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Abstract

Several methods are available for computing eigenvalues and eigenvectors of large

sparse matrices, but as yet no outstandingly good algorithm is generally known. For

the symmetric matrix case one of the most elegant algorithms theoretically is the

method of minimized iterations developed by Lanczos in 1950. This method reduces

the original matrix to tri-diagonal form from which the eigensystem can easily be

found. The method can be used iteratively, and here the convergence properties and

different possible eigenvalue intervals are first considered assuming infinite precision

computation. Next rounding error analyses are given for the method both with

and without re-orthogonalization. It is shown that the method has been unjustly

neglected, in fact a particular computation algorithm for the method without re-

orthogonalization is shown to have remarkably good error properties. As well as

this the algorithm is very fast and can be programmed to require very little store

compared with other comparable methods, and this suggests that this variant of the

Lanczos process is likely to become an extremely useful algorithm for finding several

extreme eigenvalues, and their eigenvectors if needed, of very large sparse symmetric

matrices.
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Notation

Unless otherwise stated upper case and subscripted lower case Latin letters will repre-

sent matrices and their elements, thus aij is the (i, j) element, and aj the j-th column

of the matrix A. One exception is ej which represents the j-th column of the identity

I. Unsubscripted lower case Latin letters usually represent scalars, as do small Greek

letters. However a Latin letter immediately preceded by δ will represent a small

quantity.

A norm without a subscript always represents the 2-norm.

There are occasional inconsistencies between main sections, for instance early in

the thesis the subscript E is used to represent the Frobenius norm, and an eigenvector

of the tri-diagonal matrix is denoted zi ; yi being used to denote an approximation

to an eigenvector of A. In later sections this E is replaced by F and the roles of zi

and yi are interchanged. This is not likely to lead to any confusion.

For convenience the scalar δi in Section 7 is represented by δ2i in Sections 8, 9,

and 10, as it is known to be non-negative in these later sections.

Whenever δ appears with two subscripts, e.g. δij, it represents the Kronecker

delta.
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Section 1

Introduction

chp:1

1.1 The Problem
sec:1.1

A significant problem in computational linear algebra is finding reliable fast and

accurate methods for computing some or all of the eigenvalues λ1, λ2, . . . , λn of a real

n dimensional square matrix A, along with some of the corresponding eigenvectors.

For matrices that can be wholly stored in the fast store of a digital computer this

problem has been satisfactorily solved (see Wilkinson, 1965) except for a few minor

points, and several excellent computational algorithms are available, particularly in

the ‘Handbook Series on Linear Algebra’ in the journal ‘Numerische Mathematik’.

For larger matrices these same algorithms can be used but obvious difficulties of

speed, storage, and transfer between large slow store and smaller fast store arise.

However a type of large matrix that is regularly encountered in numerical work is

the large sparse matrix which can be fully described in much less than n2 words of

store, in particular those matrices with only relatively few nonzero elements. With

these matrices many of the methods that are satisfactory for small full matrices are

uneconomic and often impossible to apply, and methods that take account of this

sparsity must be sought, tested, and analysed.
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1.2 Special Cases
sec1.2

For some sparse matrices satisfactory algorithms are already available, in particu-

lar matrices with narrow band form have been extensively dealt with. For instance

Rutishauser (1963) and Schwarz (1968) show how the bandwidth of symmetric matri-

ces may be reduced while preserving the band property, and Rutishauser and Schwarz

(1963) give an algorithms for applying the Cholesky LR technique (see Wilkinson,

1965, pp. 544–556) directly to symmetric band matrices. As well as this, inverse

iteration may be used for finding some eigenvectors and even eigenvalues of both sym-

metric and unsymmetric band matrices, excellent algorithms being given by Martin

and Wilkinson (1967). With the above algorithms the band is considered full and

any zero elements within the band cannot generally be taken into account, and so for

very large matrices which are sparse within the band even these algorithms may be

rather uneconomic.

Other partly satisfactory methods are available for matrices of specialized form,

for example Kron’s method of ‘tearing’ large systems (matrices) into subsystems with

very few interconnections (e.g. Simpson and Tabarrok, 1968) can be quite useful in

circuit analysis, while the special forms of matrices arising from the finite difference

replacement of some elliptic partial differential equation problems suggest other meth-

ods of limited application. Although these methods are interesting and sometimes

useful it is more important to have more general methods available, and no time will

be spent on such special cases.

1.3 The General Case
sec:1.3

General methods for the matrix eigenproblem can be roughly divided for present

purposes into methods which alter the matrix in a series of transformations to a more

amenable form, and those methods which work with the original unchanged matrix.
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1.3.1 Transformations of the Matrix

These suffer from the introduction of extra nonzero elements in the intermediate

stages and so most such methods are at present limited for large sparse matrices.

However much work is being done on the solution of large sparse matrix equations

(e.g. IBM Symposium, 1968) (IMA Conference, 1970) and here great advantage can

be taken of sparsity, for instance a matrix A having only 5% nonzero elements may

have a decomposition into lower and upper triangular matrices with a total number

of nonzero elements less than twice that of A, and with careful programming very

little more than these nonzero elements need be stored and used. This immediately

suggests the use of such techniques in inverse iteration for eigenvectors and eigenvalues

of large sparse matrices. Even more exciting is the thought that some direct similarity

transformation methods of reduction to tridiagonal or Hessenberg form may be able to

preserve and take full advantage of sparsity throughout the computation, (Tewarson,

1970). In fact in the discussion at the I.B.M. symposium (1968, p. 163) it was

suggested by Tinney that a technique for using the QR algorithm on sparse matrices

was already being developed. Such an approach thus suggests a possibly very useful

line of research which should definitely be examined, although until thorough rounding

error analyses have been carried out the validity of these methods for either solving

equations or eigenproblems will be in some doubt. Such methods are not considered

here.

1.3.2 Preservation of the Matrix

Methods which leave the matrix unchanged are more immediately appealing and

easily implemented. The basic use of the matrix in these methods is, on being given

a vector v, to form the matrix-vector product Av. Often it is not even necessary

to store the nonzero elements of A, as these can be generated as needed, and all
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that is needed is a simple procedure for forming this matrix-vector product. The

appeal of such methods as regards storage and time per step is obvious, also they

are quite general and in fact such methods are often suitable for finding approximate

eigensolutions of more general linear operators than matrices. For the above reasons

this class of methods was chosen for closer study, but even then the possibilities are so

great as to preclude a detailed study of the whole class. These matrix-vector product

methods can either be essentially iterative in concept, such as the power methods (see

Wilkinson, 1965, p. 570), or designed to produce a simpler matrix having the same

eigenvalues as the original matrix in a finite number of steps, such as the generalized

Hessenberg methods (see Wilkinson, 1965, p. 377).

a) Iterative Methods

The iterative methods are designed to form sequences of vectors converging to

eigenvectors of the matrix A, usually corresponding to extreme eigenvalues of A.

Direct iteration with a single vector is the most familiar of these methods, and here

convergence is hopefully to the eigenvector corresponding to the dominant eigenvalue,

deflation could then possibly be used to find the next dominant pair. The trouble

with this method is that it is slow, restricted to very few extreme eigenvalues, and if

more than one is wanted it is cumbersome and even inaccurate for close eigenvalues.

Useful generalizations of this which iterate with several vectors were developed by F.

L. Bauer in 1957 and 1958, these are treppen-iteration and its orthogonal variant, and

bi-iteration (see, for example, Wilkinson, 1965, pp. 602–614). A very effective method

of accelerating the convergence of this type of technique was examined by Laasonen

(1959) whereby a smaller eigenvalue problem is solved at intermediate stages. Other

work continuing in this direction has been by Jennings (1967), Clint and Jennings

(1970), Rutishauser (1969), and Stewart (1969), and it is clear that this is a very useful

method for finding some extreme eigenvalues and eigenvectors of both symmetric and

unsymmetric matrices with good accuracy in reasonable time. The obvious drawbacks
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of such methods are the uncertainty as to how many vectors will be needed and the

difficulty of storing several vectors for very large matrices. The fact that only extreme

eigenvalues are easily found is rarely a drawback as this is usually what is wanted. It

does however appear that there have been no rounding error analyses of these later

techniques.

b) Methods based on Krylov sequences

The remaining direct matrix-vector product techniques are based on the fact that

if v1 is an arbitrary vector and vi+1 = Avi, then there will be a vector vm+1, m ≤ n,

which is expressible as a linear combination of the preceding vi. Krylov in 1931

based a method on these v1, . . . , vm+1 (see, for example, Wilkinson, 1965, p. 369),

while the generalized Hessenberg processes were attempts at producing more accurate

methods using related sequences. The most elegant of these is the ingenious method

propounded by Lanczos (1950) which is theoretically perhaps the most appealing

of all possible methods for very large sparse matrices. Unfortunately it has certain

practical behaviour which has led to its neglect by numerical analysts over the last

ten years, although quantum chemists and others have found it very useful (e.g. Sebe

and Nachamkin, 1969). In 1957 Engeli, Ginsburg, Rutishauser, and Stiefel (1959)

examined different methods for solution of certain large sparse matrix problems, and

one of these methods, called the cgT - method (conjugate gradient - Tchebycheff),

is the Lanczos method for symmetric matrices applied in effect to the matrix Tm(A)

rather than to A, where Tm(λ) is the Tchebycheff polynomial of the first kind, the

purpose of this being to expand the spectrum at one end of the range. In their very

thorough work Engeli et al. (1959, p. 105) reached the following conclusion –

“For the computation of some eigenvalues at the lower end of the spectrum

of a positive definite, symmetric matrix, of all methods treated here, the

cgT - method is superior to such an extent that the complexity of the

method is fully compensated for and it can by highly recommended.”
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They are of course referring to large sparse matrices.

Because of the beautiful simplicity of the Lanczos method, the work of Engeli et

al., and initial computer runs, it was decided here to examine the Lanczos process in

detail in order that it may be more fully understood and so used with expertise and

confidence.

It will by now be obvious that the reader is expected to have some familiarity with

the comprehensive and authoritative work of Wilkinson (1965), from which much of

the work here has been developed. Many older methods are described in more detail

by Fadeev and Fadeeva (1963), (in this text the Lanczos process is denoted by his

own description as ‘the method of minimal iterations’), while the very concise and

excellent work of Householder (1964) analyzes these methods and others showing

clearly their theoretical interrelations.

1.4 Outline of the Thesis
sec:1.4

The purpose of this thesis will not be to introduce new methods, but to concentrate

mainly on the Lanczos method for real symmetric matrices with the intention of

showing that it has been unjustly discarded and has a lot to offer in practice. Round-

ing error analysis will be the main tool used for this purpose and so Section 2 will

present the necessary theory which will largely be a reiteration of some of Wilkinson’s

work (1963, 1965), but with an additional development and terminology designed to

facilitate the analyses. Comments by Dr. Wilkinson rightly indicated that the error

analysis of the Lanczos process would be no simple matter and so this is approached

indirectly by first analyzing in Section 3 the more straightforward generalized Hes-

senberg processes as described by Wilkinson (1965, pp. 377–378). Sections 4 and 5

then gather together a lot of important theory on the Lanczos process and present

and extend some of the relevant work of Lehmann (1963, 1966). The results of the
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error analysis of the symmetric Lanczos process with re-orthogonalization, and some

practical results showing a definite case for the use of this process in favour of House-

holder’s method for some eigenvalue problems of fairly large matrices are given in

Section 6. Then in Sections 7, 8 and 9 an analysis of the symmetric Lanczos pro-

cess without re-orthogonalization is given in an attempt to explain some remarkable

computational results. Finally Section 10 sums up the more important results of the

thesis.

All the rounding error analyses are believed to be original, as is the small develop-

ment of rounding error analysis technique in Section 2 and the extension of Lehmann’s

work in Section 5. The sensitivity analysis of Hermitian matrices included at the back

of the thesis is also believed to contain several new results. Although this analysis

turned out not to be essential for the remainder of the work it was developed in an

attempt to explain the behaviour of the Lanczos algorithm, and since it contains some

useful results in its own right it is included here.
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Section 2

Rounding Error Analysis

Techniques

chp:2

Since this thesis contains several analyses, the techniques and terminology to be used

will be summarized here along with the analyses of the more basic computations,

such as forming inner products of two vectors. The characteristics of the particular

computer used will then be given.

2.1 Basic Theory
sec:2.1

The analysis will be for computations carried out in normalized floating point base-B

arithmetic on a computer with a double precision accumulator, and the techniques

developed by Wilkinson (1963) will be used. Thus if ∗ denotes any of the four arith-

metic operations + − × /, then a = fl(b ∗ c) will imply a, b and c are floating point

computer numbers and a is obtained from b and c using the appropriate floating point

operation. If the computer numbers have a significand represented by t base-B digits

and a sign, then

fl(b ∗ c) = (b ∗ c)(1 + ε1), |ε1| ≤ u, (2.1) eq:2.1
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where

 u = 1
2
B1−t for rounding by adding,

u = B1−t for chopping and forcing.

Sometimes it will be assumed that a facility is provided for accumulating double

length numbers g and h in double precision, giving a double length number

g(1 + η1) + h(1 + η2), |η1|, |η2| ≤ u′ (2.2) eq:2.2

where

 u′ = 1
2
(B + 1)B−2t for rounding by adding,

u′ = (B + 1)B−2t for chopping and forcing,

while the notation fl2(g + h + . . .) will apply when several such numbers are accu-

mulated in double precision and then rounded to single length.

2.2 A Simplified Notation
sec:2.2

The analyses will involve many products and quotients of factors (1+εi) like the one in

(2.1), and to prevent the analyses and the equations from becoming too cumbersome

a new notation and the rules for its use in the error analyses will be introduced, based

on the following theorem.

thm:2.1 Theorem 2.1.

1− (p+ q)u ≤
∏p

i=1(1 + εi)∏q
i=1(1 + ε′i)

≤ 1 + 1.01(p+ q)u

where |εi|, |ε′i| ≤ u, 0 ≤ u ≤ 0.001, and p and q are non-negative integers such that

(p+ q)u ≤ 0.01.

Proof. Following Forsythe and Moler (1967, p. 91)

1− pu ≤ (1− u)p.
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Now

(1− u)(1 + u) ≤ 1

so

1− pu ≤ (1− u)p ≤ 1

(1 + u)p
.

Next since 1 + u ≤ eu, and ey ≤ 1 + 1.006y for 0 ≤ y ≤ .01, it follows that (1 + u)p ≤

epu ≤ 1 + 1.006pu. Then (1 − u)p/(1 + u)q ≥ (1 − pu)(1 − qu) ≥ 1 − (p + q)u, and

since u ≤ 0.001

(1 + u)p

(1− u)q
=

(1 + u)p+q

(1− u2)q
≤ (1 + u)p+q

1− qu2
= (1 + u)p+q

(
1 +

qu2

1− qu2

)
≤ [1 + 1.006(p+ q)u][1 + 0.0011qu]

≤ 1 + 1.01(p+ q)u,

and the result follows.

It will be assumed in all that follows that the limitations imposed for the theorem

are observed, since that on the unit error u in (2.1) will ordinarily be observed, while

the constraint involving p, q, and u still allows the consideration of extremely large

matrices on modern computers. With this result the analyses can be considerably

simplified by using the following notational convention.

Convention: in these analyses unless otherwise indicated α, ε, ζ and η (always without

subscripts) will represent real numbers satisfying

|α− 1| ≤ u, |ε| ≤ (1.01)u,

|ζ − 1| ≤ u′ |η| ≤ (1.01)u′,

 (2.3) eq:2.3

where u and u′ are constants for the particular computer, as given in (2.1) and (2.2).

D(α) etc. will represent diagonal matrices whose (not necessarily equal) elements

satisfy the above bounds. Thus if |εi| ≤ u there exists a value α such that

|α− 1| ≤ u,

p∏
i=1

(1 + εi) = αp,
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and such product terms will conveniently be represented by this power notation. Now

since any one of these Greek letters may appear several times in the one equation

representing different numbers, it will be necessary to specify clearly the possible

rules for their manipulation. From (2.3) and Theorem 2.1 it will be obvious that if

p, q ≥ 0 are integers such that (p+ q)u ≤ 0.01 and x, y and z are real numbers then

the following hold

αp · αq = αp+q

x = α(y + z)⇒ x = αy + αz

x = (αp/αq)y

x = αp · αqy

⇒ x = [1 + (p+ q)ε]y = y + (p+ q)εy

where |εy| ≤ (1.01)u|y|,


(2.4) eq:2.4

and the same sort of rules hold for ζ and η.

Note that the implications are not necessarily true in reverse since for example

the α’s in αy + αz may be different. Note also that since the analyses will always go

from expressions involving α’s to those involving ε’s and finally to bounds involving

u, it will be notationally convenient to replace αp/αq by αp+q, the possible small error

so induced disappearing when this is replaced by [1+(p+q)ε]. Finally whenever α, ε,

ζ, or η appear on the right hand side of an inequality they will represent their upper

bounds, that is 1 + u, (1.01)u, 1 + u′, and (1.01)u′ respectively.

2.3 Analyses of some Basic Computations
sec:2.3

Vector inner-products will frequently be required so, using the notational convention,

if v and w are n dimensional computer vectors with components vi, wi, i = 1, 2, . . . , n,
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then

fl(vTw) = v1w1α
n +

n∑
i=2

viwiα
n+2−i

= vTD(αn)w

= vTD(1 + nε)w

= vTw + nε|vT ||w|,

while fl(vTv) = αnvTv,


(2.5) eq:2.5

and for double length accumulation of vector inner-products

fl2(v
Tw) =

(
v1w1ζ

n−1 +
n∑
i=2

viwiζ
n+1−i

)
α

= αvTw + α(n− 1)η|vT ||w|

= αζn−1vTv, if w = v.

 (2.6) eq:2.6

The basic computation involved in the methods to be studied is the product of

a large sparse n by n matrix A with a vector. Suppose A has at most m non-zero

elements per row, then following (2.5)

fl(Av) = (A+ δA)v (2.7) eq:2.7

where

|δA| ≤ mε|A|.

Now ‖δA‖2 ≤ ‖|δA|‖2 ≤ mε‖|A|‖2 ≤ mε‖A‖E, but since for many large sparse

matrices ‖A‖E is a gross over-bound for ‖|A|‖2, it will be assumed that

‖|A|‖2 = β‖A‖2

so that

‖δA‖2 ≤ mεβ‖A‖2 (2.9) eq:2.8

where a bound can be found on β; clearly β ≤ n
1
2 .
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2.4 The Atlas Computer & Timing of Algorithms
sec:2.4

The computer used in all the computations here is an I.C.T. Atlas computer, this is a

floating point 13 bit octal machine with a double precision accumulator and rounding

by forcing for single precision. For double precision accumulation both forcing and

chopping are used. Thus in (2.1) and (2.2)

B = 8, t = 13

u = 8−12 = 2−36
.
= 10−10.84

u′ = 9× 8−26

so that the computer stores at least ten decimal figures of a number accurately.

Nearly every multiplication in a matrix algorithm is accompanied by an addition,

and vice versa, and so in order to compare algorithms an ‘operation count’ will be

defined as the number of multiplications with additions in the algorithm. s will

denote the time in microseconds for adding the single-length product of two single-

length numbers to a single-length number, while d will denote the time for adding

the double-length product of two single-length numbers to a double-length number.

For a computer with a double-precision accumulator d will be fairly reasonable as the

double-length product will be already available and the addition is simplified too.

On Atlas the operation c := c+a×b, all in single-length, can be roughly described

as follows (I.C.T. ABL Manual, 1965; and Fairbourn, 1965)

Accumulator Code Approximate Time µ Sec Function

324 2 acc:= a

362 7 acc:= acc×b

320 2 acc:= acc+c

356 2 c:= acc

so that s = 13µ sec. If c represents a double-length number then one way of perform-

ing the double-length addition of the product of the single-length numbers a and b
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may be roughly described as

Code or Extracode Approximate Time µ Sec Function

324 2 acc:= a

342 7 acc:= acc×b

1500 29 acc:= acc+c

1556 10 c:= acc

so that d = 48 µSec. In fact if
∑n

i=1 aibi is to be accumulated in double-length then

an even faster means, extracode 1437, is available. This last takes about 30n µSec

for the complete inner-product, compared with 13n µSec for ordinary single-length

accumulation, so that at the worst d < 4s while d < 21
2
s is possible.
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Section 3

The Generalized Hessenberg

Processes

chp:3

Although the main purpose of this work will be to examine the Lanczos process for

the symmetric matrix eigenproblem, this may be classified as one of the generalized

Hessenberg processes (see, for example, Wilkinson, 1965, pp. 377–395) and it will

be advantageous to examine these processes as a group. Later in this section it will

be shown how the Lanczos process differs significantly in its application from the

other generalized Hessenberg processes, and while this difference makes the former

more important for large sparse matrices it unfortunately makes the error analysis of

the Lanczos process substantially more difficult. The error analyses do have a lot in

common and so an error analysis for the generalized Hessenberg processes other than

the Lanczos process will be developed both for its own particular interest and as a

step towards the analysis of the Lanczos process.
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3.1 Basic Theory
sec:3.1

Given an n by n matrix A, each of the generalized Hessenberg processes requires a

set of linearly independent vectors, w1, w2, . . . , wn and an arbitrary starting vector

v1, and forms a series of vectors vj satisfying

hj+1,jvj+1 = Avj −
j∑
i=1

hijvi, j = 1, 2, . . . , k0, (3.1) eq:3.1

where the scalars hij, i = 1, 2, . . . , j, have been chosen so that vj+1 is orthogonal to

w1, w2, . . . , wj,

h1j = wT1 Avj/w
T
1 v1,

hij =
(
wTi Avj −

∑i−1
r=1 hrjw

T
i vr

)
/wTi vi, i = 2, 3, . . . , j,

 (3.2) eq:3.2

and hj+1,j is an arbitrary normalizing factor.

Only k0 steps are indicated as the theoretical process can be considered complete

for the first vector vk0+1 = 0. Clearly k0 ≤ n otherwise there would be a non-zero

vector orthogonal to n linearly independent vectors wi. If

wTi vi = 0, i ≤ k0 (3.3) eq:3.3

then (3.2) is of no use, the method breaks down, and a new initial vector v1 must be

chosen. It will be assumed that this does not occur.

To examine the situation after k ≤ k0 steps the two n by k matrices V =

[v1, v2, . . . , vk] and W = [w1, w2, . . . , wk] can be considered, then

W TV = L (3.4) eq:3.4

where L is a non-singular k by k lower triangular matrix so that V has linearly

independent columns.

The matrix form of the set of equations (3.1) is

AV = V H + E (3.5) eq:3.5
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where E = [0, . . . , 0, vk+1hk+1,k] and H is the k by k upper Hessenberg matrix of

elements hij. In particular if k = k0 then E is the null matrix and to every eigenvalue

µ of H with eigenvector z there corresponds an eigenvalue µ of A with eigenvector

V z. The problem of finding the (partial) eigensolution of A has then been reduced

to that of finding the eigensolution for the Hessenberg matrix H. The extension of

the process to the complete eigensolution of A if k0 < n is straightforward (see, for

example, Wilkinson, 1965, p. 378) and need not be repeated here.

The different members of the class of generalized Hessenberg methods depend on

the choice of the linearly independent vectors wi; for example in his own method

Hessenberg chose wi = ei, the ith column of the identity matrix. Another choice is

wi = vi which is the method of Arnoldi (1951), while if the wi are derived from AT

in the same way as the vi are derived from A then this is the Lanczos process (1950).

Only the symmetric variant of the Lanczos process will be considered in this thesis,

and this has AT = A so again wi = vi making it theoretically equivalent to Arnoldi’s

method for a symmetric matrix. Now from (3.4), for these two methods

V TV = L,

which must be diagonal since it is both lower triangular and symmetric. That is the

vi form an orthogonal set and from (3.5)

V TAV = V TV H + V TE = LH, (3.6) eq:3.6

which is symmetric and of Hessenberg form, so that H is tri-diagonal and (3.1)

becomes a three term recurrence relation. It is the tremendous saving in computation

produced by this simple recurrence with only two coefficients hjj and hj−1,j to be

computed at each step that makes the Lanczos process so fast for very large sparse

matrices. As well as this only the two previous vectors need be held in the fast store

at each step and the resulting matrix H is an easy to handle tri-diagonal matrix.
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Unfortunately when rounding errors are present the vectors vi will not necessarily

form an orthogonal set and the computation using the full expansions (3.1) and (3.2)

with wi = vi will give a significantly different result from that using

hj+1,jvj+1 = Avj − hjjvj − hj−1,jvj−1
with hjj = vTj Avj/v

T
j vj, hj−1,j = vTj−1Avj/v

T
j−1vj−1.

 (3.7) eq:3.7

For convenience the former method will be referred to as Arnoldi’s method, the latter

being of course Lanczos’ method. Because the Lanczos method assumes the omitted

terms are zero, it turns out that the error analysis is in fact more difficult than that

of the other generalized Hessenberg processes. Here an analysis will be given for the

process described by (3.1) and (3.2) where nothing will be assumed of the wi other

than linear independence; this analysis, with slight modifications, will then hold for

all these methods apart from that of Lanczos. This will be a stepping stone to the

more difficult analysis and will also provide familiarity with the notational ‘shorthand’

introduced in Section 2.

3.2 Error Analysis
sec:3.2

The computation in the j-th step can be considered in three parts – computing Avj,

calculating the hij for i = 1, 2, . . . , j, and forming and normalizing the next vector

vj+1. The same notation will be used for computed components as was used in

Section 3.1, as at no stage will a comparison of computed and theoretical components

be needed.

With the assumptions made in Section 2 it follows from (2.7) and (2.9) that

fl(Avj) = (A+ δAj)vj, ‖δAj‖2 ≤ mβε‖A‖2. (3.8) eq:3.8

Ordinary fl arithmetic will be assumed for the formation of vector inner-products,

although the analysis using fl2 is no more difficult and is given by Paige (1969a). The
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computation of (3.2) is not fully defined until the order of operations is given, and it

will always be assumed that such right hand sides are evaluated from left to right and

with the index increasing in the sum, then with the notation introduced in Section

2.2 and using (2.5),

h1j =
αwT1D(αn)(A+ δAj)vj

wT1D(αn)v1

or wT1D(αn)(A+ δAj)vj = h1jw
T
1D(αn+1)v1

remembering that the α’s are not necessarily equal, that D(αn) is a diagonal matrix

with different elements all of which may be represented by αn, and that 1/α may be

represented by α at this stage and vice versa. Now replacing D(αn) by D(1 +nε) etc.

gives

wT1 Avj − h1jwT1 v1 = f1j, (3.9) eq:3.9

with f1j satisfying

f1j = (n+ 1)wT1 [h1jD(ε)v1 −D(ε)(A+ δAj)vj]− wT1 δAjvj.

In a similar manner

hij =
α
[
αi−1wTi D(αn)(A+ δAj)vj −

∑i−1
r=1 α

i−r+1hrjw
T
i D(αn)vr

]
wTi D(αn)vi

,

or

wTi D(αn+i−1)(A+ δAj)vj =

j∑
r=1

hrjw
T
i D(αn+i−r+1)vr,

giving

wTi Avj −
i∑

r=1

hrjw
T
i vr = fij, i = 2, 3 . . . , j, (3.10) eq:3.10

with fij satisfying

fij = (n+ i)wTi

[
i∑

r=1

hrjD(ε)vr −D(ε)(A+ δAj)vj

]
− wTi δAjvj.
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The elements fij so far defined may be regarded as the upper triangular elements of

the full matrix F defined by

W TAV − LH = F (3.11) eq:3.11

where L is the lower triangular matrix with non-zero elements lir = wTi vr, r =

1, 2, . . . , i. Equation (3.11) thus describes the errors introduced by the computation

of the elements of H using (3.2).

In order to form vj+1 the right hand side of (3.1) is computed from left to right

and then each element divided by the chosen normalizing factor hj+1,j, giving

hj+1,jD(α2)vj+1 = D(αj−1)(A+ δAj)vj −
j∑
i=1

hijD(αj−i+1)vi (3.12) eq:3.12

which for j = 1, 2, . . . , k may be re-written in matrix notation as

AV = V H + E + δV (3.13) eq:3.13

in analogy with (3.5). Here δV is a matrix with columns satisfying

δvj = j

[
j+1∑
i=1

hijD(ε)vi −D(ε)(A+ δAj)vj

]
− δAjvj.

The rounding errors introduced by the computation have now been described,

with their bounds being given implicitly by the notational convention used. It now

remains to find a bound on the effect of these rounding errors on the eigenvalues. This

can be done by considering the departure from orthogonality of vj+1 to w1, . . . , wj,

as a result of which (3.4) no longer holds, instead

W TV = L+ U, W Tvk+1 = uk+1 (3.14) eq:3.14

where U is a strictly upper triangular matrix, and U and the vector uk+1 need to be

expressed in terms of the rounding errors.
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First defining the two k by k upper triangular matrices

Ū = [u2, u3, . . . , uk+1], H̄ =


h21 h22 . . . h2k

h32 . . . h3k
. . .

...

hk+1,k

 ,

where u1, . . . , uk are the columns of U , it follows from (3.11), (3.13) and (3.14) that

F = W TAV − LH = UH +W TE +W T δV = ŪH̄ +W T δV. (3.15) eq:3.15

Now since ŪH̄ = F −W T δV is upper triangular it can be seen from the expressions

for F and δV that this can be bounded in terms of H, V , W , A, and ε. Then while

hj+1,j 6= 0

Ū =
(
F −W T δV

)
H̄−1. (3.16) eq:3.16

This useful result shows how the departure from the required orthogonality, repre-

sented by Ū , is related to the elements of H. This error can be considered in two

parts, that in brackets in (3.16) which represents the rounding errors introduced in

each step, and H̄−1 which shows how the effect on later steps of previous errors is

magnified. To examine the first component it follows from the expressions for fij and

δvj that for i ≤ j

fij − wTi δvj = (n+ i+ j)wTi

[
j+1∑
r=1

hrjD(ε)vr −D(ε)(A+ δAj)vj

]
.

Note in passing that the error in computing Avj has at most a second order effect

on orthogonality. However no a priori bound may be found on the above expression

because of its dependence on the elements of H, and from (3.2) these may be large if

any pair wi and vi are nearly orthogonal – and any method keeping wTi vi relatively

large will prosper accordingly, for example Arnoldi’s method with wi = vi.

The magnifying factor in (3.16) may have very large elements even when none of

the normalizing factors (chosen for example to give ‖Vj‖2 = 1) are very small; this
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can occur if there are several instances of mild cancellation, and explains why even

Arnoldi’s method is likely to be numerically unstable.

An indication of the effect of the loss of orthogonality U on the eigenvalue problem

can easily be shown for the case where a complete solution is obtained (k = k0 = n).

Here (3.13) may be re-written, if V is non-singular,

H = V −1(A+ δA)V, δA ≡ −(E + δV )V −1, (3.17) eq:3.17

with the non-zero column of E given by

hn+1,nvn+1 = (W T )−1(fn − Uhn)− δvn

from the last column of (3.15), hn being the last column of H. Thus in the spirit of

reverse error analysis H has the same eigenvalues as the perturbed matrix A + δA.

Clearly δA cannot in general be bounded a priori and may in fact be quite large

because of large U , or large H, or both. The special form of E has considerable

significance, but a discussion of this will be left till later.

At this point it is worthwhile digressing and examining Hessenberg’s method more

closely. Since wi = ei in (3.2) the inner-products wTi vr introduce no error, and by

making the first j elements of vj+1 zero, orthogonality is automatically obtained, there

is then no magnified effect of earlier errors on later steps. The only worry then is

that large elements of H will lead to large rounding errors being introduced at each

step. Fortunately the elements of H can be kept to a reasonable size by taking the

wi to be the columns of the identity matrix in an order which ensures that wTi vi is

as large as possible in (3.2), this is equivalent to the use of interchanges in the direct

reduction to Hessenberg form (see Wilkinson, 1965, p. 357).
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3.3 Re-orthogonalization
sec:3.3

For methods other than that of Hessenberg, re-orthogonalization is usually required

to maintain orthogonality, and double length accumulation of vector products is often

used for increased accuracy. In step j the elements of H are computed as previously

from (3.2), but an intermediate vector cj is then formed

cj = Avj −
j∑
i=1

hijvi (3.18) eq:3.18

and vj+1 is found from this by re-orthogonalization

hj+1,jvj+1 = −
j∑
r=1

brjvr + cj, (3.19) eq:3.19

where since the brj will usually be very small this order of computation will probably

reduce errors. The coefficients bij are computed from

b1j = wT1 cj/w
T
1 v1,

bij =
(
wTi cj −

∑i−1
r=1 brjw

T
i vr

)
/wTi vi, i = 2, 3, . . . , j.

 (3.20) eq:3.20

A rounding error analysis of this general process is given by Paige (1969a). The

analysis uses the same approach as that for the process without re-orthogonalization,

and that is to describe the errors introduced in each computation in the j-th step,

put them in matrix form representing the first k steps and manipulate these matrix

equations to obtain an expression for the loss of orthogonality. The analysis will

not be repeated here because of its limited interest, but it can be shown that if

W TV = L+ U as in (3.14) then under certain restrictions on n and L

‖W Tvk+1‖2
‖W T‖2‖vk+1‖2

≤ 2ε+
[‖U‖2 + 2(k + 2)2‖W‖2ε]2 ‖L−1‖22‖A‖2

|hk+1,k| · ‖vk+1‖2
.

Small values of wTi vi lead to large L−1 and so it can be seen that the same factors that

led to inaccuracy in the method without re-orthogonalization (i.e. near orthogonality
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of a pair wi and vi, and cancellation leading to small hk+1,k) could cause trouble here,

except that the squared term in square brackets here leaves a much greater margin

of safety.

Of these generalized Hessenberg processes with reorthogonalization only the Lanc-

zos process is ever likely to be used, and a full analysis of this will be given later.

This is more complicated than for the other methods, but the same approach as was

described earlier in this section can be used. Although other of the generalized Hes-

senberg processes without re-orthogonalization are of interest for smaller matrices,

only the Lanczos process is likely to be of continuing interest for large sparse ma-

trices and an analysis of this will be given later, based on the insight gained in this

section.
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Section 4

Theoretical Convergence of the

Lanczos Process

chp:4 Although the Lanczos process applied to an n by n real symmetric matrix A is usually

thought of as a direct method producing an n by n tri-diagonal matrix T in n steps,

it is in fact far more useful as an iterative method producing after the k-th step a k

by k tri-diagonal matrix T , the eigenvalues of which approximate k eigenvalues of A.

In fact Lanczos intended such a use of his method as the following comment in his

paper (1950, pp. 270–271) clearly shows.

“The correct eigenvalues of the matrix A are obtained by evaluating the zeros of

the last polynomial pm(x) = 0. What actually happens however, is that the zeros

of the polynomials pi(x) do not change much from the beginning. If the dispersion

is strong, then each new polynomial basically adds one more root but corrects the

higher roots by only small amounts. It is thus well possible that the series of largest

roots in which we are primarily interested is practically established with sufficient

accuracy after a few iterations. . . . . The same can be said about the vibrational

modes associated with these roots.”

Here the roots of the polynomial pi(x) are just the eigenvalues of the i by i matrix

T after i steps.
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In order to support this iterative use, the theory will be developed here to obtain

expressions for the rates of convergence of the eigenvalues and eigenvectors of T

with increasing k to those of A in the manner given by Kaniel (1966), where infinite

precision computation is assumed. However because of the lack of clarity of Kaniel’s

paper and several significant errors in the working and results his basically good ideas

will be developed fairly fully in a very different, and hopefully more easily digestible

form.
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4.1 Background Theory
sec:4.1

Let A be a real symmetric matrix on the real n dimensional space Rn, then it has

been shown in Section 3 how k steps of the error free Lanczos process starting with

an arbitrary non-zero vector v1 produce a k by k tri-diagonal matrix T such that if

k ≤ k0

AV = V T + E, V TE = 0, (4.1) eq:4.1

where the n by k matrix V = [v1, v2, . . . , vk] has non-zero orthogonal columns lying in

the linear manifold, from here on to be denoted by Mk, in Rn spanned by the sequence

of Krylov vectors v1, Av1, . . . , A
k−1v1. The matrix E = [0, . . . , 0, vk+1tk+1,k] has as its

last column the component of Avk orthogonal to Mk. As k0 is the first value of k

for which E = 0 it follows that k0 is the maximum number of linearly independent

vectors in the Krylov sequence starting with v1. From the above it also follows that

T =
(
V TV

)−1
V TAV. (4.2) eq:4.2

Let the eigensystem of A be such that

Axi = xiλi, xTi xj = δij; i, j = 1, 2, . . . n, (4.3) eq:4.3

where δij is the Kronecker delta. Then v1 can be expressed

v1 =
n∑
i=1

xiαi.

Suppose λ1 = λ2, then for any r

Arv1 = (x1α1 + x2α2)λ
r
1 +

n∑
i=3

xiαiλ
r
i ,

so that if the vectors of this Krylov sequence alone are considered, the matrix A

can be thought of as acting in that subspace of Rn spanned by the n − 1 vectors

x1α1 + x2α2, x3, . . . , xn. It is because only one vector in the space spanned by x1, x2
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can be obtained from these Krylov vectors that coincident eigenvalues of A appear

as simple eigenvalues of T (see Section 4.1.3). Likewise if αj = 0 then every vector

in the Krylov sequence will be orthogonal to xj, so A here will again be acting in a

subspace of dimension less than n, and no combination of these Krylov vectors can

produce xj.

Thus only the components of the eigensystem of A lying in the linear manifold

Mk0 , which is invariant with respect to A, will be found. Realizing that the total

eigensystem is unobtainable in the above cases with this one Krylov sequence, it is

now only necessary to examine the case where A has simple eigenvalues and αi 6= 0,

i = 1, 2, . . . , n. Note here that k0 = n. In what follows the eigenvalues of A may then

be ordered

λn < λn−1 < . . . < λ1. (4.4) eq:4.4

In order to relate the k by k matrix T in (4.2) to the n by n matrix A some basic

theory will now be given.

4.1.1 The Orthogonal Projection Operator
sec:4.1a

Let y ∈Mk, where {v1, v2, . . . , vk} is a basis for Mk, then there exists a k dimensional

vector z such that y = V z, and vice versa. But Mk and the real k dimensional space

Rk are isomorphic, and z is then the representation of y in Rk with this basis. Let W =

[wk+1, . . . , wn] be a matrix whose n− k linearly independent columns are orthogonal

to those of V , then [V,W ] is nonsingular and any x ∈ Rn may be represented as

x = V z +Wu for some k vector z and (n− k) vector u.

The symmetric matrix

PV = V
(
V TV

)−1
V T

is the orthogonal projection operator onto Mk, for using the above representation and
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the fact that V TW = 0,

PV x = V
(
V TV

)−1
V TV z = V z ∈Mk

and

(x− PV x)TPV x = (Wu)TV z = 0.

4.1.2 The Restriction of PVA to Mk
sec:4.1b

Note that PVA : Rn → Mk, but the main interest will be the operation of PVA on

elements of Mk. The k by k matrix

T =
(
V TV

)−1
V TAV

is called the restriction of PVA to Mk, since if y = V z ∈Mk then

Tz =
(
V TV

)−1
V TAV z

and

PVAy = V
(
V TV

)−1
V TAV z = V Tz,

so if z is the representation of y in Rk with basis {v1, v2, . . . , vk}, then Tz is the

representation of PVAy with the same basis.

If Mk is invariant with respect to A then it follows that T is the restriction of A

to Mk.

4.1.3 The Eigensystem of T
sec:4.1c

The n by n symmetric matrix PVAPV will be shown to be closely related to T .

Let its n orthonormal eigenvectors be yi, with corresponding real eigenvalues µi,

i = 1, 2, . . . , n. Let wk+1, . . . , wn be any n − k orthonormal vectors which are all

orthogonal to vi, i = 1, 2, . . . , k, then

PVAPVwi = 0, i = k + 1, . . . , n
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so at least n−k eigenvalues µk+1, . . . , µn are zero, and these have eigenvectors yi = wi,

i = k+ 1, . . . , n. The remaining k eigenvectors, being orthogonal to these, must then

lie in Mk, and so there exist vectors zi such that

yi = V zi, yTi yj = zTi V
TV zj = δij; i, j = 1, . . . , k, (4.5) eq:4.5

and defining Z = (z1, . . . , zk) this gives ZTV TV Z = I, so these zi are linearly inde-

pendent. Then

V ziµi = yiµi = PVAPV yi = V
(
V TV

)−1
V TAV zi,

or by multiplying on the left by
(
V TV

)−1
V T

Tzi = ziµi, i = 1, 2, . . . , k, (4.6) eq:4.6

so that the k eigenvectors of T correspond to the k eigenvectors of PVAPV lying in

Mk, and the corresponding eigenvalues are the same for both matrices. The larger

matrix however has an extra n− k zero eigenvalues.

Now in (3.6) it was shown that in the Lanczos process T is tri-diagonal and

V TV = D, say, is diagonal. D clearly has positive diagonal elements so

T = D−1V TAV = D−
1
2

(
D−

1
2V TAVD−

1
2

)
D

1
2

which is similar to a symmetric matrix, thus T is quasi-symmetric. But from (3.7)

vTj Avj+1 = vTj+1Avj = tj+1,jv
T
j+1vj+1

and tj+1,jvj+1 6= 0, j < k0, so that no next to diagonal elements of V TAV or T can

be zero. From these results it follows that unity and the leading principal minors

of T − µI, taken in increasing order as polynomials in µ, form a Sturm sequence;

but more importantly, the roots of the leading principal minor of degree r strictly

separate the roots of that of degree r+ 1 (see for example, Wilkinson, 1965, p. 300).
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Thus the eigenvalues of the k by k matrix T are real and distinct and can be ordered

µk < µk−1 < . . . < µ1. (4.7) eq:4.7

Note that this argument does not depend on the eigenvalues of A being simple, it is

in fact a rigorous way of showing that repeated eigenvalues of A will not be detected

by the Lanczos process.

4.1.4 Comparison of the Eigenvalues of T with those of A
sec:4.1d

The Courant-Fischer minimum-maximum characterization of eigenvalues (see for ex-

ample, Wilkinson, 1965, p. 99) can be used very effectively here to obtain inequalities

involving the two sets of eigenvalues. Here the eigenvalues of A will be compared with

those of PVAPV as this seems an easier approach than is usually given in the literature

(see for example, Gould, 1957, p. 39), even if the execution here is slightly longer. If

the n eigenvalues of PVAPV are ordered

µ′n ≤ µ′n−1 ≤ . . . ≤ µ′1

then from the minimum-maximum characterization, for i = 1, 2, . . . , n

µ′i = min
w1,...,wi−1

max
yT wj=0

j=1,...,i−1

yTPVAPV y

yTy
, (of course y 6= 0)

where the wj are arbitrary vectors in Rn. A vector y = y′i giving this µ′i is then

a corresponding eigenvector. However k of these eigenvalues and their eigenvectors

correspond to those of T , these eigenvectors of PVAPV lying in Mk, while the remain-

ing n − k eigenvalues of PVAPV are zero and have eigenvectors orthogonal to Mk.

Thus if the vectors y in the above characterization are constrained to lie in Mk, then

only those eigenvalues of PVAPV corresponding to eigenvalues of T will be given,

and denoting these by µ1, . . . , µk with the ordering given in (4.7), it follows that for
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i = 1, 2, . . . , k

µi = min
w1,...,wi−1

max
yT wj=0

j=1,...,i−1;k+1,...,n

yTPVAPV y

yTy
(4.8) eq:4.8

where w1, . . . , wi−1 are arbitrary vectors in Rn and wk+1, . . . , wn are linearly indepen-

dent vectors orthogonal to Mk. But for a vector y ∈Mk, y = PV y, and so yTPVAPV y

may be replaced by yTAy in (4.8) so that for i = 1, 2, . . . , k

λi = min
w1,...,wi−1

max
yT wj=0

j=1,2,...,i−1

yTAy

yTy
≥ µi,

since µi is subject to n− k extra constraints. If now the wk+1, . . . , wn can be varied

over all of Rn in (4.8) the value of the right hand side may be decreased, giving for

i = 1, 2, . . . , k

µi ≥ min
wj∈Rn

j=1,...,i−1;k+1,...,n

max
yT wj=0

j=1,...,i−1;k+1,...,n

yTAy

yTy
≡ λi+n−k

so that

λi ≥ µi ≥ λi+n−k, i = 1, 2, . . . , k. (4.9) eq:4.9

Thus finding the eigenvalues µi of T gives lower bounds on the k greatest and upper

bounds on the k least, eigenvalues of A.

Suppose yi gives µi in (4.8), then it can be shown that

PVAPV yi = yiµi,

and from (4.5) and (4.6) yi = V zi where zi is the corresponding eigenvector of T , so

that finding the eigenvectors of T will allow these yi to be obtained. These yi can

then be taken as approximations to some of the eigenvectors of A. From (4.8) and

(4.9) it can be seen that µ1 is the best approximation to λ1 that can be found by

considering Rayleigh quotients with respect to A of vectors in Mk, and y1 can be

taken as a corresponding approximation to x1. The maximum value of the Rayleigh

quotient for a vector in Mk which is orthogonal to y1 then turns out to be µ2, and the



4.1 Background Theory 41

vector y2 which gives this can be taken as an approximation to x2, and so on. These

yi are certainly not the best approximations to the xi in the 2-norm, as these would

be PV xi.
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4.2 Accuracy of Eigenvector Approximations
sec:4.2

As a result of the remarks in the last paragraph it is necessary to examine the closeness

of approximation of the vectors yj to some eigenvectors xj of A. Here a theoretical

result will be derived that will also be useful for obtaining theoretical eigenvalue

bounds later. First the yj, normalized as in (4.5), can be expressed in terms of the

xj in (4.3), let

yj =
n∑
i=1

xiβij, j = 1, 2, . . . , k.

The 2-norm error of yj as an approximation to xj can then be denoted by εj where

ε2j = ‖yj − xjβjj‖22 =
∑
i 6=j

β2
ij = 1− β2

jj, (4.10) eq:4.10

with the normalization already chosen. Note that εj is a measure of the component

of yj orthogonal to xj rather than the difference between yj and xj as is sometimes

chosen. Now

µj =
yTj Ayj

yTj yj
=

n∑
i=1

β2
ijλi

so

λj − µj +

j−1∑
i=1

β2
ij(λi − λj) =

n∑
i=j+1

β2
ij(λj − λi)

≥ (λj − λj+1)
n∑

i=j+1

β2
ij,

because of the ordering in (4.4); but from (4.10)

n∑
i=j+1

β2
ij = ε2j −

j−1∑
i=1

β2
ij

therefore

ε2j ≤
λj − µj +

∑j−1
i=1 β

2
ij(λi − λj+1)

λj − λj+1

(4.11) eq:4.11
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with equality if βij = 0, i > j + 1. In order to bound β2
ij, i < j, use will be made of

β2
jj = 1− ε2j , j = 1, 2, . . . , k. Now

βij = yTj xi = −yTj (yi − xiβii)/βii, i 6= j,

since yTj yi = δij, so that

β2
ij ≤ ‖yj‖22ε2i /β2

ii by Cauchy-Schwarz,

= ε2i /(1− ε2i ), i 6= j.

Combining this result with (4.11) gives

ε2j ≤
λj − µj +

∑j−1
i=1 (λi − λj+1)ε

2
i /(1− ε2i )

λj − λj+1

. (4.12) eq:4.12

Kaniel (1966) sought to determine a result of this kind, but the result given in his

Lemma 5.3 is incorrect. Thus, with a knowledge of the eigenvalues µi of T , (4.12) gives

theoretical bounds, depending on the eigenvalues λi of A, on the error in the vector

yj as an approximation to the eigenvector xj of A, as long as the εi, i = 1, 2, . . . , j−1,

can be bounded so that ε2i < 1. From (4.10) ε2j ≤ 1 so that (4.12) is only useful when

λj − µj < λj − λj+1, that is, when there are no eigenvalues of A between λj and µj

with the ordering in (4.4) and (4.7). It is now clear that (4.12) is most useful for the

larger eigenvalues, but a similar expression could also be found to bound ε2k, ε
2
k−1, . . . ,

in that order.

It is of passing interest to note that most of the theory so far given in this section

applies equally well for any set of linearly independent vectors v1, v2, . . . , vk spanning

an arbitrary k dimensional linear manifold Mk.
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4.3 Rate of Convergence of the Eigenvalues and

Eigenvectors
sec:4.3

In this section a comparison of the Lanczos process with the Tchebycheff iteration

will be used to bound λj −µj after k steps with a given distribution of eigenvalues λi

and initial vector v1. The expression (4.12) can then be used to bound the eigenvector

errors. The theory was developed by Kaniel (1966), but his proofs and results are

often obscure and sometimes erroneous, and so a simplified but full and hopefully

correct account will be given here.

First for all g ∈ Mk such that gTg = 1 and gTxi = 0, i = 1, 2, . . . , j−1, it will be

shown that for j ≤ k with the ordering given in (4.4) and (4.7)

λj ≥ µj ≥ gTAg −
j−1∑
i=1

µiε
2
i ≥ gTAg −

j−1∑
i=1

λiε
2
i , (4.13) eq:4.13

with εi as in (4.10) and (4.12). The first and last inequalities follow directly from

(4.9), while if g = g1 +
∑j−1

i=1 βiyi where gT1 yi = 0, i = 1, . . . , j − 1, then using (4.10)

and the Cauchy-Schwarz inequality

|βi| = |gTyi| = |gT (yi − xiβii)| ≤ εi, i = 1, . . . , j − 1.

Now g1 = PV g1 and for i ≤ k, yi = PV yi so that

gT1 Ayi = gT1 PVAPV yi = µig
T
1 yi = 0, i < j,

and

yTi Ayj = yTi PVAPV yj = µiδij, i, j ≤ k,

from Section 4.1.3, so that as a result

gTAg

gTg
=
gT1 Ag1
gTg

+

∑j−1
i=1 µiβ

2
i

gTg
≤ gT1 Ag1

gT1 g1
+

j−1∑
i=1

µiε
2
i .
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But g1 ∈Mk and is orthogonal to y1, . . . , yj−1, so

µj = max
y∈Mk, yT yi=0

i=1,2,...,j−1

yTAy

yTy
≥ gT1 Ag1

gT1 g1

and the result (4.13) follows.
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Note that for g satisfying the conditions of (4.13), gTAg ≤ λj, and the closer this

is to equality, the closer µj approximates λj. The aim then is to find g satisfying these

conditions such that gTAg is as large as possible. If Tk(t) denotes the Tchebycheff

polynomial normalized so that max{−1≤t≤1} |Tk(t)| = 1, then use will be made of the

rapid increase of Tk(t) with increasing t > 1 (see, for example, Todd, 1962, p. 127),

to obtain such a vector g giving a good lower bound on µj in (4.13). For this purpose

it will be necessary to consider the shifted and scaled matrix

B ≡ [2A− (a+ b)I] /(a− b) = cA+ dI, say, (4.14) eq:4.14

which has the same eigenvectors as A, but with eigenvalues

νi = cλi + d, i = 1, 2, . . . , n, (4.15) eq:4.15

and taking a = λs, s any integer such that 1 < s < n, and b = λn gives

νi = [2λi − (λs + λn)] /(λs − λn) (4.16) eq:4.16

so that

−1 = νn < . . . < νs = 1 < νs−1 < . . . < ν1. (4.17) eq:4.17

In order to bound the j-th eigenvalue, j < s, the n indices in (4.17) will be divided

into three sets as follows

j = {j},

L = {1, 2, . . . , j − 1, j + 1, . . . , s− 1},

M = {s, s+ 1, . . . , n}.

 (4.18) eq:4.18

Now the linear manifold Mk has the Krylov sequence {v1, Av1, . . . , Ak−1v1} as a basis,

so from (4.14) any vector y ∈Mk can be represented as

y = pk(B)v1 (4.19) eq:4.19
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where pk(t) is a polynomial in t of degree less than or equal to k. So writing v1 =∑n
i=1 αixi and defining

vL =


∏

l∈L (B − νlI) v1 =
∑n

i=1 αi
∏

l∈L (νi − νl)xi
v1, if L is the empty set,

(4.20) eq:4.20

and

g = Tm(B)vL =
n∑
i=1

αiTm(νi)
∏
l∈L

(νi − νl)xi, (4.21) eq:4.21

then this is of the form g = pm+s−2(B)v1, so if m = k−s+2 ≥ 0 it follows that g ∈Mk,

and from the choice of vL, gTxi = 0, i ∈ L. Thus g satisfies the conditions for (4.13),

apart from normalization, and all the components of g corresponding to eigenvalues

of B in (4.17) with moduli greater than unity are suppressed except xj. The choice of

vL is then just a way of singling out νj, and so the Tchebycheff polynomial will give a

very fast increase with increasing k in the coefficient of xj, relative to the remainder.

To be useful in (4.13) a lower bound on gTBg/gTg is required, and from (4.21)

gTBg

gTg
= νj −

∑n
i=1

[
αiTm(νi)

∏
l∈L (νi − νl)

]2
(νj − νi)∑n

i=1

[
αiTm(νi)

∏
l∈L (νi − νl)

]2
≥ νj −

∑n
i=s

[
αi
∏

l∈L (νi − νl)
]2

(νj − νi)[
αjTm(νj)

∏
l∈L (νj − νl)

]2 . (4.22) eq:4.22
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Now using the expressions (4.14) for B, (4.15) for νi, νj and νl, and (4.16) for νj

in (4.22), and substituting in (4.13) gives

λj ≥ µj ≥ λj −
∑n

i=s

[
αi
∏

l∈L (λi − λl)
]2

(λj − λi)[
αjTk−s+2

(
λj−λn+dj
λj−λn−dj

)∏
l∈L (λj − λl)

]2 − j−1∑
i=1

λiε
2
i , (4.23) eq:4.23

where dj = λj − λs, and the εi can be bounded as in (4.12). Thus by varying the

integers j and s , various bounds can be given for the different eigenvalues µj of T

after k steps of the Lanczos process. For instance putting j = 1, s = 2, gives

λ1 ≥ µ1 ≥ λ1 −
(‖v1‖22 − α2

1) (λ1 − λn)[
α1Tk

(
1 + 2 λ1−λ2

λ2−λn

)]2
so that for a well separated maximum (or minimum) eigenvalue, the rate of conver-

gence is always very fast, in fact at least as fast as that obtained using the optimum

Tchebycheff iteration (see, for example, Wilkinson, 1965, p. 617), with the Rayleigh

quotient.

For a closely bunched set of large eigenvalues it will still be possible to choose s in

(4.23) so that d1 = λ1−λs is a reasonable size, thus again establishing fast convergence

to λ1 even though the initial error may be large because of the
∏

(λj − λl)2 term in

the denominator.
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In order to illustrate the bounds that can be obtained by the above expressions

Kaniel considers the following example: λ1 = 1.00, λ2 = 0.99, λ3 = 0.96, λi ≤ 0.9 for

i > 3, λn = 0, while in (4.20) ‖v1‖22 = 1 and |αi| = 0.01, i = 1, 2, 3.

Bounds after, for example, k = 52 steps can be found by taking s = 4 in (4.18)

and choosing j to be 1, 2, and 3 successively. For this example the numerator in

(4.23) satisfies
n∑
i=s

[
αi
∏
l∈L

(λi − λl)

]2
(λj − λi) ≤

n∑
i=1

α2
i = 1

so that (4.23) simplifies to

λj ≥ µj ≥ λj −

[
0.01T50

(
2λj − 0.9

0.9

)∏
l∈L

(λj − λl)

]−2
−

j−1∑
i=1

λiε
2
i

for j = 1, 2, 3; L being the complement of {j} with respect to {1, 2, 3}. The ε2i must be

bounded successively using (4.12) so that the errors in the eigenvector approximations,

described by (4.10), are also bounded. Thus for the largest eigenvalue

1 ≥ µ1 ≥ 1−
[
0.01× 0.01× 0.04× T50

(
1.1

0.9

)]−2
> 1−

[
4× 10−6 × 0.83× 1014

]−2
> 1− 10−17

using Tm(cosh β) = coshmβ > 1
2
emβ. It then follows from (4.12) that

ε21 < 10−17/10−2 = 10−15

so for the next eigenvalue

0.99 ≥ µ2 ≥ 0.99− [0.01× 0.01× 0.03× T50(1.2)]−2 − 10−15

> 0.99− 1.5× 10−15,

which with (4.12) gives

ε22 <
(
1.5× 10−15 + 0.041× 10−15

)
/0.03

< 0.6× 10−13.
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Finally

0.96 ≥ µ3 ≥ 0.96−
[
0.01× 0.04× 0.03× T50

(
1.02

0.9

)]−2
− 10−15 − 0.6× 10−13

> 0.96− 2× 10−12

while

ε23 <
(
2× 10−12 + 0.11× 10−15 + 0.091× 0.6× 10−13

)
/0.06

< 0.4× 10−10.

In summary

λ1 − µ1 < 10−17 ; ε21 < 10−15

λ2 − µ2 < 2× 10−15; ε22 < 10−13

λ3 − µ3 < 2× 10−12; ε23 < 10−10

so that these eigenvalues and their eigenvectors can certainly be found very accurately

in 52 steps of the Lanczos process. Two points must be emphasized however, first

these bounds may in theory be far too large, for example if the dimension of the matrix

n ≤ 52 then the eigensolution is theoretically exact; secondly these results assume

perfect computation and in any practical computation these bounds are likely to be

exceeded. All that can really be said from these results is that for very large symmetric

matrices the Lanczos process carried out with infinite precision is an excellent method

for finding some extreme eigenvalues and their eigenvectors in much less than the full

number of steps.

It is also indicated in Kaniel’s paper that most of the theory in this section can

be extended to Hermitian operators on separable Hilbert spaces.
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.
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Section 5

Eigenvalue and Eigenvector

Intervals

chp:5

Since it has been shown in the previous section that the symmetric Lanczos pro-

cess with exact arithmetic converges rapidly when used as an iterative method, the

question now arises as to what bounds may be computed on the eigenvalues and

eigenvectors of A after k < n steps. The most easily obtainable useful intervals, to be

called the basic intervals, will first be developed here, and these will also be viewed

as a lead into Lehmann’s work. Lehmann (1963, 1966) considered very thoroughly

the optimum intervals of this type when exact arithmetic is assumed, and since an

English translation of his work does not appear to be easily available, some of the

relevant theory will be developed here. An approach different from that of Lehmann

will be used in places as, as well as giving motivation, it leads to three different al-

gorithms for computing eigenvalue intervals, one of which is more accurate than the

equivalent one suggested by Lehmann when finite precision arithmetic is used; the

other two are of interest, but of only minor importance in practice.

The advantages of the different possible intervals will be compared and some

conclusions on their usefulness will be drawn.
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5.1 The Basic Eigenvalue Intervals
sec:5.1

First the most obvious approach to finding eigenvalue intervals will be given. Later

the Lehmann intervals will be seen as a development of these. Let V = (v1, v2, . . . , vk)

be an n by k matrix with linearly independent columns, then as in (4.2) put

T =
(
V TV

)−1
V TAV.

Suppose Tzj = µjzj, yj = V zj, yTi yj = δij; i, j = 1, . . . , k,

then

yTj Ayj = zTj V
TAV zj = zTj V

TV Tzj = µjz
T
j V

TV zj = µj,

so that µj is the Rayleigh quotient for the matrix A with the vector yj. Now using

(4.3) to give the spectral expansion of yj

yj =
n∑
i=1

αixi (5.1) eq:5.1

it follows that

‖Ayj − µjyj‖22 =
n∑
i=1

α2
i (λi − µj)2

so that for at least one eigenvalue, λrj say, of A

|λrj − µj| ≤ ‖Ayj − µjyj‖2 (5.2) eq:5.2

since
∑n

i=1 α
2
i = 1.

If the vectors vi were obtained from the Lanczos process then from (4.1)

AV zj = µjV zj + Ezj

giving

|λrj − µj| ≤ ‖Ezj‖2 = |ζkjtk+1,k| ‖vk+1‖2, (5.3) eq:5.3

where ζkj is the last element of zj.
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In order to obtain an idea of the over-all error, let λrj be the closest eigenvalue of

A to µj, j = 1, . . . , k, then

k∑
j=1

∣∣µj − λrj ∣∣2 ≤ k∑
j=1

‖Ezj‖22 = ‖EZ‖2E

where the subscript E indicates the Frobenius (Euclidean, Schur) norm, and Z ≡

(z1, z2, . . . , zk). But V TV = D is diagonal, and from (4.5)

ZTV TV Z =
(
D

1
2Z
)T

D
1
2Z = I (5.4) eq:5.4

so that D
1
2Z is an orthogonal matrix, and

k∑
j=1

∣∣µj − λrj ∣∣2 ≤ ‖ED− 1
2D

1
2Z‖2E = ‖ED−

1
2‖2E

= t2k+1,kv
T
k+1vk+1/v

T
k vk. (5.5) eq:5.5

The magnitudes of the last two vectors thus give an immediate indication of the

overall state of the process, while with a knowledge of any eigenvalue-eigenvector pair

of T an interval containing an eigenvalue of A is given by (5.3). The value µj giving

(5.2) and (5.3) is the Rayleigh quotient corresponding to yj, and so gives the best

interval using the given vector yj, but it will be shown in Section 5.3 how an even

smaller interval may be obtained using Lehmann’s work to find a more suitable vector

than yj.

5.2 Eigenvector Bounds
sec:5.2

Eigenvector bounds are not so easily available as are eigenvalue bounds, since infor-

mation on the separation of the eigenvalues of A is first needed. For example if for

some scalar µ and vector

y =
n∑
i=1

αixi, yTy = 1,
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a constant a is known such that

|λi − µ| ≥ a, i 6= j

then

‖Ay − µy‖22 =
n∑
i=1

α2
i (λi − µ)2 ≥ a2

∑
i 6=j

α2
i

so that for the component of y orthogonal to xj

‖y − αjxj‖22 =
∑
i 6=j

α2
i ≤ ‖Ay − µy‖22/a2. (5.6) eq:5.6

Thus with a knowledge of a this could be combined with (5.2) and (5.3) to obtain a

useful bound by taking y = V zj and µ = µj, as long as convergence of the process is

such that

|λj − µj| << a

(see Wilkinson, 1965, pp. 173-4). However it is also true that if such a constant a is

known then very much better eigenvalue bounds than (5.2) and (5.3) may be obtained

(ibid).

The aim of the next section is to decrease the right hand side of (5.2), which

will do the same for (5.6), and so nothing further need be said in this section on

eigenvector bounds.

5.3 The Lehmann Eigenvalue Intervals
sec:5.3

The bound (5.2) considered only one trial vector yj and the corresponding Rayleigh

quotient µj, and the particular pair chosen was useful because it gave an immediately

obtainable bound on the distance from an eigenvalue of T to the nearest eigenvalue

of A. However from its derivation it is clear that (5.2) is independent of the choice of

µ or y, as long as yTy = 1, and so a different choice of y could give a smaller interval.
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Lehmann (1963) considered the following problem:– Given only the information

J (A) ≡ {vi, Avi}ki=1 (5.7) eq:5.7

where the v1, . . . , vk are a linearly independent set of real vectors, find optimum

intervals containing eigenvalues of the real symmetric matrix A. (In fact he considered

a symmetric or self-adjoint operator A over a real separable inner-product space H

with domain DA dense in H or, if A is bounded, equal to H, and assumed that the

eigenvalues of A did not have an accumulation point and there existed a corresponding

orthonormal system of eigenvectors spanning H.)

By considering all combinations of the vi in (5.7) the vectors

y = V z (5.8) eq:5.8

are obtained where there are no restrictions on the real k-vectors z, and an obvious

approach is to optimize (5.2) over all such vectors y with unit norm and real values

µ. (5.2) then becomes, for some i,

|λi − µ| ≤ ‖(A− µI)V z‖2 where ‖V z‖2 = 1, (5.9) eq:5.9

and the problem of minimizing the bound can then be stated

minimize
µ, z zTV T (A− µI)2V z,

subject to zTV TV z = 1.

 (5.10) eq:5.10

This is a constrained minimization, but by introducing the Lagrange multiplier γ it

can be reformulated as the unconstrained minimization

minimize
γ, µ, z φ(γ, µ, z)

where φ(γ, µ, z) = zTV T (A− µI)2V z − γ
(
zTV TV z − 1

)
.

 (5.11) eq:5.11

Since this is unconstrained with continuous derivatives, the extrema will be given by

the vanishing of the partial derivatives of the function φ(γ, µ, z).
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Now (∂φ/∂γ) = 0 gives the required normalization, while

(∂φ/∂µ) = 0 ⇒ µ = zTV TAV z/zTV TV z, (5.12) eq:5.12

with an obvious minimum for this value, and

(∂φ/∂z) = 0 ⇒ V T (A− µI)2V z = γV TV z. (5.13) eq:5.13

This last is a k by k eigenproblem, and since V TV is positive definite, while the

matrix on the left is at least positive semi-definite, the eigenvalues must be real and

non-negative and may be written as γ ≡ ∆2(µ) or just ∆2. Now it is no simple matter

to find z and µ satisfying both (5.12) and (5.13), and so first (5.13) will be examined

in isolation for an arbitrary choice of µ. Multiplying (5.13) on the left by zT and

combining with (5.9) then gives for some eigenvalue λi of A

|λi − µ| ≤ ∆ (5.14) eq:5.14

where ∆2 is the minimum eigenvalue of

V T (A− µI)2V z = ∆2V TV z. (5.15) eq:5.15

Different values of µ will vary this value, and values µ and z that simultaneously

satisfy (5.12) and (5.15) (for the minimum eigenvalue) will give best bounds of this

type. A means of finding these will be presented later, but for the moment (5.15) will

be examined in more detail.

First let the eigenvalues of (5.15) be ordered according to

0 ≤ ∆1 ≤ ∆2 ≤ . . . ≤ ∆k (5.16) eq:5.16

and following Lehmann, denote the eigenvalues of A by λµi , the superscript µ deter-

mining the ordering by distance from µ

|λµ1 − µ| ≤ |λ
µ
2 − µ| ≤ . . . . (5.17) eq:5.17
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Then because of the similarity of (5.15) to the eigenproblem

V TAV z = µV TV z

the theory of Section 4.1.4 may be applied here which, with the ordering just given,

gives the equivalent of (4.9)(
λµn−j+1 − µ

)2 ≥ ∆2
k−j+1 ≥

(
λµk−j+1 − µ

)2
, j = 1, . . . , k,

or writing i = k − j + 1

|λµi − µ| ≤ ∆i ≤ |λµi+n−k − µ|, i = 1, . . . , k. (5.18) eq:5.18

From this and (5.17) it follows that in each complete λ-interval

{λ : |λ− µ| ≤ ∆i} , i = 1, . . . , k, (5.19) eq:5.19

lie at least i eigenvalues of A, while in each region

{λ : |λ− µ| ≥ ∆i} , i = 1, . . . , k, (5.20) eq:5.20

lie at least k − i+ 1 eigenvalues.

So far a fixed value µ has been taken in (5.9) and the smallest intervals of this type

have been found by choosing optimum z. These intervals have centre µ and width

2∆. However if more information is available then better bounds may be found, for

instance Temple (1928) considered the case where a value t was known such that with

the ordering (4.4)

λ2 ≤ t < λ1, (5.21) eq:5.21

and he used a single trial vector to find a useful upper bound τ on λ1. This result was

generalized by Lehmann (1963) as follows. Rearranging (5.15) and defining t = µ−∆

and τ = µ+ ∆, that is, letting [t, τ ] denote the previous interval,

V T
[
A2 − (t+ τ)A+ tτI

]
V z = 0
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so

V T (A− tI)2V z = (τ − t)V T (A− tI)V z

or

V T (A− tI)V z =
1

(τ − t)
V T (A− tI)2V z (5.22) eq:5.22

so that given a real value t this eigenvalue problem can be solved for the real eigen-

values 1/(τi − t) as long as t is not an eigenvalue of A. Now if t is not an eigenvalue

of A then τ − t 6= 0 and the k eigenvalues can be ordered so that

τ−r ≤ . . . ≤ τ−1 < t < τ1 ≤ . . . ≤ τs, r + s = k. (5.23) eq:5.23

From the definitions of t and τ and the results for the intervals (5.19) and (5.20) it

then follows that in each closed interval

[t, τi], i = 1, . . . , s, (5.24) eq:5.24

lie at least i, and in each remaining region

R1\(t, τi), i = 1, . . . , s, (5.25) eq:5.25

lie at least k − i + 1 eigenvalues of A, and the same holds for [τ−i, t], i = 1, . . . , r.

Such results can be very useful if for instance a value t close to an eigenvalue λj+1 is

known such that with the ordering (4.4)

λj+1 ≤ t < λj (5.26) eq:5.26

then τ1 is an upper bound on λj, τ2 on λj−1, and so on. Lehmann (1966) shows

how such added information may often be found for a symmetric matrix, thus giving

much better results than could be found by the µ, ∆ approach without any added

information.

In the next section a means of computing values of µ and z satisfying (5.12) and

(5.15) simultaneously will be presented, but first, in order to gain insight into just how
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good the corresponding intervals (5.19) and (5.20) will be, consider the case where

k = 1 and v1 = (x1+x2)/
√

2, with the eigenvalue ordering (4.4). Here (5.15) becomes[
(λ1 − µ)2 + (λ2 − µ)2

]
/2 = ∆2

and the minimum value of ∆2 is given by µ = (λ1+λ2)/2, which gives ∆ = (λ1−λ2)/2.

The results (5.19) and (5.20) then state that at least one eigenvalue of A lies in [λ2, λ1]

while at least one eigenvalue lies outside (λ2, λ1). Now as no eigenvalues lie inside

(λ2, λ1), only one of the end points of the inclusion interval can be dropped without

destroying the theorem. Lehmann (1963) proves in general that if Mk contains no

eigenvectors of A and if only the information of (5.7) is to be used then only one of

the end points of each of the intervals (5.19), (5.20), (5.24) and (5.25) can be dropped

without the stated results being destroyed, that is, the results use the information

J (A) in (5.7) optimally.

5.4 Computation of the Lehmann Intervals
sec:5.4

In his 1966 paper Lehmann considered means of computing these eigenvalue intervals,

however he concluded that to obtain µ, z, and ∆ such that both (5.12) and (5.15)

were simultaneously satisfied was a difficult problem. Instead he chose to take the

eigenvalues of T , the matrix defined by (4.2), as the centres of his intervals – these

being good approximations to the required µ giving the smallest intervals. Next he

gave methods for finding the values of ∆ on being given µ, or τ on being given t, and

to do these he considered mainly the Lanczos vectors and a limited generalization of

these.

It is however clear from the different approach used in this thesis that for given

values of µ or t the corresponding values of ∆ or τ could always be found from the

eigenvalue problem formulations (5.15) and (5.22), for any set of linearly indepen-

dent vectors v1, . . . , vk. What is more, if the vi are the Lanczos iterates then these
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eigenproblems became particularly simple, as will be shown later. Now the smallest

eigenvalue of (5.15) will be of particular interest, and so it is interesting to note that

with this eigenproblem formulation it is possible to find values of µ and z satisfying

(5.12) and (5.15) simultaneously, with not much more trouble than for just finding

the smallest eigenvalue ∆2 for a given µ, and this can be done for a general linearly

independent set of vectors {v1, v2, . . . , vk}.

The required local minimum of (5.9) as a function of both µ and z can in fact be

found by the following simple iterative process, and as only the smallest eigenvalue

of (5.15) will be considered here the usual notation will be temporarily dropped for

expediency, and in what immediately follows the subscript i will denote the iterate.

Thus having chosen µ1, for i = 1, 2, . . . define

Mi ≡ V T (A− µiI)2 V (5.27) eq:5.27

and solve

Mizi = ∆2
iV

TV zi, zTi V
TV zi = 1, (5.28) eq:5.28

where ∆2
i is the minimum eigenvalue of Mi, then form

µi+1 = zTi V
TAV zi (5.29) eq:5.29

and name this Algorithm (1).

Such a process commencing with any µ1 will converge to values µ, ∆, and z so

that both (5.12) and (5.15) are satisfied, for

Mi+1 −Mi = (µi − µi+1)V
T [2A− (µi + µi+1)I]V, (5.30) eq:5.30

so

zTi Mi+1zi = zTi Mizi − (µi+1 − µi)2,

but by the minimum property of this eigenvalue

∆2
i+1 ≤ zTi Mi+1zi = ∆2

i − (µi+1 − µi)2, (5.31) eq:5.31
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so that ∆i is strictly monotonically decreasing with i while µi+1 6= µi. But ∆i ≥ 0,

so ∆i → ∆, therefore from (5.31) µi → µ, and from the form of the algorithm µ and

∆ satisfy (5.12) and (5.15), whether zi converges or not.

The disadvantage is that there must be two iteration processes here, the inner

one using for example inverse iteration to find the smallest eigenvalue, and the outer

iteration towards the required µ, ∆, and (subspace for) z. It is natural to attempt to

telescope these into one iteration process, such as the one given below, the question

then arising as to whether the resulting iteration will converge as required. Consider

the combined inverse iteration commencing with a vector z1

µi = zTi V
TAV zi/z

T
i V

TV zi,

zi+1 = M−1
i V TV zi, Mi as in (5.27).

Let this be named Algorithm (2), and define

δi = zTi Mizi/z
T
i V

TV zi ≥ 0

then if δi decreases, convergence can be proven. Now

δi+1 − δi =
zTi+1Mi+1zi+1

zTi+1V
TV zi+1

−
zTi+1Mi

(
V TV

)−1
Mi

(
V TV

)−1
Mizi+1

zTi+1Mi (V TV )−1Mizi+1

but using (5.30)

δi+1 = zTi+1Mizi+1/z
T
i+1V

TV zi+1 − (µi+1 − µi)2

and since V TV is positive definite it is possible to define a symmetric matrix B so

that

V TV = B2, C ≡ B−1MiB
−1, w ≡ Bzi+1

giving

δi+1 − δi = wTCw/wTw − wTC3w/wTC2w − (µi+1 − µi)2.
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Now C is clearly symmetric positive semi-definite and so has an eigensystem

Cwi = νiwi, wTi wj = δij; i, j = 1, 2, . . . , k,

so let w =
∑
αiwi and denote the Rayleigh quotients

ρ(Cr) =
∑

α2
i ν

r
i /
∑

α2
i ,

then if ρ(C) = 0 it also follows that ρ(Cr) = 0, r = 2, 3, . . .. Next(∑
α2
i νi

)2
=
[∑

(αi)(αiνi)
]2
≤
(∑

α2
i

)(∑
α2
i ν

2
i

)
by Hölder’s inequality, giving ρ(C)2 ≤ ρ(C2), while(∑

α2
i ν

2
i

)2
=
[∑

(αiν
3/2
i )(αiν

1/2
i )
]2
≤
(∑

α2
i ν

3
i

)(∑
α2
i νi

)
,

again by Hölder’s inequality, so on dividing through

ρ(C2)2 ≤ ρ(C3)ρ(C)

∴ ρ(C)ρ(C2) ≤ ρ(C3)

as a result

δi+1 ≤ δi − (µi+1 − µi)2

so with the same argument as before δi → δ, µi → µ, and therefore Mi → M . Now

it is clear from the inverse iteration that δ will be an eigenvalue of

Mz = δV TV z

but whether or not this will be the required ∆2 will depend on z1.

For Algorithm (1) a good choice of the initial value µ1 is an eigenvalue of T , while

for Algorithm (2) z1 can be taken as the eigenvector corresponding to the smallest

eigenvalue of M1, again choosing µ1 to be an eigenvalue of T . In practice however

the results of these (believed new) algorithms were rarely significantly better than
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Lehmann’s suggested approach of just finding the smallest eigenvalue of M1 where µ1

is an eigenvalue of T , and in this light the reward would scarcely be worth the extra

effort involved in either of these iterative procedures. The eigenproblem formulation

(5.15) for fixed µ however still has an advantage over Lehmann’s suggested algorithm

(1966), especially when the intervals become small, because then inverse iteration

converges very swiftly to the minimum eigenvalue ∆2 and corresponding eigenvector z,

and by using double-length accumulation in the formulation of the Rayleigh quotient

with z as will be shown in Section 6.3, the loss of accuracy noted by Lehmann (1966)

in his calculation of ∆ can be avoided.

5.4.1 (a) Simplification using the Lanczos vectors
sec:5.4a

It has already been mentioned how the problem of finding optimum intervals is sim-

plified in the case of the Lanczos process. Suppose the vectors of V are normalized

to have unity 2-norm in (4.1), then

AV = V T + E, V TV = I, V TE = 0

and substituting AV − µV = V T − µV + E in (5.15) gives

[
(T − µI)2 + ETE

]
z = ∆2z. (5.32) eq:5.32

Now ETE has only its (k, k) element non-zero and so this is an easily obtained penta-

diagonal symmetric matrix eigenvalue problem, and the smallest eigenvalue can be

found very quickly, for example by inverse iteration. With the same substitution

equation (5.22) becomes

(T − tI)z =
1

τ − t
[
(T − tI)2 + ETE

]
z (5.33) eq:5.33

which again is a reasonably simple symmetric form, and the eigenvalues can be found

fairly quickly using standard procedures. However the t, τ intervals are only likely to
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be of use when extra information of the type given in (5.26) is available, and usually

several eigenvalues will be wanted, none of which is likely to be very small. Also the

eigenvectors are unlikely to be needed to give the required accuracy in the presence

of rounding errors, as is the case with the µ, ∆ problem, and the method described

by Lehmann (1966) for finding the values τ which make the determinant

Dk(t, τ) = det
[
(T − τI)(T − tI) + ETE

]
(5.34) eq:5.34

vanish for a given value of t will be much faster than solving the eigenvalue problem

(5.33) using standard procedures. As it will be assumed that there is no added

information available on the eigenvalue distribution of A, this t, τ problem will not

be considered further.

5.5 Comparison of the Possible Eigenvalue Inter-

vals
sec:5.5

After step k the accurate Lanczos process applied to the symmetric matrix A will have

produced a symmetric k by k tri-diagonal matrix T and a residual vector tk+1,kvk+1,

where ‖vk+1‖2 = 1, and using these, intervals may be found containing eigenvalues of

A. The four possible types of interval will be referred to by the following names:–

The Basic Intervals

If Tzi = µizi, ‖zi‖2 = 1, ∆i = |δk+1e
T
k zi|, i = 1, . . . , k, then from (5.3) each interval

[µi −∆i, µi + ∆i] contains at least one eigenvalue of A.

The Approximate Lehmann Intervals

Given µ find the eigenvalues ∆2
1 ≤ ∆2

2 ≤ . . . of the matrix

(T − µI)2 + δ2k+1eke
T
k (5.32)
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then from (5.19) each interval [µ−∆i, µ+ ∆i] contains at least i eigenvalues of A.

Here the values µ will be taken to be the eigenvalues of T as these give good approx-

imations to the optimum intervals.

The Optimum Lehmann Intervals

If for an approximate Lehmann interval above, µ is varied to give a local min-

imum to ∆1 then an optimum Lehmann interval is obtained. Again each interval

[µ−∆i, µ+ ∆i] contains at least i eigenvalues of A.

The t, τ Intervals

Given t solve the eigenvalue problem

(T − tI)z = [1/(τ − t)]
[
(T − tI)2 + δ2k+1eke

T
k

]
z (5.33)

to find τ−r ≤ . . . ≤ τ−1 < t < τ1 ≤ . . . ≤ τs, r + s = k, then in each interval [t, τi],

i = 1, . . . , s lie at least i eigenvalues of A, and the same for [τ−i, t], i = 1, . . . , r.

As each of these last three approaches gives a set of k intervals for each µ or t

chosen, the smallest of each set will be called the first interval of that kind.

Now each basic interval and each first approximate Lehmann interval is known to

contain at least one eigenvalue of A, however there is nothing in the theory to say that

if several basic intervals or several first approximate Lehmann intervals overlap then

each refers to a different eigenvalue. In fact if two intervals of either kind overlap then

their union may contain only one eigenvalue of A, as the following example illustrates.

Let

A =


1 0 0

0 0 0

0 0 −1

 , v1 = a


1

m

1

 , a2 =
(
m2 + 2

)−1
; a,m ≥ 0,
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then

t21v2 = Av1 − t11v1 = a


1

0

−1

 ,
since t11 = vT1 Av1 = 0, giving t21 = t12 =

√
2a. Finally

t32v3 = Av2 − t22v2 − t12v1 =
1√
2


1

0

1

−√2a2


1

m

1

 =
ma2√

2


m

−2

m

 ,
since t22 = vT2 Av2 = 0, giving ‖t32v3‖2 = ma. Thus taking k = 2 gives

T =

 0
√

2a
√

2a 0

 , and if Z =
1√
2

 1 1

1 −1

 , D =

 √2a 0

0 −
√

2a


then TZ = ZD, ZTZ = I, and from (5.3) the basic intervals are

|
√

2a− λ| ≤ ma/
√

2, | −
√

2a− λ| ≤ ma/
√

2.

Now m = 0 gives λ = 1, λ = −1 as expected; but as m increases, a→ 0, ma→ 1, and

both intervals tend towards |λ| ≤ 1/
√

2, that is, if m is large enough then only the

zero eigenvalue of A is contained in the union of the two intervals. In fact if m = 4

then the eigenvalues 1 and −1 are already at the ends of the intervals, |λ−1/3| ≤ 2/3,

|λ+ 1/3| ≤ 2/3.

It has already been shown that the first approximate Lehmann intervals are at least

as small as these basic intervals, so again for m large enough the two first intervals

will refer to only one eigenvalue of A. It is however useful to compare these intervals

with the basic intervals, and to do this, note that the matrix in (5.32) becomes

(T − µI)2 + ETE = a2

 4 ∓4

∓4 4+m2


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for µ = ±
√

2a. Thus the eigenvalues of this matrix are the same for both µ, and these

are given by

∆2 =
[
m2 + 8± (m4 + 64)

1
2

]
/(2m2 + 4).

For example if m = 4 then ∆1
.
= 0.41, ∆2

.
= 1.1, so that the first intervals are

satisfactorily smaller than the basic intervals, while the larger intervals, in which

must lie at least two eigenvalues, are again reasonable. What is more, as m increases

the two eigenvalues tend to 0 and 1 respectively, and since eigenvalues of T tend to

0 the intervals become tight, this is in marked contrast to the basic intervals whose

widths here are never less than
√

2, as long as m is finite.

In more realistic computations it was found that the basic intervals were usually

much less than twice the first approximate Lehmann intervals, while the first optimum

Lehmann intervals were rarely more than ten percent better than the approximate

ones. Significant differences were encountered, but these usually occurred when one

eigenvalue of T had nearly converged to one of A, whereas a corresponding very close

eigenvalue of T was a fair way from convergence. In this case Algorithm (1) in Section

5.4 often converged to the first eigenvalue, even when it started the iteration with the

second, and this somewhat negates its small advantage.

In Table 1 a comparison of these bounds is given for the matrix A resulting from

the finite difference replacement of Laplace’s equation with zero boundary conditions

on a 5 by 4 square grid. The Lanczos process with re-orthogonalization was applied

and the eigenvalues and the corresponding half-intervals are given for the 2 by 2,

the 4 by 4, and the first six eigenvalues of the 18 by 18 tri-diagonal matrices. The

similarity of the different intervals is clearly indicated, except in the case of the roots

of the 18 by 18 matrix corresponding to the repeated root of A, and here the centre

of the optimum interval shifts to the already converged root in both cases.

Thus the most easily obtained eigenvalue intervals using the Lanczos process are

the basic intervals (5.3), as these require no extra computation once the eigenproblem
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of T has been solved. Usually these will be close enough to the optimum obtainable

intervals to make any other intervals unnecessary. A small disadvantage is that if r

intervals overlap then their union may not contain r eigenvalues of A. Nevertheless

these are the obvious choice of intervals when using the Lanczos process.

If smaller intervals are really necessary then at some computational expense the

approximate Lehmann intervals can be computed by solving the eigenproblem (5.32).

Intervals containing more than one eigenvalue of A can be found from the higher

eigenvalues, as in this case (5.19) and (5.20) hold.

Optimum intervals of this kind could be found by either Algorithm (1) or with less

certainty Algorithm (2) in Section 5.4, but in general the gain does not seem worth

the computational effort involved.

If added information is available, such as knowing that a value t lies between

two adjacent eigenvalues of A, then the very useful intervals (5.24) and (5.25) can

be obtained by solving the eigenproblem (5.33), and these appear to be the most

practically useful of the results given by Lehmann (1966).

Although in both the µ, ∆ and t, τ cases an eigenvalue problem has to be solved

to gain full use of the available information, this is a k by k penta-diagonal matrix

problem, and as at most only a few of the smaller eigenvalues will be wanted, the

relative time taken will not be too great if k << n.

Finally the usual warning must be given that these intervals assume infinite preci-

sion computation, both in the Lanczos process and in the computation of the intervals.

Any rounding errors may well negate the bounds obtained. In fact it will be shown

in the next section how bounds can be obtained on the errors in the Lanczos com-

putation with re-orthogonalization, while bounds on the errors in the direct solution

of the eigenproblems (5.32) and (5.33) using stable methods may be obtained from

the analyses given by Wilkinson (1965), so in this case rigorous intervals are obtain-

able for practical computations. However in applications of the symmetric Lanczos
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process without re-orthogonalization no small bound can be found on the departure

of the vi from orthogonality, the Lehmann intervals obtained from (5.32) and (5.33)

are then fairly meaningless, while intervals would most likely not be computed from

(5.15) and (5.22) because of storage and time difficulties. For reasons to be given

in Sections 7 to 9 the intervals given by (5.3) are also doubtful in this form when

re-orthogonalization is not used, and the most reliable intervals will be obtained by

computing approximate eigenvectors yj = V zj of A, where Tzj = µjzj, and using

(5.2) directly. The more easily obtained intervals (5.3) will however still be excellent

guides.
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Section 6

The Symmetric Lanczos Process

with Re-orthogonalization

chp:6

The properties of the symmetric Lanczos process given in Sections 4 and 5 were

derived assuming infinite precision computation. In this light the method is extremely

attractive, especially when considered as an iterative process with a very large matrix,

for not only is the convergence of both the eigenvalues and eigenvectors seen to be

fast, but also useful eigenvalue intervals may be fairly easily obtained at any stage of

the process.

Unfortunately working with a digital computer to a fixed precision introduces

rounding errors, and it is well known from experience that these can greatly alter

the expected course of the method, and in practice the properties derived in the last

two sections need not hold. The most startling divergence from theory is the loss of

orthogonality of a vector vj+1 to the previous vectors v1, . . . , vj whenever cancellation

occurs in the computation indicated by (3.7). Lanczos (1950, p. 271) noted the

possible loss of orthogonality and advocated re-orthogonalization, that is, whenever
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vTi vj+1, i = 1, . . . , j, is noticeably different from zero, add the correction term

−v
T
i vj+1

vTi vi
vi

to vj+1. He then found the method to be extremely accurate. Now adding the

correction term takes about the same number of operations as testing whether it is

necessary, and since both require only the presence of vj+1 and vi it is clear that not too

much time will be lost by systematically re-orthogonalizing each new vector against

all the previous vectors, and this also avoids the difficulty of defining ‘noticeably

different from zero’ exactly. If the vectors are normalized to have unity 2-norm then

the jth step of one particular algorithm with full re-orthogonalization, starting with

a vector v1, with unity 2-norm, may be as follows. An intermediate vector cj is first

formed

cj = Avj − tjjvj − tj−1,jvj−1 (6.1) eq:6.1

where

t0,1 = 0,

tij = vTi Avj, i = j − 1 and j if i > 0,

 (6.2) eq:6.2

then the re-orthogonalization is carried out

wj = −b1jv1 − b2jv2 − . . .− bjjvj + cj (6.3) eq:6.3

where

bij = vTi cj, i = 1, 2, . . . , j, (6.4) eq:6.4

and wj is normalized to give the next vector

vj+1 = wj/tj+1,j (6.5) eq:6.5

where

tj+1,j =
(
wTj wj

) 1
2 . (6.6) eq:6.6
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In the literature the Lanczos process with re-orthogonalization usually refers to

such full re-orthogonalization, and the extensive use of such processes since Lanczos’

paper supports his hypothesis that the re-orthogonalization compensates for the in-

fluence of rounding errors. This process was then seen to be the most effective method

of reducing a full symmetric matrix to tri-diagonal form, until it was superseded by

the faster method advocated by Givens (1954), and later by the even faster method

proposed by Householder (Householder and Bauer, 1959). When the Lanczos method

was the best available for such full matrices it would have been desirable to have a

rounding error analysis giving rigorous bounds on the possible errors in the compu-

tation, and in fact in 1956 J. H. Wilkinson did carry out a rough analysis but did

not publish it because he was not fully satisfied with it. However since the Givens

and Householder methods are both more efficient and have been shown by rigorous

analyses to be very accurate (Wilkinson, 1965), there is no longer such a need for an

analysis of the Lanczos process, at least for the complete reduction of a full symmetric

matrix to tri-diagonal form.

If less than the full number of steps are needed, then because of the relatively small

number of operations required in the early steps, the Lanczos process becomes rela-

tively more attractive, especially for large sparse matrices, and an operation count will

be given later in this section showing under what circumstances the Lanczos process

with re-orthogonalization is actually faster than the equivalent Householder process.

It follows then that there are circumstances where a full and rigorous rounding error

analysis is still needed, and this will accordingly be given here. The time and storage

requirements of the method will then be given and compared with the equivalent

formulation of Householder’s method, and finally some computational results will be

given and some conclusions drawn.
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6.1 Rounding Error Analysis
sec:6.1

The rounding error analysis of the symmetric Lanczos process with re-orthogonaliz-

ation has been presented by the author in two documents (Paige, 1969b, 1970b). The

first, an Institute of Computer Science internal document, gives the full error anal-

ysis, obtains all the error bounds, and gives an example where re-orthogonalization

actually breaks down; it then considers briefly the effect of errors on computing the

approximate Lehmann intervals mentioned in Section 5. Although the second doc-

ument gives the basic error analysis it does not obtain the error bounds, a lengthy

and tedious process, but summarizes the results of the first paper instead. Thus al-

though the first is the more complete work, both are included at the end of this thesis

since the second is more clear, precise and readable, and corrects several minor errors

occurring in the original as well as including a computational example showing the

rapid convergence of the process.

Before going on to point out the essential parts of the above papers it is only fair

to mention that some of the results may not be original. It was noted earlier that

J. H. Wilkinson of the National Physical Laboratory in Teddington England carried

out a rough analysis of the process in 1956 but did not publish it, while J. Meinguet

at the University of Louvain Belgium indicated in a letter in December 1968 that he

had done some work in this direction, but that the results were mainly of academic

interest and had not been written up. As neither of these two works were published

or available in any form the author is uncertain as to what extent his own results

replicate these works.

The method of analysis used followed that outlined in Section 3, and so the possible

rounding errors occurring in the practical computation of each of equations (6.1) to

(6.6) were first described using the theory of Section 2. Now each of these equations

involves individual vectors vj etc. and describes the computation at one step only,
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whereas the results of the first k steps can be combined for each of these equations,

giving equivalent matrix equations. For instance (6.1) becomes

C = AV − V (T −K) + δV (6.7) eq:6.7

where C ≡ (c1, . . . , ck), V ≡ (v1, . . . , vk), T is the k by k tri-diagonal matrix of

coefficients tij, and K is just T without its diagonal and super-diagonal elements.

These elements represent the actually computed elements, while δV , which describes

the rounding errors that occur in the computation of (6.1) in steps 1 to k, can be

bounded in terms of k, ‖A‖, and the characteristics of the computer used, using the

theory given in Section 2.

The matrix equations of the form (6.7) were then combined to give the practical

equivalent of (4.1)

AV = V (T +B) + E + δC − δV, (6.8) eq:6.8

where B is the upper triangular matrix of elements bij used in the re-orthogonalization

(6.3), and δC describes the errors occurring in (6.3), (6.5) and (6.6). Unfortunately

δC depends on the elements of B, while these depend on the off-diagonal elements

of V TV , among other factors, and so in order to find bounds on the error matrices

in (6.8) it was necessary to bound the departure from orthogonality of the computed

vectors vj.

The k by k matrix δU was defined to be the strictly upper triangular part of V TV ,

while

δuk+1 ≡ V Tvk+1.

The particular process analysed used double length accumulation of inner products

in (6.2), (6.4), and (6.6) for increased accuracy, and under certain restrictions on the

size of the problem and accuracy of the computer (Paige, 1970b, (4.2)) it was shown

that

‖δuk+1‖2 < 2.02ε (1 + ‖δU‖2) + 1.01
[
2‖δU‖2 +

(
7 + k3/2

)
ε
]
‖bk‖2/tk+1,k (6.9) eq:6.9
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where bk is the kth column of B and ε is as in (2.3). As a result of this no a priori

bounds can be obtained for the columns of δU or B without setting a lower bound

on the allowable normalization factors tj+1,j in (6.6), in fact an example was given

showing how orthogonality could actually be lost when several very small normalizing

factors occurred in a sequence. The normalizing factors in the example were not very

much greater than the machine precision, and would certainly have been taken as

zero in any reasonable algorithm and the process curtailed, or a new vector chosen

which was orthogonal to the previous vectors. What the analysis and the example

pointed out however was that re-orthogonalization is certainly not good enough to

produce new vectors orthogonal to the previous ones in such extreme cases. As well

as this the tests to determine when the vector tk+1,kvk+1 can be considered negligible

have always been somewhat arbitrary in the past, whereas the analysis allows rigorous

error bounds to be obtained when particular stopping criteria are chosen. A test which

struck a reasonable balance between stopping the process too early and allowing it

to go on too long with possible resulting errors was the following:–

CRITERION: stop the process for the first value of k for which

tk+1,k < k‖bk‖2, or k = n. (6.10) eq:6.10

A priori error bounds were then found for the process, and it was shown that if

the stopping criterion was triggered after k steps then

(A+ δP )V = V T

where

‖δP‖2 <
[
40 + 60k

1
2 + 60k +

(
4 + 3k

1
2 + 1.2k

)
mβ
]
k

1
2 ε‖A‖2

where A has at most m non-zero elements per row, and as in (2.9), β = ‖|A|‖2/‖A‖2.

Thus if Tz = µz then (A+ δP )y = µy where y = V z, and µ and y are an eigenvalue-

eigenvector pair belonging to the perturbed matrix A + δP . The bound on δP is of
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course very pessimistic as it assumed tk+1,k = k‖bk‖2 at every step, whereas tk+1,k is

almost always far greater than this.

If the process is stopped before the criterion is triggered, then since it is shown

that

‖δuj‖2 < 10j
1
2 , j = 2, 3, . . . , k,

it is clear that the vectors v1, . . . , vk are satisfactorily orthogonal, and using this

and bounds on the errors in (6.8), the possible errors in the approximate Lehmann

intervals could be found as indicated in (Paige, 1969b, Section 5). However it was

mentioned in Section 5 here that the basic intervals are usually sufficient, and thus it

can be said that the interval

|µ− λ| < ‖(A− µI)V z‖2/‖V z‖2

contains an eigenvalue of A for any µ and z. But from (6.8) if Tz = µz then

‖(A− µI)V z‖2 < ‖Ez‖2 + ‖V B + δC − δV ‖2‖z‖2,

where it can be shown that

‖V B + δC − δV ‖E <
(

35 + 31k
1
2 + 3.6mβ

)
k

1
2 ε‖A‖2,

while

‖z‖2 < ‖(V TV )−1V T‖2‖V z‖2

< 1.024‖V z‖2

since it can be shown that

‖V ‖2 < 1.008, ‖(V TV )−1‖2 < 1.015

with the given restrictions on the size of the problem. As a result it can be said that

at least one eigenvalue λ of A satisfies

|µ− λ| < 1.03
[
|ζktk+1,k|/‖z‖2 +

(
35 + 31k

1
2 + 3.6mβ

)
k

1
2 ε‖A‖2

]
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where ζk is the kth element of z. Of course here it is assumed that µ and z are an

accurate eigenvalue-eigenvector pair for T , in practice the error involved in computing

these (Wilkinson, 1965) should be considered as well, for completeness.

6.2 Time and Storage for the Lanczos Process
sec:6.2

To obtain an idea of the time for the jth step of the process described by (6.1) to

(6.6) let s and d denote the times for the single and double-length accumulation of

products as described in Section 2.4. If double-length accumulation of inner-products

is used in steps (6.2), (6.4) and (6.6), and the n by n matrix A has only nm non-zero

elements, then the time can be broken down as follows

Equation To Form Time in µ Sec

Avj nms

(6.2) tj−1,j and tjj 2nd

(6.1) cj 2ns

(6.4) b1j, b2j, . . . , bjj jnd

(6.3) wj jns

(6.6) tj+1,j nd + a square root

(6.5) vj+1 ns + a division

(6.10) t2j+1,j < j2bTj bj ? (j + 2)s + a test.

The basic part of the computation takes (m+3)ns+3nd + square root + division,

per step, while the re-orthogonalization and stopping criterion takes jn(s+d)+(j+2)s

+ test, per step, and is likely to be the dominant part of the computation. Now it

was seen in Section 2.4 that for the Atlas computer d < 4s certainly, so taking d = 4s

and summing over the first k steps the total time is about

nk (m+ 5k/2 + 18) s µ Sec.
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ignoring the square roots, divisions, and tests. If single length accumulation is used

throughout this time reduces to about

nk(m+ k + 8)s µ Sec.

This analysis ignores any transfers of vectors that might be required, and assumes

that Avj could be formed with only nm operations (an operation being one multipli-

cation and one addition). If only the non-zero elements of A are stored, for example

in rows with their appropriate column indices, then no more operations are needed

and the usage of store is more economic too. If the matrix has a very well defined

structure and relatively few different elements, then negligible storage may be needed

to give the full information required to form Av for any vector v, again requiring only

nm operations. Thus at worst only nm ordinary storage locations plus nm index

locations are required to store A, and often much less.

In the computation all the values tij and vectors vj must be kept, while in the kth

step only one n-vector is needed for all of Avk, ck, and wk, while one k-vector can be

used for bk, giving a total number of storage locations of about

nk + n+ 4k + storage of A.

If the vj are kept in a larger slow store then the computation can very simply be

programmed to require three vectors of dimension n in the fast store (plus storage of

A) and bring down and replace each of v1, . . . , vj once only in the jth step.

From this analysis it can be seen that the Lanczos process requires more store

and more computation with each successive step, and even if m were negligible in

comparison to n and only single length accumulation was used, n steps of the process

would require over n3 operations and over n2 storage locations, making it a poor

performer for this full reduction when compared with Householder’s method.
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6.3 Comparison with Householder’s Method
sec:6.3

Although the symmetric Lanczos algorithm with re-orthogonalization is unsatisfac-

tory for n steps, its simplicity and initial small computation per step makes it very

effective for a limited number of steps, and as often only some fraction of n steps is

required to give a few eigenvalues accurately, the Lanczos process will be compared

with the equivalent Householder method in such a situation.

Householder (1964, Section 6.4) showed that if the elementary Hermitian matrix

P0 = I − 2vvT , vTv = 1, is chosen so that if vT1 v1 = 1 then P0v1 = ±e1, e1 the first

column of the identity, then the Householder algorithm applied to A0 ≡ P0AP0 gives

the same result as the Lanczos algorithm starting with v1, except for possible changes

of sign. With this terminology (4.1) becomes

A0V0 = V0T + E0, V T
0 E0 = 0, V T

0 V0 = I

where

V0 ≡ P0V, E0 ≡ P0E,

so that V0 has for its first column ±e1. Now for k− 1 exact steps of the Householder

tri-diagonalization on A0

A0

[
P , Q

]
n×k n×n−k

=
[
P , Q

]Tk CT

C B

 } k
} n− k

where [P,Q] = P1P2 · · ·Pk−1 is the product of the elementary Hermitians of the

process, Tk is tri-diagonal, and C = [0, . . . , 0, c]. As a result

A0P = PTk +QC, P TP = I, P TQ = 0

and P has for its first column e1. Then (see for example Wilkinson, 1965, p. 352) as

long as tj+1,j 6= 0, j = 1, . . . , k − 1,

P = V0D, Tk = DTTD, QC = E0D
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where D is a diagonal matrix with elements of ±1. Thus for exact arithmetic all the

information that was found from k steps of the Lanczos process and used in obtaining

eigenvalue bounds could also have been found from k − 1 steps of Householder’s

method applied to A0. As a result all the interesting properties of convergence and

all the eigenvalue intervals discussed in Sections 4 and 5 apply equally well to such

an incomplete Householder tri-diagonalization.

The accuracy of Householder’s method is well known, it remains to give an opera-

tion count for the initial transformation of A followed by k− 1 ordinary Householder

steps. By examining the algorithm suggested by Wilkinson (1965, p. 292) it can be

seen that without taking any advantage of sparsity the initial transformation takes

about 2n(n+ 2) operations while the jth step takes about 2(n− j)2 + 4(n− j) oper-

ations, and each step requires one square root. Summing for k− 1 steps gives a total

of
k

3
(6n2 + 18n+ 7− 6nk + 2k2 − 9k)

operations plus k square roots. The Lanczos process thus takes less computation per

step initially, even if m = n. The difference is that the amount of computation per

step diminishes as the Householder algorithm progresses, whereas for the Lanczos

algorithm it increases, as a result there is a break-even point at which both (uncom-

pleted) algorithms take the same time. By putting k = n/3 in both counts for the

Lanczos method with single-length accumulation and for the Householder method it

is seen that the first is faster in this case even taking m = n, as long as n ≥ 42. For

the Lanczos method using a double-length accumulation which takes four times as

long as single-length, the break-even point for m = n is at about k = n/5, as long as

n ≥ 100.

Thus even for full matrices the Lanczos process with re-orthogonalization has

an initial advantage in speed, though not store, over Householder’s method, and

could be used if only a few steps were needed, however such a situation is hard to
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imagine. For a very sparse matrix the speed advantage of the early steps of the

Lanczos process is greatly enhanced, and the storage requirements are also much less.

A means of applying Householder’s algorithm that takes some advantage of sparsity

can be devised but it takes about twice as much storage (apart from the storage for

A), and about as much computing time, as the Lanczos method with double length

accumulation given here, while its numerical stability is uncertain without an analysis.

Now in most large sparse matrix problems the complete eigensolution is not

wanted, instead several of the extreme eigenvalues and sometimes their eigenvec-

tors are usually required. For example in the matrix formulation of a vibrational

problem the eigenvalues correspond to frequencies of vibration, and perhaps only 5

or 6 of the lowest frequencies will be required, possibly together with their modes of

oscillation, or eigenfunctions. In many cases a vector v1 with substantial projections

on the subspaces of the wanted eigenvalues will be readily available as well, thus en-

suring even faster convergence to the desired eigenvalues and eigenvectors than would

be achieved with an arbitrary initial vector. In such problems the symmetric Lanczos

process with re-orthogonalization has definite advantages over Householder’s method

in store, speed, and simplicity, and in (Paige, 1970b, Section 5) an example is given

of the rapid convergence of the process for some extreme eigenvalues of a 300 by 300

large sparse symmetric matrix.

The approximate Lehmann intervals centred on the eigenvalues of T are tabu-

lated for this example (ibid., Table 1). The algorithm for finding these suggested

by Lehmann (1966) was first used, but because of rounding errors occurring in the

computation of these intervals, this algorithm never gave an interval of half-width

less than 10−6, even when both an eigenvalue and its eigenvector had converged to

machine accuracy. This is quite understandable as, with rounding errors, ∆2 in (5.32)

is liable to be in error by ‖(T −µI)2 +ETE‖ ·O(ε), and so taking the square root will

magnify this, making it impossible to find accurate small intervals. However when
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the corresponding eigenvector z in (5.32) is also found to machine accuracy by inverse

iteration, by using for example one of the algorithms given by Martin and Wilkin-

son (1967), then y = Tz − µz can be computed using double-length accumulation of

inner-products, and forming (∑k
i=1 η

2
i + t2k+1,kζ

2
k

)
(∑k

i=1 ζ
2
i

)
gives ∆2 very accurately, where ηi and ζi are the elements of y and z respectively.

The error in this is O(ε2), and so taking the square root gives ∆ with an error O(ε),

these then are the values B in the given table.

It was seen in the operation count for the Lanczos process that if a slow double-

length accumulation procedure was used the process was considerably slowed down,

but without the occasional use of double-length there is likely to be a small loss

in accuracy. For instance an examination of the error analysis shows that if the

number 7 in the inequality (6.9) is replaced by 2n + 2, then this is very close to the

corresponding bound using ordinary accumulation. Then it can be seen that the same

stopping criterion could be used with a possibly greater loss of orthogonality and loss

of over-all accuracy, or

tk+1,k < kn‖bk‖2

could be used as a stopping criterion, ensuring about as much orthogonality as previ-

ously, but with a still possibly greater error if the process was forced to stop by this

criterion.

As cancellation is the basic cause of loss of orthogonality of cj to v1, . . . , vj in (6.1),

a further saving of time could be made by only re-orthogonalizing when ‖cj‖2 is small

compared with ‖Avj‖2, this however would require another error analysis to define

‘small’ accurately, and is moving towards the subject matter of the next section, the

Lanczos method without re-orthogonalization.
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Finally it should be mentioned again that a disadvantage of both the Householder

and Lanczos algorithms used in this incomplete form is that repeated eigenvalues may

not be found early on, even if they are among the extreme eigenvalues, this difficulty

has already been mentioned in the analysis in Section 4.
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Section 7

The Symmetric Lanczos Process

without Re-orthogonalization

chp:7

For large sparse symmetric matrices the most obvious practical advantage of the

Lanczos algorithm in its simple form is the small amount of computation and storage

required per step. If only the eigenvalues are wanted then vj−1 and vj are the only

vectors that are needed to form vj+1, and the amount of storage and computation per

step remains constant. If eigenvectors are also required then v1, v2, . . . , vj−2 etc. may

be put in the backing store and brought back one at a time at the end of the algorithm

to build up the required eigenvectors; otherwise v1, v2, . . . can be re-formed, used, and

discarded, in a second pass of the algorithm once their contributions to the required

eigenvectors have been found by solving the eigenvector problem for the tri-diagonal

matrix T obtained in the first pass. Another practical advantage of the algorithm is

that it requires no estimation of parameters, as do some iterative methods, and it also

finds several eigenvalues in one go, rather than just one as does the power method

with one vector, the steepest descents method, and the Tchebycheff iteration. Other

advantages of the algorithm in theory are the extremely rapid convergence discussed

in Section 4 and the possibility of finding useful eigenvalue intervals discussed in
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Section 5. These last two advantages suggest the use of the algorithm as an iterative

method.

However the Lanczos algorithm in its simple form appears to have been largely

discarded as a useful method, and this is almost certainly because of the severe

loss of orthogonality that occurs when any significant cancellation takes place. In

the work for this thesis this loss of orthogonality was first examined and it was

found that it could be bounded in terms of the computed elements of the tri-diagonal

matrix. However in computations comparing the accuracy of computed eigenvalues

with both the loss of orthogonality and the bounds on this, it was found in many

cases that several eigenvalues converged to great accuracy despite complete loss of

orthogonality. Startling examples of this occurred when the number of steps far

exceeded the dimension of the matrix, as in such cases it often happened that repeated

eigenvalues of the tri-diagonal matrix corresponded accurately with single eigenvalues

of the original matrix.

As a result of the above computations attention was switched to trying to find out

under what circumstances convergence occurred and attempting to understand why

this was possible despite the loss of orthogonality. There are several possible minor

variants of the basic algorithm, and one interesting result shows that the particular

algorithm that appears initially most satisfactory has a basic flaw which negates its

usefulness, particularly when close eigenvalues are sought. Instead an even more

simple algorithm is seen not to suffer from this flaw, and is an extremely useful

algorithm for large sparse matrices when used iteratively.

This section will be devoted to analyzing why the most obvious algorithm fails,

and, since this analysis suggests that the more simple algorithm will not suffer in the

same manner, obtaining initial expressions for the errors in this second algorithm. It

will be left to Section 8 to show why in fact this second algorithm is so remarkably

accurate.
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7.1 The Basic Method and the Different Possible

Algorithms
sec:7.1

First the method will be presented in a slightly different light to that given earlier.

Suppose in the jth step it is intended to find the component of Avj which is orthogonal

to v1, . . . , vj, and that these are themselves orthogonal. That is, find t1j, . . . , tjj in

tj+1,jvj+1 = Avj − tjjvj − . . .− tijvi − . . .− t1jv1

so that

tj+1,jv
T
i vj+1 = 0, i = 1, . . . , j.

Note that this will also ensure that ‖tj+1,jvj+1‖2 is minimal in the above expression,

and this is why Lanczos called it the method of minimized iterations.

In order to satisfy these conditions it is necessary to have

tijv
T
i vi = vTi Avj = vTj Avi

= vTj (ti+1,ivi+1 + tiivi + . . .+ t1iv1)

= 0 if i < j − 1,

since v1, . . . , vj are orthogonal. As a result there are only three coefficients required

per step. Now because of the complexity involved, some of the following work will be

more easily followed when written using the small notational change

δ1 ≡ 0; δj ≡ tj−1,j, j = 2, 3, . . . ;

γj ≡ tjj, βj+1 ≡ tj+1,j, j = 1, 2, . . . .

With this notation the coefficients become

δj = vTj−1Avj/v
T
j−1vj−1, j > 1 (7.1) eq:7.1

= βjv
T
j vj/v

T
j−1vj−1, j > 1 (7.2) eq:7.2

γj = vTj Avj/v
T
j vj, j ≥ 1 (7.3) eq:7.3
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and the equation for forming and normalizing the next vector becomes

βj+1vj+1 = Avj − γjvj − δjvj−1. (7.4) eq:7.4

Thus there are certainly two possible algorithms given by the choice between (7.1)

and (7.2), and these will be denoted by A1 and A2 respectively (A for Algorithm). A1

and A2 are the same in theory but behave markedly differently in practice. Now it is

interesting to note that the so-called ‘conjugate gradient’ algorithms for the solution

of linear equations problems arose from the Lanczos process for the eigenproblem,

(Lanczos, 1950, p. 256; 1952), and that in theory coefficients corresponding to those

in (7.1) to (7.4) can be derived directly from the coefficients occurring in the different

‘conjugate gradient’ algorithms for the solution of the matrix equation Ax = v1,

taking as the starting vector x0 ≡ 0 (see also for example Engeli et al., 1959, p.

45). Reid (1970) has summarized and compared these different possible solution of

equations algorithms, and the most economic, called here A3, will be compared in

Table 2 for economy per step with A1 and A2 above. A comparison will also be

made with one step of the Tchebycheff iteration for finding an extreme eigenvalue

and its eigenvector. The time and storage required in the matrix-vector product

computation will be omitted in the comparison as these will be the same for each

algorithm; however unless the matrix is extremely sparse these may well dominate

the computations. In A1 and A2 it will be assumed that βj+1 = 1 in (7.4), this lack

of normalization is unimportant on floating point arithmetic computers except that

it may lead to exponent overflow in some computations.

The small storage for A2 is possible because vj−1 in (7.4) may be overwritten by

Avj− δjvj−1 element by element as Avj is being formed, vTj Avj being accumulated at

the same time. A2 is thus the most economic of the Lanczos algorithms and indeed

compares well with the Tchebycheff iteration. There is also a variant of A2 that will

be commented on later.
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Algorithm Number of Vector Scalar by

vectors stored inner-products vector products

A1 3 3 2

A2 2 2 2

A3 4 2 3

Tchebycheff 2 0 1

Table 2: Time and storage comparison of algorithms.
tab:2

If A is very large and the full information required for forming Avj occupies

negligible store then the number of vectors stored per step may be very important.

As well as this an algorithm written for the main purpose of finding eigenvalues is

hopefully more accurate than a more complicated algorithm which was written for

another purpose and which gives the eigenvalues as an afterthought. For these reasons

only the two most economic algorithms A1 and A2 have been analyzed, although

initial computations using the conjugate gradient algorithms suggest that these may

also be viable.

Wilkinson (1965, p. 395) discards (7.2) in favour of (7.1), and this is perfectly rea-

sonable as in the first case he is not considering sparse matrices, so that the difference

in economy is negligible, while secondly he is considering re-orthogonalization, and

in this case the method for computing δj is probably somewhat arbitrary. His choice

perhaps follows from the theoretical observation that if vj−1 and vj are orthogonal in

(7.1) to (7.4) then vj+1 will be orthogonal to these if (7.1) is used, whereas the use of

(7.2) requires that vj be orthogonal to v1, . . . , vj−1 to achieve the same result. It is

then all the more astounding in the light of this argument that whereas A1 turns out

to have a significant flaw in the presence of rounding errors A2 is in fact extremely

reliable when used iteratively. Thus the most economic algorithm turns out to be the
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most accurate as well, a parallel result to that found by Reid (1970) for the different

‘conjugate gradient’ algorithms.

7.2 Initial Rounding Error Analysis
sec:7.2

The analysis will be for ordinary accumulation of inner products and as in (2.3) α

and ε will represent real numbers satisfying

|α− 1| ≤ u, |ε| ≤ (1.01)u, u ≤ 0.001 (7.5) eq:7.5

where u is a machine constant, and the conventions given in Section 2 will be used

without further comment. The matrix A will be real symmetric n by n with at most

m non-zero elements per row, and such that

‖ |A| ‖2 = β‖A‖2;

and it will simplify the analysis to assume that

(2n+ 1)ε, mβε < 0.01. (7.6) eq:7.6

Since only the 2-norm will be used the subscript 2 will be omitted in the future.

It will be assumed that there is no normalization in (7.4), that is, βj+1 = 1 always,

as this will make the more complex parts of the analysis easier to follow; the analysis

will then also hold rigorously for any normalization that does not introduce rounding

errors, and in fact it is almost accurate for any normalization since the rounding

errors thus introduced will be seen to be insignificant, the important errors in the

evaluation of (7.4) occurring as a result of the subtractions on the right hand side.

Throughout the analysis vj, γj, δj, etc. will represent the actually computed values

and relations will be found between these. The same set of symbols will be used for

both algorithms A1 and A2, the distinction being made in the text.
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Now from (2.7), (2.9) and (7.6) it follows that

fl(Avj) = Ajvj where Aj ≡ A+ δAj,

‖δAj‖ ≤ mβε‖A‖, so ‖Aj‖ < 1.01‖A‖

 (7.7) eq:7.7

and using (2.5) it is seen that

fl(vTi fl(Avj)) = vTi D(αn)Ajvj = vTi Ajvj + nε|vTi ||Ajvj| (7.8) eq:7.8

so in (7.3) for A1 and A2

|γj| ≤ α2n+1‖Ajvj‖/‖vj‖ < 1.03‖A‖ (7.9) eq:7.9

and in (7.1) for A1

|δj| ≤ α2n+1‖Ajvj‖/‖vj−1‖ < 1.03‖A‖‖vj‖/‖vj−1‖. (7.10) eq:7.10

If the right hand side of (7.4) is evaluated from left to right the computational

equivalent for j > 1 is

vj+1 = D(α) {D(α) [Ajvj − γjD(α)vj]− δjD(α)vj−1}

= Ajvj − γjvj − δjvj−1 − δvj (7.11) eq:7.11

where

δvj ≡ 2δjD(ε)vj−1 + [3γjD(ε)− 2D(ε)Aj] vj, j > 1,

δv1 ≡ [2γ1D(ε)−D(ε)A1] v1, (δ1 ≡ 0)

 (7.12) eq:7.12

so that from (7.9)

‖δv1‖ < 3.02ε‖A1v1‖ < 3.06ε‖A‖‖v1‖. (7.13) eq:7.13

So far (7.11) to (7.13) are true for both A1 and A2, but now for A1 using (7.9) and

(7.10)

‖δvj‖ < 7.05ε‖Ajvj‖ < 7.2ε‖A‖‖vj‖ (7.14) eq:7.14
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while for A2

‖δvj‖ < 2εδj‖vj−1‖+ 5.03ε‖Ajvj‖. (7.15) eq:7.15

Now by using these results it will be possible to bound the loss of orthogonality

between vj and vj+1, and this will lead to some significant conclusions. First from

(7.11) it can be seen that for both A1 and A2

vTj vj+1 = −δjvTj−1vj + θj, j > 1

vT1 v2 = θ1

where θj ≡ vTj Ajvj − γjvTj vj − vTj δvj, j ≥ 1

 (7.16) eq:7.16

and making use of (7.8) and (2.5), the computation of (7.3) gives

αn+1γjv
T
j vj = vTj D(αn)Ajvj

∴ θj = (n+ 1)εγjv
T
j vj − nε|vTj ||Ajvj| − vTj δvj

so that using (7.9) and (7.13) for A1 and A2

|θ1| < 2.02(n+ 2)ε‖A1v1‖‖v1‖ < 2.05(n+ 2)ε‖A‖‖v1‖2 (7.17) eq:7.17

while for j > 1 for A1, using (7.9) and (7.14)

|θj| < 2.02(n+ 4)ε‖Ajvj‖‖vj‖ < 2.05(n+ 4)ε‖A‖‖vj‖2 (7.18) eq:7.18

and for j > 1 for A2, using (7.9) and (7.15)

|θj| ≤ 2 [δj‖vj−1‖+ 1.01(n+ 3)‖Ajvj‖] ε‖vj‖. (7.19) eq:7.19

Thus it can be seen from (7.16) that for both algorithms, if in the following the

product term is taken to be unity for r > j,

vTj vj+1 =

j∑
i=1

(−1)j−iθi

j∏
r=i+1

δr (7.20) eq:7.20

where the θj have been bounded. This expression will now be used to indicate a

deficiency in A1, whereas later the same expression will be used to indicate some

excellent properties of A2. The two rather different results are caused by the small

differences in the δi in the two algorithms.
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7.3 Failure of the Obvious Algorithm (A1)
sec:7.3

The way to exhibit the failure of a given algorithm is to produce a numerical example

of this failure, and in fact a computational example of the failure of A1 will be given

in Section 9. Here however an attempt will be made to give some understanding of

why A1 fails, as it was this that led to the close examination of A2 and the eventual

revelation of its remarkable properties.

As insight only, rather than proof, is being given here, there will be little attempt

at rigour, and the rather clumsy notation O(ε) will be used, where

a = O(ε)

means that |a| = cu, where |ε| < 1.01u as in (2.1), and c is some positive constant

not too different from unity, say 0.1 < c < 10. The notation O(ε) is used rather than

the slightly more sensible notation O(u) because the error bounds have been given in

terms of ε throughout, as explained in Section 2.

Now it has been shown for A1 that (7.20) holds with

|θj| < θ‖vj‖2, θ ≡ 2.05(n+ 4)ε‖A‖,

and if it were true that δi = ‖vi‖2/‖vi−1‖2 for i = 2, . . . , j then it would follow that

|vTj vj+1| < jθ‖vj‖2 (7.21) eq:7.21

showing that no matter what cancellation had occurred earlier, if vj and vj+1 were

comparable in size then the orthogonality of these two would be commendable, and

could be used to establish the accuracy of the algorithm. Unfortunately the values of

δi computed using (7.1) do not obey this simple relation, and can be greatly different

for very small δi, in fact negative values are sometimes encountered. In practice

it is found that orthogonality in the sense of (7.21) is lost when any δi approaches

O(ε)‖A‖2 and as this corresponds to an off-diagonal element in the corresponding
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symmetric tri-diagonal matrix of O(ε
1
2 )‖A‖ it may well be premature to curtail the

iteration. Again practice suggests that if orthogonality is lost between vj and vj+1

then it is never regained for any later consecutive pair, and the resulting eigenvalues

wander about and never converge as k increases; this is quite understandable when

it is seen in (7.16) that the orthogonality in any step is directly dependent on that in

the previous step.

The departure of δj from its desired value can be understood as follows. Suppose

that vj−2, vj−1, Avj−1, γj−1 and δj−1 are known completely accurately, and then

ordinary rounding errors come into play in the computation of the next vector, so

that instead of the error free vector vj, the vector uj = vj + wj is obtained, where

from (7.11) and (7.14) the best that can be said of wj is that ‖wj‖ ≤ 7ε‖Avj−1‖. As

a result even if there are no further errors in the computation of (7.1) the following

approximation to δj is obtained

δj = vTj−1Auj/v
T
j−1vj−1 = δj + vTj−1Awj/v

T
j−1vj−1

so that

|δj − δj| ≤ 7ε‖Avj−1‖2/‖vj−1‖2 ≤ 7ε‖A‖2. (7.22) eq:7.22

As a value of δj approaching O(ε2)‖A‖2 is quite possible and would be considered a

satisfactory value on which to curtail the algorithm, the possible relative error in δj

can obviously be huge, causing drastic departures from (7.21).

The fact that the absolute error in the value of δj computed by (7.1) may be

O(ε)‖A‖2 also has a significant effect on the accuracy of the off-diagonal elements of

the corresponding symmetric tri-diagonal matrix whose eigenvalues are meant to be

those of A, even when δj � O(ε)‖A‖2, for then if

δj = δj +O(ε)‖A‖2

it follows that

δ
1
2
j = δ

1
2
j

[
1 +O(ε)‖A‖2/δj

]
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and the corresponding absolute error is O(ε)‖A‖2/δ
1
2
j . This is satisfactory while δj is

not very much smaller than ‖A‖2, but is progressively worse for smaller values of δj,

and the symmetric tri-diagonal matrix can have off-diagonal elements in error by as

much as O(ε
1
2 )‖A‖. Any negative values of δj would of course have to be set to zero,

and again this would give an error O(ε
1
2 )‖A‖.

In practice then even when loss of orthogonality does not occur in A1 the resulting

symmetric tri-diagonal matrix is likely to be in error. However in such cases if the

distinct eigenvalues of A are well separated it turns out that these are given quite

accurately by A1. Close eigenvalues may well be in error by up to O(ε
1
2 )‖A‖ though,

and so the method is unreliable unless only this reduced accuracy is required, in which

case the process would be curtailed whenever δj ≤ O(ε)‖A‖2.

Unfortunately many computations and a great deal of analysis were devoted to

trying to explain these particular properties of A1 before the above simple answer was

obtained. In particular some work on the sensitivity of the eigenvalues of Hermitian

matrices (Paige, 1970a) was developed with this one aim; this does explain why well

separated roots are well conditioned and close roots poorly conditioned but does not,

on its own, explain why A1 converges even as well as it does.

The analysis just given for A1 immediately suggested the superior properties of A2,

since it is apparent that (7.21) will be closely approximated in A2, thus suggesting

that the near-orthogonality of any two consecutive vectors of comparable size will

always be maintained. As well as this the equivalent of (7.22) for A2 is given by

δ
1
2
j = ‖vj + wj‖/‖vj−1‖, ‖wj‖ ≤ 7ε‖Avj−1‖

∴
∣∣∣δ 1

2
j − δ

1
2
j

∣∣∣ ≤ 7ε‖A‖

and since an eigenvalue accuracy of O(ε)‖A‖ is the best that can be hoped for anyway,

the main inaccuracy that upset A1 does not occur in A2.

As a result of its shortcomings A1 will not be analyzed further, the remainder
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of the thesis being directed solely towards understanding A2. Practical experience

suggests that the eigenvalues obtained using A2 always converge, and to within an

accuracy of f(j)ε‖A‖, f(j) being a function of the number of steps so far carried out.

The main problem then is to prove if this is true and to find a useful expression for

f(j). It turns out that the accuracy of the algorithm relies heavily on the bound on

vTj vj+1, at which point it should be noted that the maintenance of orthogonality of

consecutive vectors produced by A2 has not been rigorously proven in these previous

pages, as δj in (7.2) and so θj in (7.19) have not been satisfactorily bounded; all that

has been shown is that A2 does not suffer the drastic loss of accuracy in one step that

A1 can. The bounding of δj will be given in the remainder of this section. This is not

trivial as it requires a lengthy induction proof, but unfortunately I can see no way of

avoiding this. The induction is apparently necessary because of the dependence of the

size of vj+1 on all the previous vectors, as a result of (7.2) being used for computing

δj. The remaining important properties of A2 will be studied in Sections 8 and 9.

7.4 Further Analysis of the Most Economic Algo-

rithm (A2)
sec:7.4

It has already been indicated that A2 is not only the most economic algorithm, but

also apparently the best. Here some more of the properties that will be needed to

prove its accuracy will be given.

It has already been shown for A2 that

vT1 v2 = θ1; vTj vj+1 = −δjvTj−1vj + θj, j > 1, (7.16)

where

|θ1| < 2.05(n+ 2)ε‖A‖‖v1‖2, (7.17)
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|θj| <
[
2.02δ

1
2
j + 2.05(n+ 3)‖A‖

]
ε‖vj‖2, j > 1 (7.19)

but unfortunately no useful bound on δj is readily available. However it follows from

(7.11), (7.8), (7.9), (7.13), (7.16) and (7.17) that

‖v2 + δv1‖2 = ‖A1v1 − γ1v1‖2

≤ ‖A1v1‖2 − 2γ1v
T
1 (v2 + δv1)

< 1.03‖A‖2‖v1‖2 [1 + 4.1(n+ 2)ε]

therefore

‖v2‖ < 1.04‖A‖‖v1‖

from (7.6), and so

δ
1
2
2 = αn+

1
2‖v2‖/‖v1‖ < 1.05‖A‖. (7.23) eq:7.23

Thus δ2 is bounded, and a bound on δj may be found by induction, although the

proof also involves bounding the terms |vTi−1vi+1|.

Assume that

δ
1
2
i < 1.6‖A‖, i = 2, 3, . . . , j (7.24) eq:7.24

then from (7.15) and (7.19)

‖δvi‖ < 9ε‖A‖‖vi‖, i = 1, 2, . . . , j, (7.25) eq:7.25

|θi| < θ‖vj‖2, i = 1, 2, . . . , j,

θ ≡ 2.05(n+ 4)ε‖A‖.

 (7.26) eq:7.26

But the computational equivalent of (7.2) with βi = 1 is

δi = αfl(vTi vi)/fl(v
T
i−1vi−1) = α2n+1vTi vi/v

T
i−1vi−1 (7.27) eq:7.27
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so that (7.20) and (7.26) give

|vTi vi+1| < θ
(
1 + α2n+1 + α2n+2 + . . . α2n+i−1) ‖vi‖2

< 1.03iθ‖vi‖2, i = 1, 2, . . . , j, (7.28) eq:7.28

as long as jε ≤ .01 which in view of (7.6) will certainly be the case in any practical

computation.

Next from (7.11), (7.27), for i = 3, 4, . . .

vTi−1vi+1 = vTi
(
Avi−1 − α2n+1vi

)
− γivTi−1vi + vTi−1 (δAivi − δvi)

= δi−1v
T
i−2vi + (γi−1 − γi)vTi−1vi + φi−1 (7.29) eq:7.29

φi−1 ≡ vTi−1 (δAivi − δvi)− vTi (δAi−1vi−1 − δvi−1)− (2n+ 1)εvTi vi

so that using (7.7), (7.25), (7.24) and (7.27) for i = 3, 4, . . . , j

|φi−1| < φ′‖vi−1‖ · ‖vi‖

< φ‖vi−1‖2, where

φ ≡ 4.04ε(2n+mβ + 11)‖A‖2

φ′ ≡ (3.3n+ 2mβ + 20)ε‖A‖


(7.30) eq:7.30

while with a similar argument

vT1 v3 = (γ1 − γ2)vT1 v2 + φ1,

|φ1| < φ′‖v1‖ · ‖v2‖ < φ‖v1‖2.

 (7.31) eq:7.31

The results (7.29), (7.30) and (7.31) could be combined immediately with (7.28)

to produce the bound (7.37) on vTj−1vj+1, and the reader can go straight to this, but

as this tends to be excessive in practice a more refined bound will first be obtained

by considering (7.20) in order to indicate an aspect of the stability of the process.

Equation (7.29) gives for i = 3, 4, . . . , using the same convention as in (7.20),

vTi−1vi+1 =
i−1∑
r=1

φr

i−1∏
q=r+1

δq +
i−1∑
r=1

(γr − γr+1)v
T
r vr+1

i−1∑
q=r+1

δq



7.4 Further Analysis of the Most Economic Algorithm (A2) 100

but with (7.20) the second term on the right hand side becomes

i−1∑
r=1

(γr − γr+1)

[
r∑
p=1

(−1)r−pθp

r∏
q=p+1

δq

]
i−1∏

q=r+1

δq

which on combining the product terms and re-ordering the summation becomes

i−1∑
p=1

θp

(
i−1∏

q=p+1

δq

)
sp,i−1

with

sp,i−1 ≡
i−1∑
r=p

(−1)r−p (γr − γr+1) (7.32) eq:7.32

so that

vTi−1vi+1 =
i−1∑
r=1

(φr + sr,i−1θr)
i−1∏

q=r+1

δq. (7.33) eq:7.33

But from (7.9) it follows that

|sr,i−1| < 2.06(i− r)‖A‖, r = 1, 2, . . . , i− 1, (7.34) eq:7.34

while from (7.27)∏i−1
q=r+1 δq = α2n+i−r−1‖vi−1‖2/‖vr‖2 , r ≤ i− 2

= 1 , r > i− 2

 (7.35) eq:7.35

so that making use of (7.26) and (7.30)

∣∣vTi−1vi+1

∣∣ < α2n‖vi−1‖2
i−1∑
r=1

αi−r−1 (φ+ θ|sr,i−1|)

< 1.021‖vi−1‖2
[

(i− 1)φ+ θ

i−1∑
r=1

|sr,i−1|

]
(7.36) eq:7.36

< 1.06‖vi−1‖2(i− 1) (φ+ iθ‖A‖)

< (i− 1)2φ‖vi−1‖2, i = 3, 4, . . . j, (7.37) eq:7.37

since 8.08θ‖A‖ < 2.05φ.
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In practice (7.34) is found to be a large over-estimate, in fact it often happens

that γr
.
= γr+1 for the greater part of a computation with a large matrix, and there

is a great deal of cancellation in the sr,i, the bound (7.36) then being proportional to

(i− 1)φ rather than (i− 1)2φ as suggested by (7.37). How such properties of the γi

and δi can be incorporated to give very good bounds will become clearer later.

It is still necessary to prove that (7.24) holds for i = j + 1 in order to complete

the induction proof, and for this it is sufficient to use (7.37). Thus, making the

assumption that

2.12(j − 1) (φ+ jθ‖A‖) ≤ ‖A‖2

i.e. 4.4j [(3 + j)n+ 4j + 2mβ + 18] ε ≤ 1

 (7.38) eq:7.38

which is a considerably stronger restriction on the size of the problem than previously,

then for i = 3, 4, . . . , j,

|vTi−1vi+1| < 0.5‖A‖2‖vi−1‖2

and |vTi vi+1| < 0.1‖A‖‖vi‖2.

 (7.39) eq:7.39

Now if u, v and w are real vectors with w = u+ v, then

wTw = uTu+ 2vTw − vTv ≤ uTu+ 2vTw,

so from (7.11), (7.39), (7.9), (7.24), (7.25), and (7.5), (7.6),

‖vj+1 + δvj‖2 = ‖Ajvj − γjvj − δjvj−1‖2

≤ ‖Ajvj‖2 − 2 (γjvj + δjvj−1)
T (vj+1 + δvj)

< ‖A‖2‖vj‖2(1.03 + 0.21 + 1.04 + 0.07)

∴ ‖vj+1‖ < 1.55‖A‖‖vj‖

i.e.

δ
1
2
j+1 = αn+

1
2‖vj+1‖/‖vj‖

< 1.6‖A‖ (7.40) eq:7.40
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and the induction is complete, (7.24) then certainly being true for all values of j

such that (7.38) holds. The other bounds which were derived on the way are thus

also rigorous under the same condition. Naturally a more simple proof and a more

elegant result would be desirable, however the size of the bound (7.24) is not critical,

and in fact it is obvious from the argument that δj ≤ ‖A‖2 is usually a satisfactory

bound, even for values of j far in excess of (7.38); the important point is that such

a bound can be found ‘a priori’, as this is needed to give validity to the important

bounds (7.25), (7.28), and (7.37).

Thus we see from (7.28) that unlike A1, orthogonality between successive vectors

in A2 is never lost as a result of an earlier cancellation. It can be seen that (7.28) is

a really remarkable result, for if we consider the measure of orthogonality

|vTj vj+1|
‖vj‖‖vj+1‖

≤ 1.02jθ
‖vj‖
‖vj+1‖

≤ 1.03jθδ
− 1

2
j+1, (7.41) eq:7.41

then the bound is purely dependent on the step number and the cancellation in that

step. This property will be used in Section 8 to try to show why the algorithm is

so good. In fact although the bounds on vTj vj+1 and vTj−1vj+1 depended directly on

the methods used for calculating the elements of the final tridiagonal matrices, it

will follow from the nature of the algorithm that all the remaining errors vTi vj+1,

i < j − 1, are determined by the errors that have already been considered. This,

along with other properties of A2, will be explained after some new theory has been

developed at the start of Section 8.
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Section 8

Error Behaviour & Convergence of

the Symmetric Lanczos Process

chp:8
(Using Algorithm A2)

As the most obvious algorithm, A1, was shown to be unstable in the previous sec-

tion, only A2 will now be considered. First some theory necessary for understanding

the error behaviour and convergence properties of the algorithm will be developed.

Next a beautiful result will be derived for the loss of orthogonality of the process,

this result clearly showing the relation between this loss and the convergence of the

eigenvalues of the successive tri-diagonal matrices. Then after some important re-

sults on the approximate eigenvectors obtained from the algorithm have been proven,

a proof of convergence and accuracy of the algorithm will tentatively be given. This is

a very unsatisfactory proof which does little to show the true value of the algorithm,

and almost certainly much stronger results on convergence can be proven. However,

because the aim of Section 8.7 has not been satisfactorily achieved, several results are

developed throughout Section 8 that are not essential to the rest of this thesis but

may help to furnish a stronger proof of convergence at some later date. For this I

apologize to the reader and hope that the plethora of results presented here does not

confuse of irritate him too much.
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Because the main interest is the error analysis of the reduction of A to some tri-

diagonal form, say Tj, after j steps of the algorithm, no errors will be considered in

the computation of the eigensystem of Tj or any other computation which is not part

of the central reduction. That is, apart from the reduction everything will be thought

of as fully accurate, the effect of any other rounding errors can easily be dealt with

using the already well known theory.

Now in A2 δi = fl(vTi vi/v
T
i−1vi−1), and since this will always be non-negative, it

will be convenient to replace δi by δ2i throughout the remainder of the thesis.

Again norms will be assumed to be 2-norms unless otherwise indicated, and the

subscript 2 will be omitted throughout. The subscript F when it appears indicates

the Frobenius norm.

8.1 The Symmetric Matrix of the Process and Re-

lated Polynomials
sec:8.1

The βj+1 = 1, γj, and δ2j in the computed versions of (7.2) and (7.3) are the elements

of a tri-diagonal matrix whose eigenvalues hopefully approximate those of A. However

symmetric matrices are more easily handled, and submatrices of the main matrix will

also be considered, so the two more general j − r by j − r matrices

Tr,j ≡


γr+1 δ2r+2

1 γr+2
. . .

. . . . . . δ2j

1 γj

 , Cr,j ≡


γr+1 δr+2

δr+2 γr+2
. . .

. . . . . . δj

δj γj

 (8.1) eq:8.1

will be defined for r = 0, 1, . . . , j − 1 and j = 1, 2, . . . , k. It will be assumed that

δi 6= 0, i = 2, 3, . . . , k + 1. Next defining

Dr,j ≡ Diag(1, δr+2, δr+2δr+3, . . . , δr+2 · · · δj) (8.2) eq:8.2
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it follows that

Cr,j = Dr,jTr,jD
−1
r,j (8.3) eq:8.3

so that C and T have the same eigenvalues.

The leading principal minors of µI − Tr,j and µI − Cr,j will be denoted by

pr,r(µ) ≡ 1, pr,r+1(µ) ≡ µ− γr+1,

pr,s(µ) ≡ (µ− γs)pr,s−1(µ)− δ2spr,s−2(µ), s = r + 2, . . . , j.

 (8.4) eq:8.4

Thus pr,s(µ) is a monic polynomial of degree s− r such that

pr,s(µ) = det(µI − Tr,s) = det(µI − Cr,s), s = r + 1, . . . , j, (8.5) eq:8.5

so pr,j(µ) is the monic polynomial whose zeros are the eigenvalues of Cr,j.

8.2 A Useful Theorem on Cofactors
sec:8.2

A fascinating theorem in (Thompson and McEnteggert, 1968) that relates the ele-

ments of the eigenvectors of a symmetric matrix to its eigenvalues and the eigenvalues

of its principal submatrices will be applied and extended here, and as a proof is not

difficult one will now be given.

Consider the k by k matrix C ≡ C0,k in (8.1), this has distinct eigenvalues µ1 >

µ2 > . . . > µk and an orthogonal matrix of eigenvectors Y ≡ (y1, . . . , yk) such that

CY = Y D, where D = diag(µ1, . . . , µk), thus

p0,k(µ) = (µ− µ1) · · · (µ− µk).

Now for any square matrix B, B adj (B) = det(B)I, where ‘adj’ stands for adjugate,

so for any scalar µ

det(µI − C)Y = Y det(µI −D)

= (µI − C) adj (µI − C)Y = Y (µI −D) adj (µI −D)

= (µI − C)Y adj (µI −D)
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∴ adj (µI − C) = Y adj (µI −D)Y T (8.6) eq:8.6

as long as µI − C is nonsingular. But the elements of the matrices on each side of

(8.6) are polynomials in µ and there is equality for all but k values of µ, thus (8.6)

holds for all values of µ. Now

adj (µI −D) = diag[p0,k(µ)/(µ− µ1), . . . , p0,k(µ)/(µ− µk)]

so that

adj (µiI − C) = f(i)yiy
T
i (8.7) eq:8.7

where

f(i) ≡
k∏
r=1
r 6=i

(µi − µr).

Thompson considered general Hermitian matrices, but because of the tri-diagonal

form of C here it is easy to obtain some further interesting results. By equating the

(r, s) elements, s ≥ r, on each side of (8.7) it can be seen from the form of C ≡ C0,k

in (8.1) that

f(i)yriysi =

 δr+1 · · · δsp0,r−1(µi)ps,k(µi), s > r

p0,r−1(µi)pr,k(µi), s = r
(8.8) eq:8.8

where (−1)s−r in the (r, s) cofactor cancels with the sign in the product of the −δi.

These relations between the elements of the eigenvector of C corresponding to

µi and the above principal minors of µiI − C are so simple and elegant that they

could not be new, and this derivation may not even be original, nevertheless they are

included here for their interest and possible value. In particular for s > r

y2ri = p0,r−1(µi)pr,k(µi)/f(i) (8.9) eq:8.9

= yriysipr,k(µi)/ [δr+1 · · · δsps,k(µi)]
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so that

ysipr,k(µi) = δr+1 · · · δsps,k(µi)yri. (8.10) eq:8.10

(8.9) is the important result for this analysis, but it is also useful to note that an

alternate result to (8.10) is available, for suppose t ≥ s > r then from (8.8)

f(i)yriyti = δr+1 · · · δtp0,r−1(µi)pt,k(µi),

f(i)ysiyti = δs+1 · · · δtp0,s−1(µi)pt,k(µi), t > s

= p0,s−1(µi)pt,k(µi), t = s

∴ yrip0,s−1(µi) = δr+1 · · · δsp0,r−1(µi)ysi,

and in fact this result is just (8.10) for C ‘transposed’ about its secondary diagonal.

The result (8.9) was given by Thompson et al. (1968) in the following instructive

form. Let ν1 ≥ ν2 ≥ . . . ≥ νk−1 be the totality of eigenvalues of C0,r−1 and Cr,k, then

from the Cauchy inequalities

µ1 ≥ ν1 ≥ µ2 ≥ . . . ≥ νk−1 ≥ µk (8.11) eq:8.11

and (8.9) becomes

y2ri =

{
µi − ν1
µi − µ1

}
· · ·
{
µi − νi−1
µi − µi−1

}{
µi − νi
µi − µi+1

}
· · ·
{
µi − νk−1
µi − µk

}
(8.12) eq:8.12

where each of the factors in brackets lies between 0 and 1. These bounds on these

factors turn out to be very important in part of the following analysis.

8.3 Some Properties of the Eigensystems of the

C0,j
sec:8.3

Let Cj ≡ C0,j, j = 1, 2, . . . , k, then some relations between the eigensystem of Cj and

that of Ck, k > j, will be essential for future results. The following terminology will
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be used to distinguish the eigensystems for different values of j = 1, 2, . . . , k

CjY
(j) = Y (j)diag(µ

(j)
t ), Y (j) = (y

(j)
st ) = (y

(j)
1 , . . . , y

(j)
j )(

Y (j)
)T
Y (j) = I, µ

(j)
1 > µ

(j)
2 > . . . > µ

(j)
j .

 (8.13) eq:8.13

Then for j < k

Ck


y
(j)
r

0
...

0

 =


Cj

δj+1

δj+1

Cj,k




y
(j)
r

0
...

0

 =



µ
(j)
r y

(j)
r

δj+1y
(j)
jr

0

·

0


(8.14) eq:8.14

and so from the usual theory (Wilkinson, 1965, p. 171)

min
i
|µ(k)
i − µ(j)

r | ≤ δj+1|y(j)jr | = ar, say, (8.15) eq:8.15

that is, for every k ≥ j there is an eigenvalue of Ck within a distance ar from µ
(j)
r ,

and it will be said that µ
(j)
r has converged to an accuracy ar.

Now denoting M ≡ (y
(j)
t , . . . , y

(j)
t+s) it follows from (8.14) that

Ck

M
0

 =

M
0

 diag(µ
(j)
t , . . . , µ

(j)
t+s) + δj+1ej+1e

T
j

M
0


so that from the generalisation of the Wielandt-Hoffman theorem (Wilkinson, 1970)

there exist integers 1 ≤ i0 < i1 < . . . < is ≤ k, for k > j, such that

s∑
r=0

(µ
(k)
ir
− µ(j)

t+r)
2 ≤ δ2j+1

s∑
r=0

(y
(j)
j,t+r)

2. (8.16) eq:8.16

Thus if a group of s + 1 eigenvalues of Cj are well converged in the sense of small

ar in (8.15) then (8.16) indicates that s + 1 eigenvalues have converged to a certain

accuracy; that is there are s + 1 different eigenvalues of Ck, k ≥ j, close to these.

This result is useful when these eigenvalues of Cj are close together, resulting in the

intervals given by (8.15) overlapping.
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An important relation between the eigenvector of Cj and Ck, k > j, can also be

found, for later use, by multiplying (8.14) by (y
(k)
i )T , giving

(µ
(k)
i − µ(j)

r )y
(k)
i

T


y
(j)
r

0
...

0

 = δj+1y
(j)
jr y

(k)
j+1,i. (8.17) eq:8.17

Now if y
(j)
jr = 0 then from (8.14) µ

(j)
r is an eigenvalue of Cj and Cj+1, which is

impossible, therefore y
(j)
jr 6= 0. Next if µ

(k)
i = µ

(j)
r0 for some r0 then y

(k)
j+1,i = 0,

necessarily, and so (8.17) will be zero for r = 1, . . . , j, but the eigenvalues of Cj are

distinct

∴ (y(j)r
T
, 0, . . . , 0)y

(k)
i

 = 0 , r 6= r0,

= ±
[∑j

t=1 (y
(k)
ti )2

] 1
2

, r = r0,

the second result being a consequence of the first.

Next assuming µ
(k)
i 6= µ

(j)
r , r = 1, . . . , j and i = 1, . . . , k in (8.17), two extra

relations are ∥∥∥∥∥∥Y (k)T

y(j)r
0

∥∥∥∥∥∥
2

= 1 = (δj+1y
(j)
jr )2

k∑
i=1

[
y
(k)
j+1,i/(µ

(k)
i − µ(j)

r )
]2

and
j∑
t=1

(y
(k)
ti )2 = (δj+1y

(k)
j+1,i)

2

j∑
r=1

[
y
(j)
jr /(µ

(k)
i − µ(j)

r )
]2
.

8.4 Loss of Orthogonality in A2
sec:8.4

The effect of rounding errors on orthogonality after j steps of Algorithm A2 can now

be described in terms of the error expressions in Section 7 and Cj ≡ C0,j in (8.1).

The loss of orthogonality can then be related to the eigenvectors of Cj and finally

through equation (8.15) to the convergence of the eigenvalues.
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First j steps of (7.11) may be described by

AVj = VjTj + vj+1e
T
j +G′j

where from (7.7) G′j has columns δvr − δArvr, so that multiplying on the right by

D−10,j and defining

Gj ≡ (g1, . . . , gj) ≡ G′jD
−1
0,j ,

Wj ≡ (w1, . . . , wj) ≡ VjD
−1
0,j

and wj+1 ≡ vj+1/(δ2δ3 · · · δj+1)

 (8.18) eq:8.18

gives

AWj = WjCj + δj+1wj+1e
T
j +Gj. (8.19) eq:8.19

For simplicity it will be assumed that ‖v1‖ = 1, so from (7.27), (remembering the

change in notation)

δ2δ3 · · · δr = αn+(r−1)/2‖vr‖

∴ ‖w1‖ = 1, ‖wr‖ = αn+(r−1)/2, r > 1,

 (8.20) eq:8.20

and from (7.7), (7.13), and (7.25)

‖gr‖ < 1.01(9 +mβ)ε‖A‖. (8.21) eq:8.21

Now defining the strictly upper triangular matrix Uj ≡ (0,W T
1 w2, . . . ,W

T
j−1wj), (with

obvious licence),

W T
j Wj = UT

j +D(α2n+j−1) + Uj (8.22) eq:8.22

so that multiplying (8.19) on the left by W T
j , and equating the right hand side with

its own transpose

Cj(U
T
j + Uj)− (UT

j + Uj)Cj = δj+1(W
T
j wj+1e

T
j − ejwTj+1Wj) (8.23) eq:8.23

+W T
j Gj −GT

jWj + diag(wTi wi)Cj − Cjdiag(wTi wi)
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where the diagonal on both sides is zero. Next note that

diagonal of(CjU
T
j − UT

j Cj) = diag(δ2u12, δ3u23 − δ2u12, . . . ,−δjuj−1,j) (8.24) eq:8.24

where uir = wTi wr so that

δi+1ui,i+1 = vTi vi+1/(δ2δ3 · · · δi)2 = α2n+i−1vTi vi+1/v
T
i vi

and therefore from (7.26) and (7.28)

|δi+1ui,i+1| < 2.2(n+ 4)iε‖A‖. (8.25) eq:8.25

Thus it is possible to equate the upper triangular parts of the matrix equation

(8.23) to give the extremely important result on the loss of orthogonality of the

algorithm

CjUj − UjCj = δj+1W
T
j wj+1e

T
j −Hj (8.26) eq:8.26

where Hj is upper triangular having elements hir

h11 = δ2u12, hii = δi+1ui,i+1 − δiui−1,i, i = 2, . . . , j

hi−1,i = −wTi−1gi + gTi−1wi + δi(w
T
i wi − wTi−1wi−1)

hr,i = −wTr gi + gTr wi, r = 1, 2, . . . , i− 2.

 (8.27) eq:8.27

Now from (7.27) and (8.20)

wTi wi − wTi−1wi−1 = (vTi vi − δ2i vTi−1vi−1)/(δ2 · · · δi)2

= wTi wi(1− α2n+1) = α2n+i−1(2n+ 1)ε

so with (7.24), (8.20), (8.21), and (8.25)

|hii| < 4.4(n+ 4)iε‖A‖

|hi−1,i| < 1.01(3.2n+ 2mβ + 20)ε‖A‖

|hr,i| < 2.02(mβ + 9)ε‖A‖, 1 ≤ i < r − 1.

 (8.28) eq:8.28
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Using these results it is possible to show that the Frobenius norm of Hj in (8.26)

satisfies

‖Hj‖F <
[
2.6(n+ 4)(j + 1)3/2 + 1.5(mβ + 10)j

]
ε‖A‖, (8.29) eq:8.29

although more specific bounds will be needed later.

For the moment only the eigensystem of Cj will be considered, and the following

simple notation will be used

CjYj = Yjdiag(µi), Yj ≡ (y1, . . . , yj), Y T
j Yj = I

and Zj ≡ (z1, . . . , zj) ≡ WjYj,

 (8.30) eq:8.30

so that the zi are the approximations to the eigenvectors ofA after step j. Substituting

in (8.26) gives

diag(µi)Y
T
j UjYj − Y T

j UjYjdiag(µi) = δj+1Z
T
j wj+1e

T
j Yj − Y T

j HjYj (8.31) eq:8.31

and the elements ε
(j)
ir ≡ yTi Hjyr, or εir here for simplicity, can be bounded ‘a priori’.

A result of great significance for the understanding of the Lanczos process is

obtained by equating the (i, i) elements of both sides of (8.31), giving,

zTi wj+1 = εii/(δj+1yji), (8.32) eq:8.32

where yji is the last element of yi and so cannot be zero. The significance of this

result follows from (8.15), and it means in effect that an approximate eigenvector zi

of A at step j is largely orthogonal to wj+1 unless µi has converged to an accuracy

approaching |εii|.

This result will be examined further later, but for the present considering (8.32)

for i = 1, . . . , j gives

δj+1W
T
j wj+1 = Yjbj (8.33) eq:8.33
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where bj is a vector with elements bij ≡ εii/yji. In particular

δj+1w
T
j wj+1 =

j∑
i=1

εii = trace(Y T
j HjYj)

=

j∑
i=1

hii = δj+1uj,j+1 (8.34) eq:8.34

from (8.27), as expected, while

δj+1w
T
j−1wj+1 =

j∑
i=1

εiiyj−1,i/yji =

[
j∑
i=1

(µi − γj)εii

]
/δj (8.35) eq:8.35

since from

(Cj − µiI)yj = 0, δjyj−1,j + (γj − µi)yji = 0.

If as well as this the fact that

j∑
i=1

µiεii = trace
[
diag(µi)Y

T
j HjYj

]
= trace(CjHj) (8.36) eq:8.36

was used, the result corresponding to (7.33) would appear. Although this indicates a

possibly faster way of obtaining an old result, and suggests a re-organization of the

whole presentation so that it is centred around (8.26) from near the start, the main

reason for this repetition was to show how (8.26) gives the key to the error behaviour

of the algorithm. This is because it expresses the loss of orthogonality not in terms

of the individual elements but as a function of the resulting matrix Cj, and so of

the eigensystem of Cj, and this eigensystem is the main interest in the algorithm.

Note that expressions for vTi−2vi+1, etc. could have been found by the approach

used in Section 7 to express vTi−1vi+1, but the results would have been cumbersome

and almost useless, while (8.33), which has been derived very easily from (8.26), is

remarkably simple and clearly brings out the important factors in the process. It

is in fact this relation between the loss of orthogonality and the eigensystem of Cj

that makes the process so accurate, roughly speaking orthogonality is not fully lost in
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certain directions until eigenvalues corresponding to eigenvectors in these directions

have converged. The theory leading up to (8.32) has been carefully checked several

times, but it would also be interesting to test this result computationally.

Many other results follow directly from those just found, for instance equating the

(i, r) elements in (8.31) and using (8.32) gives

(µi − µr)yTi Ujyr = δj+1z
T
i wj+1yjr − εir

= εiiyjr/yji − εir (8.37) eq:8.37

and this can be combined with the equivalent (r, i) expression to give

(µi − µr)yTi (UT
j + Uj)yr = εiiyjr/yji − εrryji/yjr + εri − εir (8.38) eq:8.38

which could then give zTi zr. Instead of this, recourse will be made to (8.19) with both

sides multiplied by zTi and yr on the left and right respectively to give

zTi Azr = µrz
T
i zr + δj+1yjrz

T
i wj+1 + yTi W

T
j Gjyr (8.39) eq:8.39

and since this must equal zTr Azi, if i 6= r,

zTi zr =
[
δj+1(yjrzi − yjizr)Twj+1 + fir

]
/(µi − µr) (8.40) eq:8.40

where here fir ≡ f
(j)
ir ≡ yTi (W T

j Gj − GT
jWj)yr. The result (8.32) can now be substi-

tuted to give

zTi zr = (εiiyjr/yji − εrryji/yjr + fir)/(µi − µr). (8.41) eq:8.41

Of these two expressions for orthogonality of the approximate eigenvectors zi of

A, (8.40) is important when µi and µr have converged in the sense of small δj+1yji

and δj+1yjr, while (8.41) is more important before convergence.

Taking r = i in (8.39) gives with (8.32)

zTi Azi = µiz
T
i zi + yTi (Hj +W T

j Gj)yi (8.42) eq:8.42
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so that µi is a very good approximation to the Rayleigh quotient if ‖zi‖ is not small.

Another approach of possible interest is to compare the eigensystem of Cj with

the eigensystem of W T
j AWjy = µW T

j Wjy by using (8.19) and (8.33) to give

W T
j AWjyi = µiW

T
j Wjyi + yjiYjbj +W T

j Gjyi, (8.43) eq:8.43

this would then relate the convergence back to the convergence of the error-free pro-

cess given in Section 4, but as work in this direction has so far yielded no significant

results it will not be continued here.

Specific bounds on the basic error terms can now be given. If yT ≡ (η1, . . . , ηj)

and zT ≡ (ζ1, . . . , ζj) are real vectors such that yTy = zT z = 1 then in (8.26)

yTHjz =

j∑
r=1

ζr

r∑
s=1

ηshsr

=

j∑
r=1

ηrζrhrr +

j∑
r=2

ηr−1ζrhr−1,r +

j∑
r=3

ζr

r−2∑
s=1

ηshsr.

By putting as = 1, bs = ηs in Hölder’s inequality(∑
|asbs|

)2
≤
∑
|as|2

∑
|bs|2,

it follows that
r−2∑
s=1

|ηs| ≤ (r − 2)
1
2 etc.,

so from (8.28)

|yTHjz| ≤ max
1≤r≤j

|hrr|+ max
2≤r≤j

|hr−1,r|+
√

(j − 1)(j − 2)

2
max
3≤r≤j

1≤s≤r−2

|hsr|

< j(4.4n+ 1.5mβ + 32)ε‖A‖

= jχ, say,

 (8.44) eq:8.44

giving

|ε(j)ir | < jχ, i, r = 1, . . . , j. (8.45) eq:8.45
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Finally in (8.40) using (8.21)

|f (j)
ir | <

(
‖z(j)i ‖+ ‖z(j)r ‖

)
1.01j

1
2 (9 +mβ)ε‖A‖. (8.46) eq:8.46

Now that all the basic error expressions and bounds have been obtained it will be

possible to examine the effectiveness of the algorithm.

8.5 The Concept of Convergence of the Algorithm

A2
sec:8.5

In sub-section 8.3 several results were given on convergence of eigenvalues of the

consecutive matrices Cj. Three main questions then arise

1) Need any of the ar in (8.15) necessarily be small, i.e. is convergence assured?

2) If so, are the resulting eigenvalues good approximations to some eigenvalues of

A?

3) What is the accuracy of the corresponding approximate eigenvectors zi = Wjyi?

First noting that if Cjyi = µiyi, y
T
i yi = 1, then (8.19) gives

Azi = µizi + δj+1yjiwj+1 +Gjyi (8.47) eq:8.47

so that with (8.20) and (8.21) there exists an eigenvalue λs of A such that

|µi − λs| < 1.01[δj+1|yji|+ g(j)]/‖zi‖

with g(j) ≡ j
1
2 (9 +mβ)ε‖A‖.

 (8.48) eq:8.48

Thus if an eigenvalue µi of Cj has converged in the sense that δj+1|yji| is very small,

then µi is also a good approximation to an eigenvalue λs of A, as long as ‖zi‖ is not

small. In the same circumstances zi is a good approximation to the corresponding
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eigenvector of A if λs is well separated from the other eigenvalues of A (Wilkinson,

1965, p. 173).

From (8.40) and (8.20)

|zTi zr|
‖zi‖‖zr‖

< 1.01

[
δj+1|yji|+ g(j)

‖zi‖
+
δj+1|yjr|+ g(j)

‖zr‖

]
/|µi − µr| (8.49) eq:8.49

which is just the sum of the two bounds (8.48) for µi and µr, divided by |µi−µr|; the

orthogonality of any two approximate eigenvectors can then also be easily bounded if

the three denominators on the right of (8.49) can be bounded below. Note that there

is a lower bound on δj+1|yji| for a given error term εii, for from (8.32)

εii = δj+1yjiz
T
i wj+1

∴ δj+1|yji| > |εii|/(‖zi‖‖wj+1‖). (8.50) eq:8.50

Thus the smallest attainable value of δj+1|yji| cannot be smaller than |εii|/(1.01‖zi‖),

and it can be seen by using the bounds (8.45) and (8.48) that an a priori bound on

eigenvalue accuracy will almost certainly not be better than

jχ/‖zi‖2 + g(j)/‖zi‖, (8.51) eq:8.51

where it is hoped that ‖zi‖
.
= 1.

Unfortunately (8.48), (8.49), and (8.51) depend inversely on the size of zi, and as

this also comes into convergence proofs it will now be considered in detail.

8.6 Lower Bounds on ‖Wjyi‖2
sec:8.6

Here an expression will be found for zTi zi, where zi = Wjyi, this expression depending

on the eigenvalues of Cj and the errors in the process. Unfortunately ‖zi‖
.
= 1 need

not necessarily hold, as the following example illustrates. Let

C2Y =

γ δ

δ γ

 (1/
√

2)

 1 1

1 −1

 = (1/
√

2)

 1 1

1 −1

γ + δ 0

0 γ − δ





8.6 Lower Bounds on ‖Wjyi‖2 118

with wT1 w1 = wT2 w2 = 1, then from (8.27)

δ · wT1 w2 = h11

so

W T
2 W2 =

 1 h11/δ

h11/δ 1


giving

zTi zi = 1 + 2y1iy2ih11/δ, zT1 z2 = 0,

=

 1 + h11/δ for i = 1

1− h11/δ for i = 2

where it is possible from (8.25) and (8.27) that h11
.
= nε‖A‖. Thus for very small δ,

corresponding to very close eigenvalues of C2, it is possible to have ‖zi‖ significantly

different from unity, and even zero.

The unfortunate fact about this situation is that, as will be shown later, it is

possible to have several very close eigenvalues of Cj corresponding to only one, even

well separated, eigenvalue of A. Luckily the above example also suggests how to deal

with this difficulty, since here zT1 z1 + zT2 z2 = 2.

Suppose Cjyi = µiyi, y
T
i yi = 1, zi = Wjyi, i = 1, . . . , j, then it will be shown that

‖zi‖
.
= 1 for any well separated eigenvalue µi of Cj. If however, a group of very close

eigenvalues µt, . . . , µt+s are well separated from the rest, then it will be shown that

t+s∑
i=t

zTi zi
.
= s+ 1.

As an initial step, note from (8.20) that

j∑
i=1

zTi zi = trace(Y T
j W

T
j WjYj) = trace(W T

j Wj)

=

j∑
i=1

wTi wi =

j∑
i=1

α2n+i−1 = j +
j(4n+ j)ε

2
. (8.52) eq:8.52
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The following analysis involves eigensystems corresponding to different values of

j above, and so the terminology used in (8.13) will be used here, together with

z
(j)
i ≡ Wjy

(j)
i . Thus after the kth step, from (8.20) and (8.22)

z
(k)
i

T
z
(k)
t = y

(k)
i

T
{I + diag[(2n+ i− 1)ε] + UT

k + Uk}y(k)t

=

 1 + (2n+ k)ε+ 2y
(k)
i

T
Uky

(k)
i , t = i,

(2n+ k)ε+ y
(k)
i

T
(UT

k + Uk)y
(k)
t , t 6= i.

(8.53) eq:8.53

So now using (8.33) and (8.22)

y
(k)
i

T
Uky

(k)
t =

k−1∑
j=1

y
(k)
j+1,ty

(k)
i

T


Y (j)

0

·

0

 bj/δj+1

=
k−1∑
j=1

y
(k)
j+1,t

j∑
r=1

ε
(j)
rr

δj+1y
(j)
jr

y
(k)
i

T


y
(j)
r

0

·

0

 (8.54) eq:8.54

which, with (8.17), leads to

y
(k)
i

T
Uky

(k)
t =

k−1∑
j=1

y
(k)
j+1,t

j∑
r=1

ε
(j)
rr y

(k)
j+1,i

µ
(k)
i − µ

(j)
r

(8.55) eq:8.55

with the r-sum replaced by

±ε(j)r0r0
[∑j

s=1(y
(k)
si )2

]1/2
δj+1y

(j)
jr0

if µ
(j)
r0 = µ

(k)
i for some 1 ≤ r0 ≤ j. If however t = i then such equality of eigenvalues

implies that y
(k)
j+1,i = 0 and so this difficult term disappears from the sum giving

y
(k)
i

T
Uky

(k)
i =

k−1∑
j=1

(y
(k)
j+1,i)

2

j∑
r=1

ε
(j)
rr

µ
(k)
i − µ

(j)
r

(8.56) eq:8.56
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where the r-sum is ignored if y
(k)
j+1,i = 0.

Use can now be made of the fascinating result of Thompson et al. (1968) given

in (8.12), and for this the eigenvalues of Cj here can be thought of as just j of the

eigenvalues of the k − 1 by k − 1 matrix obtained by omitting row and column j + 1

in Ck. The totality of these eigenvalues can now be named

ν
(j)
1 ≥ ν

(j)
2 ≥ . . . ≥ ν

(j)
k−1 (8.57) eq:8.57

with µ
(j)
r = ν

(j)
mr , r = 1, . . . , j, defining a strictly increasing set of integers m1, . . . ,mj.

As a result of using (8.12), (8.56) becomes

y
(k)
i

T
Uky

(k)
i =


k−1∑
j=1

j∑
r=1

ε(j)rr

k−1∏
m=1
m6=mr

(µ
(k)
i − ν(j)m )

 /
k∏

m=1
m6=i

(µ
(k)
i − µ(k)

m ) (8.58) eq:8.58

where here there is no proviso at all.

It will now be easy to bound this for a well separated eigenvalue µ
(k)
i . Suppose

b ≡ min
s6=i
|µ(k)
i − µ(k)

s | (8.59) eq:8.59

then using the inequalities mentioned for the factors in (8.12)

|y(k)i

T
Uky

(k)
i | ≤

k−1∑
j=1

j∑
r=1

|ε(j)rr |/|µ
(k)
i − µ

(k)
mr
| (8.60) eq:8.60

where

mr ≡

 mr if mr < i,

mr + 1 if mr ≥ i,

thus 1 ≤ m1 < m2 < . . . < mj ≤ k, and mr 6= i.

Now from (8.45) and (8.59) this becomes

|y(k)i

T
Uky

(k)
i | < (χ/b)

k−1∑
j=1

j2 < k3χ/(3b) (8.61) eq:8.61
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so that if

b > 2k3χ = k3(8.8n+ 3mβ + 64)ε‖A‖ (8.62) eq:8.62

then from (8.53) with |(2n+ k)ε| < 0.01

1.2 > ‖z(k)i ‖ > 0.8

and (8.48) becomes a useful bound. If b is very small compared with ‖A‖ then it is

most unlikely that a large proportion of the eigenvalues of Ck will be very close to

µ
(k)
i , and (8.61) will usually be a large over-bound, a factor k being more reasonable

than the k3 that appears. Thus in general much less separation than b in (8.62) will

still usually ensure a reasonable value of ‖zi‖.

For a group of very close eigenvalues the analysis is far more complicated and

deserves a sub-section of its own.

8.6.1 The Effect of Close Eigenvalues of Ck
subsec:8.6.1

Suppose that µ
(k)
t , . . . , µ

(k)
t+s are separated from the remaining eigenvalues by b, that

is, with the usual ordering (8.13)

µ
(k)
t−1 − µ

(k)
t > b, µ

(k)
t+s − µ

(k)
t+s+1 ≥ b (8.63) eq:8.63

then this group of s + 1 eigenvalues can be considered together. If t = 1 then the

first inequality is meaningless while if t+ s = k the second is, but since the following

results will be seen to hold for these two cases by a simple restriction of the argument

for the case 1 < t < t+ s < k, only this last case need be considered.

Taking equation (8.58) and summing gives

t+s∑
i=t

yTi Ukyi =
k−1∑
j=1

j∑
r=1

εrjSrj(t, t+ s) (8.64) eq:8.64
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where

Srj(t, t+ s) =
t+s∑
i=t


 k−1∏
m=1
m 6=l

(µi − νm)

 /
 k∏
m=1
m 6=i

(µi − µm)




and l ≡ mr is dependent only on r, j, and k, and the cumbersome superscripts have

been dropped as Srj need only be considered for fixed r, j, and k. The aim is to bound

Srj in terms of b, so defining p(µ) to be the monic polynomial of degree k − s − 1

with roots

ν1, . . . , νt−1, νt+s, . . . , νk−1

and defining q(µ) to be the monic polynomial of degree k − s− 1 with roots

µ1, . . . , µt−1, µt+s+1, . . . , µk

so that q(µ) has no zeros in µt+s+1 < µ < µt−1, and defining

r(µ) ≡ p(µ)/q(µ), ri ≡ r(µi), i = t, . . . , t+ s,

the expression for Srj may be re-written

Srj(t, t+ s) =
t+s∑
i=t

ri
t+s−1∏

m=t
m6=l

(µi − νm)

 /
 t+s∏
m=t
m6=i

(µi − µm)


 .

Then if t ≤ l ≤ t+ s the coefficient of rl in this sum ist+s−1∏
m=t
m 6=l

(µl − νm)

 /
 t+s∏
m=t
m6=l

(µl − µm)


and for the moment considering µl as a variable this coefficient can be decomposed

into partial fractions to give

t+s∑
i=t
i 6=l

 1

µl − µi

t+s−1∏
m=t
m 6=l

(µi − νm)

 /
 t+s∏
m=t
m6=i,l

(µi − µm)


 .
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Now since the sum of the terms other than that involving rl in Srj may be written

t+s∑
i=t
i 6=l

 ri
µi − µl

t+s−1∏
m=t
m 6=l

(µi − νm)

 /
 t+s∏
m=t
m6=i,l

(µi − µm)




the total sum Srj(t, t+ s) becomes

t+s∑
i=t
i 6=l

 rl − ri
µl − µi

t+s−1∏
m=t
m6=l

(µi − νm)

 /
 t+s∏
m=t
m 6=i,l

(µi − µm)




=
t+s∑
i=t
i 6=l


rl − ri
µl − µi

 i−1∏
m=t
m6=l

µi − νm
µi − µm


t+s−1∏

m=i
m6=l

µi − νm
µi − µm+1




but

µ1 ≥ ν1 ≥ . . . ≥ µi−1 ≥ νi−1 ≥ µi ≥ νi ≥ . . . ≥ νk−1 ≥ µk

so

0 ≤ (µi − νm)/(µi − µm) ≤ 1 for m < i

and

0 ≤ (µi − νm)/(µi − µm+1) ≤ 1 for m ≥ i

∴ |Srj(t, t+ s)| ≤
t+s∑
i=t
i 6=l

∣∣∣∣ rl − riµl − µi

∣∣∣∣ .
However from the definition of r(µ), r′(µ) exists for µt−1 > µ > µt+s+1 so by the

Mean Value Theorem

(rl − ri)/(µl − µi) = r′(ξ)

for some value of ξ lying between µl and µi, and the above sum can be bounded if a

bound can be found on |r′(µ)| for µt > µ > µt+s. Now

r(µ) =

{
µ− ν1
µ− µ1

}
· · ·
{
µ− νt−1
µ− µt−1

}{
µ− νt+s
µ− µt+s+1

}
· · ·
{
µ− νk−1
µ− µk

}
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so that if νt−1 ≥ µ ≥ νt+s then each factor in brackets lies between 0 and 1, and

noting that

r′(µ) = r(µ)(d/dµ) ln r(µ)

gives

r′(µ) = r(µ)

 k−1∑
m=1

m 6=t,...,t+s−1

(µ− νm)−1 −
k∑

m=1
m6=t,...,t+s

(µ− µm)−1

 .
Next examine the sum

S1 ≡
t−1∑
m=1

[(νm − µ)−1 − (µm − µ)−1]

= (νt−1 − µ)−1 −

{
(µ1 − µ)−1 +

t−2∑
m=1

[(µm+1 − µ)−1 − (νm − µ)−1]

}

for values of µ satisfying νt−1 > µ > νt+s. It can be seen that every term in the sum

on the first line is non-negative, while the term in curly brackets on the second line

is positive, so that

0 ≤ S1 < (νt−1 − µ)−1.

Similarly if

S2 ≡
k−1∑

m=t+s

[(µ− νm)−1 − (µ− µm+1)
−1]

then

0 ≤ S2 < (µ− νt+s)−1.

But

r′(µ) = r(µ)[S2 − S1]

so for µt ≥ µ ≥ µt+s since r(µ) ≥ 0

|r′(µ)| < r(µ) max
µt≥µ≥µt+s

[(νt−1 − µ)−1, (µ− νt+s)−1],
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thus taking the product of r(µ) with each term inside the square brackets and using

the boundedness of the factors of r(µ)

|r′(µ)| < max[(µt−1 − µt)−1, (µt+s − µt+s+1)
−1]

≤ 1/b, for µt ≥ µ ≥ µt+s.

As a result, if t ≤ l ≤ t+ s then

|Srj(t, t+ s)| < s/b.

On the other hand if l does not lie within this region then from (8.63), (8.64), and

the bounds on the factors in (8.12)

|Srj(t, t+ s)| ≤
t+s∑
i=t

(1/b) = (s+ 1)/b

giving from (8.45), no matter where l lies,∣∣∣∣∣
t+s∑
i=t

yTi Ukyi

∣∣∣∣∣ < (s+ 1)χ

b

k−1∑
j=1

j2

< (s+ 1)k3χ/(3b) (8.65) eq:8.65

so that from (8.53)

t+s∑
i=t

zTi zi > (s+ 1)[0.99− 2k3χ/(3b)]. (8.66) eq:8.66

As a result it does not matter how close µt, . . . , µt+s are to each other, for as long as

their separation b from the rest satisfies

b > 2k3χ = k3(8.8n+ 3mβ + 64)ε‖A‖ (8.67) eq:8.67

then

1.35(s+ 1) >
∑t+s

i=t z
T
i zi > 0.65(s+ 1)

so for at least one i, ‖zi‖ > 0.8, t ≤ i ≤ t+ s.

 (8.68) eq:8.68

From (8.62) it can be seen that this is also true for s = 0, and the same sort of

remarks that followed (8.62) apply here too.
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8.7 A Proof of Convergence of the Algorithm
sec:8.7

First it will be shown that at least one of the eigenvalues of the consecutive Cj must

converge in a manner to be indicated. Secondly when an eigenvalue does converge in

this sense it will be shown that it must be a good approximation to an eigenvalue of

A. The theory can easily be extended to several eigenvalues but the result obtained

does not nearly indicate the rate of convergence found in practice; for this see Section

9.

Now from (8.20) wTi wi = α2n+i−1, so defining Dk ≡ diag(‖wi‖−1), the matrix

DkW
T
k WkDk is non-negative definite with eigenvalues πi such that

0 ≤ π1 ≤ π2 ≤ . . . ≤ πk

with

‖WkDk‖2F = trace(DkW
T
k WkDk) =

k∑
i=1

πi = k. (8.69) eq:8.69

Next

DkW
T
k WkDk = I +Dk(U

T
k + Uk)Dk

= QT
k diag(πi)Qk, say, with QT

kQk = I

so that if Qk = (qij) then

‖diag(πi)Qk −Qk‖2F =
k∑
i=1

k∑
j=1

(πi − 1)2q2ij =
k∑
i=1

(πi − 1)2

= 2‖DkUkDk‖2F ≤ 2α4n+2k‖Uk‖2F ≤ 2.041‖Uk‖2F (8.70) eq:8.70

assuming as usual that (2n+ k)ε < 0.01.

The convergence proof depends on the fact that DkW
T
k WkDk must have at least

k − n zero roots for k > n, so suppose that π1 = . . . = πr = 0, then

k∑
i=1

(πi − 1)2 = r +
k∑

i=r+1

(πi − 1)2. (8.71) eq:8.71
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But by Hölder’s inequality[
k∑

i=r+1

(πi − 1)

]2
≤

k∑
i=r+1

(πi − 1)2
k∑

i=r+1

12 (8.72) eq:8.72

with equality only if πi = constant, i = r+ 1, . . . , k, i.e. if πi = k/(k− r) from (8.69).

Thus combining (8.69) to (8.72)

2.041‖Uk‖2F ≥ r + (k − k + r)2/(k − r) = kr/(k − r) (8.73) eq:8.73

so that if

a = max
i≤j<k

|(z(j)i )Twj+1| (8.74) eq:8.74

then since W T
k Wk must be singular, and so r = 1, for some value of k ≤ n+ 1,

0.49 < ‖Uk‖2F =
k−1∑
j=1

‖W T
j wj+1‖2 =

k−1∑
j=1

‖Z(j)Twj+1‖2

=
k−1∑
j=1

j∑
i=1

(z
(j)
i

T
wj+1)

2 ≤ a2k(k − 1)/2 (8.75) eq:8.75

so in (8.74)

a > 0.98/k. (8.76) eq:8.76

As a result of this and (8.32), for some value of k ≤ n+ 1, and some i ≤ k

|z(k)i

T
wk+1| = |ε(k)ii /(δk+1y

(k)
ki )| > 0.98/k (8.77) eq:8.77

which with (8.15) and (8.45) shows that there will always be an eigenvalue µ of Cm,

m ≥ k such that

|µ− µ(k)
i | ≤ δk+1|y(k)ki | < 1.03k2χ

= 1.03k2(4.4n+ 1.5mβ + 32)ε‖A‖. (8.78) eq:8.78

Unfortunately this has only proven the necessary convergence to a practical tol-

erance of one eigenvalue of Ck, and it has not yet been shown that it is close to an



8.7 A Proof of Convergence of the Algorithm 128

eigenvalue of A. However (8.48) and (8.62) show that if for this eigenvalue µ
(k)
i

|µ(k)
i − µ

(k)
j | > k3(8.8n+ 3mβ + 64)ε‖A‖, j 6= i, (8.79) eq:8.79

then there exists an eigenvalue λ of A such that

|λ− µ(k)
i | < 1.3

[
k2(4.4n+ 1.5mβ + 32) + k

1
2 (9 +mβ)

]
ε‖A‖. (8.80) eq:8.80

In practice well separated eigenvalues of A (this includes multiple eigenvalues too)

have been found to have an error proportional to k, and since if the maximum possible

error is proportional to k2 the expected error would be proportional to k for stochastic

errors, the above bound is probably a very good one.

If µ
(k)
i is not well separated then from (8.20), (8.45) and (8.77)

‖z(k)i ‖ > 0.96/k,

δk+1|y(k)ki | < k2χ/0.98,

thus using (8.48) and (8.78) there exists an eigenvalue λ of A such that

|λ− µ(k)
i | < 1.1

[
k3(4.4n+ 1.5mβ + 32) + k3/2(9 +mβ)

]
ε‖A‖ (8.81) eq:8.81

this being a weaker bound than (8.80).

The above proof of convergence of at least one eigenvalue can be extended to prove

that other eigenvalues of Ck must converge in the sense of (8.15) as k increases. This

can be done by noting that the right hand side of (8.73) must increase more than

linearly with k, and so since the elements of Uk are bounded above it is possible to

show that more and more elements of Uk must be large, and this fact can then be

used to prove convergence of more and more eigenvalues of Ck. This only ensures

that about n/2 eigenvalues of Ck must have converged by k = n2, and as this is such

a poor result there is no point in including the proof.

It is not clear if this approach can be significantly improved or if a completely

new approach is needed, but whatever the case a proof of the convergence of at least
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r eigenvalues to within the accuracy given in (8.80) in k = n+ r steps would seem a

reasonable one to hope for. What appears intuitively likely is that greater use should

be made of the equation (8.32)

z
(j)
i

T
wj+1 = ε

(j)
ii /(δj+1y

(j)
ji ),

meaning that orthogonality can only be lost as a result of convergence. In particular

since Wj = Z(j)Y (j)T , it follows that

wj =

j∑
i=1

y
(j)
ji z

(j)
i (8.82) eq:8.82

so that in step j + 1

δj+2wj+2 = Awj+1 − γj+1wj+1 −
j∑
i=1

δj+1y
(j)
ji z

(j)
i − gj+1 (8.83) eq:8.83

and if δj+1|y(j)ji | is very small, meaning µ
(j)
i has converged to this accuracy, then an

equally small amount of z
(j)
i is subtracted at this step. That is, once an eigenvalue

has converged, its eigenvector is ignored in the orthogonalization process (8.83). This

indicates why a given eigenvector, and so eigenvalue, can appear again and again.

Such insights as these have not yet led anywhere, and so will not be pursued here.

However even a proof of convergence in n steps would not truly indicate the value of

the process in practice, and perhaps it is best to say that convergence is remarkably

swift in practice (see Section 4), to illustrate this with examples, and to give simple

‘a posteriori’ bounds, as these can certainly be derived from the previous work.
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Section 9

Computational Use of the

Algorithm A2

chp:9

Some methods will be given for obtaining useful ‘a posteriori’ bounds for those eigen-

values of A that appear in any practical use of the Lanczos process using algorithm

A2 described in Section 7 and 8. As is well known the conditioning of the eigenvectors

depends on the eigenvalue separations, and so ‘a posteriori’ eigenvector bounds are

not so easily obtained; nevertheless some results will be given and some suggestions

made.

In the second part of this section computational results will be presented showing

the deficiencies of algorithm A1 and the excellent properties of algorithm A2.

Again the subscript 2 will be dropped for the 2-norm, and the only other norm

used, the Frobenius norm, will be indicated by the subscript F .

9.1 A Posteriori Eigenvalue Bounds
sec:9.1

A computation using the A2 variant of the symmetric matrix Lanczos process will

produce the equivalent of the symmetric tridiagonal matrix Ck and the matrix Wk ≡
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(w1, w2, . . . , wk) in (8.19). In Section 8 the true eigensolution of Ck was

CkYk = Ykdiag(µ1, . . . , µk), Yk ≡ (y1, . . . , yk), Y T
k Yk = I (9.1) eq:9.1

with the eigenvalue ordering µ1 > . . . > µk, and intervals containing eigenvalues of

A could be found as in (8.48). Unfortunately µi and yi will not be accurately known

because of rounding errors in solving the eigenproblem for Ck, so let ν1, . . . , νk and

u1, . . . , uk be the corresponding eigenvalue and eigenvector approximations obtained

from some reliable algorithm (e.g. Bowdler, Martin, Reinsch, Wilkinson, 1968) where

the ui have been normalized so that uTi ui = 1. In practice not all the eigenvalues and

eigenvectors need be computed. It now remains to be shown that reliable eigenvalue

intervals can be found using these computed values. As in Section 8 the difficulties

will occur when there are several close eigenvalues of Ck.

Suppose it is known that the eigenvalues of Ck can be found to within a possible

error d

|µi − νi| ≤ d, i = 1, . . . , k (9.2) eq:9.2

then in order to treat νt, . . . , νt+s as a separate group, if

b = min(νt−1 − νt, νt+s − νt+s+1)− 2d

with b > k3(8.8n+ 3mβ + 64)ε‖A‖

 (9.3) eq:9.3

it follows for j = t, . . . , t+ s and i = 1, . . . , t− 1, t+ s+ 1, . . . , k, that

|µi − µj| ≥ b, |µi − νj| ≥ b+ d = c, say, (9.4) eq:9.4

so with zi ≡ Wkyi, from (8.68)

1.35(s+ 1) >
t+s∑
i=t

zTi zi > 0.65(s+ 1). (9.5) eq:9.5

Next it will be important to know if such an inequality holds for the corresponding

vectors obtained from ut, . . . , ut+s.
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If the approximate eigenvectors of A

vi = fl(Wkui)

are computed then there is no problem, νi and vi are the approximate eigenvalue-

vector pair and bounds may easily be obtained (see, for example, Wilkinson, 1965,

pp. 172–3). However on large problems the vectors w1, . . . , wk−2 will usually not be

kept and the vi will not be readily available.

In order to examine this last possibility define

Y ≡ (yt, . . . , yt+s), Y ≡ (y1, . . . , yt−1, yt+s+1, . . . , yk),

Z ≡ WkY, Z ≡ WkY ,

U ≡ (ut, . . . , ut+s), V ≡ (vt, . . . , vt+s) ≡ WkU,

H ≡ Y TU, H ≡ Y
T
U,

F ≡ (ft, . . . , ft+s) ≡ CkU − Udiag(νt, . . . , νt+s).


(9.6) eq:9.6

Note that F can easily be computed if needed. Now multiplying this last equation

by Y
T

gives

yTi uj = yTi fj/(µi − νj), j = t, . . . , t+ s; i 6= t, . . . , t+ s, (9.7) eq:9.7

so with (9.4)

‖H‖2F ≤
t+s∑
j=t

‖fj‖2/c2 = ‖F‖2F/c2 (9.8) eq:9.8

while

‖H‖2F ≤ ‖Y T
k U‖2F = s+ 1. (9.9) eq:9.9

Note that if there were no errors in U then H = I and H = 0. Define the symmetric

matrices

E ≡ HTH − I, E ′ ≡ UTU − I (9.10) eq:9.10

then since

UTU = UTYkY
T
k U = HTH +H

T
H, (9.11) eq:9.11
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σ ≡ ‖E‖ = ‖E ′ −HT
H‖ ≤ ‖E ′‖+ ‖F‖2F/c2 (9.12) eq:9.12

and so σ can be bounded once ut, . . . , ut+s are known. σ will be small for accurately

computed eigenvalues and vectors of Ck, so from now on it will be assumed that

σ < 1.

Now in order to obtain useful computational bounds it will be necessary to bound

trace(V TV ), v defined in (9.6). Before doing this two simple bounds will be derived

for traces of matrix products. If P and L are any m by n matrices then with obvious

notation

|trace(PHL)| ≤
∑
|pHi li| ≤

∑
‖pi‖ · ‖li‖

≤
(∑

‖pi‖2
∑
‖li‖2

)1/2
= ‖P‖F‖L‖F (9.13) eq:9.13

with equality if P = L. Next if M and N are Hermitian, QHMQ = D = diag(di), Q

unitary, and N is non-negative definite, then

trace(MN) = trace(QHMNQ) = trace(DQHNQ) =
∑

diq
H
i Nqi

∴ |trace(MN)| ≤ ‖M‖
∑

qHi Nqi = ‖M‖trace(N). (9.14) eq:9.14

Since σ < 1 in (9.10) and (9.12) the s+ 1 by s+ 1 matrix H is nonsingular giving

HT = (I + E)H−1 = H−1 + E(I + E)−1HT (9.15) eq:9.15

where E(I + E)−1 is symmetric. Next from (9.6)

V = WkU = WkYkY
T
k U = ZH + Z H

so that using (9.15)

V TV = H−1ZTZH + E(I + E)−1HTZTZH +H
T
Z
T
Z H +HTZTZ H +H

T
Z
T
ZH



9.1 A Posteriori Eigenvalue Bounds 134

and from (9.13), (9.14), and (9.12)

trace(V TV ) ≥ trace(ZTZ) + ‖Z H‖2F − 2‖ZH‖F‖Z H‖F − σ‖ZH‖2F/(1− σ).

But from (8.52) and (9.5), trace(Z
T
Z) < k, for values of k of interest, and if for the

computed eigensystem of Ck

‖E ′‖+ ‖F‖2F/c2 < 1/(25k) (9.16) eq:9.16

then from (9.8)

‖Z H‖F < 0.2,

and

σ‖H‖2F/(1− σ) < (s+ 1)/(25k − 1) ≤ 1/24,

giving with (9.5)

trace(V TV ) > 23trace(ZTZ)/24− 0.4(s+ 1)1/2‖Z‖F ,

> (0.65× 23/24− 0.4× 0.8)(s+ 1) > 0.3(s+ 1). (9.17) eq:9.17

From this it follows for at least one value of i

‖vi‖ > 0.54, t ≤ i ≤ t+ s (9.18) eq:9.18

but from (8.19) and (9.6) for this value of i

(A− νiI)vi = Wkfi + δk+1ukiwk+1 +Gkui, (9.19) eq:9.19

uki being the last element of ui. Thus there is an eigenvalues λ of A such that

|λ− νi| ≤ 2
[
k1/2(mβ + 9)ε‖A‖+ k1/2‖fi‖+ δk+1|uki|

]
(9.20) eq:9.20

and the desired computable bound can be obtained by taking i in t ≤ i ≤ t+s, which

gives the maximum right hand side in (9.20), to be denoted by m(t, t+ s).
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So in practice if νt, . . . , νt+s and ut, . . . , ut+s are computed using some reliable

algorithm then a knowledge of the error analysis of that algorithm can often be used

to bound d in (9.2), ‖fi‖ in (9.6), and ‖E ′‖ in (9.10). As a result c can be found in

(9.4) and a check can be made to ensure that (9.16) is satisfied, if so the computed

uki can be used in (9.20). If (9.16) is not obeyed then this partial eigensystem of Ck

can be refined or more eigenvalues can be included in the group under investigation

if the separation of eigenvalues is the limiting factor.

With an algorithm such as that given by Bowdler et al. (1968) one QR reduction

step consists of k−1 rotations in the planes i, i+1; i = 1, . . . , k−1, and if s steps are

needed altogether the error in any one root is bounded by a constant of order unity

times s · ε · max |µi|. The authors found that the average number of steps required

per eigenvalue was about 1.6, with no eigenvalue requiring more than 6 steps. For

such an algorithm d� b in (9.2) and (9.3). What is more every vector ui is an exact

eigenvector of some matrix very close to Ck, so the fi in (9.6) will be very small.

Finally a characteristic of this particular algorithm is that the ui are always very

accurately orthogonal and so E ′ in (9.16) will be negligible. The error analysis for

this QR algorithm is covered by the general analyses given by Wilkinson (1965, pp.

131-143), and these indicate that using standard floating point arithmetic the errors

will always satisfy (9.16) for νt, . . . , νt+s satisfying (9.3).

On the other hand if an error analysis of the algorithm for finding the eigensystem

of Ck is not available, then the fi = Ckui − νiui in (9.6) may be computed, as may

E ′ in (9.10). Then since an eigenvalue µ of Ck satisfies

|µ− νi| ≤ ‖fi‖

b and c in (9.3) and (9.4) can be bounded and (9.16) checked. If this is satisfied the

computed fi may be used in (9.20). Note that computing the ui by inverse iteration

may not give satisfactorily small E ′ in (9.10) for a very close bunch of eigenvalues,

and some orthogonalization technique may be necessary.
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A more simple analysis would be possible for one well separated µt, but because

of the simplicity of the condition (9.16) i.e.

c > 5k1/2‖ft‖

which for any reasonable algorithm will be obeyed if (9.3) is satisfied there is no need

to do the analysis to get an easier condition.

Unfortunately (9.20) suggests the possibility of one or more large values of δk+1|uki|

for the µi in the close bunch. In the few computations that have been performed so

far this has not occurred. Nevertheless it would be satisfying to prove that this

could not happen, or that if it did the converged roots in the group were excellent

approximations to a root of A. It is possible using (8.32) and (8.37) to prove that if

zTr wk+1 is not small then δk+1|yki| is small for all i such that µi
.
= µr, but this is not

quite the same thing.

9.2 A Posteriori Eigenvector Bounds
sec:9.2

Eigenvector bounds are not readily obtainable unless the separation of the eigenvalues

of A is known, in which case (9.18) and (9.19) could be used with the usual analysis

(Wilkinson, 1965, pp. 172 - 3). Note that if µt, . . . , µt+s are all approximations to

one eigenvalue λj of A the analysis is still useful if this group is separated by b from

the other eigenvalues of A, all that is necessary is to take the maximum as was done

in (9.20). So if vr gives the maximum value ‖vr‖ in (9.18) and

vr =
n∑
i=1

αixi, Axi = λixi, xTi xj = δij,

then

‖vr − αjxj‖2 =
∑
i 6=j

α2
i
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but

‖(A− νrI)vr‖2 =
n∑
i=1

α2
i (λi − νr)2

≥ b2
∑
i 6=j

α2
i

which certainly gives with (9.19) and (9.20)

‖vr − αjxj‖/‖vr‖ < m(t, t+ s)/b, (9.21) eq:9.21

and here αjxj is the projection of vr on xj.

Since here νt, . . . , νt+s are all approximations to λj of A, vt, . . . , vt+s are all ap-

proximations to xj of A, and so s of these vi will be redundant. It would be wasteful

to compute the s+ 1 vectors, especially if the w1, . . . , wk−2 are not stored, but there

is a small chance that some of the vi will be very small, and as a result probably very

poor approximations to xj. This difficulty is less daunting when it is realized that the

earlier wi will tend to be orthogonal, so that the computed ur among the ut, . . . , ut+s

having most weight in its early elements will probably give a vr of reasonable size.

This is of course just a heuristic approach and no analysis has been done to verify

it. Practical experience of deliberately computing many redundant vectors ui using

a QL algorithm has suggested that such a ur can easily be chosen, but so far no vi

have been formed. Another approach would be to find the values k where only one

µt was a good approximation to λj.

Usually the separation of the eigenvalues of A will not be known ‘a priori’ and so

a possible difficulty is that a value µt may approximate the eigenvalue λj of A and

yet no other eigenvalue of Ck may be close to a nearby eigenvalue λj+1 of A and it

will be hard to judge the separation of these eigenvalues from the Lanczos process.

No work has been done to resolve this difficulty, though it might be hoped to show

that since no such eigenvalue of Ck had appeared, the projection of xj+1 on Wk, and

so on vt, would be small, thus allowing a good eigenvector bound.
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For close eigenvalues of A well separated from the rest, the subspace of the corre-

sponding vectors vi should be considered as an approximation to a subspace of vectors

of A.

At this point an advantage can be seen in the strange property that A2 has of

producing redundant eigenvalues and vectors. The error free Lanczos process will not

pick up multiple eigenvalues of A, and has to be restarted with a new w1 to do so, and

if λ1 = . . . = λs the process would have to be run at least s times to find all these.

However when errors are present the process can just be continued on, supplying

several eigenvectors corresponding to the extreme eigenvalues of A. If r orthogonal

vectors of reasonable size can be found by orthogonalization, but not normalization,

of the v1, . . . , vs all corresponding to a well separated eigenvalue λ1, then it could be

assumed that λ1 is at least an r-fold eigenvalue of A. If w1 is arbitrary and r < s

then it is likely that λ1 is no more than r-fold. Of course here it is impossible to tell

the difference between a repeated eigenvalue and several very close eigenvalues of A

– all that should be said is that r eigenvalues of A lie in such an such an interval.

This approach would not be such a good one if s × n steps were needed above,

but in practice for very large matrices the extreme eigenvalues tend to be repeated

several times before the less extreme ones are even partially converged, and in much

less than n steps. This can be seen in the computational examples.

Thus computable bounds for some of the eigenvalues of A are easily obtainable,

although slightly better results may be hoped for with a fuller understanding of

the algorithm. For eigenvectors the well known difficulty of close eigenvalues of A

arises, nevertheless it is hoped that some insight has been given along with several

suggestions for further research into the effects of close or repeated eigenvalues.
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9.3 Results of some Computations with A1 and

A2
sec:9.3

Initially two examples will be given showing how the algorithm A1 can break down in

practice; these support the arguments presented in Section 7.3. Later examples will

show how A2 is not affected by such difficulties and produces remarkably accurate

eigenvalues. Although some of the computations gave the eigenvectors of Ck, in no

case was a corresponding set of approximate eigenvectors of A computed, although

such a computation and comparison with the true values would have been instruc-

tive. The algorithms used to compute the eigensystems of the resulting tri-diagonal

matrices Ck were the tql1 and tql2 algorithms given by Bowdler et al. (1968), and

standard floating point arithmetic was used throughout, as described in Section 2.

Only two classes of matrices were used in the computation, the first of these being

a single 8 by 8 matrix will be called A, while the matrices of the second class, which

depend on two positive integers m and n and have dimensions mn will be denoted by

Am,n. The first, the Rosser matrix (Westlake, 1968, p. 150) has the following useful

form and properties:–

A =



611 196 −192 407 −8 −52 −49 29

899 113 −192 −71 −43 −8 −44

899 196 61 49 8 52

611 8 44 59 −23

411 −599 208 208

411 208 208

symmetric 99 −911

99



(9.22) eq:9.22
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Eigenvalues (let a =
√

10405, b =
√

26)

λ1 = 1020.04901843 = 10a

λ2 = 1020.0000

λ3 = 1019.90195136 = 510 + 100b

λ4 = 1000.

λ5 = 1000.

λ6 = 0.09804864072 = 510− 100b

λ7 = 0.0

λ8 = −1020.04901843 = −10a



(9.23) eq:9.23

This is a very good test matrix with its three large close roots, its large negative well

separated one, its two equal roots and its two small close roots.

The other matrices, the Laplace matrices, have the form

Am,n
mn×mn

≡



B −I

−I B −I

· · · · · · · · · · · ·

−I B −I

−I B


, B

n×n
≡



4 −1

−1 4 −1

· · · · · · · · · · · ·

−1 4 −1

−1 4


(9.24) eq:9.24

where I is the identity matrix of order n. Am,n has eigenvalues

λp,q = 4− 2 cos pπ/(m+ 1)− 2 cos qπ/(n+ 1) (9.25) eq:9.25

p = 1, . . . ,m; q = 1, . . . , n,

with each corresponding eigenvector having

x(p, q)r,s = sin prπ/(m+ 1) sin qsπ/(n+ 1) (9.26) eq:9.26

as its (r − 1)n+ s element, r = 1, . . . ,m; s = 1, . . . , n.
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The initial vector is given by

v =
m∑
p=1

n∑
q=1

αp,qx(p, q) (9.27) eq:9.27

which is then normalized.

These matrices were chosen as useful examples of large sparse matrices, being

both flexible with known properties, and easy to handle. Clearly with these it takes

negligible storage to give all the information needed to form Am,nv, v a given mn

vector.
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Computations Using A1

(1) The algorithm A1 described in Section 7.1 was iterated for k = 60 steps with the

Rosser matrix A and an initial vector having all elements equal. The smallest next

to diagonal element of C60 was δ47
.
= 0.012. For the eigenvalue ordering in (9.23) the

following numbers of converged roots of Ck were obtained.

λ1 λ2 λ3 λ4 and λ5 λ6 λ7 λ8

7 5 8 9 9 9 11

The well separated root and the repeated root were always accurate in the 4th decimal

place and often in the 5th and 6th, e.g. -1020.04901896. The close roots however were

sometimes only accurate in the 2nd decimal place, e.g. 1020.0527.

This example brought out the possible weakness of A1 for close eigenvalues, the

results were supported by other initial vectors with this matrix. It is also possible

for the algorithm to break down for well separated eigenvalues at some stage, as the

following result indicates.

(2) k = 30 steps of A1 were carried out with A4,5 and an initial vector made up of

equal amounts of x(p, q) in (9.26), with (p, q) = (4, 5), (3, 5), (4, 4), (3, 4), (2, 5), none

of the remaining eigenvectors contributing. The process should ideally curtail after

the 5th step. In fact δ6
.
= 3.14 × 10−5 and the eigenvalues at this stage, being well

separated, were accurate to 9 decimal places (i.e. 10 figures). Other eigenvalues that

appeared later were often only accurate in the 5th decimal place, the remaining figures

wandering around somewhat haphazardly as k increased, e.g. one calculated value

stayed constant for 6 steps at 7.350082036 (true value 7.350084796) before changing

to 7.350082921.
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Computations Using A2

(3) The same computation as in (1) above was carried out using Algorithm A2. The

smallest next to diagonal element of C60 was δ20
.
= 0.00025. Only 38 of the eigenvalues

of C60 were computed, but to compare with (1) there were 9 of λ6, 8 of λ7, and 13

of λ8 that had clearly converged. As expected, the different rounding errors lead to

different numbers of repeated eigenvalues. Of those eigenvalues that were computed

and had converged all were accurate in the 5th decimal place and usually in the 6th

too. This is in marked contrast to A1, here even the well separated roots being found

more accurately.

All the eigenvalues and eigenvectors were computed for k = 10, 20, 30, 45, 46, and

when eigenvalues of Ck had converged they always represented the eigenvalues of A

accurately in at least the 5th decimal place. In Table 3 the computed eigenvalues νi

and the rough bounds δk+1uki are given to 7 decimal places for k = 20, this is about

the limit of accuracy for the eigenvalues of Ck using the QL algorithm.

It can be seen that the algorithm A2 is remarkably accurate in this example,

the larger eigenvalues often being given accurately to 11 decimal figures whereas

the machine precision ε
.
= 10−10.8. The rough bound δk+1|uki| is seen to be exceeded

occasionally, but is usually a fair indicator of convergence. The correct bound (9.20) is

never exceeded but is seen to be if anything slightly pessimistic. Other computations

with this matrix supported these conclusions perfectly.

(4) In the equivalent of (2) above for A2, δ6
.
= 3.5 × 10−7, and all the eigen-

values that had converged at k = 30 were accurate in the 8th decimal place and

often in the 9th, thus avoiding the inaccuracy that A1 suffered. Other similar

computations support this conclusion.

(5) k = 60 steps of algorithm A2 were carried out on the 182 by 182 matrix A13,14

with an initial vector in (9.27) having α13,14 = 300, α13,13 = α12,14 = 200, α12,13 =

60, α13,12 = α11,14 = 32, and αp,q = 1, otherwise. The smallest next to diagonal
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Eigenvalues of A
Computed

eigenvalues of C20

δ21|u21,i|(
Leading
figure

)
,

(
Decimal
exponent

)
1020.0490184 1020.0490184 3 , -8

1020.0490184 1 , -7

1020.0000 1020.0000000 5 , -8

1019.9999998 6 , -7

1019.9019514 1019.9019514 3 , -8

1019.9019513 6 , -8

1000. 1000.0000000 3 , -9

999.9999999 4 , -9

999.9999998 3 , -9

0.0980486 0.0980488 6 , -5

0.0980485 6 , -6

0.0980484 7 , -7

0.0 0.0000001 6 , -6

0.0000001 6 , -6

0.0000002 9 , -6

-1020.0490184 -987.2137098 3 , 2

-1020.0490184 1 , -6

-1020.0490186 0 ,

-1020.0490187 0 ,

-1020.0490183 0 ,

Table 3: Eigenvalues of A using Algorithm A2, case(3).
tab:3
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element was δ2
.
= 0.16, even so after 60 steps 7 of the extreme eigenvalues were

given accurately in the 8th decimal place, none of these eigenvalues being redundant.

The most accurate eigenvalues are given in Table 4 to 11 figures, as any more would

certainly be meaningless.

Note that only the extreme eigenvalues are given accurately at this stage, as might

be expected from Section 4. The large eigenvalues are given slightly more accurately

than the small ones, this is probably because of their larger weighting in the initial

vector. An accuracy of 11 figures is again achieved on two occasions, and as 60

steps of this algorithm takes very little time on the computer (compared with say 60

steps of the equivalent Householder algorithm which would require considerably more

store as well) this is certainly a remarkable algorithm. The Lanczos reduction took

1100 instruction interrupts on the I.C.T. Atlas, each interrupt being 2048 machine

instructions. The eigenvalue routine tql1 took 680 interrupts to find the 60 roots.

(6) As a final test of A2 it was applied for k = 600 steps to the 1000 by 1000

sparse matrix A50,20, with the initial vector containing equal components of all the

eigenvectors. All the next to diagonal elements lay between 1.5 and 2.5, so no con-

vergence criteria could possibly be based on these alone. The Lanczos reduction took

about 54000 instruction interrupts. The total real time was then about 6 minutes,

which was just the time needed to find all the eigenvalues of C600.

The results are too numerous to present in a table and a verbal description will

suffice. 98 of the lowest eigenvalues of C600 agreed with corresponding eigenval-

ues of A50,20 in at least the 8th decimal place, these true eigenvalues lay between

0.0261316900 and 0.9176084016 and included 64 different eigenvalues. From the

smallest upwards the numbers of each of these were

5, 5, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

with the remaining 44 appearing once only. The majority of the eigenvalues in the

middle range were only accurate in the 2nd or 3rd decimal place. The roots of
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p, q λp,q of A13,14 νi of C60

13,14 7.9061510257 7.9061510257

13,13 7.7769467396 7.7769467396

12,14 7.7582329373 7.7582329372

12,13 7.6290286511 7.6290286506

13,12 7.5678898130 7.5678897541

11,14 7.5199581664 7.5199579231

3, 1 0.4800418336 0.4800605972

1, 3 0.4321101869 0.4321131322

2, 2 0.3709713489 0.3709713857

2, 1 0.2417670627 0.2417670587

1, 2 0.2230532604 0.2230532563

1, 1 0.0938489742 0.0938489702

Table 4: Eigenvalues of A13,14 using Algorithm A2, case(5).
tab:4
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A50,20 from 7.04474544 to the largest one 7.97386831 were given accurately in the

7th decimal place by the roots of C600 except for the adjacent pair 7.21238221 and

7.21292580 which were only accurate in the 6th decimal place. None of this group

of 109 eigenvalues of C600 was more accurate than this. From the largest down, the

numbers of each eigenvalue of A50,20 appearing were

5, 5, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

just at for the lower group, but this time with 55 roots appearing once only.

Note that the extreme eigenvalues were given several times in less than 1000 steps,

when there had been negligible cancellation in any given step, and where the majority

of the middle range of eigenvalues had not converged significantly at all. This is a

good indication of the effect of powering with very large matrices, the components of

the rounding errors in the directions of the eigenvectors of the matrix corresponding

to the extreme eigenvalues are easily magnified to become huge in comparison with

the magnified components of the initial vector in the other directions. Of course

here the Lanczos algorithm treats the matrix as if it were shifted so that zero is in

the middle of the eigenvalue range (Lanczos, 1950), and so both groups of extreme

eigenvalues are given equal predominance.

It is interesting to note that the smaller group of eigenvalues were given with

a greater absolute accuracy than the larger group, so that here in fact the relative

accuracies were fairly comparable: a strange result in view of the above-mentioned

equivalent shift.

In this example the largest eigenvalues were computed for k = 100, 200, 300,

400, 500 as well as 600. It was found that an eigenvalue that had converged would

still change linearly with k, sometimes at a rate of as much as 10−10 per step, but

usually less. It is not clear whether this is caused by the Lanczos A2 algorithm or

the QL eigenvalue algorithm, as it is within the error bound of the latter. However
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it is assumed to be caused by the former because of the remarkable linearity over the

k taken.

Thus although only a limited number of computational experiments have been

performed they can be seen to support the findings of the error analysis very well

indeed, as well as this the rates of convergence in these cases are seen to be very

satisfying, and altogether suggest that the A2 variant of the symmetric Lanczos algo-

rithm is a remarkably swift, accurate, and practical algorithm. The times for carrying

out the Lanczos algorithm with the very sparse Laplace matrices were examined, with

the result that these were directly comparable with the times required to find all the

eigenvalues of the resulting tri-diagonal matrices Ck using the very fast QL algorithm.

Naturally only a few of the eigenvalues of Ck would be needed in practice, but the

comparison serves to emphasize the speed of the Lanczos process.

Finally it can be seen that no stopping criterion is necessary with A2 other than

if δk+1 = 0, or perhaps if the limit on k given in (7.38) is exceeded by too much.

Nevertheless since from (8.51) it seems that no more than a certain accuracy can be

relied on, the criterion

stop if δk+1 < 5k(n+ 0.3mβ + 7)ε‖A‖

would be a possible one for preventing unnecessary extra iterations.
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Section 10

Summary, Suggestions and

Conclusion

chp:10

In the introduction the various possible well known methods for computing eigenso-

lutions of large sparse matrices were considered and it was decided that the Lanczos

algorithms might be particularly applicable in this case, especially with symmetric

matrices. Most of the thesis was then devoted to analyses of the symmetric Lanczos

process, both with and without re-orthogonalization, and so a more appropriate title

would be

“A Detailed Analysis of Lanczos’ Method for Finding Eigensolutions of Large

Symmetric Matrices”.

The results given in Section 4 suggested the excellence of the symmetric Lanczos

process as an iterative method, while Section 5 examined the different possible ways

of obtaining bounds in the case where less than the full number of steps had been

carried out. In this section Lehmann’s work in its full generality was seen to be an

excellent theoretical completion of earlier work by Rayleigh, Temple, Kato and others,

and as such is important; however as a means of computing eigenvalue bounds for

large matrices when using the Lanczos process, it is concluded that the improvements
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over the more simple bounds are not worth the extra labour involved unless some

extra information is available, in which case the excellent t, τ intervals can be very

useful. In a more general linear operator problem where the formation of Av is far

more costly the other Lehmann intervals could also be useful, but because of its poor

computational performance, the algorithm suggested by Lehmann should not be used

in either the matrix or the more general case, instead a more accurate algorithm has

been given here.

Section 6 presents an analysis of the symmetric Lanczos process with re-orthogon-

alization, and it is shown how the orthogonality of the vectors can actually break down

if there is too great a cancellation in successive steps. However, if a stopping criterion

depending on the amount of cancellation is used then excellent ‘a priori’ bounds are

given for the eigenvalues obtained up to that point, as well as for the orthogonality

of the vectors. From the theoretical equivalence of the symmetric Lanczos process

and a slight variant of Householder’s method, together with the excellent convergence

properties discussed in Section 4, it is concluded that, because of its earlier speed and

much simpler use of store, the Lanczos algorithm has a significant advantage over the

Householder algorithm for some fairly large (especially sparse) matrices where only a

few extreme eigenvalues and their eigenvectors are required.

Section 7 proceeds to the most important contribution of this thesis, the analy-

sis and assessment of the symmetric Lanczos process without re-orthogonalization.

It indicates why the standard algorithm, denoted A1, can be inaccurate and then

goes on to suggest why a second algorithm A2 will not suffer from this particular

inaccuracy. The algorithm A2 is considered further in Section 8 and its remarkably

good rounding error properties are clearly brought out together with some important

results concerning the approximate eigenvectors. A proof of necessary convergence

and accuracy of one eigenvalue of the algorithm is then given, but unfortunately the

proof of necessary convergence of more than one eigenvalue is not satisfactory and
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is not included as it does not begin to demonstrate the true speed of convergence

that is encountered in practice. Section 9 then derives useful ‘a posteriori’ bounds

for the algorithm A2; these are sufficient for the eigenvalue problem, but some more

work could be done on deriving eigenvector bounds for close eigenvalues of A. Finally

at the end of Section 9 some computational results are given that clearly show the

remarkable properties of this A2 variant of Lanczos’ beautiful method.

Thus because of its extremely small storage requirements, its ease of implemen-

tation and relatively small amount of computation per step, its rapid convergence

for extreme eigenvalues and its remarkable accuracy coupled with the availability of

simple ‘a posteriori’ bounds, it is reasonable to hope that the variant of the Lanczos

process for symmetric matrices described in Section 7 as A2 will be recognised as

one of the most useful possible methods for computing some extreme eigenvalues and

their eigenvectors for large sparse symmetric matrices.

At this point it is worth commenting that the error analysis in Sections 7, 8 and

9 was for standard floating point arithmetic. Now as the dimension n of the matrix

only comes into the error analysis in the formation of vector inner-products, the use

of double length accumulation in these would effectively mean replacing n by 1 in all

the error bounds, and for very large problems this might well be worth-while if the

extra time was not too great.

Finally a slight variant of A2 that should perhaps be examined depends on the

fact that δ2j (δj in Section 7) can be computed before the rest of step j. Thus, instead

of (7.3) to (7.4), as Avj is being formed do not store it but form and store

v′j = Avj − δ2j vj−1

in the old vj−1 vector, then theoretically

γj = vTj v
′
j/v

T
j vj
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so that finally

βj+1vj+1 = v′j − γjvj

can overwrite v′j.

This variant is suggested because of the difficulty of using a fast double length

accumulation of inner products routine in A2 if storage space is only available for two

n-vectors, as indicated after Table 2 in Section 7.1.

10.1 Other Computational Problems
sec:10.1

Only the computation of some extreme eigenvalues and their eigenvectors of large

sparse symmetric matrices has been dealt with here. There remain the problems

of finding eigenvalues near the middle of the range and dealing with unsymmetric

matrices.

For symmetric matrices the successful variant A2 of the Lanczos process can be

applied to some polynomial of A, say p(A), where of course only p(A)v is ever formed,

not p(A). This polynomial must be designed so that its eigenvalues p(λi) correspond-

ing to the λi of interest are extreme eigenvalues (see, for example, Stiefel, 1958).

Rounding errors introduce extra complications here and a best strategy would have

to be evolved. For example if an eigenvalue λi of A was wanted and p(A) = (A− λ)2

then using the Lanczos algorithm might give

ν1 = (λi − λ)2 + ε‖A‖2

so that

λi = λ+
√
ν1 − ε‖A‖2

and if ν1 is very small there is a large uncertainty in λi. Note that this is similar

to the difficulty encountered with Lehmann’s algorithm for finding ∆ in Section 5,
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the trouble is here the Rayleigh quotient is not so easily available for resolving this

difficulty.

The behaviour of the Lanczos process for unsymmetric matrices (Lanczos, 1950)

should perhaps be re-examined in the light of the new results given in this thesis,

but a successful outcome seems at first glance unlikely (Wilkinson, 1965, pp. 388–

394). Another possible approach to the large sparse unsymmetric matrix problem

(Lanczos?, reference mislaid) is to consider the Hermitian matrices

G ≡ KHK and H ≡ KKT

where K ≡ A−λI for an approximate value λ. Then Gx = o if Ax = λx and Hy = o

if Ay = λy, so that approximations x1 and y1 to the eigenvectors corresponding to the

minimum eigenvalues of G and H could be computed by a few steps of the Lanczos

process for Hermitian matrices. The new value of λ could then be taken as

yT1 Ax1/y
T
1 x1

(e.g. Wilkinson, 1965, p. 179), and an iterative procedure carried out. Unfortunately

this appears to be a rather clumsy and slow process, and the methods mentioned in

the introduction that iterate with several vectors and use a convergence accelerating

technique are probably better for unsymmetric matrices.

10.2 Conclusion
sec:10.2

The analysis given in this thesis supports the conclusion suggested by the compu-

tational results in Section 9 that Lanczos’ method for finding eigenvalues has been

far too readily abandoned. In fact the initial error analysis suggested the impor-

tance of the less favoured algorithm A2 compared with A1, and the later analysis

and computations indicated just how remarkably accurate A2 is likely to be. As a
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result this thesis has presented a very firm case for resurrecting Professor Lanczos’

beautiful method of minimized iterations for large sparse symmetric matrices using

the computational algorithm A2 described in Section 7.

It is clear that the full power of the method has not yet been fully explored, and

the analysis given here can perhaps also be used to examine the Lanczos process for

large sparse unsymmetric matrices as well.
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Adjoint Boundary Value Problems. Birkhäuser Verlag, Basel/Stuttgart, 107 pp.

FF63 Faddeev, D. K., and Faddeeva, V. N. (1963) Computational Methods of Linear

Algebra, Freeman & Co. San Francisco and London. Original Moscow (1960) 656

pp.

Fai65 Fairbourn, A. (1965) Atlas Basic Instruction Statistics, I.C.S. Study Note 237.

FM67 Forsythe, G. E., and Moler, C. B. (1967) Computer Solution of Linear Alge-

braic Systems. Prentice-Hall, Inc. Englewood Cliffs, N. J. , 148 pp.



REFERENCES 156

Giv54 Givens, W. (1954) Numerical computation of the characteristic values of a real

symmetric matrix. Oak Ridge National Laboratory, ORNL–1574.

Gou57 Gould, S. H. (1957) Variational Methods for Eigenvalue Problems. University of

Toronto Press.

Hou64 Householder, A. S. (1964) The Theory of Matrices in Numerical Analysis. Blais-

dell, New York, 257 pp.

HB59 Householder, A. S. and Bauer, F. L.(1959) On certain methods for expanding

the characteristic polynomial, Numer. Math. 1, 29–37.

IBM68 I.B.M. (1968) Symposium on Sparse Matrices and Their Applications, Willoughby,

R.A. (Ed), I.B.M. Watson Research Center, Sept. 9–10 Yorktown Heights, New

York.

ICT65 I.C.T. (1965) ABL Manual.

IMA70 I.M.A. (1970) Conference on Large Sparse Sets of Linear Equations, Reid, J. K.

(Ed), April 5–8, Oxford.

Jen67 Jennings, A. (1967) A Direct Iteration Method for Obtaining the Latent Roots and

Vectors of a Symmetric Matrix, Proc. Camb. Phil. Soc., 63, 755–765.

Kan66 Kaniel, S. (1966) Estimates for Some Computational Techniques in Linear Algebra,

Math. Comp. 20, 369–378.

Kat49 Kato, T. (1949) On the Upper and Lower Bounds of Eigenvalues, J. Phys. Soc.

Japan 4, 334–339.

Laa59 Laasonen, P. (1959) A Ritz method for simultaneous determination of several

eigenvalues of a big matrix, Ann. Acad. Sci. Fenn. Ser. AI, 265–280.



REFERENCES 157

Lan50 Lanczos, C. (1950) An Iteration Method for the Solution of the Eigenvalue Problem

of Linear Differential and Integral Operators, J. Res. Nat. Bur. Standards 45, 255–

282.

Lan52 Lanczos, C. (1952) Solutions of Systems of Linear Equations by Minimized Itera-

tions, J. Res. Nat. Bur. Standards 49, 33–53.

Leh63 Lehmann, N. J. (1963) Optimale Eigenwerteinschließungen, Numer. Math. 5,

246–272.

Leh66 Lehmann, N. J. (1966) Zur Verwendung optimaler Eigenwerteingrenzungen bei der

Lösung symmerischer Matrizenaufgaben, Numer. Math. 8, 42–55.

MW67 Martin, R. S. and Wilkinson, J. H.(1967) Solution of Symmetric and Un-

symmetric Band Equations and the Calculation of Eigenvectors of Band Matrices,

(Handbook Series, Linear Algebra) Numer. Math. 9, 279–301.

Pai69a Paige, C. C. (1969a) Error Analysis of the Generalized Hessenberg Processes for

the Eigenproblem, London Univ. Inst. of Computer Science, Tech. Note ICSI 179.

Pai69b Paige, C. C. (1969b) Error Analysis of the Symmetric Lanczos Process for the

Eigenproblem, London Univ. Inst. of Computer Science, Tech. Note ICSI 209.

Pai70a Paige, C. C. (1970a) Eigenvalues of Perturbed Hermitian Matrices, London Univ.

Inst. of Computer Science, Tech. Note ICSI 248.

Pai70b Paige, C. C. (1970b) Practical Use of the Symmetric Lanczos Process with Re-

orthogonalization, BIT 10, 183–195.

Ray77 Rayleigh, Lord (1877) Theory of Sound, Macmillan and Co. London.



REFERENCES 158

Rei70 Reid, J. K. (1970) On the Method of Conjugate Gradients for the Solution of Large

Sparse Systems of Linear Equations, Proc. IMA Conf. on Large Sparse Sets of

Linear Equations, Oxford, April 1970, Academic Press.

Rut63 Rutishauser, H.(1963) On Jacobi Rotation Patterns, Proc. A.M.S. Symposium

in Applied Mathematics. 15, 219–239.

Rut69 Rutishauser, H.(1969) Computational Aspects of F. L. Bauer’s Simultaneous

Iteration Method, Numer. Math. 13, 4–13.

RS63 Rutishauser, H. and Schwarz, H. R. (1963) The LR Transformation Method

for Symmetric Matrices, Numer. Math. 5, 273–289. (Handbook Series Linear

Algebra)

Sch68 Schwarz, H. R. (1968) Tridiagonalisation of a Symmetric Band Matrix, Handbook

Series Linear Algebra, Numer. Math. 12, 231–241.

SN69 Sebe, T. and Nachamkin, J. (1969) Variational Buildup of Nuclear Shell Model

Bases, Annals of Physics 51, 100–123.

ST68 Simpson, A. and Tabarrok, B. (1968) On Kron’s Eigenvalue Procedure and

Related Methods of Frequency Analysis, Quart. J. Mech. Appl. Math. 21, 1–41.

Ste69 Stewart, G. W. (1969) Accelerating the Orthogonal Iteration for the Eigenvectors

of a Hermitian Matrix, Numer. Math. 13, 362–376.

Sti58 Stiefel, E. L. (1958) Kernel Polynomials in Linear Algebra and Their Numerical

Applications, Appl. Math. Ser. Nat. Bur. Stand. 49, 1–22.

Sto68 Stone, H. L. (1968) Iterative Solution of Implicit Approximations of Multidimen-

sional Partial Differential Equations, SIAM J. Numer. Anal. 5, 530–558.



REFERENCES 159
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