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Abstract

LeBrun’s CR twistor space associated to a three-dimensional confor-
mally Riemannian manifold is a real five-dimensional CR manifold, asso-
ciated in a way similar to the twistor space of an (A)SD four-dimensional
Riemannian manifold. LeBrun’s original construction is somewhat inex-
plicit, however. A simpler description of LeBrun’s CR structure can be
given in spirit of the Koszul–Malgrange complex structure [KM], but the
proof of its independence on the conformal factor is a nontrivial compu-
tation.

We outline a transparent construction of LeBrun’s CR twistors for
Riemannian three-manifolds along with its dual, which we call the Eells–
Salamon’s almost CR twistors, and apply them in the theory of Kovalev–
Lefschetz pencils on G2-manifolds.
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1 Preliminaries

1.1 Philosophical preliminaries on linear algebra

Let V be a vector space. The space W = V ⊕ V ∗ carries two canonical forms,
the symmetric form g given by g (u⊕ α, v ⊕ β) = α(v) + β(u) and the skew-
symmetric form ω given by ω (u⊕ α, v ⊕ β) = α(v) − β(u) (the division by
2 may be useful but is not of necessity). The subspace V ⊂ W , as well as
V ∗, is somehow special w. r. t. these forms: namely, it is maximal isotropic
w. r. t. g and Lagrangian w. r. t. ω. If one keeps track of the space W and
the form g or ω alone, one would not be able to recover the original subspace
V : the special orthogonal group SO(W, g) acts transitively on the maximal
isotropic subspaces, and the symplectic group Sp(W,ω) acts transitively on the
Lagrangian subspaces.

It seems from this linear algebraic picture that the forms g and ω are inter-
convertible, and every statement about one of them has a counterpart for the
other. However, if one passes to the geometric situation, the skew-symmetric
form becomes distinguished by the fact that the total space of the cotangent
bundle T ∗X for any smooth manifold X carries the canonical symplectic form,
but no canonical symmetric form (unless a connection is picked up). This is one
of the most intolerable asymmetries in the mathematics, comparable to the fact
that there are no de Rham homology calculated via polyvector fields, or the fact
that any human being has been born by a woman. The origin of this asymme-
try is a mystery to us, but we shall nevertheless concentrate on skew-symmetric
forms because of it.

Let us try to generalize the form ω ∈ Λ2(V ⊕ V ∗)∗. Let V be as above,
n = dimV < +∞, and p a positive integer no greater than n. The space
V ⊕ ΛpV ∗ admits the following (p+ 1)-form ω given by

ω (v0 ⊕ η0, . . . , vp ⊕ ηp) =

p∑
i=0

(−1)ipηi(vi+1, . . . , vp, v0, . . . , vi−1).

For example, when n = p, this is simply a nonzero volume form on (n+ 1)-
dimensional space, and its automorphism group is SL(n + 1,R). Much like
the canonical symplectic form on T ∗X, such form exists on the total space of
ΛpT ∗X, given as the exterior differential dλ of the p-form λ given at each point
η ∈ ΛpT ∗x by the expression

λ(η,x)(u1, . . . , up) = η ((dπ)(u1), . . . , (dπ)(up)) ,

where ui ∈ T(η,x)(Λ
pT ∗X) are some vector fields and π : ΛpT ∗X → X is the

projection map. For example, the total space ΛtopT ∗X of the bundle of vol-
ume forms (called in algebraic situation the canonical bundle) on any smooth
manifold X carries a canonical volume form.

The meaning of this form ω is far from being clear for 1 < p < dimV , but for
k = 2 this form can be modified in order to get two interesting linear algebraic
structures.
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Let V be equipped with a volume form ν. For n = 3, this gives rise to a map
V → Λ2(V ∗), v 7→ ιvν, which can be extended to a linear complex structure
Iν on W = V ⊕ Λ2V ∗. Pick up a basis 〈u, v, w〉 s. t. ν(u, v, w) = 1, and let
α = ιuν, β = ιvν, γ = ιwν. We shall use this as a basis for W , and denote by
u∗ ∈ W ∗ (resp. v∗, w∗, α∗ etc.) the forms taking value 1 on u (resp. v, w, α
etc.) and vanishing on the other vectors in the basis. What does the form ω
looks like in this basis? First note that it vanishes if one plugs into it more than
one vector from Λ2V ∗ or more than two vectors from V . Hence it is the sum of
the monomials of the form x∗ ∧ y∗ ∧ ψ∗, where x, y ∈ V and ψ ∈ Λ2V ∗. Since
one has α = v∗ ∧ w∗, β = w∗ ∧ u∗ and γ = u∗ ∧ v∗, the following expression
holds:

ω = v∗ ∧ w∗ ∧ α∗ + w∗ ∧ u∗ ∧ β∗ + u∗ ∧ v∗ ∧ γ∗.
On the other side, note that the space of (1, 0)-vectors in W ⊗C w. r. t. the

complex structure Iν is spanned by u−
√
−1α, v−

√
−1β and w−

√
−1γ. The

holomorphic volume form
(
u∗ −

√
−1α∗

)
∧
(
v∗ −

√
−1β∗

)
∧
(
w∗ −

√
−1γ∗

)
can

be rewritten as

u∗ ∧ v∗ ∧ w∗ − u∗ ∧ β∗ ∧ γ∗ − α∗ ∧ v∗ ∧ γ∗ − α∗ ∧ β∗ ∧ w∗−
−
√
−1 (u∗ ∧ v∗ ∧ γ∗ + u∗ ∧ β∗ ∧ w∗ + α∗ ∧ v∗ ∧ w∗ − α∗ ∧ β∗ ∧ γ∗) .

The form ν identifies the spaces V and Λ2V ∗, hence giving rise to a volume
form on Λ2V ∗, which we shall denote by σ. In our basis it is given by σ =
α∗ ∧ β∗ ∧ γ∗. The form σ can be considered as a form on W = V ⊕ Λ2V ∗ via
pullback along the forgetting projection V ⊕ Λ2V ∗ → Λ2V ∗. It is clear from
the above discussion that σ − ω is the imaginary part of a holomorphic volume
form on W w. r. t. the complex structure Iν , and the automorphism group of
W preserving ω − σ and Iν is the group SL(3,C).

1.2 G2-linear algebra

There is a similar story in the case n = 4 as well. Note that the space Λ2(V ∗) has
a canonical pseudoconformal structure given by (ξ, ψ) = ξ ∧ ψ ∈ Λ4(V ∗) ∼= R.
When a volume form on V is chosen, it becomes a genuine pseudo-Euclidean
structure. A choise of an Euclidean metric on V corresponds to a choise of
a three-dimensional subspace Λ+ ⊂ Λ2(V ∗) on which this scalar product is
positive definite (it would be the +1-eigensubspace for the Hodge star operator).
Let us denote the volume form of the Euclidean structure given by the pairing of
2-forms on Λ+ by σ as well. Then the form ρ = ω|V⊕Λ+ +σ ∈ Λ3(V ⊕Λ+)∗ OR
MINUS—CHECK CAREFULLY is called a G2-form. In such setting, the
subspace V ⊂ V ⊕ Λ+ is called coassociative, and Λ+ ⊂ V ⊕ Λ+ is called
associative. For an abstract G2-form on a space W , a (co)associative subspace
is a subspace realizable as the (co)associative subspace for some splitting W =
V ⊕ Λ+ realizing this G2-form. The property of V ⊂ W being coassociative is
equivalent to ρ|V = 0.

A G2-space carries a Euclidean structure (−,−) which is given by the Eu-
clidean structure on V corresponding to the choise of the subspace Λ+ ⊂ Λ2V ∗,
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the Euclidean structure given by the pairing of 2-forms on Λ+, and the con-
dition V ⊥ Λ+. This Euclidean structure is preserved by the automorphisms
preserving the G2-form ρ = ω + σ OR MINUS—CHECK CAREFULLY.
The property of U ⊂W being associative is equivalent to ρU = Vol(−,−)|U . One
can also define the cross product × on a G2-space by

ρ(x, y, z) = (x, y × z).

It can be given by the expression

(x⊕ α)× (y ⊕ β) = (α(x)− β(y))
] ⊕ (x[ ∧ y[ − (ια∧βσ)? − ιx∧yν),

where −] : V ∗ → V and −[ : V → V ∗ are the raising and lowering of indices
given by the Euclidean structure on V , and −? : (Λ+)

∗ → Λ+ a lowering of
index w. r. t. the Euclidean structure on Λ+.

For any vector n ∈ W the operator In : x 7→ x × n has kernel spanned by
n, and on its orthogonal complement it is an orthogonal automorphism which
squares to −(n, n)Id. Hence if one only keeps track of the cross product ×, on
can reconstruct the Euclidean structure, knowing that I2

n = −Id iff (n, n) = 1.
In particular, any cöoriented hyperplane in a G2-vector space carries a canonical
linear complex structure, namely, the cross multiplication by its unit positive
normal. A four dimensional subspace is coassociative iff it is complex linear
in any ambient hyperplane. Moreover, if V is a coassociative subspace and
n, n′ and n′′ are three unit normals to V orthogonal to each other, then the
complex structures In|V , In′ |V , In′′ |V commute like unit quaternions. Hence,
any coassociative subspace is naturally a one-dimensional quaternionic module.

In more simple terms, consider V as a one-dimensional free module over the
quaternions, and Λ+(V ) as the space of imaginary quaternions spanned by i, j
and k. Then this cross product can be defined as follows:

(i) For u, v ∈ Λ+, one has u× v = −Im(u · v), where · stands for the product
of quaternions;

(ii) For u ∈ Λ+, v ∈ V , one has u× v = u · v, where · stands for the action of
the quaternions on the quaternionic module V ;

(iii) For u, v ∈ V , one has u× v = w, where w ∈ Λ+ is such a quaternion that
v = w · u.

1.3 G2-manifolds

A G2-structure on a smooth manifold is a field of structures of G2-spaces in
each tangent space, which is parallel w. r. t. some torsion-free connection. Since
the G2-space structure gives a scalar product, any G2-manifold carries a Rie-
mannian metric, and the torsion-free connection is its Levi-Civita connection. If
X is a G2-manifold and Y ⊂ X a cöoriented hypersurface, then Y carries an al-
most complex structure—namely, cross product with positive unit normal to Y .
It is called the Calabi almost complex structure. The following Proposition
due to Calabi [C] tells when this almost complex structure is integrable.
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Proposition 1.1. The Calabi almost complex structure of a hypersurface is
integrable iff its second fundamental form is complex linear w. r. t. the Calabi
structure.

1.4 Coassociative submanifolds

Let X be a G2-manifold and Y ⊂ X a four-dimensional submanifold. It is called
coassociative if its tangent spaces at all the points are coassociative subspaces
in the tangent spaces to X.

1.5 CR geometry

Let W be a complex vector space, considered as a real vector space W with an
endomorphism I s. t. I2 = −IdW , and let V ⊂ W be a real codimension one
subspace. Then U = V ∩ IV ⊂ V is a complex subspace in V of codimension
one. This motivates the following

Definition 1. A CR vector space structure on a real space V is a subspace U
and I ∈ End(U) s. t. I2 = −IdU . It can be equivalently given by the subspace
U1,0 ⊂ V ⊗C s. t. U0,1 = U1,0 does not intersect U1,0 by a nonzero vector (but
need not to span together with it the whole V ⊗C). In terms of I, the subspace
U1,0 is just the

√
−1-eigensubspace, and in terms of U1,0 the operator I is given

by I|U1,0 =
√
−1Id and I|U0,1 = −

√
−1Id. A linear map of CR spaces is called

CR linear if it sends (1, 0)-vectors to (1, 0)-vectors.

An almost CR structure on a smooth manifold X is a field of CR struc-
tures on its tangent spaces, and can be given as a codimension one subbundle
F ⊂ TX with an almost complex endomorphism, or a subbundle F 1,0 ⊂ TX⊗C.
An almost CR structure is called integrable, or simply CR structure, if
[F 1,0, F 1,0] ⊆ F 1,0. For example, any real hypersurface in an almost complex
manifold carries an almost CR structure, and if the almost complex manifold
was actually a complex manifold, this almost CR structure would be indeed
a CR structure. A map between CR manifolds is called CR holomorphic
if its derivative at each point is a CR linear map of tangent spaces. A ques-
tion whether a CR manifold can be embedded into some complex manifold CR
holomorphically is far from being trivial.

One can consider CR manifolds as contact manifolds by forgetting the com-
plex structure on the distribution F . The Frobenius form Φ: Λ2F → T/F of a
CR manifold agrees with the complex structure on F : namely, since for any two
fields u, v ∈ ΓF one has [u, v] = [u1,0, v1,0] + [u0,1, v1,0] + [u1,0, v0,1] + [u0,1, v0,1].
But [u1,0, v1,0] ∈ ΓF 1,0 ⊂ ΓF ⊗ C and [u0,1, v0,1] ∈ ΓF 0,1 ⊂ ΓF ⊗ C because of
integrability. Hence Φ(u, v) = [u, v] mod F = [u1,0, v0,1] + [u0,1, v1,0] mod F ,
i. e. the Frobenius form Φ is Hermitian. For CR manifolds it is called the Levi
form.

5



2 Two kinds of (almost) CR twistors

The main idea of the section is not entirely new, and the main propositions are
essentially contained in the paper [ES, §7]. However, we state and prove them
withount referring to the four-dimensional geometry.

2.1 Characterization of LeBrun’s CR twistors via umbilic
points

From now on, for an oriented real vector bundle E we shall denote by SE its
spherization E/GL(1,R)+ (i. e. the bundle of rays), and, in the case when E
is endowed with a positive definite scalar product, by UE its bundle of unit
spheres {e ∈ E : ‖e‖ = 1}. For any choise of a metric the corresponding bundle
UE can be identified with SE, so we shall use these symbols interchangeably.

It is widely known [AG, Ch. 4, § 1.2, example B] that for any smooth
oriented manifold X the projectivization P (T ∗X) or the spherization S(T ∗X)
of its cotangent bundle carries a contact distribution. Namely, if σ ∈ S(T ∗X) is

an oriented hyperplane at point x ∈ X, and ST ∗X
π−→ X is the projection map,

the contact hyperplane is given by Nσ ⊂ Tσ(ST ∗X) as Nσ = (dπ)−1(σ).

Definition 2. Let X be endowed with a Riemannian metric. Since the Levi-
Civita connection is orthogonal, one can consider it as the Ehresmann connec-
tion in the unit spheres bundle UTX. It is the splitting T (UTX) = V ⊕
H, where V = ker(dπ|UTX) is the vertical subbundle, and H is the hori-
zontal subbundle. The projection dπ : H(v,x) → Tx(X) is an isomorphism,

and (dπ)
(
H(v,x) ∩N(v,x)

)
= v⊥, where v ∈ UTx(X) is a unit tangent vec-

tor at x. Let us impose the following complex structure on N(v,x) = V(v,x) ⊕(
H(v,x) ∩N(v,x)

) ∼= V(v,x) ⊕ v⊥. On the subspace V(v,x), we put the complex
structure of the fiber UTx, which is a round 2-sphere, i. e. a complex line. On
the subspace v⊥, we put the complex structure Iv given by Iv(u) = u×v, where
× is the cross product on the three-dimensional Euclidean space TxX. This en-
hances STX with an integrable almost CR structure ILB , called the LeBrun’s
CR structure.

However, a conformal change of the metric spoils both the Levi-Civita con-
nection and the bundle of unit spheres, and it is not clear at all that this
construction depends on the conformal structure alone.

LeBrun’s original construction [LB] was quite different, and its conformal
invariance was clear from his definition, but in the present paper we shall not
need that construction, or even the fact that it is equivalent to the Definition 2.

Definition 3. Let (M, g) be a Riemannian manifold, Z ⊂ M a cöoriented hy-
persurface, and n a field of positively oriented unit normals of Z. The second

fundamental form on Z is defined by II(u, v) = g(∇uv, n) =
∇M

u v−∇Z
u v

n , where
∇ = ∇M is the Levi-Civita connection on M , and ∇Z is the Levi-Civita connec-
tion on Z considered as an abstract Riemannian manifold. The corresponding
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operator A given by g (A(u), v) = II(u, v) is called the shape operator. A
point z ∈ Z is said to be umbilic (or, vice versa, Z is said to be umbilic at
z) if the shape operator A : TzZ → TzZ is a multiplication by a scalar. A
hypersurface is called totally umbilic, if it is umbilic at all of its points.

Definition 4. We say that an almost CR structure on (UTX,N) is nice, if the
following conditions are satisfied:

(i) It induces the standard complex structures on the round spheres UTx.

(ii) For any point b ∈ M and Z 3 b a real surface passing through b which is
umbilic at b, the Gauß map γ : Z → UTM is CR holomorphic w. r. t. the
standard complex structure on Z at the point b.

Notice that the condition (i) could be viewed as a limiting case of the con-
dition (ii): if a tiny sphere Σ shrinks to a point x, then its image γ(Σ) under
the Gauß map tends to the fiber UTx; as Σ becomes smaller and smaller, it is
closer and closer to total umbilicity, hence its Gauß image needs to be closer and
closer to a holomorphic curve, hence the limiting image UTx should be indeed
holomorphic.

Proposition 2.1. The condition of being an umbilic point on a hypersurface is
preserved by the conformal changes of the metric.

Proof. The Levi-Civita ∇ connection of a metric g = 〈·, ·〉 can be expressed by
Koszul’s formula

〈∇xy, z〉 =
1

2
(Lx〈y, z〉+ 〈[z, x], y〉+ Ly〈z, x〉+ 〈[x, y], z〉 − Lz〈x, y〉+ 〈[y, z], x〉) .

If z is perpendicular to the fields x, y and [x, y] at each point, then this
formula simplifies to

g(∇xy, z) =
1

2
(〈[z, x], y〉+ 〈[y, z], x〉 − Lz〈x, y〉) .

In particular, for a cöoriented hypersurface with unit normal field n one has
II(u, v) = 1

2 (〈[n, u], v〉+ 〈[v, n], u〉 − Ln〈u, v〉).
Let now 〈·, ·〉′ = f〈·, ·〉 be a conformal change of the metric, and n′ = n/

√
f

be the corresponding unit normal field. By the above formula, one can express
the second fundamental form II′ w. r. t. the rescaled metric as

II′(u, v) =
1

2
(〈[n′, u], v〉′ + 〈[v, n′], u〉′ − Ln′〈u, v〉′) =

=
1

2

(
f
〈[
n/
√
f, u

]
, v
〉

+ f
〈[
v, n/

√
f
]
, u
〉
− 1√

f
Ln(f〈u, v〉)

)
=

=
f

2

(〈
[n, u]√
f
− nLu

1√
f
, v

〉
+

〈
[v, n]√
f

+ nLv
1√
f
, u

〉)
−Lnf

2
√
f
〈u, v〉−

√
f

2
Ln〈u, v〉 =

=

√
f

2
(〈[n, u], v〉+ 〈[v, n], u〉 − Ln〈u, v〉)−

Lnf

2
√
f
〈u, v〉 =

=

√
f

2
II(u, v)−

(
Ln
√
f
)
〈u, v〉.
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In terms of the shape operator, the shape operator of the rescaled metric is
given by

A′(u) =

√
f

2
A(u)−

(
Ln
√
f
)
u.

Hence the umbilicity condition (i. e. A being scalar multiplication) does not
depend on the conformal changes of the metric.

Perhaps the most classical evidence of this theorem is the Liouville’s theorem
on conformal maps: any conformal isomorphism between two domains in Rn for
n > 2 maps pieces of shperes to pieces of spheres. Indeed, in the Euclidean space
of dimension at least three the totally umbilic hypersurfaces are precisely the
pieces of spheres.

Proposition 2.2. The set of nice almost CR structures on (STX,N) for a
conformally Riemannian threefold X does not depend on the representative of
the conformal class.

Proof. The Gauß map does not depend on the conformal factor, unless we iden-
tify the bundle of unit vectors UTX for both metrics with the spherization
STX. The induced complex structure on any surface Z ⊂ X does not depend
on the conformal factor. The condition for a point to be umbilic does not depend
on the conformal factor by the Proposition 2.1.

Proposition 2.3. A nice almost CR structure on (STX,N) is the LeBrun’s
CR structure.

Proof. The coinicidence on the vertical subbundle is automatic. Hence one
should only show that a nice almost CR structure on the Levi-Civita horizontal
vectors is the LeBrun’s one. Consider a unit vector u ∈ Tx, and let Z be the
image of the oriented plane u⊥ ⊂ TxX under the exponential map. Its second
fundamental form vanishes at x, hence Gauß map γ : Z → UTX is holomorphic
at x. However, since Z is flat up to second order at x, its differential at x
is exactly the isomorphism u⊥ ∼= TxZ → π−1

(
u⊥
)
∩ H(u,x) which inverts the

differential of the projection. By construction, this is a complex linear map.

Proposition 2.4. The LeBrun’s CR structure is nice.

This is essentially the first-order version of the Proposition 7.1 (i) in [ES].

Proof. If Z ⊂ X is a surface passing through x with positive unit normal u ∈
TxX, then the tangent space T(v,x)γ(Z) ⊂ T(v,x)(STX) to its image under the
Gauß map γ(Z) ⊂ STX can be considered as a real linear map H(v,x) → V(v,x).
It goes as follows. The Levi-Civita connection determines a trivialization of
X in a first-order formal neighborhood of the point x. The first order formal
neighborhood of Z at x is the space H(v,x), and its Gauß map maps to the
first order formal neighborhood of u inside TUx, i. e. V(v,x). The Gauß map is
holomorphic at a point iff the point is umbilic. Hence for Z umbilic at x the
map H(v,x) → V(v,x) is holomorphic, and its graph is a complex line. Since Z
was arbitrary, this implies what we desired.

8



Proposition 2.5. The LeBrun’s CR stucture does not depend on a conformal
factor.

Proof. Indeed, it is the only nice almost CR structure, and the set of nice CR
structures does not depend on a conformal factor due to the Proposition 2.2.

Proposition 2.6. LeBrun’s almost CR structure is really integrable.

Proof. somehow

Proposition 2.7. The Levi form of LeBrun’s CR structure is nondegenerate.

Proof. somehow

2.2 Eells–Salamon’s almost CR structure

The LeBrun’s CR structure, as we have shown, is an invariant of the conformal
structure. In the present section we introduce a new CR structure on the bundle
of unit tangent vectors to a Riemannian threefold, which is no longer conformally
invariant, but is more convenient for the rest of the discussion. It is motivated
by the following

Proposition 2.8. Let M be a Riemannian threefold, Z ⊂ M a cöoriented
surface and z ∈ Z such point that the mean curvature µ(z) = Tr (IIz)/2
vanishes at z. Denote the positive unit normal to Z at z by u. Then the subspace
T(z,u)γ(Z) is a graph of a complex-antilinear map H(z,u) ∩N(z,u) → V(z,u).

Proof. This is a statement involving first derivatives only, so it can be proved
in a first-order formal neighborhood of the point z. However, it is identified
with a first-order formal neighborhood in a Euclidean space via the Levi-Civita
connection, and in the Euclidean space this is a classical theorem going back to
Chern [Ch] or probably (in three dimensions) even Gauß himself.

Definition 5. Let (M, g) be a Riemannian threefold, and UTM the bundle
of unit tangent vectors. The Levi-Civita connection regarded as an Ehresmann
connection gives the splittingN = H∩N⊕V of the standard contact distribution
N ⊂ T (UTM), which is complex linear w. r. t. the LeBrun’s CR structure I.
Let us endow the contact subbundle with a new complex structure IES , given
by IES |V = ILB |V , IES |H∩N = −ILB |H∩N . We shall call this almost complex
structure the Eells–Salamon’s almost CR structure. We shall refer to the
maps from the LeBrun’s twistor space which are CR holomorphic w. r. t. the
Eells–Salamon’s almost CR structure as to twsited CR holomorphic.

Proposition 2.9 (first-order version of the Proposition 7.1 (ii) in [ES]). The
non-vertical complex tangent lines w. r. t. the Eells–Salamon’s almost CR struc-
ture are the subspaces tangent to the images of surfaces under the Gauß map at
the points where their mean curvature vanishes.

Proof. Immediate from the Proposition 2.8.
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Proposition 2.10. The Eells–Salamon’s almost CR structure is never inte-
grable.

Proof. The Levi-Civita-horizontal fields have type (1, 0) w. r. t. the Eells–
Salamon’s almost CR structure iff they have type (0, 1) w. r. t. the LeBrun’s
almost CR structure, and vice versa. By contrast, the notion of type coinicides
for vertical fields w. r. t. these scructures. On a vertical field of type (1, 0),
say v1,0 = v ∈ Γ(V ⊗C), the Levi form of the LeBrun’s CR structure vanishes,
since such fields are tangent to the complex curves. On the other hand, the
Levi form of the LeBrun’s CR structure is nondegenerate by the Proposition
2.7, hence there exists a horizontal field h ∈ Γ(H⊗C) s. t. the commutator [h, v]
is not tangent to the contact distribution. By the Proposition 2.6, the LeBrun’s
almost CR structure is integrable, hence [h1,0, v] = [h1,0, v1,0] ∈ Γ1,0(N ⊗ C)
and [h0,1, v] = [h, v] 6∈ Γ(N ⊗C). However, both fields h0,1 and v has type (1, 0)
w. r. t. the Eells–Salamon’s almost CR structure. Therefore the commutator of
(1, 0)-type fields can be not of the type (1, 0) w. r. t. it, which means that the
Eells–Salamon’s almost CR structure is not integrable.

Definition 6. Let X be a Riemannian manifold. A hypersurface Z ⊂ X is
called minimal if its mean curvature vanishes.

These are precisely the surfaces for which the Gauß map is holomorphic
w. r. t. the Eells–Salamon’s almost CR structure. In the following discussion,
we shall need the following lemma about minimal hypersurfaces.

Proposition 2.11. Let p : X →M be a Riemannian submersion with minimal
fibers, and Z ⊂M a hypersurface. Then the following are equivalent:

(i) Z ⊂M is minimal;

(ii) p−1(Z) ⊂ X is minimal.

Proof. From [G, § 1
2 ] we know that for a hypersurface W the condition of min-

imality is equivalent to Area(Uε) = const for any U ⊆ W , where Area stands
for the Riemannian volume of codimension one, and the subscript ε stands for
the ε-equidistant deformation. Since the fibers are minimal, they have the same
volume, and moreover the volume of any domain in the fiber does not change
while being transported along any vector field lifted from the base orthogo-
nally to the fiber. For a Riemannian submersion, the equidistant deformation
commutes with projection, which yields the Proposition.

3 Kovalev–Lefschetz pencils

3.1 Preliminaries

Let us remind that if W is a G2-space, and V ⊂ W a coassociative subspace,
then V ⊥ is acting on W by the cross product as imaginary quaternions, hence
V carries a quaternionic structure. Therefore, any coassociative submanifold
carries an almost quaternionic structure.

10



Proposition 3.1. Let X → B be a fibration (possibly with some degenerate
fibers) whose fibers are coassociative. Then the almost quaternionic structure
on these fibers is really hyperkähler.

Proof. The bundle spanned by three almost complex strucutre is isomorphic to
the normal bundle by the very construction, and the normal bundle of a fiber
of a locally trivial fibration is trivial. The trivialization is given by lifting the
basic fields to orthogonal normal fields. Let v ∈ TbB be a vector, and ṽ be its
horizontal lift. Then the form ωIv on the fiber π−1(b) is given by (ιṽρ) |π−1(b),

where ρ is the G2 3-form on X. One has dωIv = d
(
ιṽρ|π−1(b)

)
= (dιṽρ)|π−1(b).

Since dρ = 0, one has dιṽρ = dιṽρ + ιṽdρ = Lieṽρ, hence dωIv is equal to
(Lieṽρ) |π−1(b). If one extends the vector v to a local vector field v on the base,
and identify the fibers in different points along the trajectory of v through
b by the flow of the lift ṽ, this could be further rewritten as Lieṽ

(
ρ|π−1(b)

)
.

However, all the fibers are coassociative, i. e. ρ|π−1(b) = 0. Therefore one has
dωIv = Lieṽ0 = 0. Hence the three fundamental forms on the fiber are closed,
and the corresponding complex structures are integrable. Therefore the fiber is
a hyperkähler manifold.

Definition 7. A fibration (maybe with some degenerate fibers) on a G2-manifold
is called a Kovalev–Lefschetz pencil if its fibers are coassociative.

3.2 Liouville–Arnold connection

Donaldson [D] taught us that one should think of coassociative fibrations (with
some degenerate fibers maybe) on G2-manifolds as of elliptic fibrations on K3
surfaces (hence the name ‘Kovalev–Lefschetz pencils’). One of the principal
features of the elliptic fibration on a K3 surface is the integral affine structure
on the base of such fibration away from points underlying singular fibers. It is
constructed through the identification between the tangent bundle of the base
and the bundle of first cohomology of the fibers as the Gauß–Manin connection
on the latter. In the present paragraph, we seek for an analogous connection in
the tangent bundle of the base of a Kovalev–Lefschetz pencil.

Proposition 3.2. Let X
p−→ B be a Kovalev–Lefschetz pencil with smooth fibers.

Then there exists a canonical identification TB → R2p∗(R)+, where R2p∗ is the
bundle of second de Rham cohomology of the fibers, and the superscript + stands
for the positive subspace spanned by the classes of three symplectic forms of the
fiber, i. e. the bundle of self-dual classes in the second cohomology.

Proof. should be simple from the definitions

Definition 8. Consider the Poincaré pairing H2(S,R) × H2(S,R) → R as a
scalar product on the bundleR2p∗(R), and restrict it to the subbundleR2p∗(R)+.
It becomes a positive definite scalar product there. Considering it as a metric
in the tangent bundle TB by the means of the above Proposition, we call it the
Liouville—Arnold metric.

11



Definition 9. Consider the Gauß–Manin connection ∇GM in R2p∗(R), and let
$ : R2p∗(R) → R2p∗(R)+ be the orthogonal projector w. r. t. the Poincaré
pairing on the second cohomology. Define the connection ∇LA on R2p∗(R)+

by ∇LAu v = $
(
∇GMu v

)
. Considering it as a connection ∇LA in the tangent

bundle TB
∼−→ R2p∗(R)+ by the means of the above Proposition, we call it the

Liouville–Arnold connection.

The reason for this name is that the integral flat connection on a base of the
Lagrangian fibration is described by the Liouville–Arnold theorem. However,
the analogous connection on the base of a Kovalev–Lefschetz pencil can be not
flat, hence the usual name is inappropriate.

Proposition 3.3. For a Kovalev–Lefschetz pencil the projection map is a Rie-
mannian submersion w. r. t. the Liouville—Arnold metric.

Proof. should be simple from the definitions

Proposition 3.4. The Liouville–Arnold connection is the Levi-Civita connec-
tion of the Liouville—Arnold metric.

Proof. Let us denote both the Liouville—Arnold metric and Poincaré pairing
by (−,−). One has

(
∇LAu (−,−)

)
(v, w) =

(
∇LAu v, w

)
+
(
v,∇LAu w

)
−Lu(v, w) =(

∇GMu v, w
)

+
(
v,∇GMu w

)
− Lu(v, w) =

(
∇GMu (−,−)

)
(v, w) = 0, since the

Poincaré pairing is defined on the lattice of integral classes in cohomology on
the differentiable level and is independent on the hypercomplex structure.

The Gauß—Manin connection can be given in terms of the differential forms
by∇GMu [α] = [Lieũα], where α is a form defined along fibers and extended in the
perpendicular direction as zero on the horizontal vectors, and ũ is the horizontal
lift of the field u. Let us remind that if ρ is the G2 3-form on the total space,
then the form ωIv on a coassociative fiber F is given by (ιṽρ)|F . Then one has

Tors∇
LA

(u, v) = $ ([Lieũιṽρ− Lieṽιũρ])−[u, v] = $ ([Lieũιṽρ− dιṽιũρ− ιṽdιũρ])−
[u, v] = $

([
Lieũιṽρ− ιṽLieũρ− ι[̃u,v]

ρ
])

= $
([
ι
[ũ,ṽ]−[̃u,v]

ρ
])

= 0, since the

field [ũ, ṽ]− [̃u, v] is vertical, and the form ρ vanishes on fibers (we have also used
that dρ = 0 in the identity dιũρ = Lieũρ). Hence the Liouville—Arnold con-
nection is torsion-free and hence the Levi-Civita connection for the Liouville—
Arnold metric.

3.3 The period map

Let p : X → B be a Kovalev–Lefschetz pencil with smooth fibers over a ball.
Let UTB

π−→ B be its LeBrun’s CR twistor space.

Definition 10. Consider the pullback π∗(X) → UTB. Its fibers can be en-
dowed with a complex structure as follows. Namely, on the fiber X(u,b) one puts
the complex structure defined by u ∈ TbB on the fiber p−1(b). Since the space
UTB is simply connected, this gives rise to a map per : UTB → Per, where Per
is the period space of the fiber. We shall call it the period map.
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If Z ⊂ B is a surface, one can construct a manifold foliated into K3 surfaces
(or tori) over Z it two ways. First, one can consider the preimage Y = p−1(Z)
with its Calabi almost complex structure. Second, one can lift Z to a surface
Z̃ ⊂ UTB by the Gauß map, send it into a (not necessarily holomorphic)

submanifold Z = per
(
Z̃
)
⊂ Per in the period space, and then consider the

tautological family of K3 surfaces (or tori) over Z. Note that the first one has
an almost complex structure inducing the complex structure on each fiber, while
the second has no reasonable almost complex structure. Our goal is to relate
these two somehow.

Proposition 3.5. Let p : X → B be a Kovalev–Lefschetz pencil with smooth
fibers over a ball, Z ⊂ B a real surface. Then the following are equivalent:

(i) The Calabi almost complex structure on the preimage p−1(Z) is integrable;

(ii) Mean curvature of the preimage p−1(Z) vanishes;

(iii) Z is a minimal surface w. r. t. the Poincaré metric.

Proof. The assertion (i) implies obviously implies (ii) because of the Calabi
condition, i. e. the Proposition 1.1. To see the contrary, notice that the fibers
are automatically complex, hence the only pair of directions to check the com-
plex linearity of the second fundamental form is the direction perpendicular to
the fiber, which is real two-dimensional, hence the complex linearity is indeed
equivalent to the vanishing of the mean curvature.

Since the fibers are calibrated, they are minimal submanifolds, and by Propo-
sition 3.3 the projection p is a Riemannian submersion, hence by the Proposition
2.11 the assertions (ii) and (iii) are equivalent, as well.

Proposition 3.6. Let p : X → B be a Kovalev–Lefschetz pencil with smooth
fibers over a ball, Z ⊂ B a real surface and z ∈ Z a point. Consider the
hypersurface p−1(Z) with its Calabi complex structure. Then the following are
equivalent:

(i) Nijenhuis tensor of p−1(Z) vanishes identically along the fiber p−1(z);

(ii) The mean curvature of Z vanishes at z.

Proof. This is just the infinitesimal version of the above Proposition.

Proposition 3.7. The period map for a Kovalev–Lefschetz pencil is twisted CR
holomorphic.

Proof. Clearly, the fibers of the fibration UTB → B are mapped by the period
map to the twistor lines, which are holomorphic. This shows that the period
map is twisted CR holomorphic on the vertical subbundle V ⊂ T (UTB).

To show this outside of the vertical subbundle, consider the tangent 2-
subspace W ⊂ N(u,b) which is mapped to a complex line by the differential
of the period map, and let Z ⊂ B be a germ of a surface containing the point b
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with unit normal vector u s. t. its image under the Gauß map is tangent to W .
Since its image is a 1-jet of a complex curve at the point per(u, b), the inverse
image of the tautological bundle over this image is a first-order jet of a holo-
morphic variation over this point. However, its total space is exactly the same
as the preimage p−1(Z) ⊂ X of Z ⊂ B with its Calabi structure. Therefore
the Nijenhuis tensor of p−1(Z) vanishes along the fiber p−1(b), which is by the
Proposition 3.6 equivalent to the vanishing of the mean curvature of the surface
Z at the point b. By the Proposition 2.9 this is equivalent to the subspace W
being a complex line w. r. t. the Eells–Salamon’s almost CR structure.

To sum the things up, the condition of being sent to a complex line by the
differential of the period map is equivalent to the condition of being a complex
line w. r. t. the Eells–Salamon’s almost CR structure. This is precisely the
twisted holomorphicity of the period map, which we have desired.

Proposition 3.8. The image of the period map is either a twistorial line or a
complex surface.

Proof. The image is no less than a twistorial line, hence it sends the vertical
spheres to the twistorial lines biholomorphically. The Eells–Salamon’s almost
CR structure is not integrable by the Proposition 2.10, hence it cannot be an
immersion. If its image is neither a curve nor a surface, it is a three-dimensional
CR manifold. For each point, the image contains some twistorial lines through
this point, hence its CR bundle is integrable with twistorial lines being the
integral submanifolds. The fibers of the mapping onto such a manifold would
be complex curves since the map is CR holomorphic, and the preimages of the
twistorial lines are the integral hypersurfaces for the CR bundle on the Eells–
Salamon’s twistor space. In particular, the standard contact distribution on
STB would be involutive, which is widely known to be impossible [AG].

This Proposition suggests the two cases for a Kovalev–Lefschetz pencils,
which we shall now examine. These two cases resemble the two possibilities
for the elliptic fibrations on a complex surface with zero first Chern class: it is
either a product of a trivial family with fiber isomorphic to a fixed elliptic curve
over another elliptic curve, or a Lefschetz pencil on a K3 surface.

Proposition 3.9. If the image of the period map is a twistorial line, the
Kovalev–Lefschetz pencil is locally an orthogonal Cartesian product, and the
Poincaré metric on the base is flat.

Proof. The CR holomorphic projection from the Eells–Salamon’s twistor space
STB of a ball B to a rational curve, which is a biholomorphism when restricted
to each fiber, is nothing but the foliation on STB, which identifies all the fibers,
i. e. a flat connection. Hence the Poincaré metric in the base is flat in this case,
and no degenerations of the fibers can occur, since there are no degenerations
over the twistorial line.

In what follows, we shall assume that the image of the period map is a
surface.
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Proposition 3.10. The fibers of the period map are the trajectories of the
Liouville–Arnold geodesic flow.

Proof. The geodesic equation ∇LAv v = 0 means exactly that the covariant
derivative of v (which we consider as the complex structure on the fiber given by
the cross product with its horizontal lift) vanishes along v (which we consider
as a tangent field of the curve in the base).
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