Center, Kans. 
3. El Paso, Tex. 

4. Sequin, Tex. 
5. Lubbock, Tex. 
6. Alvarado, Tex. 

7. Hughson, Calif. 
8. Desert Center, Calif. 
9. Arivoca, Ariz. 

except those referring to Aa and the constant 
term in the third section of the table. 

The solution for Aa was made by least squares, 
utilizing a device of Gauss’s. We wish to obtain 
the value of Aa; the values of U are uninter- 
esting. We therefore sum the 2 or 3 equations for 
each occultation; divide the resulting equation 
through by 2 or 3, and subtract from each of the 
original equations. In effect, we form the mean 
for each term of the equations of condition, and 
write down the deviations from the mean. The 
coefficients of Aa after this reduction are shown 
in column six and the constant term in column 
seven of the third section of the table. 

The resulting values of Aa are written in col- 
umn eight of the third section of the table. Each 
value has a weight which is proportional to the 
square of the coefficient of Aa, on the assumption 
that each equation has the same weight. 

Results. The weighted mean value of Aa is 
+ 60 meters, its mean error is ±169 meters; thus 

the resulting value of a is 

6 378 448 db 169 meters (m.e.). 

The mean error of a single measurement of Act is 

db 11.21 meters. 

The value of tt^ is, from Eq. (40) 

3422''70 + 0.179 X 0.060 — 0.025 = 3422!686. 

It may be considered, however, that in bring- 
ing in these considerations of the dynamical par- 
allax, the radius of the parallel, and the gravity 
corrections at Meade’s Ranch, we have usurped 
the functions of the theoreticians. We therefore 
present the results which are obtained from a 
simpler machinery. Calling the results above 
Solution I, we find Solution II. Ignoring the 
corrections at Meade’s Ranch but retaining the 
dynamical considerations and those of the equa- 
torial radius of the earth, 

a — 6 378 428 =b 166 meters, 

Tr = 3422!682 zb o''o30. 
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Solution III. Ignoring all corrections, and setting 

A<7 = b§kp, 

p = 384 407.6 ± 4.7 km, 

7T = 3422*662 ± O''O42. 

The difference between Solution I and Solution 
II is negligible; the choice is between scrupulous- 
ness and perspicuity. Solution III is markedly 
different from either I or II. This is because we 
have assumed the earth’s form as the Inter- 
national Ellipsoid. The choice between Solution 
III and either I or II will depend on the degree 
of reliance which the reader feels can be placed 
in the International Ellipsoid as describing the 
earth’s figure. 

Discussion. The residuals are unexpectedly 
insensitive to changes in the assumed value of 
the earth’s semi-major axis. Fundamentally, they 
are related to the linear speed of the moon’s 
motion over the earth’s surface. Now if we imag- 
ine the earth’s semi-major axis slightly increased, 
the effect on the linear speed of the moon’s 
shadow on the fundamental plane will not be 
proportional to the increase, but only to the % 
power of the increase. This is because the change 
of the moon’s parallax will partly offset the 
increased semi-major axis in the calculation of 
the distance. When we come to the linear speed 
of the moon’s shadow on the earth’s surface, 
there is another reduction of about 50 per cent, 
since the assumed linear speed of the earth’s 
surface, due to its rotation, is also increased. The 
net result is that the sensitivity of the residuals 
to the value of a is approximately °f what 
was expected when this work was first reported.14 

The sensitivity to the value of the parallax is 
also low, for similar reasons. It follows that even 
with mediocre values of the basic constants it is 
possible to employ the occultation technique for 
geodetic measurements. 

The determination of the earth’s equatorial 
radius here presented, though not of the highest 
precision, has a certain value because it is inde- 
pendent of the deflections of the vertical. The 
calculation of the figure of the earth by extrapo- 
lating measurements of its radius of curvature 
made on land has led to the following dilemma : 

a. On the isostatic assumption, the geoid 
should be systematically lower over the oceans; 
and hence, relatively convex over the continents. 
This assumption leads to the International value 
of the earth’s equatorial radius of 6 378 388 
meters, in round figures. It predicts negative 
anomalies at sea. 

b. The measurements of gravity at sea in sub- 
marines, on the other hand, indicate a slight 
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excess of positive anomalies at sea. This implies 
that the sea-bottom is supported in some manner 
other than hydrostatic equilibrium; i.e., there is 
a direct contradiction of the isostatic assump- 
tion. It leads to Jeffreys’ value of 6 378 097.15 

The measurements here described support the 
isostatic assumption; they have a certain useful- 
ness in this connection because the value of a 
which is found is not dependent on measurements 
of the earth’s radius of curvature; and it is only 
weakly related to any considerations bearing on 
the earth’s gravitational field. 
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