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Abstract—Environmental sound recognition is currently an 

important and valuable field of computer science and robotics, , 

security or environmental protection. The underlying 

methodology evolved from primary speech application 

characteristic methods to more specific approaches, and with 

the advent of the deep learning paradigm many attempts using 

these methods arose. The paper reopens the research we have 

started on the application of the Feed Forward Neural 

Networks, by exploring several configurations, and introduces 

the Convolutional Neural Networks in our investigation. The 

experiments consider three classes of forest specific sounds and 

meant to detect the chainsaw sounds chainsaw, vehicle, and 

genuine forest. 
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I. INTRODUCTION  

In recent times, automatic environment sound recognition 
gains increasing attention for its multidisciplinary applications 
in areas like an audio surveillance system, environment 
monitoring, wildlife, and protection, by detection of logging 
activities, wildfire events, impostor in the wildlife or logging 
areas [1]  [2]. It is more and more extensively applied in home 
automation by investigating domestic non-human and apart 
from music environmental sounds in day-to-day life like glass 
breaking, door knock, or floor crack, pouring of water, the 
sound of an engine, vehicle brakes, baby crying. It is used to 
detect sound-related respiratory symptoms, such as sneeze, 
cough, sniffle, throat clearing, related to illness, allergies, 
infections, commonly observed and useful in health-related 
research [3]. For example, by regularly collecting constantly 
self-reported flu symptoms from registered users, nationwide 
flu maps are built in [4] to illustrate how flu spreads. 

It is also employed in monitoring acoustic emissions, to 
study or predict landslides, avalanches or other mass 
movement [5].  

A complex field of AESR, Computational Auditory Scene 
Analysis (CASA) [2], concerns the recognition of 
combinations of sound sources using computational means 
that simulate human listening perception. It investigates 
mainly two important tasks, Environmental Audio Scene 
Recognition (EASR) and Sound Event Recognition (SER), for 
environment audio observation and surveillance. EASR refers 
to the recognition of indoor or outdoor acoustic scenes (e.g., 
cafes versus crowded or silent streets, forest soundscape, 
countryside). SER investigates specific environmental 
acoustic events, like dog barking, cat meowing, crying, 
gunshots, cough, laugh, whistle. Monitoring of human social 
activities and early detection of suspicious events are essential 
for public security and safety, and are usually performed using 
one or more video cameras, and possibly infrared cameras. 
When visual signals cannot recognize the environment 

activities and events, audio supplementary cues are valuable. 
For instance, when a suspicious/object is occluded, when an 
activity happens in the dark, or in an area beyond the coverage 
of video cameras. 

The present paper is related to previous research 
concerning identification of logging activity by forest 
environment sound recognition by investigating the acoustics 
forest environment recognition. Previous research has 
emphasized the advantages of using Deep Feed Forward 
Neural Networks (DNN) over the traditional machine learning 
approaches, like Gaussian Mixture modelling (GMM) or 
Dynamic Time Warping (DTW). We have analysed in the 
above-mentioned context several different schemes of 
applying DNN. We will go further with our analysis 
concerning DNN, by investigating several settings in defining 
the network in the training  process. We will also present some 
preliminary results obtained applying Convolutional Neural 
Networks (CNN). 

II. STATE-OF-THE-ART 

Early attempts of environmental sound recognition were 
made by using the traditional approaches applied in speech 
and voice-based applications, with the particular means in 
what concerns signal processing, feature extraction and 
modelling methods [6 7]. Gradually the catalogue of these 
methods widened and begun to specialize, for instance taking 
in account acoustic signal division into stationary and non-
stationary, or according to the particular fields of applications, 
With the advent of the state-of-the-art modelling paradigm of 
deep neural networks the AESR techniques evolved by 
exploring the applicability of these architectures. As Deep 
Neural Networks are able to discover and generate themselves 
effective features from less processed, or even raw data, the 
stress is also on discovering the suitable acoustic data 
processing approaches.  

Among the first approach using a DNN classifier for sound 
event recognition was proposed [8] The research evaluated 
both Support Vector Machines (SVM) and DNN classifiers 
and the results showed that the DNN classifier with simple de-
noising performed well for the recognition task. Piczak in [9], 
used CNNs trained on Log-Mel spectrogram features to 
achieve a similar level of output as other deep learning 
methods (DNN and Recurrent Neural Network - RNN). CNN, 
successfully applied in image recognitional systems, were 
investigated in the context of the time-frequency features 
called Spectrogram Image Features (SIF), to reproduce the 
image recognition context. The use of multi-label 
Convolutional Recurrent Neural Network (CRNN) for 
polyphonic scenery in real-life recordings was proposed in 
[10] by Cakir et al. The researchers have shown  that  CRNN 
performance is slightly better compared to CNN and RNN for 
certain audio events. In [11] Su et al. also used fully 



convolutional network with log-scale Mel-spectrogram 
features to identify audio events using the. 

The authors in [12] studied the Spectrogram Image 
Features (SIF) for noisy environments. In this study, the 
highly overlapped spectrograms were converted into linear 
quantized images and their dimensions were reduced by 
applying various image resizing methods. The feature learning 
and recognition was performed with the CNN approach. The 
work in ]13] introduces an audio-visual descriptor, called the 
Auditory Receptive-field Binary Pattern (ARFBP), built on 
the SIF, the cepstral features, and the Human Auditory 
Receptive Field model. These features are fed to a hierarchical 
version of  DNN, called Hierarchical-diving Deep Belief 
Network (HDDBN). Diverse other approaches are mentioned 
in [2].  [2] makes also an exhaustive and coherent analysis and 
categorization of the features and modelling techniques used 
at present in different tasks of CASA. A first class of features, 
include the traditional ones, in time domain (Zero-Crossing 
Rate, energy, etc.), frequency (Fourier coefficients, power 
spectrum), and quefrency domains (cepstral coefficients), 
perceptual features (Perceptual Linear Predictive, Mel-
Frequency Features), or features obtained by other processing 
(e.g., Linear Predictive Coding). A second category  of 
features are the Auditory Image-based Features, in time-
frequency domain, such as spectrogram-based features, 
applied widely in such techniques like CNN; These features 
include log-spectrograms, spectrograms  on perceptual scales 
as Mel or Bark-frequency, Gabor Filter Bank (GBFB) features 
[14]wavelet packets [15], SIFs [8]. GBFB features  represent 
the spectro-temporal modulation patterns of the signal using 
the Gabor filter bank; the authors in [16] proposed the Local 
Binary Pattern (LBP) descriptor approach for capturing the 
temporal dynamics of MFCC features. This approach evolved 
into different variants such as Variable-Q Transform (VQT) 
and Adjacent Evaluation Completed LBP. A third class of 
features are learning-based, i.e., the outcome of machine 
learning techniques used to enhance data representations. 
Such examples are i-vectors (based, for instance, on MFCCs), 
x-vectors (the features generated at some intermediary layer 
of a feed-forward network), features generated by  exemplar 
coding [17], Sparse coding [18], Bag of aural words [19], non-
negative matrix factorization (NMF) [20], etc. 

In [2] the modelling methods are also organized into three 
classes. The first class contains the Genervative Model-based 
Approaches, where a model is built for each environment 
class, using samples belonging to that class alone. However, 
among various generative models, Hidden Markov Models 
(HMM), Gaussian Mixture Models (GMM), Vector 
Quantization (e.g., k-NN),  and their variances are the most 
widely used models in the EASR tasks  [20] [21]. A second 
class are Discriminative Model-based Approaches, such as 
SVM and Artificial Neural Network (ANN), focused on 
constructing hyper-planes between environmental audio scene 
classes. SVM is a kernel-based discriminative classifier that 
focuses on modelling the decision boundaries between classes 
[22]. The SVM-based classifier performs well, not only for 
linearly separable data, but also for non-linear data  

A third class are Deep Learning Model-based Approaches, 
with good performance in complex recognition task with more 
data where conventional machine learning methods do not 
guarantee better performance. DNN works on an unsupervised 
pre-training step using probabilistic graphical models to 
initialize the parameters. Convolutional Neural Network is 

one of the widespread architectures used in deep learning 
approaches. The DNN-based approach for acoustic scene 
recognition has been proposed by Petetin in [23] using MFCC, 
spectral centroid, and spectral flatness features, and 
outperformed the classical classifiers (GMM, SVM) with the 
same features. The results are exceptionally good for DNN 
with frequency features. 

Public and comparative evaluation made on benchmark 
datasets help studying the performance of various proposed 
systems. There are few  datasets publicly available for use in 
sound event recognition containing the corresponding sound 
event classes. In Environmental Sound Classification (ESC)-
50 dataset, 50 sound classes are grouped into 5 major 
categories (10 classes per category), such as animal sounds, 
natural soundscapes, water sounds, human (non-speech) 
sounds, interior/domestic sounds, and exterior/urban noises. 
The dataset provides a variety of sound sources, such as 
common sounds (laughing, mewing, barking), distinct sounds 
(glass breaking, teeth brushing), and noisy sounds (helicopter 
and airplane). The ESC-10 dataset is a subset of the ESC-50 
dataset. The examples are equally distributed among the 10 
classes with 40 examples per class. CICESE dataset consists 
of 392 examples from 7 environment sound classes. The 
training set was composed of 4 different subjects with 10 
examples per subject for each class. The test dataset was 
created with the same audio source with 4 samples per class 
from 4 different subjects. The DCASE 2013 dataset used in 
[19] for event detection consists of 3 subsets (development, 
training, and testing datasets). The extension of the DCASE 
2013 dataset are DCASE 2016 and DCASE 2017 with a large 
number of classes and a diversity of data. The UPC-TALP 
dataset was recorded in a meeting room location. This dataset 
is multimodal (i.e., audio and video) and contains recordings 
of both isolated and spontaneous audio events. The MIVIA 
dataset contains highly noisy environmental sounds with 
events superimposed at different values of the SNR, making 
the detection and classification of events very challenging 
tasks. The intensity of the background sound is modulated to 
obtain low levels of the SNR and simulate events that occur at 
various distances from the microphone. 

III. METHOD 

The general framework we have applied is drawn on the 
ideas presented in [6]. The usual pre-processing of the 
environmental acoustic signal includes a framing step, 
possibly followed by sub-framing or sequential processing. In 
the “framing” stage the signal is processed continuously, 
frame by frame. A classification decision is made for each 
frame and successive frames may belong to different classes. 
Framing can enhance the acoustic signal classification by 
structuring the stream into more homogeneous blocks to better 
catch the acoustic event. Yet, there is no way of setting an 
optimal frame length, as for stationary events a length of 3s is 
a reasonable choice, while for acoustic events like thunder or 
gunshots, a 3s window length might be too large, and contain 
other acoustic events, so that they could be associated to 
inappropriate classes. Due to the latest advances in 
instrumentation, different frame lengths are used to streamline 
energy consumption during a monitoring process, based on 
detecting energy levels of environmental sounds. Next, a sub-
framing process is applied, by dividing the frame into usually 
overlapping, analysis subframes. The length of a subframe is 
explicitly set in [6] to 20-30ms. This length is suited for speech 
analysis, as it ensures a good resolution in time and frequency, 



as 20-30ms of male speech would include about three 
fundamental periods of the respective voice, whereas it might 
contain no period for a chainsaw sound. Therefore, we 
considered analysis sub-frames of 44ms or 88ms as a 
reasonable choice for chainsaw detection. A realistic setup 
must consider a value convenient to all sounds in the acoustic 
environment. We have used the above framework and applied 
on each analysis frame spectral analysis to extract frequency, 
quefrency or time-frequency features which will be fed to 
feed-forward and convolutional neural networks. We will 
detail subsequently.  

A. Feed Forward Networks 

The artificial neural networks (ANNs), intended to 
simulate human associative memory, learn by processing 
known input samples and the corresponding expected results, 
creating weighted associations between input and output, 
stored within the network data structure. Deep feedforward 
networks (FFNN) or multilayer perceptrons (MLPs), are the 
typical deep learning models [24]. The basic unit of a FFNN 
is the artificial neuron, analogous to the biological concept 
of neuron [25]. They receive input data, combine the input 
through internal processing elements (weights and bias terms), 
and apply an optional threshold using an activation (transfer) 
function. Transfer functions are used to map the output values 
usually between 0 to 1 or -1 to 1 or between ‘yes’ and ‘no’, 
and provide a smooth, differentiable transition as input values 
change. Transfer function are linear and non-linear. Non-
linear transfer functions are “S” – shaped functions like arctg, 
hyperbolic tangent, logistic functions, competitive, .Elliot 
sigmoid transfer function, positive  and symmetric hard limit, 
Radial basis transfer function, softmax.  

A feedforward network defines a mapping  between the 

input and output y = f(p,) and learns the value of 
parameter θ that ensures the best approximation of the 
expected value y by the output of f, given the input p and 

parameters . FFNNs have one or more hidden layers of “S” 
– shaped neurons followed by an output layer of linear 
neurons. A layer of neurons brings together the weight vectors 
and biases corresponding to its neurons, so it can be expressed 
by a matrix of weights and bias vectors, as in figure 1.  

 

Fig. 9.  Structure of a layer of neurons  

The transfer function is supposed to be the same for each 
neuron in the layer. The general diagram of a network is 
shown in figure 2, where the parameters to be tuned are the 
weight matrices and bias terms applied at the level of each 
layer, so that the output of the overall system would be close 
to expected values. These networks are called feedforward 
because the information flows in one direction through 
intermediate computations and there is no feedback 
connection. The number of neurons does not necessarily 
decrease with the layer level as presented in figure 10, but 
usually the goal is to reduce the dimensionality of the input 

layer, a process similar to feature extraction. The computation 
corresponding to figure 3 can be expressed by : 

 
 

In equations (1) the known information is  

• The input parameters p, e.g., measurements  from 

sensors (wind speed, temperature, humidity), 

parameters coming from images (matrices of colours, 

or grey hues), or parameters coming from acoustic 

signals (Fourier spectrum on an analysis window, etc.); 

 

Fig. 2.   Flow of data in a feedforward network  

• The expected output: for instance, to solve a three 

classes problem the output corresponding to each class 

input might be defined as either unidimensional (a 

scalar value for each class): for instance, (-1, 0, 1) or  

(0, 1. 2) or multidimensional  (a vector for each class):( 

(1, 0, 0),  (0, 1, 0),  (0, 0, 1)); 

• The neural network architecture: number of hidden 

layers, number of neurons on each layer, transfer 

function. 

Unknown parameters are:  

• weights at layer k: Wk,  

• bias terms at layer k: bk. 

Learning the unknown parameters is performed during the 
training process. Training of a FFNN can be made in batch 
mode or in incremental mode [38]. In batch mode, weights and 
biases are updated after all the inputs and targets are presented. 
Incremental networks receive the inputs one by one and adapt 
the weights according to each input. Usually, batch training is 
used. Solving equations (8), to identify weight matrices and 
bias terms is made by minimizing the error between the output 
value and expected output, minimal: 

 𝑒(𝑊,  𝑏) =  ∑ (𝑦𝑖 − 𝑎𝑖
𝑘(𝑝,  𝑊,  𝑏))2𝑁

𝑖=1  () 

where N is the number of (input, output) pair samples. To 

minimize the least mean square (LMS) expression in (2) 

several schemes based on variants of the steepest descent 

procedure, are used. MATLAB has implemented and supports 

a range of network training algorithms among which: 

Levenberg-Marquardt Algorithm (LMA), Bayesian 

Regularization (BR), BFGS Quasi-Newton, Resilient 

Backpropagation, Scaled Conjugate Gradient, One Step 

Secant, etc. Minimization using any of these algorithms, starts 

an initial guess for the parameter vector =(W, b). The 



performance of the system depends on this initial guess. Most 

of the above algorithms try to optimize this process.  

At the end of the training process, we get a FFNN model: 

net = (Wk, bk),   k= 1,2...K, where K is the number of layers in 

the network. To classify a vector of data x ={x1, x2, …, xd},  we 

“feed” it at the input of the network, apply the operations 

involving the weights and biases to the input data, and 

evaluate the output score = net (x). If the output classes are y 

={y1, y2, …, yC}, C the number of classes, a sample belongs to 

a certain class if its output score is closest to the respective 

class expected output. The overall decision on the 3s frame 

level is taken by applying one of the rules: 

• Majority voting (the segment is associated with the 

class for which most of the samples of the segment 

belong to the respective class); 

• Average output: the average output score of the 

samples on the segment is closest to the expected 

output of a certain class; 

• Minimum distance of the segment scores to the ideal 

segment of expected outputs of the respective class.  

B. Convolutional Neural Networks (CNN) 

A Convolutional Neural Network (CNN) is a Deep 
Learning algorithm usually taking at input images, assign 
meaning  by learnable weights and biases to various parts in 
the image. The pre-processing required in a CNN is lower 
compared to other classification algorithms. While in 
primitive methods filters are hand-engineered, with enough 
training, CNNs are able to learn these filters characteristics. 

In CNNs architecture, inspired by the organization of the 
Visual Cortex, individual neurons respond to stimuli only in a 
restricted region of the visual field called the Receptive Field. 
A collection of overlying fields covers the whole visual area. 

The CNN architecture is presented in figure 3. 

The convolutional layer is represented by moving smaller 
size filters (kernel) K, shifting at a certain rate (stride) and 
performing at each pace a matrix multiplication between K 
and a portion  of the image over which it is hovering. The 
objective of the convolution operation is to extract high-level 
features (e.g., edges), from the input image. The 
Convolutional Layer and the Pooling Layer, together form one 
layer of a CNN. Depending on the complexities in the images, 
the number of such layers may be increased to capture further 
low-level details, but at the cost of more computational power. 

CNNs need not be limited to only one convolutional layer. 
Conventionally, the first layer is responsible for capturing the 
low-level features (edges, colour, gradient orientation, etc.). 
By adding layers, the architecture adapts to the high-level 
features, generating a network with wholesome understanding 
of images in the training set. There are two types of results of 
the operation: one in which the convoluted features are 
reduced in dimensionality as compared to the input (Valid 
padding), another where the dimensionality is either increased 
or remains the same (Same padding).  

Rectified linear unit (ReLU), referred to also as activation, 
allows for faster and more effective training by mapping 
negative values to zero and sustaining positive values. Only 
the activated features are carried further into the next layer. 

 

Fig. 3.   Flow of data in a convolutional neural network 

The pooling layer is responsible for reducing the spatial 
size of the convolved features. It is useful for extracting 
dominant features,  rotational and positional invariant, thus 
maintaining the process of effectively training of the model. 
There are two types of pooling: Max pooling and Average 
pooling. Max pooling returns the maximum value from the 
portion of the image covered by the kernel. On the other 
hand, Average pooling returns the average of all the 
values from the portion of the image covered by the kernel. 
Max pooling performs de-noising along with dimensionality 
reduction while average pooling simply performs 
dimensionality reduction as a noise controlling mechanism. 

The convolutional layer and the pooling layer form the i-
th layer of a CNN. Depending on the complexities in the 
images, the number of such layers may be increased for 
catching low-level details, but at the cost of more 
computational power [9] [26]. 

After learning features in many layers, the architecture of 
a CNN shifts to classification. Once the input image is 
converted into a suitable form for our Multi-Level Perceptron 
the image is flattened into a column vector, which is fed to a 
feed-forward neural network and backpropagation applied to 
every iteration of training. The last layer is a fully connected 
layer that outputs a vector of C dimensions where C is the 
number of classes that the network will be able to predict. This 
vector contains the probabilities for each class of any image 
being classified. The final layer of the CNN architecture uses 
a classification layer such as softmax to provide the 
classification output. 

As this approach was initially devised for image 
classification, it was further adapted to be applied in acoustic 
signal applications by operating on a spectrogram-like data 
derived from the acoustic signal.  

IV. EXPERIMENTAL RESULTS  

This section will reopen and extend the research presented 
in [27]. We have tested the FFNN on the acoustical material 
containing logging activities events in forest environment.  
We have tested the behaviour of FFNNs when feeding at input 
Mel-cepstral coefficients and Fourier power spectrum 
coefficients, using several sizes of the analysis frame, and 
different lengths for the frequency domain. The experiments 
employed the Matlab framework, and we have taken the 
advantage of the training solutions implemented by Matlab, 
by using two training algorithms: Bayesian Regularization 
(BR) and the Levenberg-Marquardt algorithm (LMA). We 
will extend te research by including the Broyden–Fletcher–
Goldfarb–Shanno (BFGS Quasi-Newton) algorithm. We also 
will study the influence of the activation function on the 
evaluation results, by assessing the logsig, tansig, and 
softmax. For classification we used the three approaches 



presented above: majority voting, average score, and distance 
based (equivalent to computing the distance of the scores for 
one segment to the ideal segment represented by ideal outputs 
for each class). In the pre-processing phase we evaluated 
segments of 3s, and used analysis windows of 44 and 88ms, 
as previous experiments have shown that for such analysis 
frames the performance is better than for 22ms windows. 
Regarding the type of features we fed as input to FFNNs, we 
only used the spectral features, as the results obtained 
previously are much better than using Mel-frequency cepstral 
features. Concerning the frequency domain, we have tested 
the ranges of [0, 3.7], [0,7.4], [0,10], [0,12]kHz. As the 
performance depends on the initial guess at training, we have 
performed 5 trials for each test. 

In a second series of experiments, we applied the CNN 
framework with inputs log-Mel Spectrograms and, sheer log-
-spectrograms  also using the Matlab framework.  

The experiments considered three classes of sounds which 
could exhaust the specific sounds in the forest environment 
susceptible to illegal deforestation: chainsaw, vehicle, genuine 
forest. The expected values were coded 1, 0, -1 respectively.  

The acoustic material contains 99 recordings of the three 
classes of sounds, in average about 15s each, 39 were used for 
training and 60 for testing. The testing set resulted in 685 
segments of three seconds. The performance of each of the 
approaches we tested is presented subsequently. The 
performance was evaluated in terms of Identification rate, the 
ratio of numbers of correctly identified segments and the 
evaluated segments. 

A. Results obtained using FFNNs  

Table 1 presents the average identification rates (of the 5 
trials) obtained using the three approaches for classification, 
maxvote, average (avg), and distance-based, for the four level 
(of 10, 9, 8, 7 neurons respectively) FFNNs, on log-power 
spectra, trained using the BR, LMA and BFGS Quasi-Newton 
algorithms, with the default activation function tansig. The 
results obtained on frequency domains of [0, 3.7], [0,7.4], 
[0,12]kHz , and analysis lengths of 44ms, and 88ms. The best 
results were achieved using the maxvote classification, with 
the BR initialization for frequency domains [0, 3.7] and [0,7.4] 
kHz, and are almost equally good for 44ms. and 88ms analysis 
windows. Figure 4 is the graphical representation of these 
results.  The other 2 classification approaches generated 
results about 8 percent below, in any configuration. 

TABLE I.  AESR PERFORMANCE USING FOUR LEVEL (O10, 9, 8, 7 

NEURONS RESPECTIVELY) FFNNS TRAINED WITH THE BR, LMA AND BFGS 

QUASI-NEWTON ALGORITHMS, THE ACTIVATION FUNCTION TANSIG, 
FREQUENCY INTERVALS AND ANALYSIS WINDOWS OF DIFFERENT LENGTHS  

 

Frequency domain and analysis window 
3.7kHz

-44ms 

7.4kHz

-44ms 

3.7kHz

-88ms 

7.4kHz

-88ms 

12kHz-

88ms 

maxvote 

trainbr 79.65 79.65 76.40 80.70 76.93 

trainlm 74.79 75.81 79.18 76.84 73.12 

trainbfg 71.45 73.68 76.31 74.73 73.82 

avg 

trainbr 68.46 68.52 69.96 69.19 64.60 

trainlm 69.66 68.73 72.56 72.42 65.33 

trainbfg 67.47 66.15 72.62 70.04 67.38 

distance 
trainlm 68.67 68.08 71.30 71.30 65.59 

ttainbr 68.55 69.78 70.16 70.60 66.85 

 Another range of experiments tried to evaluate the 
performance for different activation functions, available in the 
Matlab framework. We have evaluated the performance of 4-
layer FFNNs, with 10,9,8,7 neurons respectively, using the 

LMA and BR training algorithms, and tansig, logsig, and 
softmax activation functions. Classification of 3s segments 
was made using the maxvote approach. The average, 
maximum, minimum score values obtained for some relevant 
settings of the analysis window and the frequency domain on 
which the Fourier power spectrum was calculated, are 
presented in figures 4 and 5, for the LMA and BR training 
approaches. In average logsig worked better with the LMA, as 
average performance, but a higher score variance among the 5 
trials, while tansig was better with the BR approach. The teste 
softmax also generated very good results.  

 
Fig. 3.   Performance using FFNN with the Fourier Power Spectrum as 

input and different training and classification settings. 

 

Fig. 4.   Average, maximum. minimum scores, using the LMA training 
algorithm and tansig, and logsig activation functions. 

 

Fig. 5.   Average, maximum. minimum scores, using the BR training 
algorithm and tansig, and logsig activation functions. 

B. Results obtained using CNNs  

We have tested the CNNs, using as input log-Mel-
spectrograms, and log-spectrograms. Concerning the setting 
in the Matlab framework we have, on one hand, stuck to our 
earlier findings concerning the length of the analysis window 
(between 44ms and 88ms) and the frequency domain (3.7 – 
7.4kHz) where the spectrograms are calculated. Concerning 
the  network architecture, we got inspiration from the 
experiment description in [1] [9]. In the case of Mel-
spectrograms we used 64-128 bands, depending on the 
analysis window length (2048-4096 samples), Given the size 
of the Mel-spectrogram (128·64), we set the what we 
considered the proper dimensions in the definition of the 
three-four layers. However, the best performance was under 
60% (58,6). 

0

0.2

0.4

0.6

0.8

1

trainbr trainlm trainbfg trainbr trainlm trainbfg trainlm ttainbr

maxvote avg distance
3.7kHz-44ms 7.4kHz-44ms 3.7kHz-88ms 7.4kHz-88ms 12kHz-88ms



Better identification rate was attained using Log-
Spectrograms as input, 66.53%. with a three-level CNN 
architecture, with 16, 32, 64, 128 sized kernels, and 40 to 10 
receptive fields, 2x2 Max pooling. Using more than 200 
iterations seems useless as there might not be observed any 
ascending trend in the training process in Figure 6. 

 

Fig. 6.   Training process of a CNN with Log-spectrograms as input.   

CONCLUSIONS  

We have presented our research regarding the application 
of DNN approaches in environmental sound recognition. One 
part of the work reviews and deepens the previous 
investigation of the FFNNs facets, by examining different 
training approaches, activation functions, classification 
variants, in the context  of the advantageous  settings for the 
analysis window length and the frequency domain, established 
previously. The maxvoting classification scheme of the 3s 
frames was the most efficient, as for several training 
paradigms the attained performance is above 80%, and the 
average performance is in many cases 79%. Concerning the 
CNN experiments we have not found yet a reasonable 
configuration  to provide satisfactory results. Another possible 
explanation is the fact that the CNN approach was 
demonstrated to provide very good results in SER 
experiments, i.e. acoustical event recognition, while our 
acoustic material contains stationary sounds.   
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