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ABSTRACT

It is shown that the 24 quantum states or “rays” used by Peres (J. Phys. A24, 174-8
(1991)) to give a proof of the Bell-Kochen-Specker (BKS) theorem have a close
connection with Reye’s configuration, a system of twelve points and sixteen lines known to
projective geometers for over a century. The interest of this observation stems from the
fact that it provides a ready explanation for many of the regularities exhibited by the Peres
rays and also permits a systematic construction of all possible non-coloring proofs of the
BKS theorem based on these rays. An elementary exposition of the connection between
the Peres rays and Reye’s configuration is given, following which its applications to the
BKS theorem are discussed.
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Some time back Mermin® gave a remarkably concise proof of the Bell-Kochen-Specker?
(BKS) theorem by using nine observables arranged in the form of a 3 x 3 square, as
shown in Fig.1. Around the same time Peres® gave an alternative proof of this theorem by
extracting a set of twenty four rays’ (see Fig.2) from the square of Fig.1 and showing that
it is impossible to color these rays in a certain way. Recently I°> pointed out how Peres’
rays could be used to give an “inequality-free” proof of Bell’s nonlocality theorem® provided
that they were used in conjunction with a specific quantum state (namely, a singlet state of
two spin-3/2 particles).

The purpose of this paper is to point out an interesting connection between the 24 rays of
Peres and a geometrical entity known as Reye’s configuration.” Reye’s configuration is a
system of twelve points and sixteen lines with many remarkable properties that occupies
an important place in the field of projective geometry. We will show below that the 24 rays
of Peres can be modelled by two Reye’s configurations (representing 12 rays each)
derived from a pair of dual 24-cells® in four-dimensional Euclidean space. The utility of this
viewpoint is that it permits a transparent visualization of many of the important
relationships among the Peres rays and also facilitates a systematic construction of all
possible non-coloring proofs of the BKS theorem that can be based on these rays.’

The basic facts about the Peres rays and the few ideas of projective geometry needed in
this paper are collected together in Figs.1-6. Very briefly, the story told in these figures and
the accompanying captions is the following: (1) it is recalled how the Peres rays arise from
the “magic” square of Fig.1; (2) a coordinate notation and numbering scheme are
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introduced for the rays; (3) it is pointed out that the coordinates assigned to the rays can
be interpreted as the vertices of two dual 24-cells in four dimensional Euclidean space;
and (4) it is shown how the two 24-cells can be projected into three dimensions to yield a
pair of Reye’s configurations that model the Peres rays. The reader is invited to take a first
stroll through Figs.1-6 at this point as a preparation for what lies ahead.

We now embark on the principal demonstrations of this paper. The argument that follows
is presented in six sections, with the first four developing all the needed properties of the
Peres rays and the last two bringing this knowledge to bear on the BKS theorem. The
discussion in each section is organized around a few key statements that are termed
either Properties or Theorems,™ and numbered for easy reference. The proofs of the
Properties and Theorems are given in a largely visual fashion by taking the reader back to
one or more of the pathways in which he/she strolled earlier and pointing out the relevant
features of the landscape.

I. TRANSITIVITY

PROPERTY 1: Let the absolute value of the inner product of two rays be taken as a
quantitative measure of the “relationship” between the rays. Then the transitivity property
states that the relationships borne by a given ray to all the others are mirrored by all the
rays in the set.

This property can be verified straightforwardly, but tediously, by using the ray coordinates
in Fig.2, but it follows much more directly on noting that any of the 48 vertices of the two
24-cells modelling the rays can be made to pass into any other vertex by a rotation or
other'! symmetry operation that maintains the overall invariance of the vertices. The
transistivity property may not be completely obvious in a representation like Fig.4, in which
the ray at the center of the cube appears to be different from one at a corner. However a
careful examination of the figure always reveals that any essential property of the central
ray (such as the number of its nearest neighbors) is also shared by a corner ray.* The
equivalence of the center and corner rays (or, indeed, any two rays) can also be
demonstrated by altering the hyperplane of projection used in the construction of Fig.4 so
as to take one of the rays into the position of the other while maintaining the overall
invariance of all the rays.

The most obvious use of transitivity is that it allows us to work out all relationships among
the rays simply by picking out an arbitrary (and convenient) ray and working out its
relationships with the rest (this is done for the Peres rays in the next two sections).

9 The term Theorem is used to distinguish those Properties that are a little less obvious and also play a key
role in the proofs of the BKS theorem presented in Sec.VI.
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can get from one “extreme” point to the other without bumping into the point “in between” by proceeding via
the ideal point on that line).



However transitivity also has wider implications, because it applies not only to individual
rays but also to collections of rays (such as the “lines”, “triangles” and “tetrads” to be
discussed later) that can be made to pass into each other by suitable symmetry
operations. This wider use of transitivity, which is absolutely crucial, is invoked frequently

in what follows.

The reason we use the Reye’s configurations to model the Peres rays is that they allow
many of the relationships between the rays to be easily visualized, certainly more so than
if the rays are viewed in their original four-dimensional setting. But an even more
compelling reason for this choice is that the lines and incidences of Reye’s configuration
turn out to have a surprising relevance for the BKS theorem, as will be demonstrated in
Secs.V and VI below.

II. PROXIMITY

PROPERTY 2: Each ray is equally inclined to its eight nearest neighbors, which lie on the
four lines passing through it.

If one focusses on ray 4 (at the center of the cube in Fig.4) and uses the correspondences
in Fig.3, one readily sees that it has the same inner product with the eight rays at the
corners of the cube. Transitivity then implies that the same is true for all the other rays.

Two neighboring rays in the same configuration will be referred to as a “segment” (see
Fig.7 for a glossary of this and other terms used frequently in this paper). Three rays from
the same configuration that are nearest neighbors of each other (and hence equally
inclined to each other) either lie on a “line” or a “triangle”, where the former has been
defined in the captions to Figs.4 and 5 and the latter consists of three non-collinear
segments.

Any ray lies inside an octahedral cage formed by its six nearest neighbors in the other
configuration, with the edges of the cage being segments of the other configuration. The
relationship of a ray to its nearest neighbors in the other configuration is summarized in

PROPERTY 3: Each ray is equally inclined to its six nearest neighbors in the other
configuration.

This property is most easily verified by focussing on ray 4, for which the nearest neighbors
are the six octahedron vertices in Fig.5. We will refer to a pair of nearest neighbor rays in
opposite configurations as a “couple”.

. ORTHOGONALITY

PROPERTY 4: Each ray is orthogonal to exactly nine other rays: the three next nearest
neighbors in its own configuration and the six next nearest neighbors in the other
configuration.

Again considering ray 4, one sees that the rays deemed to be orthogonal to it by the
above rule are the ones corresponding to the nine ideal points in Fig.6. Use of the
correspondences in Fig.3 readily allows this claim to be verified. Transitivity then
guarantees that the same is true for all the other rays. This rule makes it possible to pick



out all rays orthogonal to a given one simply by inspection of Figs.3, 4 or 5 (this is an
engaging game, but played on a somewhat slippery slope).

An orthogonal pair of rays from the same configuration will be referred to as a “pure pair”.
An orthogonal pair of rays from different configurations will be referred to as a “mixed pair”.
Any pair of rays from the same configuration must form either a pure pair or a segment.
Any pair of rays from different configurations must form either a mixed pair or a couple.

IV. COMMUNITY

(The reader impatient to get to the BKS theorem as quickly as possible can read Property
5, look at Fig.8, and then proceed to the next section).

PROPERTY 5: The Peres rays form exactly 24 tetrads (a tetrad being defined as a
mutually orthogonal set of four rays). Six of these tetrads are “pure” tetrads involving only
rays from the same configuration, while the remaining eighteen are “mixed tetrads”
involving two rays from one configuration and two from the other. There are no
orthogonalites between the Peres rays that are not represented in these tetrads.

Focussing on ray 4, we see that the three rays orthogonal to it in its own configuration,
which are 1, 2 and 3, join with it to form a “pure” tetrad. Transitivity then implies that any
ray must join with three others in its own configuration to form a pure tetrad and, since a
ray can clearly belong to no more than one such tetrad, it follows that the pure tetrads
must be mutually disjoint. The 24 rays must therefore divide up into six pure tetrads, with
three pure tetrads spanning each configuration. Each pure tetrad contains six distinct pure
pairs within it, so the six pure tetrads contain a total of thirty six pure pairs within them. But
we know from Sec.lll that each ray is orthogonal to three others in its own configuration,
and so we can calculate that the twenty four rays will give rise to (24 x 3)/2 = 36 distinct
pure pairs. The agreement between these two tallies demonstrates that all the pure pairs
are completely accounted for (and, further, that each occurs only once) in the six pure
tetrads.

We turn next to mixed tetrads. A mixed tetrad could consist of three rays from one
configuration and one from the other, or of two rays from each configuration. However the
former possibility can be ruled out because the presence of three rays from the same
configuration would automatically lead to a pure tetrad. So a mixed tetrad must consist of
two pure pairs, with one coming from each configuration. Each configuration has eighteen
pure pairs within it (six for each of the three pure tetrads), and the mixed tetrads must
result from combining these pairs together in all possible ways. However it turns out that
the pure pairs from different configurations can only be matched up in one way,** and so
the total number of mixed tetrads is eighteen.

Let us verify that all possible mixed pairs occur in the mixed tetrads. Since each ray is
orthogonal to six others in the other configuration, the total number of distinct mixed pairs
is (24 x 6)/2 = 72. But each mixed tetrad contains four mixed pairs (after excluding the two
pure pairs), and the eighteen mixed tetrads therefore contain a total of 18 x 4 = 72 mixed
pairs. This proves the claim, provided that one can demonstrate that no duplication of

13 This is easily seen by considering a specific case, whence one finds that the common intersection of the two
sets of six orthogonal rays corresponding to the two members of a pure pair is a unique pair from the other
configuration.



mixed pairs occurs in the mixed tetrads, but this is easily done.** We have now verified the
statement, made at the end of Property 5, that all orthogonalities between the Peres rays
(represented by all possible pure and mixed pairs) occur among the 24 tetrads.

The 24 tetrads are listed (and labelled) in lexicographic order in Fig.8. The pure tetrads are
easily picked out visually in Figs.4 and 5. Two of them appear as dual tetrahedra inscribed
in the cube of Fig.4 and the third as a tetrahedron with one vertex at the center of the cube
and the other three vertices at the ideal points. The three remaining pure tetrads appear
as identical tetrahedra in Fig.5, with the vertices of each consisting of a pair of opposite
octahedron vertices and a pair of ideal points. The mixed tetrads are not as visually
obvious, but each can be picked out in Fig.6 as a tetrahedron that shares an edge with a
pure tetrad in one configuration and a second, skew edge with a pure tetrad in the other
configuration.

A clearer picture of the interconnectedness of the tetrads can be obtained by tracing out all
the closed cycles of tetrahedra formed by them, as done in Fig.9. A cycle is traced out by
beginning from an edge (or orthogonal pair) of an arbitrary tetrahedron and proceeding via
a chain of skew edges through neighboring tetrahedra until one arrives back at the edge
one started from. There are exactly nine cycles, each consisting of four tetrads, that can
be traced out in this way. Each cycle links a pure tetrad in one configuration to a pure
tertrad in the other (hence the total of nine cycles), and it does so with the minimum
number of tetrahedra (four) permitted by the constraint that pure and mixed tetrahedra
alternate within a cycle.

V. NONCOLORABILITY AND CRITICALITY : PRELIMINARIES

A non-coloring proof of the BKS theorem using a set of rays requires us to show that it is
impossible to color each of the rays either red or green in such a way that (i) no two
orthogonal rays are both colored green, and (ii) no complete set of orthogonal rays (four in
the present case) has all its members colored red. An uncolorable set of rays is further
said to be critical if the deletion of even a single ray from it converts it into a colorable set.
The central problem we wish to address is that of identifying all subsets (proper and
improper) of the 24 Peres rays that constitute uncolorable, and also possibly critical, sets.
This problem has already been solved earlier by means of a computer search,***" and it
is now known that there are many 18- and 20-ray critical sets. Our purpose here is to show
how all the earlier conclusions, and more, follow as a logical consequence of the
properties of the Peres rays discussed above.

14 Suppose that two mixed tetrads share the mixed pair A,x in common and that their other mixed pairs are B,
y (for one) and B',y’ (for the other) , where we use capital and small letters to distinguish rays from the two
configurations. (It is tacitly assumed that B differs from B’ and y from y’, since, if either assumption were
untrue, the two tetrads would coincide). The fact that B,y,B’ and y’ are all orthogonal to A and x implies that
all the former rays lie in the two-dimensional plane orthogonal to both A and x. Now B and B’ are orthogonal
(since they belong to the same pure tetrad as A) and B and y are orthogonal (since they belong to the same
mixed tetrad), so it follows that B’ and y must be parallel. But this is absurd, since these are rays from
different configurations.

5 M.Kernaghan, “Bell-Kochen-Specker theorem for 20 vectors”, J. Phys. A: Math. Gen. 27, L829-30 (1994).
16 M.Kernaghan and A.Peres, “Kochen-Specker theorem for eight-dimensional space”, P/s9e1t-5

(1995).

17 A.Cabello, J.M.Estebaranz and G.Garcia-Alcaine, "Bell-Kochen-Specker theorem: A proof with 18
vectors", Phys. LettA212 183-7 (1996).



As a first step towards identifying uncolorable sets, we note the existence of the following
two types of colorable sets:

THEOREM 1: Any subset of the Peres rays from which a pure pair is missing is colorable.
THEOREM 2: Any subset of the Peres rays from which a couple is missing is colorable.

We prove these theorems in Figs.10(a) and 10(b) by deleting a pure pair or a couple from
the 24 rays and showing that the 22 rays left behind in each case are colorable. Since all
pure pairs are transitively equivalent to each other, as are all couples, this single
demonstration suffices. Of course, an arbitrary set lacking a pure pair or a couple can
always be derived from one of the two considered here by further deletions, and so is
colorable. The proofs of Figs.10(a) and 10(b) are carried out using the 24 tetrads of Fig.8,
because these tetrads incorporate all the orthogonalities between the rays and so include
all the vital information needed for a successful coloring (or non-coloring) demonstration. It
is also worth noting that the rules for a successful coloring of a subset of the Peres rays,
as attempted in Figs.10(a) and 10(b), can be stated as follows: (i’) any tetrad from which
no rays are deleted must contain exactly one green ray and three red rays, and (ii’) any
tetrad from which at least one ray has been deleted can contain at most one green ray.

Theorems 1 and 2 state sufficient conditions for colorability. By turning them around, we
can obtain necessary conditions for uncolorability. We proceed to examine this point.

We first take up Theorem 1, but before considering what it implies about uncolorability, we
note two of its simple consequences for colorability and criticality contained in the following
theorems.

THEOREM 3: Any subset of the Peres rays containing 17 or less rays is colorable.
THEOREM 4: Any uncolorable 18-ray set is critical.

The proof of Theorem 3 follows on noting that, since the six pure tetrads are mutually
disjoint and span all the rays, the deletion of seven or more rays must necessarily lead to
the deletion of a pure pair from one of these tetrads and hence to a colorable set by
Theorem 1. Theorem 4 follows as a direct corollary of Theorem 3.

Now for uncolorability. The necessary conditions implied by Theorem 1 for an uncolorable
set of rays can be stated as

THEOREM 5: Any uncolorable set consists of two deleted sets of rays, one from each
configuration, each of which can only be one of the following: (a) the null set, (b) a point,
(c) a segment, (d) a line or (e) a triangle.

The truth of this theorem is evident on noting that the above collections of rays are the
only ones that can be deleted from a configuration without deleting a pure pair from it.

We turn next to Theorem 2. This theorem implies that the two deleted sets of rays (one
from each configuration) in an uncolorable set must be such that every ray in one is
orthogonal to every ray in the other (recalling that every pair of rays from opposite
configurations must either be orthogonal or form a couple). This requirement can be



further refined into the following two theorems that characterize all the ways in which the
deleted sets from the two configurations can be related to each other.

THEOREM 6: If an uncolorable set has a missing line (or segment) from one
configuration, the only points of the other configuration that can be missing from it are the
ones lying on a unique line, each of whose points is orthogonal to every point on the
original line (or segment). This unique line in the second configuration will be termed

the “mate” of the line (or segment) in the first configuration.

Proof: Consider the line passing through the points (4,5,9) of the “cube” configuration.
Each of these points has six orthogonal companions in the “octahedron” configuration, and
the common intersection of these three sets of six companions is the line (16,19,22) of the
octahedron configuration, which is therefore the (unique) mate of the original line.
Transitivity then guarantees that any line in either configuration has a unique mate in the
other. An examination shows that the mate of any cube edge is the further of the two
octahedron edges that shares a twofold axis with it, while the mate of a cube diagonal is
one of the ideal lines of the octahedron configuration. If one replaces the deleted line at
the beginning of this proof by a deleted segment, the parallel result follows.

We will speak of two sets of points (such as a line and a line, or a point and a line) as
being orthogonal if each member of one is orthogonal to each member of the other.

THEOREM 7: If an uncolorable set has a lone point missing from one configuration, the

only points from the other configuration that can be missing from it are one of the

following:

(a) any or all of the points on one of the four lines that are the mates of the four lines
through the point.

(b) any or all of the points on one of the four triangles defined by the mates of three out of
four of the lines through the point.

Proof: Taking the lone missing point to be ray 19 of the octahedron configuration, the six
points of the cube configuration that are orthogonal to it are 6,9,8,12,1 and 2. These six
points yield exactly four lines (each consisting of a cube edge and the ideal point lying on
it) and four triangles (each consisting of a cube edge and the ideal point not lying on it),
any one of which can be partly or entirely deleted without sacrificing uncolorability. The
deletion of the lines can also be understood by noting that any point is orthogonal to the
mates of the four lines through it, thus making it safe to remove part, or all, of any of these
mates. Similarly, if one views a triangle as arising from the mates of three out of the four
lines through a point, it is evident that the triangle is orthogonal to the point and can be
partly, or wholly, deleted.

VI. NONCOLORABILITY AND CRITICALITY : FINALITIES

We are now in possession of all the tools we need to identify uncolorable and critical sets.
We will begin by looking at 18-ray sets and work our way upwards to the full 24-ray set,
identifying all uncolorable and critical sets along the way. For any n-ray set (n = 18), we
will first identify candidate uncolorable sets by using Theorems 5,6 and 7. We use the
descriptor “candidate” because Theorems 5-7 have been demonstrated to provide only
necessary, but not sufficient, conditions for uncolorability. However we will demonstrate
that the conditions are in fact sufficient, so that all candidates are indeed uncolorable.

A further examination will then reveal which of the uncolorable sets is critical.



Let us first consider 18-ray sets. Using Theorem 5 alone, any potentially uncolorable set
can be characterized in terms of its missing rays as either a “line-line” set, a “line-triangle”
set or a “triangle-triangle” set (a line-triangle set, for example, is one that is missing a line
from one configuration and a triangle from the other). However an application of Theorem
6 rules out the line-triangle and triangle-triangle sets, and also a large number of the line-
line ones. The line-triangle and triangle-triangle sets get ruled out because a line (or
triangle) can never be completely orthogonal to a triangle in the other configuration (recall
that a line can only be orthogonal to the points on its mate, and that the opposing triangle
can have at most two of its vertices on this mate). Of the many line-line sets that are
possible, Theorem 6 allows only those for which the two lines are the mates of each other.
It remains to be seen whether this last type of line-line set (the only “candidate” allowed by
both Theorems 5 and 6) is indeed uncolorable.

There are sixteen line-line sets to be considered, since there are sixteen lines in each
configuration and each line can be paired up only with its mate in the other configuration.
But each line-line set is transitively equivalent to all the others, so it suffices to show that
any one is uncolorable (or colorable) to demonstrate that the rest are too. We consider the
particular set defined by the excluded lines (1,5,10) and (16,20,24) of the cube and
octahedron configurations, respectively. If we consider only those tetrads not involving any
of these six excluded rays, we are left with the nine boldface tetrads of Figure 11. These
boldface tetrads involve only the 18 surviving rays of the set, with each occuring exactly
twice. The coloring rules (stated below Theorem 2) require these 18 rays to be colored
either red or green in such a way that each boldface tetrad contains exactly one green ray
and three red rays. But this is impossible since, on the one hand, the total number of
green rays is required to be odd (as there can only be one green ray per boldface tetrad)
while, on the other hand, it is required to be even (because each green ray is repeated
twice). This proves that this particular line-line set is indeed uncolorable, and the same
then follows for all the others.

Figure 12 lists all the sixteen uncolorable 18-ray sets, with the six deleted points shown
first, followed by the nine tetrads involving only the 18 surviving rays. It follows from
Theorem 4 that all these sets are critical. These results agree with those found earlier in
ref.17 by means of a computer search.

We next consider 19-ray sets. Theorem 5 allows only segment-line and segment-triangle
sets, but Theorem 6 rules out the latter and allows only segment-line sets for which the
line is the mate of the segment; however such sets contain uncolorable 18-ray sets as
subsets and so are uncolorable but not critical.

Passing on to 20-ray sets, the only candidates allowed by Theorems 5,6 and 7 are
segment-segment sets (with the two segments orthogonal to each other), point-line sets
(with the point and line orthogonal) and point-triangle sets (with the point and triangle
orthogonal). The former two sets contain critical line-line sets as subsets and so are
uncolorable but not critical. The point-triangle sets require further examination to
determine their status. Let us consider the particular point-triangle set with point 19
deleted from the octahedron configuration and the triangle (2,6,12) deleted from the cube
configuration. If we consider only the tetrads with none of these four deleted points
occuring in them, we obtain the eleven boldface tetrads shown in Figure 13. These
boldface tetrads involve only the 20 survivng rays, with eighteen of them occuring twice
and the remaining two occuring four times. It follows from this that these 20 rays cannot be



properly colored because, on the one hand, the eleven boldface tetrads are required to
contain an odd number of green rays (one per tetrad) while, on the other, they are required
to contain an even number of green rays (since each green ray is repeated two or four
times). This establishes that this particular 20-ray set is uncolorable. However this set can
be made to yield three others (with the same point but different triangles) by rotations
about the fourfold axis through point 19, and these four sets can be replicated twenty four
times by varying the choice of the lone deleted point, so the total number of uncolorable
sets of the point-triangle type is 4 x 24 = 96, matching the result found earlier in refs.16
and 17.

Are these 96 uncolorable sets critical? To determine this, we need to look at all possible
deletions of a single ray from one of these sets and see if the resulting sets are colorable.
Deletion of an additional point from the configuration containing the lone deleted point
would lead to a colorable set, because the lone point is the only one in its configuration
that is orthogonal to all three triangle vertices."® Also, from Theorem 5, the deletion of a
fourth point from the configuration containing the triangle would lead to a colorable set.
This establishes that these 96 sets are critical.

We next pass to 21-ray sets, among which the only uncolorable ones are null-line sets,
null-triangle sets and point-segment sets (with the point and segment orthogonal). The first
and third of these are not critical because they contain uncolorable 18-ray sets as subsets,
while the second is not critical because it contains an uncolorable 20-ray set as a subset.
The only uncolorable (but not critical) 22-ray sets are the ones with a segment or a mixed
pair missing, while all 23-ray sets are uncolorable but not critical. Finally, the full 24-ray set
is uncolorable but not critical.

A direct proof of the uncolorability of the full 24-ray set can be given by reductio ad
absurdum as follows. Assuming that this set is colorable, there must be exactly one green
ray in each of the six pure tetrads since these tetrads are mutually disjoint and span all the
rays. The three green rays in each configuration must form either a line or a triangle, so
the properly colored rays must consist of a green line in each configuration, or a green
triangle in each configuration, or a green line in one configuration and a green triangle in
the other. However it is not hard to see that none of these possibilities can be realized. If
there is a green line in a configuration, then ten of the lines of this configuration (the one
containing all the green rays and the three remaining lines through each of the green rays)
are partially green and the other six are wholly red; the mates of the ten partially green
lines are forced to be wholly red while the mates of the other six lines can be partially
green. In a similar fashion, if there is a green triangle in a configuration, nine of the lines of
this configuration (the three lines along the sides of the triangle and the two other lines
through each of its vertices) are partially green and the remaining seven lines are wholly
red; this forces the nine mates of the partially green lines to be wholly red but allows the
mates of the seven other lines to be partially green. Thus, whether there is a green line or
a green triangle in one configuration, one sees that there are at most seven partially green
lines in the other configuration, which is too few to accommodate either a green line or a
green triangle.

To conclude, all the different uncolorable subsets of the Peres rays are listed and
categorized in Fig.14.

18 This follows from the fact that the lone point is the unique intersection of the mates to the three triangle
sides.
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Fig. 1. Marmin's “maaic® square, an ar-ay of nine ooservables used by Mearmin (2517 ta
rove the Bell-Kochen-Spacker thaarem. Each antry inth s square is the tensor product of
cosarvables fora pair of spin-1/2 particles, with 1, 7. o, &nd 7, represerting the icent ty
aperator and the Fauli aparators The ohservanes in each row and colunn of this aray
canatituts a complste commuting set, a fact usad in the construction of the Peres rays in
Fio.2.
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ROW1: (2,0,0,0) (02,000 (0,020  (0,0,0,2) Rays 1-4

ROW?2:  (1,1,1,1) (1,1-11) (-1-1,1,1) (1,-1,-1,1) Rays 5-8

ROW3: (-1,1-1,1) (-1,1,1,1)  (1,-1,1,1) (1,1,-1,1) Rays 9-12
CoLl:  (1,0,1,0) (0,1,0,1) (1,0,-1,0)  (0,1,0,-1) Rays 13-16
coL2:  (1,1,0,0) (1,-1,0,0) 0,0,1,1)  (0,0,1,-1) Rays 17-20
CoL3:  (1,0,0,1) (0,1,1,0) (1,00,-1)  (0,1,-1,0) Rays 21-24

Fig.2. The 24 rays of Peres. The four entries in each row are the simultaneous eigenstates
of the complete set of commuting observables in one of the rows or columns of Fig.1; the
relevant row or column is indicated to the left and a numbering scheme for the states (or
rays) is introduced on the right, it being understood that the ray numbers in each row
increase from left to right. Each ray is denoted by a set of numbers (X1, Xz, X3, X4) that
serve as a shorthand for the quantum mechanical state x; 11 +Xa11 + X3 11 + X411,
where 1t and | represent spin-up and spin-down states of the two particles. Note that the
rays are not normalized. Each ray can also be interpreted as a real, four-dimensional
vector with coordinates (X1, X2, X3, X4). If the vectors corresponding to rays 1-12 are taken
together with their inverses, they yield the vertices of a regular four-dimensional solid
known as a 24-cell. Similarly, the vectors corresponding to rays 13-24, together with their
inverses, yield another 24-cell that is the “dual” of the first. (See the book quoted in ref.8
for more details about the 24-cell and for the meaning of duality).
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VERTEX IMAGE VERTEX IMAGE
1=(2,0,0,0) X 13 = (1,0,1,0) X
2=(0,2,0,0) Y 14=(0,1,0,1) (0,2,0)
3=(0,0,2,0) Z 15 = (1,0,-1,0) Zx’
4=(0,0,0,2) (0,0,0) 16 = (0,1,0,-1) (0,-2,0)
5=(1,1,1,1) (2,2,2) 17 = (1,1,0,0) Xy
6=(-11,11) (2,2,2) | 18=(1,-1,0,0) Xy’
7=(-1,111) (-2,-22) | 19=(0,0,1,1) (0,0,2)
8=(1,-1,-1,1) (2,2,2) | 20=(0,0,1,-1) (0,0,-2)
9=(-1,1,-1,1) (-2,-2,-2) | 21=(1,0,0,1) (2,0,0)

10 = (-1,1,1,1) (-2,2,2) 22 = (0,1,1,0) vz

11=(1,-1,1,1) (2,-2,2) 23 = (1,0,0,-1) (-2,0,0)

12=(1,1,-1,1) (2,2,-2) 24 = (0,1,-1,0) vz

Fig.3. Showing how the two 24-cells of Fig.2 can be projected into three dimensions to
yield a pair of Reye’s configurations that model the Peres rays. The projection is done
through the common center (0,0,0,0) of the two 24-cells and onto the hyperplane x, = 2,
which touches a vertex of one of the 24-cells and contains a bounding cell of the other.
This is a projective mapping, in which any pair of antipodal vertices in the four-dimensional
object space gets mapped into a single point in the three-dimensional image space. The
first column shows (half) the vertices of one 24-cell and the second column their images,
while the third and fourth columns do the same for the second 24-cell. Note that some 24-
cell vertices (namely, those lying on hyperplanes parallel to the image hyperplane) get
mapped onto “ideal” points in the image space. An ideal point, by definition, is the (unique)
point at which a set of parallel lines meets. The ideal points X, Y and Z lie on the
coordinate axes while the other ideal points lie in the three coordinate planes and along
the bisectors of the coordinate axes. The distinction between the ideal points xy and xy’ is
that the former lies on the bisector of the positive x and positive y axes, while latter lies on
the bisector of the positive x and negative y axes.

13



i\ ~
-._';:
"\L %

m&%l \” >
f|
f’l"
f

Fig.4. Reye’s configuration corresponding to rays 1-12, constructed from their
projections in the second column of Fig.3. The rays appear in this
representation as the eight vertices of a cube, the center of the cube and the
three ideal points in which parallel sets of cube edges meet. The sixteen lines
of this configuration are defined to be (the extensions of) the twelve cube
edges and the four cube body diagonals. Note that each line has three points
(rays) on it, while each point (ray) has four lines passing through it. The eight
nearest neighbors of any ray, which lie on the four lines through it, are all
inclined at equal angles to it. The three next nearest neighbors of any ray are
orthogonal to it. (A rod model of Reye’s configuration is on display at the
Boston Museum of Science, with the cube edges suitably distorted so that
their extensions converge on ideal points located at finite distances from the
cube center).
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Fig.5. Reye’s configuration corresponding to rays 13-24, constructed from their projections
in the fourth column of Fig.3. The rays appear in this representation as the six vertices of
an octahedron and the six ideal points in which pairs of parallel octahedron edges meet.
The sixteen lines of this configuration are defined to be the twelve edges of the octahedron
and the four ideal lines each passing through the three ideal points (13,17,24), (13,18,22),
(15,18,24) or (15,17,22). Note that each line has three points (rays) on it, while each point
(ray) has four lines passing through it. The eight nearest neighbors of any ray, which lie on
the four lines through it, are all inclined at equal angles to it. The three next nearest
neighbors of any ray are orthogonal to it.
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Fig.6. A representation of the 24 Peres rays obtained by superposing the Reye’s
configurations in Figs.4 and 5. The rays appear in this figure as the center of the cube, its
eight vertices, its six face centers, and nine ideal points lying along the twofold and
fourfold axes of the cube. The ideal points 1,2 and 3, which lie along the x,y and z axes,
are shown by arrows to the left of the cube, while the other ideal points are indicated by
arrows next to the midpoints of the appropriate cube edges. The numbering of the rays is
the same as in Figs.4 and 5. Note that each ray has six nearest neighbors in the other
configuration (compared to eight in its own) and six next nearest neighbors in the other
configuration (compared to three in its own).
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TERM MEANING
Point An arbitrary ray
Segment A pair of nearest neighbor rays in the same
configuration
Couple A ray and one of its nearest neighbors in the other
configuration
Pure pair An orthogonal pair of rays from the same
configuration
Mixed pair An orthogonal pair of rays from different
configurations
Line Three rays lying on a line of a configuration
Triangle Three nearest neighbor rays of the same configuration
not lying on a line
Pure tetrad A set of four mutually orthogonal rays from the same
configuration
Mixed tetrad  |A set of four mutually orthogonal rays, with two rays
from one configuration and two from the other

Fig.7. Some sets of two, three and four rays that occur frequently in this paper.



TO1 1 2 3 4 TO7 3 4 17 18 T13 6 8 17 19 T19 10 11
TO2 1 2 19 20 TO8 5 6 7 8 T14 7 8 13 14 T20 10 12
TO3 1 3 14 16 T09 5 6 15 16 T15 9 10 11 12 T21 11 12
TO4 1 4 22 24 T10 5 7 18 20 T16 9 10 21 24 T22 13 14
TOS 2 3 21 23 T11 5 8 23 24 T17 9 11 14 15 T23 17 18
TO6 2 4 13 15 T12 6 7 21 22 T18 9 12 18 19 T24 21 22

17 20
13 16
22 23
15 16
19 20
23 24

Fig.8. The 24 sets of four mutually orthogonal rays (“tetrads”) formed by the Peres rays.
The “pure” tetrads, labelled T01,T08,T15, T22,T23 and T24, consist only of rays from a
single configuration, while the “mixed” tetrads (all the rest) each consist of two rays from
the “cube” configuration and two rays from the “octahedron” configuration. Each ray
occurs in exactly one pure tetrad and three mixed tetrads. Each ray is orthogonal to nine
other rays, which are the remaining members of the four tetrads that that ray occurs in.

Cl1 T01,T07,T23,T02 C4 TO08,T14,T22,T09 C7 T15,T21,T24,T16
C2 T01,T06,T22,T03 C5 TO08,T13,T23,T10 C8 T15,T20,T22,T17
C3 T01,T05,T24,T04 C6 TO08,T12,T24,T11 C9 T15,T19,T23,T18

Fig.9. The nine cycles of tetrahedra, C1-C9, formed by the tetrads of Fig.8. Each cycle
consists of four tetrads, with pure and mixed tetrads alternating.
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TOL 1 2 3 4 TO7 3 4 17 18 T13 6 8 17 19 T19 10 11 17 20
TO2 1 219 20 TO8 5 6 7 8 T14 7 8 13 14 T20 10 12 13 16
TO3 1 3 14 16 TO9 5 6 15 16 T15 9 10 11 12 T21 11 12 22 23
TO4 1 4 22 24 T10 5 7 18 20 T16 9 10 21 24 T22 13 14 15 16
TO5 2 32123 T11 5 8 2324 T17 911 1415 T23 17 18 19 20
TO6 2 4 13 15 T12 6 7 21 22 T18 9 12 18 19 T24 21 22 23 24
Fig.10(a). Proof that the 22-ray set remaining after the deletion of the pure pair (1,2) is
colorable. The red rays are shown in boldface, the green rays in boldface with an

underscore and the two deleted rays in ordinary type.

ToOl1 1 2 3 4 T07 3 41718 T13 6 8 1719  T19 10 11 17 20
TO2 1 219 20 TO8 5 6 7 8 T4 7 8 13 14 T20 10 12 13 16
TO3 1 3 14 16 TO9 5 6 15 16 T15 9 10 11 12 T21 11 12 22 23
TO4 1 4 22 24 T10 5 7 18 20 T16 910 21 24 T22 13 14 15 16
TO5 2 32123 T11 5 8 2324 T17 9111415  T23 17 18 19 20
TO6 2 4 13 15 T12 6 7 21 22 T8 9 12 18 19 T24 21 22 23 24

Fig.10(b). Proof that the 22-ray set remaining after the deletion of the couple (1,13) is
colorable. The red rays are shown in boldface, the green rays in boldface with an
underscore and the two deleted rays in ordinary type.
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TO1 1 2 3 4 TO7 3 4 17 18 T13 6 8 17 19 T19 10 11 17 20
T02 1 219 20 TO8 5 6 7 8 T14 7 8 13 14 T20 10 12 13 16
TO3 1 3 14 16 T09 5 6 15 16 T15 9 10 11 12 T21 11 12 22 23
TO4 1 4 22 24 T10 5 7 18 20 T16 9 10 21 24 T22 13 14 15 16
TOS 2 321 23 T11 5 8 23 24 T17 9 11 14 15 T23 17 18 19 20
TO6 2 4 13 15 T12 6 7 21 22 T18 9 12 18 19 T24 21 22 23 24

Fig.11. When the 6 rays on the lines (1,5,10) and (16,20,24) are deleted, the remaining 18
rays are the exclusive members of the nine boldface tetrads. Each of the 18 rays occurs
exactly twice in the boldface tetrads, making them impossible to color properly. This
demonstrates that these 18 rays constitute an uncolorable set.
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6 MISSING RAYS | NINE TETRADS CONTAINING
ONLY THE 18 SURVIVING RAYS
1,5,10 16,20,24 | T05,T06,T07,T12,T13,T14,T17,T18,T21
1,6,12 16,19,22 | T05,T06,T07,T10,T11,T14,T16,T17,T19
1,7,11 14,20,22 | T05,T06,T07,T09,T11,T13,T16,T18,T20
1,8,9 14,19,24 | T05,T06,T07,T09,T10,T12,T19,T20,T21
2,7,10 13,20,21 | T03,T04,T07,T09,T11,T13,T17,T18,T21
2,511 15,20,23 | T03,T04,T07,T12,T13,T14,T16,T18,T20
2,69 15,19,21 | T03,T04,T07,T10,T11,T14,T19,T20,T21
2,8,12 13,19,23 | T03,T04,T07,T09,T10,T12,T16,T17,T19
3,79 14,18,21 | T02,T04,T06,T09,T11,T13,T19,T20,T21
3,6,10 16,17,21 | T02,T04,T06,T10,T11,T14,T17,T18,T21
3,5,12 16,18,23 | T02,T04,T06,T12,T13,T14,T16,T17,T19
3,8,11 14,17,23 | T02,T04,T06,T09,T10,T12,T16,T18,T20
4,59 15,18,24 | T02,T03,T05,T12,T13,T14,T19,T20,T21
4,8,10 13,17,24 | T02,T03,T05,T09,T10,T12,T17,T18,T21
4,7,12 13,18,22 | T02,T03,T05,T09,T11,T13,T16,T17,T19
4,6,11 15,17,22 | T02,T03,T05,T10,T11,T14,T16,T18,T20

Fig.12. The sixteen 18-ray subsets of the Peres rays that constitute the smallest

uncolorable, critical sets. The six rays missing from each set are shown first, with the first
three belonging to a line of the “cube” configuration of Fig.4 and the second three to a line
of the “octahedron” configuration of Fig.5. The last column lists the nine tetrads containing
only thel8 surviving rays (and not involving any deleted rays).
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Fig.13. When the rays 2,6,12 corresponding to a triangle in the “cube” configuration and
the lone ray 19 in the “octahedron” configuration are deleted, the remaining 20 rays are
the exclusive members of the eleven boldface tetrads. Because each of these 20 rays
occurs an even number of times in these tetrads, it is impossible to color these tetrads
properly. This proves that this 20-ray set is uncolorable.
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DELETED TYPES OF NUMBER OF CRITICAL?
RAYS DELETIONS UNCOLORABLE SETS
0 Null-null 1 NO
1 Null-point 24 NO
2 Null-segment 96 NO
2 Point-point 72 NO
3 Null-line 32 NO
3 Null-triangle 96 NO
3 Point-segment 288 NO
4 Point-triangle 96 YES
4 Segment-segment 144 NO
4 Point-line 96 NO
5 Segment-line 96 NO
6 Line-line 16 YES

Fig.14. All possible uncolorable subsets of the 24 Peres rays. The first column lists the

number of deleted rays, the second column the types of deletions from the two
configurations, the third column the number of uncolorable sets of this type, and the fourth

column whether this type of uncolorable set is critical. It is understood, in the second

column, that the deleted sets in the two configurations are orthogonal. The total number of
uncolorable sets of all types is 1057.
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