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Dynamic bus scheduling is a rational solution to the urban traffic congestion problem. Most previous studies have considered a
single bus line, and research on multiple bus lines remains limited. Departure schedules have been typically planned by making
separate decisions regarding departure times. In this study, a joint optimization model of the bus departure time and speed
scheduling is constructed for multiple routes, and a coevolutionary algorithm (CEA) is developed with the objective function of
minimizing the total waiting time of passengers. Six bus lines are selected in Shenyang, with several transfer stations between
them, as a typical case. Experiments are then conducted for high-, medium-, and low-intensity case of smooth, increasing and
decreasing passenger flow. )e results indicate that combining the scheduling departure time and speed produces better
performances than when using only scheduling departure time. )e total passengers waiting time of the genetic algorithm (GA)
group was reduced by approximately 25%–30% when compared to the fixed speed group.)e total passengers waiting time of the
CEA group can be reduced by approximately 17%–24% when compared to that in the GA group, which also holds true for a
multisegment convex passenger flow. )e feasibility and efficiency of the constructed algorithm were
demonstrated experimentally.

1. Introduction

)e number of private cars produced and used in China has
been increasing annually over the past few years due to rapid
urbanization. Traffic congestion has become an increasingly
serious problem, despite the numerous measures taken by the
Chinese government to improve the traffic conditions [1].)e
government advocates that individuals make use of green
travel options to reduce traffic congestion and environmental
pollution. )e advantages offered by buses, in terms of
passenger capacity, fuel consumption per capita, energy ef-
ficiency, and environmental protection, have demonstrated
their efficiency as an effective solution for urban traffic
problems. However, the current bus dispatching system in
China adopts a static dispatch strategy to achieve the most
accurate arrival time, and the daily bus dispatching strategy
primarily follows a fixed schedule, which frequently tends to
cause some problems, such as bus bunching and poor

passenger travel experience with long waiting time. Owing to
complex road conditions and fluctuating passenger flow, bus
arrival times are often based on drivers’ experience, and their
accuracy cannot be ensured, which tends to decrease the
quality of the travel experience.

Process control strategies are conventionally applied in
the operation of public transportation, in which the bus
operation plans are adjusted based on the actual daily status
of the system. Dynamic bus dispatching in the control
process is crucial in public transit because it dynamically
determines the performance of the transit system [2]. Dy-
namic dispatching is a bus scheduling strategy based on the
Internet of things (IoT) technology, which enables the
monitoring and collection of a significant amount of real-
time information in a timely manner, providing data for the
implementation of dynamic buses. By design, the operating
status of buses is adjusted to achieve their respective ob-
jectives based on real-time data.
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Extensive research has been conducted on dynamic
buses to solve traffic congestion and reducing passenger
waiting time, most of which had only focused on scheduling
of departure time or on scheduling of speed for bus single
line. However, relatively little research has thus far been
conducted on the simultaneous scheduling of departure
times and interstation speeds for multiroute scheduling.

To avoid bus bunching, improve passengers’ bus travel
experience, and reduce their waiting time, the study focuses
on the joint optimization of the departure time and speed in
the multiroute bus operation. A cooperative coevolutionary
algorithm (CEA) is proposed to solve the joint optimization
scheduling problem via a computational model designed to
improve the departure time and speed of the multiroute bus
systems. )e transfer waiting time and speed controllability
are considered, and the CEA is developed to solve the model.
)e main concept of the proposed model involves
decomposing the complex problem into several subprob-
lems, which are to be solved separately using suitable
evolutionary algorithms, and subsequently, performing
cooperative evaluation through the cooperation of multiple
populations.

)e contributions of this study are summarized as fol-
lows: a computational model of the joint scheduling of
departure time and speed for multiple bus lines is estab-
lished. In this model, the shortest total waiting time in-
cluding transfer waiting time is considered as the decision
objective, the departure interval and the average speed be-
tween stations are considered as the decision variables, and
the transfer phenomenon between multiple lines is
considered.

)e CEA is developed based on a proposed coevolution
mechanism; a suitable genetic algorithm (GA) is used to
evolve the departure scheduling population and the speed
scheduling population. During the evolution of departure
scheduling and speed scheduling population, the current
optimal speed and departure time are used to evaluate the
evolved individuals and update the optimal departure time
and speed.

Simulation experiments are also carried out under dif-
ferent intensities and types of passenger flow distribution.
Experimental results demonstrate that CEA exhibited better
performance than GA in solving this problem.

)e remainder of this study is organized as follows:
Section 2 provides a review of relevant literature. Section 3
describes the problem, modeling assumptions, parameters,
objective functions, constraint conditions, and model de-
velopment. Section 4 presents the method used to solve the
established mathematical model. Section 5 describes the
numerical experiments and provides an analysis of the re-
sults. Finally, Section 6 presents the conclusions.

2. Literature Review

Bus scheduling methods are typically classified into two
types: static or dynamic. Static bus scheduling is based on
static information, such as scheduling of the vehicle and
driver, and is mainly intended for scheduling before the
initiation of the operation. In contrast, dynamic bus

scheduling involves online adjustment and optimization of
scheduling plan based on the latest time-varying informa-
tion, which entails real-time control of the operation pro-
cess. Owing to the various uncertainties in the bus system,
the results of static scheduling can be adjusted based on real-
time information, and the entire operation process can be
monitored and optimized in dynamic bus scheduling.
Representative control strategies include holding [3–11],
skip-stop [12–19], short turnaround [20–24], travel re-
striction [23, 25–27], speed adjustment [28–31], and bus
priority [32–35] strategies. Among these, holding, skip-stop,
short turnaround, and travel restriction are station control
strategies, and speed adjustment and bus priority are in-
terstation control strategies. Furthermore, target lines
studied can be broadly classified as single or multiple lines.

2.1. Single-Route Bus Dynamic Scheduling. Several studies
have been conducted on single-route dynamic transit. In
1988, Van et al. [36] proposed an optimization method to
determine the frequency of bus departures on a single route
under elastic demand to optimize the maximization of the
number of direct trips for specific fleet size, cost budget, and
passenger assignment constraints. Leiva et al. [37] estab-
lished a nonlinear optimization model to minimize the total
costs incurred by firms and passengers. Xiuwen [38] opti-
mized the total passenger waiting time at all stops by or-
ganizing the departure schedule and constructed a single-
route departure-time scheduling model to minimize waiting
time. Subsequently, Soto et al. [39] designed a two-layer
optimization model by solving the bus-departure frequency
and passenger assignment problems separately. Berrebi et al.
[40] increased the departure frequency, stabilized the
headway time spacing, avoided vehicles clustering at the
same stop, and solved the model using inverse induction
while minimizing passenger waiting time. Sun et al. [41]
proposed a flexible timetable optimization method based on
a hybrid vehicle size model to address demand fluctuations
in bus transit operation, providing a new perspective to
improve the level of regular bus service. Li et al. [42] pre-
sented a timetable optimization model with time-dependent
passenger demand and travel time among stops. Most re-
cently, Tang et al. [43] developed a new network-based
methodology to optimize multiple operational strategies and
to accommodate fluctuating passenger demand.

2.2. Multiroute Bus Dynamic Scheduling. )e research
conducted on multiple routes has been primarily focused on
the transfer waiting times, which have not been addressed in
the single-route studies. For instance, Li et al. [44] con-
sidered routes. Ibarra-Rojas and Munoz [45] considered bus
operating speed and arrival time deviations and provided a
collaborative schedule for overlapping intervals of multi-
route bus operations using a GA.)ey additionally validated
their approach using two local bus routes in Santiago,
demonstrating that the arrival time of each was uniform
when the schedule was beneficial for the passengers using
multiroute buses. Shen and Du [46] aimed to minimize the
total transfer waiting time of bus passengers by arranging the
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travel schedules of two routes using nonequally spaced
departures to increase the number of interchangeable
transfers between two bus lines at the transfer station and
coordinate bus arrival times.

Subsequently, Shuang and Weishi [47] designed a bus
query system based on the least-number-of-transfers algo-
rithm to minimize the number of transfers, and experi-
mentally analyzed their designed system. Lu et al. [48]
considered the impact of bus route interactions on passenger
travel choices and proposed the coordinated scheduling of
multiroute flexible buses in the urban periphery during off-
peak hours. Zhou et al. [49] proposed a holding strategy
based on two-bus cooperative control method. )ey con-
ducted a simulation after the preliminary processing and
analysis of the bus operation data of city of Foshan and
compared the performance using three different scenarios to
build a multibus cooperative control strategy.

2.3. Bus Speed Adjustment. In the bus speed adjustment
process, the headway spacing is dynamically adjusted by
adjusting the operating speed of the buses between stops.
Daganzo and Pilachowski [28] proposed a speed-control
strategy to obtain the appropriate spacing between the front
and rear buses through a collaborative two-way approach
and dynamically adjusted the operating speed of bus, ef-
fectively preventing vehicle aggregation. In addition,
Chandrasekar et al. [29] proposed a control method based
on controlling bus speed along a given route, the basic
concept of which is similar to that of holding a bus at a stop.
In other words, because the passengers cannot notice the
reduction of the operating speed of the vehicle while run-
ning, controlling bus speeds can significantly reduce the
unevenness of the time interval. Furthermore, He et al. [31]
presented a new studied optimization method for the real-
time scheduling of multiroute vehicles in bus hubs. )ey
established a model to optimize the real-time scheduling of
multiroute time and transfer passenger flow, along with an
optimization objective function based on the minimum cost
of the entire system. Li et al. [50] also developed an opti-
mization model for the multiobjective scheduling problem
of maximizing the social and corporate operational benefits
of multiroute paratransit and designed a hybrid genetic-
forbidden algorithm to solve this problem. Subsequently,
Mazloumi et al. [51] developed a bus-scheduling scheme
based on actual bus-line passenger flow data and used a GA
and an ant-colony algorithm to solve the model. Le [52]
presented a dynamic bus departure optimization method for
multiroute buses considering both company and passenger
interests under multivehicle conditions. Hernández et al. [8]
proposed real-time scheduling of multiroute buses based on
the presence of bus-only lanes on multiple routes, estab-
lished a central dispatching center, determined the bus
departure frequencies, and validated the results using two
strategies to overcome the aforementioned drawbacks by
adjusting the speeds of buses in dedicated bus lanes to
stabilize the highly unstable bus lines, while reducing the
waiting and traveling times of passengers. Deng et al. [30]
proposed a real-time speed-control model with the objective

of minimizing variations in bus headway and analyzed three
cases of typical road infrastructure for bus lines.

3. Joint Optimization Model for Multiline
Departure Time and Speed Scheduling

3.1. Problem Description. Figure 1 illustrates the multiple
bus lines considered in this study, indicating that a single
line can be considered as a special type of a multiline bus. If
transference between lines is not considered, the problem is
identical to that of single lines, where single lines can be used
as the objects of a study of the departure descriptions.

)e departure plan of one bus line is considered as a
sample for analysis, as shown in Figure 2. Consequently, line
p is considered for analysis, and the travel direction of the
vehicle is set as indicated by the arrow where the bus stop
numbers on the line range from 1 toNS

P, that is, the line has a
total of NS

P stops.)e vehicles on the right side of the dashed
vertical line are those that have begun traveling on the bus
line (not necessarily on the site), the number of which ranges
from 1 ND

p . )e vehicles on the left side of the dotted vertical
line are those waiting to depart from the terminal center and
are denoted by numbers ranging from ND

p + 1 to ND
p + NF

p,
with a total number of NF

p. After vehicle ND
p departs from

the first station, the road condition and passenger infor-
mation are collected, and the departure times of the sub-
sequent NF

p vehicles and the speeds between the stations are
replanned to determine the optimal departure time and
interstation speed until the next vehicle departs at the newly
determined departure time, which is called a planning cycle.
At the beginning of each planning cycle, that is, after the
departure of vehicle ND

p + 1, the following ND
p buses will be

in a new planning cycle for the optimal solution to ensure
that the planning cycle continues to roll forward with time.

3.2. Assumptions. )e following assumptions were made to
establish a joint scheduling optimization model for bus-
departure time and speed for multiple routes. )ese as-
sumptions were previously made in several studies
[2, 12, 26, 29].

(1) All buses in the area are of the same type, that is, they
carry the same number of passengers and exhibit the
same level of performance.

(2) )ere are no traffic accidents.
(3) )e times required for passengers to board and

deboard are equal.
(4) Buses must stop at each station, slow down to enter

the station, and accelerate when leaving the station. If
there are no passengers at the station, the stopping
time is the sum of the inbound time during decel-
eration and outbound time during acceleration. If
there are passengers, the stopping time is the sum of
the inbound time during decelerating, outbound
time during accelerating, and passenger boarding
and deboarding times.

(5) Buses belonging to the same line cannot overtake one
another.

Discrete Dynamics in Nature and Society 3



(6) )e planned departure time of the last bus must be a
fixed value.

(7) Bus-station passenger-flow and vehicle speed are
monitored with equipment including a camera and
GPS. )e passenger flow in the current situation can
be predicted based on historical passenger flow in-
formation, and the function of each station pas-
senger flow over time can be derived.

3.3. Intermediate Variables. Because there are vehicles on
the road at the beginning of the planning cycle, it is assumed
that real-time information corresponding to these moving
vehicles is available for the decision-making process.

At the beginning of the planning cycle, the number of
passengers in amoving vehicle can be obtained using the IoT
(the data were generated through simulation in the calcu-
lation experiment). )e number of passengers in the bus at
this time can be initialized as given below:

N
on
pij � N

now−on
pi , p � 1, 2, . . . , N, i � 1, . . . , N

D
p , j � N

last
pi + 1.

(1)

When the bus arrives at the next stop and departs, the
number of passengers is equal to the original number of
passengers along with the number of passengers boarding at
that stop minus the number of passengers deboarding at that
stop, as shown in (2):

N
on
pij � N

on
pi(j−1) + N

debus
pi(j−1), p � 1, 2, . . . , N, i � 1, 2, . . . , N

D
p + N

F
P, j � N

last
pi + 2, . . . , N

S
p. (2)

For simplicity, it is assumed that the rate of passengers
deboarding at all stations is known. )e number of pas-
sengers deboarding is given as follows:

N
debus
pij � cpjN

on
pij, p � 1, 2, . . . , N, i � 1, 2, . . . , N

D
p + N

F
p, j � 1, 2, . . . , N

S
p − 1. (3)

As the bus capacity is limited, the number of passengers
onboard becomes equal to the number of passengers waiting
at the station when the capacity is sufficient, as shown in (4).

However, when the capacity is insufficient, some passengers
are left behind, and the number of passengers on board is
equal to the maximum capacity minus the original number
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Figure 1: Schematic of multiple bus lines.
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Figure 2: Operation diagram of the departure of a single bus.
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of passengers, plus the number of passengers deboarding, as
shown in (5).

N
board
pij � N

wait
pij , p � 1, 2, . . . , N, i � 1, . . . , N

D
p + N

F
p, j � 1, 2, . . . , N

S
p − 1, (4)

N
board
pij � C − N

on
pij + N

debus
pij , p � 1, 2, . . . , N, i � 1, . . . , N

D
p + N

F
p, j � 1, 2, . . . , N

S
p − 1. (5)

For a bus running at the beginning of the planning cycle,
the number of waiting passengers at a given stop can be
calculated as follows:

N
wait
pij � N

now wait
pj + 􏽚

Ta
pij

0
fpj(t)dt + 􏽘

N

q�1
􏽘

ND
q

m�1
Nqpmm′

Z
pqimjm′≥0

Z
pq(i−1)mjm′<0

, p � 1, . . . , N, i � 1, . . . , N
D
p , j � 1, . . . , N

S
p − 1, m′ � Spqj.

(6)

)e first term on the right-hand side of (6) represents the
number of passengers waiting at station j on route p at the
start of the planning cycle. )e second term refers to the
number of passengers arriving at station j during the period
from the start of the planning cycle until the bus arrives at
station j. Finally, the third term represents the number of
passengers transferring to station j on route p from other
routes. Essentially, for a bus moving at the beginning of the
planning cycle, the number of passengers waiting at the next
station when it arrives at that station is the sum of the

number of passengers at that station in the initial state plus
the number of passengers who arrive before the bus travels
to that station and those who are transferring from other
lines.

For buses that have not yet departed at the beginning of
the planning cycle, the number of waiting passengers at stop
j is equal to the sum of the number of new arrivals from the
previous bus leaving that stop until the bus arrives at stop j
and the number of passengers left behind by the previous
bus and those from other routes transferring at that stop.

N
wait
pij � 􏽚

Ta
pij

Ta
p(i−1)j

fpj(t)dt + 􏽘
N

q�1
􏽘

ND
q

m�1
Nqpmm′

Z
pqimjm′ ≥ 0

Z
pq(i−1)mjm′ < 0

+N
wait
p(i−1)j − N

board
p(i−1)j, p � 1, . . . , N, i � N

D
p + 1, . . . , N

D
p + N

F
p, j � 1, . . . , N

S
p − 1; m′ � Spqj.

(7)

As with the calculation of the number of passengers
deboarding, the number of transferring passengers can be

assumed to be a certain ratio of the deboarding passengers,
for simplicity.

Npqij � μpqijcpjN
on
pij, p, q � 1, 2, . . . , N, i � 1, 2, . . . , N

D
p + N

F
p, j ∈ Spq. (8)

)e arrival time of a bus at each stop is also divided into
two cases.)e first case is the arrival time at the next stop of a

vehicle, which is running at the beginning of the planning
cycle, and is related to its location at the beginning.

T
a
pij �

Dpj − D
now
pi􏼐 􏼑

Vpij

, p � 1, 2, . . . , N, i � 1, 2, . . . , N
D
p , j � N

last
pi + 1. (9)

Discrete Dynamics in Nature and Society 5



)e second case is that the time decided at which each
vehicle should arrive at each station can be calculated from

the departure time of the vehicle from the previous station
and the travel time of the vehicle between the two stations.

T
a
pij � Tpi(j−1) +

Dpj

Vpij

, p � 1, 2, . . . , N, i � 1, 2, . . . , N
D
p + N

F
p, j � N

last
pi + 2, . . . , N

S
p. (10)

Unlike in the single-route case, the transfer waiting time
for transferring passengers must also be considered in the
multiple-route case. )e calculation formula is as follows:

T
wait
pqij � min

ND
p +NF

p

j�1
Z

pqijmm′≥0

Zpqijmm′ , p, q � 1, . . . , N, i � 1, . . . , N
D
p + N

F
p, m ∈ Spq; m′ � Spqm. (11)

In (11), Zpqijmm′ ≥ 0 implies that a passenger can transfer
from station j to a station online q using vehicle i on line p

only when this parameter is nonnegative. )e first vehicle to
arrive at that station is vehicle m.

Zpqijmm′ can be calculated as follows:

Zpqijmm′ � Tqmm′ − T
a
pij − T

walk
pij , p, q � 1, . . . , N, i, m � 1, . . . , N

D
p + N

F
p, j ∈ Spq, m′ � Spqj. (12)

)e departure time of a bus can be derived from its
arrival time and the time taken by passengers to board and
deboard the bus.

Tpij � T
a
pij + T

board max N
board
pij , cpjN

on
pij􏽮 􏽯, p � 1, 2, ..., N, i � 1, 2, . . . , N

D
p + N

F
p, j � N

last
pi + 2, . . . , N

S
p − 1. (13)

)ewaiting time of passengers whomissed the last bus in
the planning cycle is assumed to be the average waiting time

of all passengers who boarded at the previous stations be-
cause the arrival time of the next bus is not known.

T
avg w
p �

􏽐
NS

p−1
j�1 T

p ND
p +NF

p( 􏼁j
− T

p ND
p +NF

p−1( 􏼁j
􏼒 􏼓

N
S
p − 1􏼐 􏼑

, p � 1, 2, . . . , N. (14)

For adjacent buses, the departure time at the first stop
must be controlled such that it remains between the max-
imum and minimum departure intervals.

Hmin ≤Tpi1 − Tp(i−1)1 ≤Hmax, p � 1, 2, . . . , N, i � N
D
p + 1, . . . , N

D
p + N

F
p. (15)
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During the operation of the vehicle, adjustments must be
made to ensure that the headway of adjacent vehicles is

always between the maximum and minimum headways,
eliminating the bus-gathering phenomenon.

Hmin ≤Hpij − Hp(i−1)j ≤Hmax, p � 1, 2, . . . , N, i � 2, . . . , N
D
p + N

F
p, j � 1, . . . , N

S
p − 1. (16)

In addition, the speed must be maintained between the
maximum and minimum speeds specified by each line.

Vmin ≤Vpij ≤Vmax, p � 1, 2, . . . , N, i � 1, 2, . . . , N
D
p + N

F
p, j � 1, . . . , N

S
p − 1. (17)

3.4. Model Construction. In this study, minimization of the
total waiting time of passengers is considered as the objective
function. )is problem can be defined as follows:

MinF � T
first

+ T
left

+ T
trans

, (18)

s. t.

Hmin ≤Tpij − Tpi(j−1) ≤Hmax, p � 1, 2, . . . , N, i � 1, 2, . . . , N
D
p + N

F
p, j � 2, . . . , N

S
p, (19)

Vmin ≤Vpij ≤Vmax, p � 1, 2, . . . , N, i � 1, 2, . . . , N
D
p + N

F
p, j � 1, . . . , N

S
p − 1, (20)

Tpij − Tp(i−1)j ≥ 0, p � 1, 2, . . . , N, i � 1, 2, . . . , N
D
p + N

F
p, j � 1, . . . , N

S
p − 1. (21)

In (18), F is the total waiting time for all passengers,
which is divided into three parts.

)e total waiting time, Tfirst, spent waiting for the first
bus, where the integral is approximated by differentiating
into rectangles of minimal width:

T
first

� 􏽘
N

p�1
􏽘

ND
p +NF

p

i�2
􏽘

NS
p

j�1
􏽚

Tpij

Tp(i−1)j

Tpij − t􏼐 􏼑fpj(t)dt. (22)

)e total waiting time of stranded passengers waiting for
subsequent vehicles, Tleft, is expressed as follows:

T
left

� 􏽘
N

p�1
􏽘

ND
p +NF

p

i�2
􏽘

NS
p

j�1
N

left
pij Tpij − Tp(i−1)j􏽨 􏽩 + 􏽘

N

p�1
􏽘

NS
p

j�1
T
avg w
p N

left
p ND

p +NF
p( 􏼁j

. (23)

)e waiting time for transfer passengers, Ttrans, is ob-
tained as follows:

T
trans

� 􏽘

N

p�1
􏽘

N

q�1
􏽘

ND
p +NF

p

i�1
􏽘

j∈Spq

Spq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
+
NpqijT

wait
pqij. (24)

Here, |Spq|+indicates that the value of Spq is 1 when
there is at least one element in the set |Spq|+, that is, when
there is a commutation from lines p to q and is 0 oth-
erwise. In addition, (19) and (20) represent the maximum
and minimum constraints that need to be met by the
departure interval and speed, respectively, and (21) in-
dicates that the same line buses are not allowed to overtake
one another.

4. Algorithm for Departure Time and Speed
Scheduling of Multiple Lines

)e optimization problem associated with dynamic dis-
patching is NP-HARD, and the excessive solution space
makes most of the solutions obtained by exact algorithms
impractical. Intelligent algorithms can effectively solve this
problem, among which GAs are widely used in major fields
because of their efficient global search abilities and wide
scalability. )erefore, a suitable GA was first applied to solve
the problem according to the model characteristics as a
comparison experiment; then, a suitable CEA was designed
to solve the problem according to the characteristics of the
model in this study.
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4.1. GA for Departure Time and Speed Scheduling of Multiple
Lines

4.1.1. Chromosome Code. Based on the mathematical model
given above, the solution of this model can be divided into
two parts. One is the departure moment of each bus at the
first station in minutes, and the other is the average speed of
the vehicle traveling between the stations in kilometers per
hour. Integer coding was used based on the decision vari-
ables. Furthermore, the departure moment was converted
into a departure interval to simplify the coding process, and
the coded chromosome genes are shown in Figure 3.

In Figure 3, the interval from H111 to H1NF
P
1 represents

the departure interval between the first bus determined to
start on the first route in the planning to the NF

P th bus at the
first stop. )e subsequent interval from V111 to V1NF

1 NS
1

represents the travel speeds of the first vehicle to be decided
on the first route through the NF

P th bus at all stops.
Each subsequent line is coded similar to the first line,

that is, the first NF
p gene bits indicate the departure interval

between the vehicle to be determined and the previous bus at
the first stop. )e NS

p gene bits indicate the average speed of
the first vehicle to be determined between the stops.)en the
NS

p gene bits indicate the average speed of the second vehicle
to be decided between the stops, and so on up to the NF

p th
vehicle.

4.1.2. Chromosome Crossover and Mutations. )e chro-
mosome crossover and mutation operations are used to
generate new offspring. )e crossover operation involves
seeking superiority from an excellent parent base, and
mutation introduces the possibility of breaking the local
superiority. Uniform crossover and single-point random
variation are employed for the intersite speed in the pro-
posed model. In the crossover operation, the two individuals
to be crossed are first selected. A 0-1 mask, which is equal in
length to the chromosome, is then generated, where the gene
position corresponding to the mask 1 is the gene position to
be crossed and the gene position of the speed part is directly
exchanged to generate the offspring.)emutation operation
is similar to the crossover operation, that is, the mutant
individuals are first selected, a 0-1 mask of equal length is
generated, and the gene position corresponding to 1 is
subjected to the mutation operation, which is set to be
replaced directly with other valid random values.

Because of hypothesis (6) in Section 3.2, the crossover
variation operation applied to the vehicle speed part is no
longer suitable for the genetic position of the departure
moment part. For example, if the total departure interval is
40, the fourth gene position of two chromosomes [8–12]
undergoes crossover operation to generate two daughter
chromosomes [8–12].)e total departure interval of the first
daughter chromosome is 38, whereas the total departure
interval of the second daughter chromosome is 42, which
does not satisfy hypothesis (6). Further improvement is
required in the crossover operation because there is a high
probability of generating spent chromosomes when using
the same crossover operator as the vehicle speed part.

)e crossover operator for the departure interval gene
in the proposed method is a combination of three ap-
proaches: multipoint, uniform, and arithmetic crossover.
After selecting two chromosomes that require crossover, a
0-1 mask is generated and two-by-two matching is per-
formed for all gene sites that require crossover operation.
)erefore, totals of Xold

1 , Yold
1 and Xold

2 , Yold
2 genes in the

two parent chromosomes require crossover. Equations
(25)–(28) are used to generate new offspring gene loci
values:

X
new
1 � X

old
2 ×

X
old
1 + Y

old
1􏼐 􏼑

X
old
2 + Y

old
2􏼐 􏼑

, (25)

Y
new
1 � Y

old
2 ×

X
old
1 + Y

old
1􏼐 􏼑

X
old
2 + Y

old
2􏼐 􏼑

, (26)

X
new
2 � X

old
1 ×

X
old
2 + Y

old
2􏼐 􏼑

X
old
1 + Y

old
1􏼐 􏼑

, (27)

Y
new
2 � Y

old
1 ×

X
old
2 + Y

old
2􏼐 􏼑

X
old
1 + Y

old
1􏼐 􏼑

. (28)

Here, Xold
1 and Yold

1 are paired genes on the first parent
chromosome, Xold

2 and Yold
2 are paired genes on the second

parent chromosome, Xnew
1 and Ynew

1 are paired genes of the
first newly generated offspring, Xnew

2 and Ynew
2 are paired

genes of the second newly generated offspring, and the
offspring are produced using this operator. Figure 4 shows
an example of the new crossover operator, where the parent
is guaranteed to be a valid chromosome.

Similar to the crossover operator, the random varia-
tion operator also requires improvement as it primarily
generates subchromosomes that do not satisfy hypothesis
(6). Once again, the mutation operation for the genetic
part of the departure interval is first generated as a 0-1
mask of the same length, and the part with a mask of 1 is
the gene locus that requires mutation. All gene positions
requiring mutation are also paired, and if there is a single
position remaining at the end, the gene position with
mask 0 is randomly matched for pairing. For all paired
genes, one gene is randomly changed to another value
similar to the speed section, and the paired genes are
incremented or decremented based on the difference
between the locus value and the original value, ensuring
that the mutated chromosome is also valid. As shown in
Figure 5, one gene position performs a plus-one operation
and the other gene position paired with it performs a
minus-one operation.

4.1.3. Strategy Selection. A classical roulette wheel selection
strategy is used in the proposed method. However, since the
optimization objective requires the minimization the total
waiting time of the passengers, it is necessary first to convert
the fitness values of all individuals as shown below:
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Fnew �
Fmax − Fold + η
Fmax − Fmin + η

. (29)

Here, Fmax and Fmin are the maximum and minimum
fitness values in the current population, respectively; Fold
and Fnew are the fitness values before and after individual
conversion; and η is a minimal value preventing the
denominator value from being zero when the maximum
and minimum fitness values are equal. After conversion
using (29), the smaller the fitness value before conver-
sion, the larger the new fitness value after conversion.
)e general roulette selection method can thus be
employed for selection. After the conversion, the se-
lection probability of each chromosome is obtained using
(30), and the cumulative probability can be calculated
using (31):

Pi �
F
new
i

􏽐
N
i�1 F

new
i

, (30)

p
sum
i � 􏽘

i

k�1
P
new
k . (31)

During the selection, a random number, x, is randomly
generated between 0 and 1, and an individual, i, is selected
when Psum

i−1 ≤ x≤Psum
i . )is process is repeated until the

required number of individuals has been selected.

4.2. CEA for Joint Departure Time and Speed Scheduling of
Multiple Lines. )e CEAs have been widely applied in
various fields [53–61] and can be mainly classified into the
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Figure 3: GA chromosome map.
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Figure 4: Schematic diagram of chromosome crossover.
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CEAs using population, individual, algorithm, operation,
parameter, and strategy cooperation. A population CEA was
employed in this study. )is type of CEA is mainly used to
realize coevolutionary searching indirectly through mutual
evaluation between populations.

)e main concept involves decomposing the complex
problem into several subproblems, which can be solved
using various suitable algorithms. Cooperation with
multiple populations is performed to achieve cooperative
evaluation. )e multiroute bus departure time and speed
scheduling are decomposed into two subpopulations:
departure and speed scheduling, based on the decision
variables. )e two populations affect each other and are
interdependent; together, a departure scheduling solu-
tion and speed scheduling solution form a complete
solution. )erefore, an optimal solution of the opposite
type is required to evaluate the individual dispatcher or
individual speed dispatcher; that is, the evolutionary
process of one algorithm requires the assistance of the
optimal solution generated by the other algorithm. )e
two algorithms alternate to ensure that the departure and
speed scheduling continuously converge to produce
optimality.

Figure 6 depicts the flow of the CEA and synergistic
mechanism. Because the evaluation requires parameters
pertaining to both the speed and departure moment, the
departure moment is thus necessary to evolve the speed
population (step 2), to ensure that the current optimal
departure moment is sequentially combined with all of the
evolved individuals in the speed scheduling population, and
to form a complete solution to calculate the fitness value.)e
application of this method ensures that the individuals in the
speed-scheduling population and those generating the next
generation speed population can be evaluated. If the current
speed population evolves to produce individuals with a
better speed than the current optimal speed, the current
optimal speed is updated (step 3). Similarly, the departure
time population is evolved, the current optimal speed is
utilized to assist the evolution of the departure-time pop-
ulation, and the current optimal departure time is updated
after evolution (steps 4–6). )is process is repeated until the
termination condition is reached.

Figure 7 shows a flowchart of the coevolution process.
)e CEA employed in this study contains two sub-

populations: departure time scheduling population and
vehicle speed scheduling population, which are resolved
using their respective evolutionary algorithms. )e two
subpopulations and their evolutionary algorithms are de-
scribed below:

(1) Design of Genetic Evolutionary Algorithm for Ve-
hicle Speed Scheduling Subpopulation. )e evolu-
tionary car speed scheduling population uses a GA,
which includes the crossover, mutation, selection,
and other operations. )e variation operator with
uniform crossover and single-point exchange is used
to generate offspring, and the roulette wheel is
subsequently applied to select individuals from the

population. Integer coding is used for the speed
population, where each gene position represents a
value of speed. Figure 8 illustrates the chromosome
design.
In Figure 8, V111 is the travel speed of the first
decision vehicle of the first line between the first
stop and stop 1. NS

1 − 1 gene bits indicate the
average travel speed of vehicle 1 of the first line
decision between stops. )is quantity is followed
by the average speed of the second vehicle to be
determined between each stop on the first line,
until the average speeds of all vehicles on the first
line between stops have been determined. )e
second through p-th lines have the same design
structure as the first line.
A simple uniform crossover approach is utilized for
the crossover operator because only the maximum
andminimum driving speeds are guaranteed. Hence,
the crossover operator first selects two individuals to
be crossed then generates a 0-1 mask of equal length,
and the two individuals corresponding to the gene
position with mask 1 are exchanged. )e variation
operator takes a single point of variation; that is, the
gene at the gene locus selected for variation is
randomly replaced with another gene that meets the
requirement. )e roulette wheel selection method is
used, where each parent and offspring are selected
together, and only a specific number of individuals
survive each generation until a sufficient number of
generations have been considered to reach
convergence.

(2) Genetic Evolutionary Algorithm Design for the
Departure Scheduling Subpopulation. )e GA used
for the evolutionary departure time scheduling
subpopulation remains the same, where the decision
variables are first coded for simplicity and the de-
parture times are converted into departure intervals
for evolution. Each gene position represents the
departure interval from the previous vehicle. Fig-
ure 9 illustrates the chromosome design.

As shown in Figure 9, H111 represents the departure
interval between the first bus to be determined to start on the
first line and the previous bus that has already left and H121
represents the departure interval between these buses. )e
first NF

1 genes are the departure intervals between all vehicles
to be determined to start on the first bus line and the
previous bus at the first stop. )e subsequent NF

2 genes are
the departure intervals between the vehicles to be deter-
mined to start on the second bus line at the first stop, and all
designs of all subsequent lines are consistent with that of the
first line.

)e crossover and variation operators adopt the cross-
over mode and variation mode, respectively, of the chro-
mosome of the departure interval part discussed in Section
3.1. Finally, the roulette wheel is used to select the evolved
offspring individuals.
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5. Numerical Experiments

All numerical experiments in this study were performed on
an Intel Core(TM) i7-8700 processor 3.19GHz computer
with 8GB of RAM and the Windows 10 operating system.
Six bus lines in Shenyang were selected as typical cases for

the scheduling problem. Figure 1 depicts the distribution of
the lines, and Table 1 provides the corresponding details.
)ere are several interchange stations between the six lines.
)e eighth station of the first line can be transferred to the
seventh station of the fourth line, the 14th station can be
transferred to the eighth station of the fifth line, and the 18th
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Current optimal
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populations
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3

Figure 6: Diagram of coevolution.

Start

Read the data, set the maximum number of
iterations with the initial state, and decompose the

problem into two subproblems

Parity of iterations

GA evolves the departure moment, calculates
the target value jointly with the previous

generation speed and compares it with the
history to save the best

GA evolutionary vehicle speed, calculate the
target value jointly with the previous

generation departure time and compare with
history to save the best

Time of departure
and speed of trains

End

Number of iterations
plus one

Even number of iterations Odd number of iterations

Whether the
maximum number of
iterations is reached

No

Yes

Figure 7: Coevolution flow chart.

Speed of the first car on the
first line

Inter-station speed of the
first car of the second line

�e speed of the
remaining cars of

the second line
...the line pFirst line chromosome section

�e speed of the remaining cars
of a line between the stations

Second line chromosome section

V111 V121V11NS
1 V211 V221V1NF

1 N
S
1 VpNFp NSpV21NS

2... ... ... ......

Figure 8: Chromosome design of the bus speed population.

�e departure interval of NF
1 vehicles planned

for the first line

�e interval between the departure of
each car of the second line at the first

station

...the departure interval of
each train of the p-line at the

first stop

H111 H211 H221H121 H1NF
11 H2NF

21 HpNFp1 HpNFp1... ......

Figure 9: Chromosome design of the population during departure.

Discrete Dynamics in Nature and Society 11



station can be transferred to the 15th station of the sixth line.
Meanwhile, the 10th station of the second line can be
transferred to the 16th station of the fourth line, the 16th
station can be transferred to the 15th station of the fifth line,
and the 19th station of the third line can be transferred to the
sixth station of the sixth line.

Because a significant amount of real-time information is
required to solve the scheduling problem, it is necessary to
first perform an initial state simulation. )e real-time in-
formation includes the locations of the vehicles running on
the line at the beginning of the planning-time window, the
number of passengers waiting at each station, and the
number of passengers in each running vehicle. A simulation
using the C# language was employed in this study to obtain
these data. )e subsequent optimization algorithm read
these simulation data for optimization, and experimental
analyses performed under different passenger flow condi-
tions are presented in the following subsections. )e fixed
vehicle speed part was considered to be 18 km/h, as used in
the multiroute dynamic scheduling study performed by Sun
andHickman [12]; the maximum number of iterations in the
simple GA was 100; the crossover rate was 0.8; the variation
rate was 0.1; and the maximum number of iterations in the
joint optimization was 100. Here, the crossover and varia-
tion rates of the two subpopulations are consistent with
those in the simple GA.

5.1. Smooth Passenger-Flow Case Design and Analysis.
Smooth passenger flow mainly occurs during daytime, and
the passenger flow concentrated between morning and
evening peaks. During this period, the passenger flow is
roughly as shown in Figure 10, which depicts a flat state,
and the passenger arrival rate per unit time remains
constant.

)e experiment is carried out under this kind of pas-
senger flow, and the planned time ranges from 10 AM to 1
PM. )e experiment is conducted for three types of gentle
passenger-flow conditions: high, medium, and low. After
sufficient analysis of the actual passenger-flow data, the
corresponding passenger arrival rate of each period is set, as
shown in Table 2.)e curve of the passenger-flow arrival rate
in this period can be obtained from Table 2, as shown in
Figure 11.

)e parameters of the GA are as follows: the crossover
rate is 0.8, the mutation rate is 0.1, and the number of in-
dividuals per generation is 30. A single-solution 800-gen-
eration graph of the multiline departure time and speed
scheduling model, using the GA under the low-intensity
passenger-flow model, is shown in Figure 12. )e solution
results are observed to gradually converge within approxi-
mately 105 generations, and there is no significant

improvement in the evolution performance after that. )e
evolution performance of the model is improved signifi-
cantly considering the optimization performance and the
solution time, and the termination condition of the algo-
rithm is set as themaximum convergence algebra of iteration
termination reaches 100.
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Figure 10: Passenger arrival rate in the case of smooth flow.
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Figure 11: Smooth passenger arrival rate.

Table 1: Information about each bus line.

First line Second line )ird line Fourth line Fifth line Sixth line
Number of seats 23 26 35 23 21 32
Capacity 35 35 40 35 35 40
Full length (km) 13 15.15 40 12.67 13.25 15.6

Table 2: Corresponding passenger arrival rate of each time period
under smooth passenger flow.

Passenger-flow
intensity

Time
10:00 10:30 11:00 11:30 12:00 12:30 13:00

High 1.11 1.02 1.20 1.18 1.18 1.15 1.12
Medium 0.76 0.78 0.81 0.78 0.84 0.82 0.79
Low 0.50 0.53 0.54 0.55 0.51 0.49 0.51
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)e results of typical experiments under the three
intensity types of the smooth passenger flow case are
shown in Tables 3, 4, and 5. )e experiment is divided into
three sections. )e data of the fixed speed group repre-
sents the results of using the GA to evolve the departure
interval under the condition of fixed speed. )e data of the
GA group are the results of using GA to evolve multiline
departure time and speed scheduling, and the data of the
coevolution group are the results of using the CEA to
evolve departure time and speed scheduling. )e rate of
the GA group represents the improvement rate of the
waiting time when compared to the fixed speed group, and
the improvement rate of the CEA when compared to the
GA group.

)e promotion rate in the last row of Table 3, 4, and 5 is
the promotion after considering the average value of 10
groups of data for comparison to avoid the probability of
intelligent algorithm solution. It may be observed from the
comparison that combination of the scheduling departure
time and speed presents better results than when scheduling
departure time alone. )e total waiting time of passengers
can be reduced by approximately 20%–30%, and the opti-
mization effect is more significant.

By analyzing the optimization results of the GA and CEA
groups, it may be observed that the results obtained by the
intelligent algorithm are volatile. However, the optimal
solution obtained by the CEA was better than that of the GA
under various intensities of smooth passenger flow. When
compared to the average value, the optimization perfor-
mance of the CEA was improved by approximately 15%–
20% in the case of smooth passenger flow.

5.2. Increasing Passenger-Flow Case Design and Analysis.
Increasing passenger flow distributions mainly occur
during the first half of the morning peak, when passengers
are commuting to work, and the first half of the evening
peak, when passengers are returning home. An approxi-
mation of the passenger flow in this case is shown in
Figure 13, where the passenger arrival rate at the station
increases with time.

)e first half of the morning peak (from 7 AM to 9 AM)
is selected for the experiment of increasing passenger flow,
and three passenger flow models of high, medium, and low
intensities are designed for the experiment. )e specific
details of these models are shown in Table 6. )e arrival rate
curve of the increasing passengers flow is shown in
Figure 14.

Similarly, to verify the effect of single dispatching de-
parture time, simultaneous dispatching departure time and
vehicle speed under the increasing passenger flow, as well as
the solution performance of the CEA, several groups of
experiments are performed and analyzed according to the
passenger flow curve in Figure 14, and the experimental
results are shown in Tables 7, 8, 9.
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Figure 12: Evolutionary iteration diagram of GA.

Table 3: Experimental results of high intensity of smooth passenger
flow.

Target value-passengers waiting time (min)
Fixed speed GA CEA

1 407816 329311 252262
2 416799 299713 236970
3 412788 281075 235063
4 386894 261262 236530
5 417948 293368 256303
6 404631 294682 245913
7 421304 287362 241255
8 409686 330073 234296
9 421883 324412 245570
10 412800 315976 256620
Average value 411254.9 301723.4 244078.2
Promotion rate — 26.63%% 19.10%%

Table 4: Experimental results of medium intensity of smooth
passenger flow.

Target value-passenger waiting time (min)
Fixed speed GA CEA

1 177760 130397 107206
2 180,617 108,388 100,996
3 174,444 125,027 98,403
4 174,040 124,354 103,888
5 186,236 123,672 99,290
6 170,812 124,710 112,403
7 187,451 134,979 113,529
8 173,692 130,351 101,161
9 184,302 123,422 93,466
10 168,757 124,605 99,938
Average value 177,811.1 124,990.5 103,028
Promotion rate — 29.70%% 17.50%%

Table 5: Experimental results of low intensity of smooth passenger
flow.

Target value-passenger waiting time (min)
Fixed speed GA CEA

1 57457 42986 36874
2 60487 39864 37021
3 61060 38501 38856
4 61300 39176 36891
5 59213 35456 35144
6 60794 39641 37398
7 60622 43900 35364
8 58564 41574 33951
9 60583 38125 33829
10 59178 41269 37076
Average value 59925.8 40049.2 36240.4
Promotion rate — 25.98%% 18.29%%
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By analyzing the results in Tables 7, 8, and 9, between the
fixed speed group and the GA group, the total passenger
waiting time can be reduced by approximately 30% and the
optimization effect is more significant compared with the
experimental results under smooth passenger flow. Based on
the analysis of the optimization results of the GA and CEA
groups, the promotion rate of the CEA under the increasing
passenger flow model also exhibited a better optimization
performance than that of the GA, and the total waiting time
of the passengers was be reduced by approximately 20%–
25%.

)ese results show that the strategy of scheduling de-
parture time and vehicle speed simultaneously is more ef-
fective in solving the bus scheduling under conditions of
increasing passenger flow distribution.

5.3. Decreasing Passenger-Flow Case Design and Analysis.
Decreasing passenger-flow distributions mainly occur
during the second halves of the morning and evening peak
periods, when the passenger flow is roughly as shown in
Figure 15, and the passenger arrival rate at the waiting
stations decreases with time.
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Figure 13: Increasing passenger arrival rate.

Table 6: Corresponding passenger arrival rate of each time period
under increasing passenger flow.

Passenger flow intensity
Time

7:00 7:20 7:40 8:00 8:20 8:40 9:00
High 1.02 1.14 1.23 1.35 1.43 1.50 1.56
Medium 0.75 0.81 0.89 0.98 1.06 1.10 1.15
Low 0.47 0.53 0.59 0.63 0.69 0.75 0.81
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Figure 14: Increasing passenger arrival rate.

Table 7: Experimental results of high intensity of increasing
passenger flow.

Target value-passenger waiting time (min)
Fixed speed GA CEA

1 619403 457448 337433
2 621726 434936 319820
3 598338 413338 363893
4 604811 422933 351116
5 622212 402986 314802
6 601899 457998 337487
7 595097 439372 322075
8 612457 428577 320092
9 641365 442198 350546
10 627986 459302 351753
Average value 614529.4 435908.8 336901.7
Promotion rate — 29.07%% 22.71%%

Table 8: Experimental results of medium intensity of increasing
passenger flow.

Target value-passenger waiting time (min)
Fixed speed GA CEA

1 345413 245116 174754
2 343683 243755 207487
3 346163 237078 173336
4 359888 258363 181776
5 329022 245019 190673
6 345462 237237 173531
7 342316 250711 192707
8 342426 238049 190411
9 353729 235589 177693
10 360498 248547 180253
Average value 346860 243946.4 184262.1
Promotion rate — 29.67%% 24.46%%

Table 9: Experimental results of low intensity of increasing pas-
senger flow.

Target value of passenger waiting time
(min)

Fixed speed GA CEA
1 135615 103686 70609
2 135510 98125 72889
3 138779 106780 79552
4 137131 93435 83193
5 142183 95030 68630
6 136735 95030 67061
7 137554 95338 79632
8 138248 100008 82094
9 141937 98200 70211
10 145826 101046 75338
Average value 138951.8 98778.6 74920.9
Promotion rate — 28.91%% 24.15%%
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)e second half of the simulated evening peak (6 PM to 8
PM) is selected for the experiment on the decreasing pas-
senger flow, and the passenger flow of high, medium, and
low intensities are also designed for the experiment. )e
specific experimental details of the descending-type pas-
senger flow are shown in Table 10. )e arrival rate curve of
increasing passengers flow is shown in Figure 16. )e ex-
perimental details of the decreasing passenger flow are
shown in Tables 11, 12, and 13.

By analyzing the experimental data in Tables 11, 12, and 13,
the experimental results of the descending passenger flow
distribution were found to be consistent with the experimental
results of the smooth and increasing passenger-flow distri-
bution. )e total waiting time of passengers was reduced by
approximately 25%–35%, and the overall optimization effect is
relatively significant. )e optimization effect of low intensity
passenger flow was particularly significant.

Based on the analysis of the optimization results of the
GA and CEA groups, the promotion rate of the CEA under
decreasing passenger flow has also exhibited a better opti-
mization performance than that of the GA. Furthermore, the
total waiting time of passengers can be reduced by ap-
proximately 15%–20%, which is roughly consistent with the
optimization effect under smooth passenger flow.

5.4. Multisegment Convex Passenger-Flow Case Design and
Analysis. )e schematic of multisegment convex passenger
flow is shown in Figure 17. )e passenger flow is generally
distributed in the morning and evening travel peaks or when a
large-scale event or celebration is held at a certain location,
resulting in a surge of passengers for a period.)emultisegment
convex passenger flow designed in this study is an ideal model,
which is a combination of the previous three types of passenger

flow. )e case simulates the passenger-flow curve between 7:00
AM and 10:00 AM, and the specific passenger flow data are
shown in Table 14. According to the data in Table 14, several
groups of experiments were conducted, and the experimental
results are shown in Table 15.
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Figure 15: Decreasing passenger arrival rate.

Table 10: Corresponding passenger arrival rate of each time period
under decreasing passenger flow.

Passenger flow
intensity

Time
18:00 18:20 18:40 19:00 19:20 19:40 20:00

High 1.32 1.25 1.19 1.10 1.05 1.02 0.99
Medium 0.95 0.90 0.87 0.83 0.79 0.75 0.69
Low 0.64 0.60 0.58 0.53 0.45 0.47 0.44

Table 11: Experimental results of high intensity of decreasing
passenger flow.

Target value-passengers waiting time (min)
Fixed speed GA CEA

1 384838 258389 232515
2 385267 267276 220811
3 386865 253559 203251
4 379500 271737 223164
5 397321 266677 209638
6 393100 283306 233943
7 38027 282428 238011
8 360,147 283881 219424
9 369449 264076 218073
10 370599 256232 234111
Average value 380721.3 268756.1 223294.1
Promotion rate — 29.41%% 17.29%%

Table 12: Experimental results of medium intensity of decreasing
passenger flow.

Target value-passenger waiting time (min)
Fixed speed GA CEA

1 52877 39418 31820
2 51376 41804 30618
3 53501 39258 33551
4 54033 40272 37892
5 54549 38907 35229
6 54696 38336 32226
7 53860 38165 30321
8 52571 38347 29951
9 53876 38146 29185
10 52478 38154 32763
Average value 53381.7 39080.7 32355.6
Promotion rate — 26.79%% 17.21%%
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Figure 16: Decreasing passenger arrival rate.
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Similarly, as shown in Table 15, the total waiting time of
passengers was reduced by approximately 30%. Hence, we
conclude that combining scheduling departure time and
vehicle speed forms a better bus scheduling strategy, which
can reduce the waiting time of passengers by approximately
30% compared with scheduling departure time alone.

By analyzing the optimization results of the GA and CEA
groups, the promotion rate in Table 15 of the CEA under the
passenger-flow models demonstrated a better optimization
performance than that of the GA, and the total waiting time
of passengers was reduced by approximately 20%.

Several experiments have verified that the strategy of
scheduling the departure time and speed simultaneously is
suitable for bus scheduling. Moreover, the CEA demon-
strated a suitable good optimization effect in a variety of
different passenger flow models. Compared with GA, the
optimization performance of each passenger flow model can
be improved by at least 10%, up to a maximum of 25%.

6. Conclusion

In this study, a joint decision model has been constructed to
simultaneously determine the departure time of vehicles on
multiple bus lines and their driving speeds between stations,
while considering the waiting times of passengers changing
between lines. A suitable GA was developed for the optimize
solution optimization; moreover, considering the charac-
teristics of the two decision variables in the model, a CEA
was developed to build departure time and speed scheduling
populations according to the decision variables, in which
each population is independent of the other and adopts
different evolutionary algorithms for solution optimization.
Numerous experiments were conducted to prove the fea-
sibility and efficiency of the algorithms. )e CEA provided
superior solutions by scheduling both speed and departure
time under different passenger-flow situations rather than by
scheduling only departure time, reducing the total waiting
time of passengers compared to that achievable using the
GA.

However, some factors were not accounted for in the
study, such as the actual weather or sudden accidents, which
will also affect road conditions and vehicle speed. In the
future, we will consider adding conditions, such as weather
and different sizes vehicle, to expand the applicability of the
model. )e present work mainly focuses on scheduling
strategy for existing vehicles running on established lines.
Some advanced methods have not been considered. Second-
order sliding mode control (SOSM) design optimization
methods are usually used in some vehicle power systems
applications, such as eliminating state errors due to different
vehicle parameters, achieving control performance and
energy effects, and realizing the optimal control of the
braking process [62–64]. We may consider vehicle system
optimization and the application of SOSM control design in
future research.

Table 13: Experimental results of low intensity of decreasing
passenger flow.

Target value-passenger waiting time (min)
Fixed speed GA CEA

1 183279 121557 88752
2 187986 119809 109355
3 176544 116803 100926
4 183367 116636 99010
5 184548 120044 104957
6 182440 120053 84053
7 183701 122068 101596
8 182559 119520 104496
9 183107 124627 100324
10 180583 128507 98304
Average value 182811.4 120962.4 99177.3
Promotion rate — 33.83%% 18.01%%
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Figure 17: Multisegment convex passenger arrival rate.

Table 14: Multisegment convex passenger-flow data table.

Time 7:00 7:20 7:40 8:00 8:20
Arrival rate 0.42 0.42 0.55 0.55 0.74
Time 8:40 9:00 9:20 9:40 10:00
Arrival rate 0.74 0.6 0.6 0.48 0.48

Table 15: Experimental results of multisegment convex passenger
flow.

Target value-passengers waiting time
(mins)

Fixed speed GA CEA
1 235081 161743 131097
2 227444 158880 135318
3 235998 152598 123548
4 235459 156932 111386
5 227460 152687 125302
6 228397 158178 106995
7 235924 153301 129909
8 223026 164859 124952
9 227900 166144 126458
10 220927 176650 128033
Average value 229761.6 160197.2 124299.8
Promotion rate — 30.27%% 22.41%%
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Appendix

A. Definitions of Symbols

)e following symbols are used in this paper.

(1) Indices

i: Bus number
j: Waiting station number on the line
p: Line number

(2) Static parameters

C: Maximum vehicle capacity
N: Total number of bus routes to be optimized
ND

p : Bus currently running on route p
NF

p: Number of buses to be decided in a planning
cycle of line p
NS

p: Number of bus stops online p
Dpj: Distance to be traveled between station j and
station (j–1) on route p
TG: Average of the boarding and deboarding times
per passenger
TEL: Sum of the times taken for a bus to decelerate
while approaching a stop and to accelerate while
leaving the stop
Spq: Set of the transfer station numbers online p that
can be transferred to line q; for example, the third
and sixth stops on the second bus line can be
transferred to the first and seventh stops on the
fourth line, and then, S24 � 3, 6{ }; note that Spq and
Sqp have different meanings
Tw

pqm: Station j of line p can be transferred to line q,
and then from station m of line p to the corre-
sponding transfer station online q
Spqj: Station number corresponding to line q when
station m online p is interchangeable with line q; if
station 3 online 1 is transferable to station 4 online
2, the value of S123 is 4
Vmin

p : Minimum travel speed online p
Vmax

p : Maximum travel speed online p
Hmin

p : Minimum departure interval of adjacent
vehicles on route p
Hmax

p : Maximum headway between adjacent vehi-
cles on route p

(3) Model Intermediate Variables

Nlast
pi : Serial number of the previous station just

visited by vehicle i on route p
Dnow

pi : Distance between the i-th bus on route p and
the last stop it visited at the beginning of the
planning cycle; for buses that have not yet departed
and that happen to arrive at a stop
Nnow on

pi : Number of passengers on bus i that is
running on route p at the beginning of the planning
cycle
Nnow wait

pj : Number of passengers waiting for buses at
stop j on route p at the beginning of the planning cycle

fpj(t): Passenger arrival as a function of time at the
j-th station of route p
cpj: Rate of passenger drop-offs at the j-th stop on
route p
μpqij: Transfer rate when bus i traveling online p can
transfer to line q at stop j; i.e., the ratio of the
transfer passengers to passengers who disembark
Tpij: Time at which vehicle i on route p departs
from stop j
Nwait

pij : Number of passengers waiting at stop j when
vehicle i on route p arrives at that stop
Nboard

pij : Number of passengers boarding from stop j
when vehicle i on route p arrives at that stop
Ndebus

pij : Number of passengers disembarking at stop
j when vehicle i on route p arrives at that stop
Npqij: Number of transfer passengers on vehicle i
on route pwho transfer to route q at transfer station
j; the value is 0 when station j on route p is not a
transfer station
Non

pij: Number of passengers carried by vehicle i on
route p when it arrives at station j
Tpqij: Transfer waiting time for passengers on ve-
hicle i on route p to transfer from stop j to route q
Ta

pij: Arrival moment of vehicle i on route p at
station j
T
avg w
p : Average waiting time for passengers on

route pwho fail to catch the last bus in the planning
cycle
Zpqijmm′ : If Zpqijmm′ ≥ 0, then vehicle i on route p
can transfer from stop j on route p to stop m’ on
route q and catch up with vehicle m on route q

(4) Decision-Making Variables

Tpil: Departure moment of vehicle i on route p from
the first stop
Vpij: Average travel speed of vehicle i on route p
between stations j and (j–1)

Data Availability

All the numerical experiments in this study were performed
on an Intel Core(TM) i7-8700 processor 3.19GHz computer
with 8GB of RAM and the Windows 10 operating system.
Six bus lines in Shenyang were selected as typical cases for
the scheduling problem.
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