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Abstract—A new method for robust estimation, MAGSAC++, is proposed. It introduces a new model quality (scoring) function that
does not make inlier-outlier decisions, and a novel marginalization procedure formulated as an M-estimation with a novel class of
M-estimators (a robust kernel) solved by an iteratively re-weighted least squares procedure. Instead of the inlier-outlier threshold, it
requires only its loose upper bound which can be chosen from a significantly wider range. Also, we propose a new termination criterion
and a technique for selecting a set of inliers in a data-driven manner as a post-processing step after the robust estimation finishes. On
a number of publicly available real-world datasets for homography, fundamental matrix fitting and relative pose, MAGSAC++ produces
results superior to the state-of-the-art robust methods. It is more geometrically accurate, fails fewer times, and it is often faster. It is
shown that MAGSAC++ is significantly less sensitive to the setting of the threshold upper bound than the other state-of-the-art
algorithms to the inlier-outlier threshold. Therefore, it is easier to be applied to unseen problems and scenes without acquiring
information by hand about the setting of the inlier-outlier threshold. The source code and examples both in C++ and Python are
available at https://github.com/danini/magsac.

Index Terms—Robust model estimation, RANSAC, noise scale, M-estimator, marginalization
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1 INTRODUCTION

T HE RANSAC (RANdom SAmple Consensus) algorithm pro-
posed by Fischler and Bolles [1] in 1981 has become the

most widely used robust estimator in computer vision. RANSAC
and its variants have been successfully applied to a wide range
of vision tasks, e.g., short baseline stereo [2], [3], wide baseline
matching [4], [5], [6], motion segmentation [2], detection of
geometric primitives [7], pose-graph initialization for structure-
from-motion pipelines [8], [9], image mosaicing [10], and to
perform [11] or initialize multi-model fitting algorithms [12],
[13]. In brief, RANSAC repeatedly selects random subsets of
the input data points, typically minimal, and fits a model, e.g.,
a 2D line to two points, a fundamental matrix to seven 2D point
correspondences, or a 6D pose to three 2D-3D correspondences.
The quality of the model is then measured, for instance, as the
cardinality of its support, i.e., the number of inlier data points.
Finally, the model with the highest quality, polished, e.g., by least-
squares fitting or numerical optimization on all inliers, is returned.

We propose a new robust loss, a randomized RANSAC-like
robust estimator (MAGSAC++) and a termination criterion which
eliminate the need for a hand-picked inlier-outlier threshold by
marginalizing over a range of noise scales when determining the
model quality and the inlier probabilities of data points.

Since the introduction of RANSAC, a number of modifications
have been proposed replacing the components of the original
algorithm. For instance, improving the sampler impacts the speed
of the robust estimation procedure via selecting a good sample
early and, thus, triggering the termination criterion. The NAP-
SAC [17] sampler assumes that inliers are spatially coherent and,
therefore, it draws samples from a hyper-sphere centered at the
first, randomly selected, location-defining point. If this point is
an inlier, the points sampled in its proximity are more likely to
be inliers than the ones outside the ball. While NAPSAC exploits
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(a) Homography; ExtremeView dataset [14]

(b) Epipolar geometry; IMW2020 dataset (St. Paul’s Cathedral) [15]

(c) Homography; HPatches dataset [16]

Fig. 1. Example image pairs from the datasets used for testing the
robust estimators. The inliers of MAGSAC++, selected adaptively by
the proposed procedure, are visualized.

the observation that inliers tend to be “closer” to each other than
outliers, the GroupSAC algorithm [18] assumes that inliers are
often “similar” to each other and, therefore, data points can be
separated into groups according to their similarities. PROSAC [19]
exploits an a priori predicted inlier probability rank of each point
and starts the sampling with the most promising ones. Progres-
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sively, samples that are less likely to lead to the sought model
are drawn. P-NAPSAC [20] merges the advantages of local and
global sampling by drawing samples from progressively growing
neighborhoods. Gradually, the algorithm changes from the fully
localized NAPSAC to the global PROSAC sampling.

Regarding speeding up the robust estimation process, one
way of avoiding unnecessary calculations is via termination of
verification of models which are unlikely to be more accurate than
the current so-far-the-best. There has been a number of preemptive
model verification strategies proposed. For example, when using
the Td,d test [21], the model verification is first performed on d
randomly selected points (where d � n). The remaining n − d
ones are evaluated only if the first d points are all inliers to
the verified model. The test was extended by the so-called bail-
out test [22]. Given a model to be scored, a randomly selected
subset of d points is evaluated. If the inlier ratio within this
subset is significantly smaller than the current best inlier ratio, it
is unlikely that the model will yield a larger consensus set than the
current maximum and, thus, is discarded. In [23], [24], an optimal
randomized model verification strategy was described. The test is
based on Wald’s theory of sequential testing [25]. Wald’s SPRT
test is a solution of a constrained optimization problem, where the
user supplies acceptable probabilities for errors of the first type
(rejecting a good model) and the second type (accepting a bad
model) and the resulting optimal test is a trade-off between the
time to decision and the errors committed.

Observing that RANSAC requires in practice more samples
than what theory predicts, Chum et al. [26] identified a problem
that not all all-inlier samples are “good”, i.e., lead to a model accu-
rate enough to distinguish all inliers, e.g., due to poor conditioning
of the selected random all-inlier sample. They address the problem
by introducing the locally optimized RANSAC (LO-RANSAC)
that augments the original approach with a local optimization step
applied to the so-far-the-best models. Lebeda et al. [14] showed
that, for models with many inliers, the local optimization becomes
a computational bottleneck due to the iterated least-squares model
fitting where the processing time is a function of the number of
used points. In [14], it is proposed to consider only a subset of the
inliers in the local optimization. Only the final model polishing
process is applied to the whole inlier set.

To improve the accuracy by better modelling the noise in the
data, different model quality calculation techniques have been
investigated. For instance, MLESAC [27] estimates the model
quality by a maximum likelihood procedure with all its beneficial
properties, albeit under certain assumptions about data point
distributions. In practice, MLESAC results are often superior to
the inlier counting of plain RANSAC, and they are less sensitive
to the manually set inlier-outlier threshold. In MAPSAC [28], the
robust estimation is formulated as a process that estimates both the
parameters of the data distribution and the quality of the model in
terms of maximum a posteriori.

All of the above-mentioned scoring strategies require a manu-
ally selected inlier-outlier threshold. Selecting a suitable threshold
requires the user to acquire knowledge about the problem and the
actual scene, restricting the out-of-the-box applicability of such
algorithms. While there are commonly used threshold values for
a number of problems, e.g. 2-3 pixels for homography estimation,
they rarely lead to highly accurate solutions. Addressing this
issue, the dependency on the user-defined inlier-outlier threshold
is reduced by its adaptive selection during the model parameter
estimation. The MINPRAN [29] algorithm, proposed in 1995,

assumes that the outliers are distributed uniformly in the image.
For each tested model, MINPRAN tests a number of candidate
thresholds and chooses the one with inliers the least likely to
have occurred randomly. Moisan et al. [30] proposed a contrario
RANSAC, AC-RANSAC in short, which follows an approach
similar to MINPRAN, but the minimized probability models the
consistency of data points with an unknown rigid model. In [31],
the best threshold is selected using the Likelihood Ratio Test.
While MINPRAN and AC-RANSAC are shown to achieve ac-
curate results, they obtain their solutions using a single adaptively
selected threshold. This approach can fail when the background
model does not follow the assumed distribution, e.g. the outliers
are structured, and it ignores the additional information that other
candidate thresholds provide. Also, testing multiple thresholds
for each minimal sample model often leads to a deterioration
in the processing time. The RECON [32] algorithm assumes
that the noisy observations of the sought model have a large
amount of common inliers with similar point-to-model residuals.
Finding multiple models with similar inlier sets is interpreted as
finding the sought model. The RANSAAC [33] algorithm follows
a different strategy to eliminate the threshold from the model
fitting procedure. RANSAAC estimates models from randomly
selected minimal samples similarly as RANSAC. It then converts
the models to sets of 2D points, and combines multiple models
by averaging the point coordinates used for representing them.
Finally, the model is fitted to the averaged point coordinates.
Besides the number of drawbacks of RANSAAC, e.g. non-robust
model-to-points conversion, it is shown by the authors that it only
works inside a local optimization process after a reasonably good
model is found. Thus, the inlier-outlier threshold is still required.

As the main contribution of this paper, we propose an ap-
proach, σ-consensus++, that eliminates the need for a precise
user-defined noise scale σ when estimating the model parameters
in a robust manner. Instead of σ, only a loose upper bound
σmax is required defining the range of possible threshold values.
The σ-consensus++ algorithm is in fact a new M-estimator (a
robust kernel), solved by an iteratively re-weighted least squares
procedure. This M-estimator marginalizes over the range of noise
scales. As minor contributions, we propose a new termination
criterion which does not require a σ value. Considering the fact
that some applications, e.g. structure-from-motion [34], need to
know inliers, we propose a way to adaptively determine the set of
inliers after the robust estimation finishes. The inliers are selected
by thresholding, such that the model to which they lead after least-
squares fitting is similar to the model determined by the robust
estimation procedure applied without inlier-outlier decisions done.

Preliminary versions of MAGSAC++ with σ-consensus++
were published at CVPR 2019 [35] and CVPR 2020 [20]. This
paper extends and improves them by (i) combining their “bells
and whistles”, (ii) proposing a termination criterion applicable for
MAGSAC++, (iii) proposing an inlier selection technique after
the robust process is applied, (iv) and providing a number of new
experiments on homography, fundamental matrix and relative pose
estimation. Example results are shown in Fig. 1.

2 NOTATION AND PRELIMINARIES

In this paper, the set of input data points is denoted P = {p | p ∈
Rν , ν ∈ N>0}, where ν is the dimension, e.g., ν = 2 for 2D
points and ν = 4 for point correspondences. The inlier set is
I ⊆ P . The model to fit is represented by its parameter vector
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θ ∈ Θ, where Θ = {θ | θ ∈ Rd, d ∈ N>0} is the manifold, e.g.,
of all possible 2D lines, and d = 2 is the dimension of the model
(angle and offset). Fitting function F : D → Θ, where D ⊂ P∗
and |D| ≥ m, calculates the model parameters from n ≥ m data
points, where P∗ = expP is the power set of P and m ∈ N>0

is the minimum point number for fitting a model, e.g., m = 2
for lines. Note that F is a combined function applying different
estimators based on the input point set. For instance, for P ′ ∈ P∗,

F (P ′) =

MinimalSolver(P ′) if |P ′| = m,

LSQ(P ′) otherwise.
(1)

FunctionR : Θ×P → R+ calculates the point-to-model residual.
Function I : Θ× R+ × P∗ → P∗ selects the set of inliers given
model θ and noise standard deviation σ. We assume that the inlier-
outlier threshold is calculated from the noise σ as τ(σ) = kσ,
where k is some constant. For instance, for the original RANSAC
approach, IRANSAC(θ, σ,P) = {p ∈ P | R(θ, p) < τ(σ)} and
τ(σ) = σ. The model quality function, measuring how much the
actual model interprets the scene, is Q : Θ × R+ × P∗ → R+.
Higher quality is interpreted as better model. Let {R(θ, pi)}ni=1

be the point-to-model residuals, ordered increasingly, such that
0 ≤ R(θ, p1) < R(θ, p2) < ... < R(θ, pn). For RANSAC,
QRANSAC(θ, σ,P) = |I(θ, σ,P)| and for MSAC, it is

QMSAC(θ, σ,P) = |I(θ, σ,P)| − 1

τ(σ)2

|I(θ,σ,P)|∑
i=1

R2(θ, pi).

3 MAGSAC
First, we describe the idea and design choices of the original
MAGSAC [35] approach in brief. We will also discuss its merits
and drawbacks.

3.1 Marginalizing Sample Consensus

Idea. In the original marginalizing sample consensus (MAGSAC)
algorithm [35], the model quality is defined by marginalizing over
the noise scale σ as follows:

Q∗(θ,P) =

∫ +∞

0
Q(θ, σ,P)f(σ)dσ,

where the noise σ is a random variable with density function f(σ),
Q : Θ × R+ × P∗ → R+ is a quality function, e.g., the inlier
counting of RANSAC, which depends on an input model θ ∈ Θ,
the inlier-outlier threshold τ(σ), and the set P of n data points.

Having no prior information, σ is assumed to be uniformly
distributed within range (0, σmax), where σmax is an upper bound
for the noise scale (σmax > 0). Considering this assumption, the
quality calculation becomes

Q∗(θ,P) =
1

σmax

∫ σmax

0
Q(θ, σ,P)dσ. (2)

For instance, using the inlier counting of plain RANSAC
QRANSAC(θ, σ,P), where τ(σ) = σ is the inlier-outlier threshold,
we get marginalized quality function

Q∗RANSAC(θ,P) = |I(θ, σmax,P)| − 1

σmax

|I(θ,σmax,P)|∑
i=1

R(θ, pi).

Symbols used in this paper
P = {p | p ∈ Rν , ν ∈ N>0} - Set of data points

P∗ - Power set of P
σ ∈ R+ - Noise standard deviation
σmax ∈ R+ - Noise std. upper bound
τ(σ) - Inlier-outlier threshold

Θ = {θ | θ ∈ Rd, d ∈ N>0} - Model manifold
R : Θ× P → R+ - Point-to-model residual
F : P∗ → Θ - Model estimator function

I : Θ× R+ × P∗ → P∗ - Inlier selector function
Q : Θ× R+ × P∗ → R+ - Model quality function

Data interpretation and design choices. In MAGSAC, the choice
of the marginalized quality functionQ is motivated by the assump-
tion that the residuals are calculated as the square root of a sum
of squared normally distributed variables. Typically, the residuals
of the inliers are calculated as the Euclidean-distance from model
θ in some ν-dimensional space (e.g., the re-projection error). In
the case of assuming the distances along each axis of this ν-
dimensional space to be independent and normally distributed with
the same variance σ2, value (residuals)2/σ2 has χ2- distribution
with ν degrees of freedom. For a given σ, the residuals of the
inliers are described by the trimmed χ-distribution1 with ν degrees
of freedom multiplied by σ with density

g(r | σ) = 2C(ν)σ−ν exp (−r2/2σ2)rν−1,

for r < τ(σ) and g(r | σ) = 0 for r ≥ τ(σ). The normalizing
constant C(ν) = (2ν/2Γ(ν/2)α)−1 and, for a > 0,

Γ(a) =

∫ +∞

0
ta−1 exp (−t)dt

is the gamma function, ν is the dimension of the Euclidean space
in which the residuals are calculated and τ(σ) is set to α-quantile
(e.g., α = 0.99) of the non-trimmed distribution.
Note: the idea of model quality marginalization is general and
independent of the choice of the noise distribution, here χ2.

Model polishing. The last step of RANSAC-like algorithms is the
re-fitting of the model to all inliers. However, due to MAGSAC
not making a strict inlier-outlier decision, the standard model pol-
ishing step is not directly applicable. Therefore, the σ-consensus
algorithm was proposed which, first, assigns an inlier weight to
each point and, finally, applies weighted least-squares fitting.

Suppose an input point set P and model θ estimated from a
minimal sample as in RANSAC. Let θσ = F (I(θ, σ,P)) be the
model estimated from the inlier set

I(θ, σ,P) = {p | p ∈ P ∧R(θ, p) < τ(σ)} (3)

selected using threshold τ(σ) around the input model θ. Scalar
τ(σ) is the threshold which σ implies; function F estimates the
model parameters from a set of data points; function I returns
the set of data points for which the point-to-model residuals are
smaller than τ(σ).

For each possible σ value, the likelihood of point p ∈ P being
inlier is calculated as

P(p | θσ, σ) = 2C(ν)σ−νRν−1(θσ, p) exp

(−R2(θσ, p)

2σ2

)
,

1. The square root of χ2-distribution.
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if R(θσ, p) ≤ τ(σ), where R(θσ, p) is the point-to-model
residual. If R(θσ, p) > τ(σ), likelihood P(p | θσ, σ) is 0. For
each point p, likelihood P(p | θσ, σ) is marginalized over σ and
the obtained probability is used as an inlier weight in the final
weighted least-squares fitting. The objective function Q(θ, σ,P)
is the log-likelihood with inlier density g(r | σ) and outliers
assumed uniformly distributed.

Issues. There are two main issues with the MAGSAC approach,
a practical and a theoretical one. In practice, the procedure of
marginalizing P(p | θσ, σ) over σ calculates P(p | θσ, σ) a
number of times with different σ values. Each calculation requires
to select the set of inliers and obtain θσ by LS fitting on them. This
step is time consuming even with the number of speedups proposed
in the original paper [35]. The theoretical issue is that the objective
function does not have its maximum at zero. Consequently, in the
case of having perfect data, i.e. no noise, MAGSAC fails to return
the sought model parameters. As a minor issue, both the quality
function and the likelihood can only be calculated approximately
for non piece-wise constant objective functions, e.g., χ2-based or
truncated L2 loss. The exact calculation can only be done for the
RANSAC-like inlier counting.

4 MAGSAC++

The MAGSAC++ algorithm is proposed here via reformulating
the previously described MAGSAC problem as an iteratively re-
weighted least-squares (IRLS) approach. To do so, a new model
quality function and a procedure to polish the model parameters
without making strict inlier-outlier decisions and doing a number
of LS fittings are proposed.

The proposed MAGSAC++ is based on an iteratively
reweighted least squares (IRLS) approach where the model pa-
rameters in the (i+ 1)th step are calculated as follows:

θi+1 = arg minθ
∑
p∈P

w(R(θi, p))R
2(θ, p), (4)

where the weight of point p is

w(R(θi, p)) =

∫ +∞

0
P(p | θi, σ)f(σ)dσ (5)

and θ0 = θ, i.e., the initial model from the minimal sample.

Data interpretation and design choices. Similarly as in
MAGSAC, the inlier residuals are Euclidean-distances of points
assumed to be corrupted by Gaussian noise and, thus, have χ-
distribution. The noise standard deviation σ is assumed to be
uniformly distributed within (0, σmax). However, we make no
assumptions about the outlier distributions. Note that the proposed
quality and inlier weight functions can be modified straightfor-
wardly when considering differently distributed inliers.

4.1 Inlier Weight Calculation

The weight function defined in (5) is the marginal density of the
inlier residuals as follows:

w(r) =

∫ +∞

0
g(r | σ)f(σ)dσ. (6)
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Fig. 2. Weighting functions for robust fitting. For MAGSAC++, we
use σmax = 2σ as an example and degrees-of-freedom ν = 2 (e.g.,
2D line fitting) and 4 (e.g., problems with point correspondences).

Let τ(σ) = kσ be the chosen quantile of the χ-distribution. For
residual 0 ≤ r ≤ kσmax,

w(r) =
1

σmax

∫ σmax

r/k
g(r | σ)dσ =

1

σmax
C(ν)2

ν−1
2

(
Γ

(
ν − 1

2
,
r2

2σ2
max

)
− Γ

(
ν − 1

2
,
k2

2

))
and, for r > kσmax, weight w(r) = 0. Function

Γ(a, x) =

∫ +∞

x
ta−1 exp (−t)dt

is the upper incomplete gamma function. Due to the design
choices, weight w(r) is positive and decreasing on interval
[0, τ(σmax)]. Thus there is a ρ-function of an M-estimator which
is minimized by IRLS using w(r) and each iteration guarantees a
non-increase in its loss function (chapter 9 of [36]). Consequently,
it converges to a local minimum. If different noise distribution is
assumed, this property does not necessarily hold. In those cases,
a different algorithm should be used to solve the problem, e.g.,
Levenberg-Marquardt optimization [37].

IRLS (4) where w(r) is defined by (6) with τ(σ) = 3.64σ,
where 3.64 is the 0.99 quantile of the χ-distribution with ν = 4,
will be called σ-consensus++ for problems using point corre-
spondences. Parameter σmax is the same user-defined maximum
noise level parameter as in MAGSAC, usually, set to a fairly high
value, e.g., 10 pixels for homography fitting. The σ-consensus++
algorithm is applied for fitting to a non-minimal sample and, also,
as a post-processing to improve the output of any robust estimator.

4.2 Model Quality Function

In order to select the model interpreting the data, a quality function
has to be defined. Let

QM++(θ,P) = n− 1

ρ(kσmax)
L(θ,P) =

|I(θ, σmax,P)| − 1

ρ(kσmax)

|I(θ,σmax,P)|∑
i=1

ρ(R(θ, pi)),

where
L(θ,P) =

∑
p∈P

ρ(R(θ, p)), (7)

is a loss function of the M-estimator defined by our weight
function w(r). Function

ρ(r) =

∫ r

0
xw(x)dx =

∫ +∞

0

(∫ r

0
xg(x | σ)dx

)
f(σ)dσ
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for r ∈ [0,+∞). For any point p with residual r, the loss function
is the mean of the residual values lower then r of a random
variable with χ-distribution, i.e., the assumed distribution of the
inlier residuals. Thus, the ρ-function is some type of a reasonable
distance. It can be formulated in the same way for each σ and then
marginalized over σ as in MAGSAC.

Due to assuming that the σ values are uniformly distributed
within range [0, σmax] for 0 ≤ r ≤ τ(σmax),

ρ(r) =

1

σmax

∫ σmax

0
[C(ν)2

ν+1
2 σγ(

ν + 1

2
,
r2

2σ2
)− r2

2
g(kσmax|σ)]dσ

and the integral can be removed as follows:

ρ(r) =
1

σmax
C(ν)2

ν+1
2 [

σ2
max

2
γ(
ν + 1

2
,
r2

2σ2
max

) +

r2

4
(Γ(

ν − 1

2
,
r2

2σ2
max

)− Γ(
ν − 1

2
,
k2

2
))].

For r > τ(σmax),

ρ(r) = ρ(kσmax) = σmaxC(ν)2
ν−1
2 γ(

ν + 1

2
,
k2

2
),

where
γ(a, x) =

∫ x

0
ta−1 exp (−t)dt

is the lower incomplete gamma function. Weight w(r) can be
calculated precisely or approximately as in MAGSAC. However,
the precise calculation can be done very fast by storing the values
of the complete and incomplete gamma functions in a lookup
table. Then the weight and quality calculation becomes merely
a few operations per point. MAGSAC++ algorithm uses (7) as
quality function and σ-consensus++ for estimating the model
parameters. Function w(r) is visualized in Fig. 2 together with
other weightings which are often used for robust model fitting.

4.3 Termination Criterion
The number of inliers during the robust estimation is unknown due
to not making strict inlier-outlier decisions. It is thus not possible
to apply the standard termination criterion of RANSAC [38]

k(θ, σ,P) =
ln(1− µ)

ln
(

1−
(
|I(θ,σ,P)|
|P|

)m) , (8)

where k is the iteration number, µ is a manually set confidence in
the results (typical values are 0.95 or 0.99), m is the size of the
minimal sample needed for the estimation, and |I(θ, σ,P)| is the
inlier number of the so-far-the-best model.

In order to determine k without using a particular value for σ,
it is a straightforward choice to marginalize over the noise scale
σ. Let us assume that the points are ordered by their residuals as
0 = τ(σ0) ≤ R(θ, p1) = τ(σ1) ≤ R(θ, p2) = τ(σ2) ≤ ... ≤
R(θ, pk) = τ(σk) ≤ τ(σmax) < R(θ, pk+1) = τ(σk+1) ≤
... ≤ R(θ, pn) = τ(σn). The iteration number is calculated as

k∗(θ,P) =
1

σmax

∫ σmax

0
k(θ, σ,P)dσ = (9)

1

σmax

∫ σmax

0

ln(1− µ)

ln
(

1−
(
|I(θ,σ,P)|
|P|

)m)dσ. (10)

Due to the fact that function |I(θ, σ,P)|, measuring the number
of inliers given a noise scale σ, is piece-wise constant, and that is

the only part of (10) depending on σ, the integral can be replaced
by a weighted summation. It is as follows:

k∗(θ,P) =
1

σmax

k∑
i=1

(σi − σi−1) ln(1− µ)

ln
(

1−
(
|I(θ,σi−1,P)|

|P|

)m) . (11)

The function is, however, problematic when there are no points
with zero residual. In that case, the denominator becomes ln(1) =
0 and the iteration number∞. We, thus, shift the inlier number by
one and introduce a slight and artificial approximation as

k∗(θ,P) ≈ 1

σmax

k∑
i=1

(σi − σi−1) ln(1− µ)

ln
(

1−
(

i
|P|

)m) . (12)

Thus the number of iterations required for MAGSAC++ is calcu-
lated during the procedure and updated whenever a new so-far-
the-best model is found, similarly as in RANSAC.

5 INLIER SELECTION

For some applications, the knowledge of what is inlier and
outlier is a requirement. For instance, in structure-from-motion
algorithms, the inlier correspondences are triangulated in 3D after
the relative pose estimation and used for the reconstruction. Given
the estimated model parameters θ after applying MAGSAC++, the
objective is to find a reasonable set of inliers without introducing
new parameters, e.g., a threshold. The idea is to return the set of
points on which a least-squares fitting leads to a model which is
similar to the one determined by the robust estimator. The problem
is formalized as follows:

I∗ = argI⊆P min |F (I)− θ|, (13)

where function F estimates the model parameters from a set of
data points, and norm |.| is some distance function defined over
the model manifold. Note that this formulation allows to consider
as inliers points with large point-to-model residuals. Besides, the
problem introduced in (13) is NP-hard. Therefore, we weaken (13)
by assuming that there exists a noise scale σ∗ and, thus, an inlier-
outlier threshold τ(σ∗) such that the points with residuals smaller
than τ(σ∗) are the elements of I∗. Consequently, it is enough to
find σ∗. The problem becomes the following.

σ∗ = argσ∈Σ min |F (I(θ, σ,P))− θ|, (14)

where Σ = {σi}ki=1 ⊂ [0, σmax] as introduced above (10). Note
that it is straightforward to see that there are no other threshold
values leading to different sets of inliers [29].

In the algorithm, we define the model-to-model distance as the
sum of L1 point-to-model residual distances as follows:

|θ1 − θ2| =
∑
p∈P
|R(θ1, p)−R(θ2, p)|. (15)

Since the sought model should be of the same distance from both
the inliers and outliers as the initial one, distance |θ1 − θ2| can
measured on all points without differentiating inliers and outliers.
Since we measure the L1 residual differences, outlier points with
large residuals do not have higher impact on the model-to-model
distance than inliers with small residuals. Also, distance |θ1 − θ2|
is enough to be measured only on a subset of points to speed up
the procedure when needed. The pseudo-code of the algorithm
is shown in Alg. 3. Parameter nmin is the minimum number of
points required to return, depending on the current application.
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Algorithm 1 The MAGSAC++ Algorithm.
Input: P – data points; εmax – max. threshold

µ – confidence;
Output: θ∗ – model parameters; I∗ – inliers (optional)

1: q∗ ← 0.
2: while ¬ Terminate(µ, q∗) do . Section 4.3
3: S ← Sample(P). . default: P-NAPSAC sampler [20]
4: if ¬ TestSample(S) then . Degen. and cheirality tests
5: continue
6: θ ← EstimateModel(S)
7: if ¬ TestModel(θ) then . Degen. and cheirality tests
8: continue
9: θ′ ← σ-consensus++(P , θ, τ−1(εmax)) . Alg. 2

10: if ¬ TestModel(θ′) then . Degen. and cheirality tests
11: continue
12: q ← Scoring(P , θ′, τ−1(εmax)) . Eq. 7
13: if q > q∗ then
14: q∗, θ∗ ← q, θ′

15: I∗ ← SelectInliers(θ∗,P) . Section 5 (optional)

Algorithm 2 The σ-consensus++ Algorithm.
Input: P – data points; σmax – max. noise scale

θ – initial model;
Output: θ∗ - model parameters

1: θ0, i← θ, 0.
2: repeat
3: {rj}|P|j=1 ← {R(θi, p) | p ∈ P}
4: {r̂j}|P|j=1 ← Sort({rj}|P|j=1)

5: {wj}|P|j=1 ← {w(r̂j)}|P|j=1 . Eq. 6

6: θi+1 ← WLS(P, {wj}|P|j=1) . Weighted least-squares
7: if ¬ TestModel(θi+1) then . Degen. and cheir. tests
8: break
9: i← i+ 1

10: until Terminate(θi−1, θi, i)
11: θ∗ ← θi

If there is no requirement, nmin = m, where m is the minimal
sample size. Note that for models which are estimated from a
larger-than-minimal sample by using SVD decomposition, e.g.
fundamental/essential matrix, homography, using an incremental
version of SVD, e.g. [39], speeds up the procedure significantly
when a large number of points falls closer than σmax. Also, the
procedure is straightforwardly parallelizable on multiple CPU
cores.

6 ALGORITHMIC CHOICES

To achieve state-of-the-art results, we combine the proposed
MAGSAC++ with the components discussed in USAC [40]. We
consider three popular vision problems, i.e., fundamental matrix,
homography and relative pose (i.e., essential matrix) estimation.
The included components for each problem are as follows:

1. Sample degeneracy. The degeneracy tests of minimal samples
are for rejecting clearly bad samples to avoid the sometimes ex-
pensive model estimation. For homographies, samples consisting
of collinear points are rejected.

2. Sample cheirality. The test is for rejecting samples based on
the assumption that both of the cameras observing a 3D surface
must be on its same side. For homography fitting, we check if the
ordering of the four point correspondences – along their convex
hulls – in both images are the same. If not, the sample is rejected.

3. Model degeneracy. The purpose of this test is to reject models
early to avoid verifying them unnecessarily. For fundamental
matrices, DEGENSAC [41] is applied to determine if the epipolar
geometry is affected by a dominant plane. For relative pose
estimation, improper rotation matrices [42], i.e. the ones with
negative determinant, are rejected. We observed that, for epipolar
geometry estimation, symmetric epipolar distance tends to be
more robust to degenerate models. In contrast, Sampson distance
leads to higher accuracy – when using Sampson distance some
degenerate models have lots of inliers. Therefore, we use Sampson
distance as residual function when estimating fundamental and
essential matrices and reject all models where the inlier number is
significantly lower with symmetric epipolar distance. In practice,
we found that a model can be rejected if it does not have at least
half as many inliers with symmetric epipolar distance as with
Sampson distance.

4. Model cheirality. The test is for rejecting models considering
that the cameras must be on the same side of the observed surface.
For fundamental and essential matrix estimation, we apply the
oriented epipolar constraint [43].

5. Sampling. We use the P-NAPSAC sampler [20]. It requires
an a priori determined ordering of the input data points for its
PROSAC [19] part. We used the scoring coming from the ratio-
test [44]. The neighborhoods were determined by a multi-layer
grid as proposed in [20] to minimize the computational overhead.

6. Solvers. One of the most time-sensitive parts of RANSAC-like
robust estimation is the solver estimating the model parameter
from a minimal or larger-than-minimal sample. It is time-sensitive
since it runs at least once in every iteration. In many popular vision
problems, e.g. homography estimation, the solution includes ho-
mogeneous or inhomogeneous linear systems. We thus tested the
ways of solving such systems by the algorithms implemented in
the Eigen library and chose the actual solvers in our MAGSAC++
implementation accordingly. Homographies are estimated by the
standard normalized 4PT algorithm [38]. In the minimal case,
the correspondences were not normalized since the system is not
over-determined – the solution is exact. For fundamental matrices,
the 7PT algorithm [38] runs to estimate from a minimal sample.
In the over-determined case, we applied the normalized 8PT
algorithm [45]. Essential matrices are estimated by the solver of
Stewenius et al. [46]. When selecting the actual method applied to
solve a linear system, our strategy was the following.

Table 1 reports the accuracy in pixels and processing time in
milliseconds of methods solving the linear systems in the solvers
for homography, fundamental and essential matrix estimation.
Each test is repeated 100 000 times on randomly generated point
correspondences. In each test, the size of the larger-than-minimal
sample is selected uniformly randomly from range [m+ 1, 1000],
where m is the sample size.

In the minimal case, we chose the fastest methods from
Table 1 since the accuracy is not crucial – the model is always
improved later on more inliers. Also, this solver runs the most
times. For fitting homographies to minimal samples, we solve the
normal equations of the implied linear system via the Cholesky
decomposition (LLT in the table). For estimating fundamental
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Algorithm 3 Inlier Selection.
Input: P – data points; θ – initial model

nmin – min. # of required points . default: sample size
Output: I∗ – inliers

1: {rj}kj=1 ← Sort({R(θ, p) | p ∈ P ∧R(θ, p) ≤ τ(σmax)})
2: ε∗ ←∞.
3: for i = nmin .. k do
4: θ′ ← LS({rj}ij=1) . Least-squares fitting
5: ε← |θ − θ′| . Eq. 15
6: if ε < ε∗ then
7: ε∗, I∗ ← ε, {rj}ij=1

matrices, the null-space from the coefficient matrix is calculated
by the LU decomposition with complete pivoting since that is one
of the fastest solutions when we are given a 7 × 8 coefficent
matrix (FullPivLU). For essential matrices, we chose the LU
decomposition with complete pivoting (FullPivLU).

In the over-determined case, we selected the methods leading
to the lowest errors. If there are multiple ones leading to the
same error, the fastest one is applied. For fitting homographies,
we apply the QR decomposition with column pivoting (ColPiv-
HouseholderQR) – all tested types of QR decomposition lead to
similarly low error, but column pivoting is the fastest. For esti-
mating fundamental matrices, the null-space from the coefficient
matrix is calculated by the QR decomposition with full pivoting
(FullPivHouseholderQR). For essential matrices, we chose the QR
decomposition with column pivoting (ColPivHouseholderQR).

The pseudo-code of MAGSAC++ and σ-consensus++ are
shown in Algs. 1, 2, respectively. In the algorithm, TestSample
refers to the degeneracy and cheirality checks applied to minimal
samples. Function TestModel is the degeneracy and cheirality
checks applied to the estimated models.

7 EXPERIMENTS

For testing the proposed methods, we used the problems and
datasets from CVPR tutorial RANSAC in 2020 [47]. The datasets
and codes used are available at https://github.com/ducha-aiki/
ransac-tutorial-2020-data. The hyper-parameters of all compared
methods were tuned on the provided training set to maximize
the accuracy. The reported errors were then calculated on the set
which was not used when setting the hyper-parameters.

The error metric used is the mean Average Accuracy (mAA).
This metric was originally introduced in [48], where it was called
mean Average Precision (mAP). Later, Jin et al. [49] argued that
“accuracy” is the correct terminology, due to simply evaluating
how many of the predicted poses are accurate, as determined by
thresholding the acceptance threshold, i.e., the threshold which
decides if a particular result is accurate or not.

In order to determine which method is the least sensitive to
the setting of either σ or σmax, we also measure the insensitivity
to the inlier-outlier threshold (or upper limit in the case of
MAGSAC, MAGSAC++ and AC-RANSAC). The methods
were run multiple times using different threshold values from
t1, . . . , tn. For fundamental matrix and relative pose estimation,
t1..8 = (0.1, 0.25, 0.5, 1.0, 1.5, 3.0, 5.0, 10.0). For homography
estimation, the following threshold values are used tH1..12 =
(0.1, 0.25, 0.5, 1.0, 1.5, 3.0, 5.0, 10.0, 25.0, 50.0, 75.0, 100.0).
For each run, we calculated the mAA score of the results. The

insensitivity of a method is measured as the weighted average of
the mAA scores as follows:∑n

i=1(ti − ti−1)mAA(ti)∑n
i=1(ti − ti−1)

=
1

tn

n∑
i=1

(ti− ti−1)mAA(ti), (16)

where t0 = 0 and mAA(ti) is the mAA score of a method after
running it with threshold ti. Formula (16) approximates the area
under the mAA curve when plotted as the function of the inlier-
outlier threshold used for the estimation.

In the rest of the paper, we call (16) the insensitivity measure.
Note that measuring purely the insensitivity without including
the accuracy of a method would require normalizing (16) by the
maximum mAA value. We avoid this to make the insensitivity
scores interpretable on their own. For example, (16) equals to 1
only if the method returns the perfect solution independently of
the threshold.

7.1 Fundamental matrix estimation
The methods compared for fundamental matrix estimation are
OpenCV RANSAC [1], OpenCV LMedS [50], LO-RANSAC [26],
LO-RANSAC + DEGENSAC [41], GC-RANSAC [51], GC-
RANSAC + DEGENSAC, USAC [40], AC-RANSAC [30],
MAGSAC, MAGSAC++, and GC-RANSAC with MAGSAC++
quality function and DEGENSAC. AC-RANSAC is a method
setting the threshold adaptively. We tested two settings, i.e., with
(AC-RANSAC) and without (AC-RANSAC ∞) an upper bound
on threshold. The upper bound was tuned on the test set similarly
as the parameters of the other tested methods.

The data are from the CVPR IMW 2020 PhotoTourism chal-
lenge. Correspondences were obtained using RootSIFT features
and mutual nearest neighbour matching. We used all scenes from
the test set, i.e., Sacre Coeur, St Peters Square, Brandenburg Gate,
Buckingham Palace, Colosseum Exterior, Grand Place Brussels,
Notre Dame Front Facade, Palace of Westminster, Pantheon Ex-
terior, Prague Old Town Square, Taj Mahal, Temple Nara Japan,
Trevi Fountain, Westminster Abbey. From the validation set, we
used only scene British Museum to tune the hyper-parameters of
the methods. Each scene contains 4950 image pairs. The reported
accuracy is calculated on the total of 54450 image pairs from the
test set using the parameters tuned on scene British Museum.

The results on the test set are shown in Fig. 3a. It
can be seen that MAGSAC, MAGSAC++, GC-RANSAC, GC-
RANSAC + DEGENSAC, and GC+RANSAC + DEGENSAC
with MAGSAC++ quality function leads to similar accuracy.
The maximum mAA difference between their results is 0.007.
The most accurate results are obtained by GC-RANSAC with
DEGENSAC and the proposed MAGSAC++ quality function. The
other methods which do not need to a set a single threshold value,
i.e. AC-RANSAC and LMeDS, are significantly less accurate. AC-
RANSAC when applied without an upper bound (AC-RANSAC
∞) fails to return reasonable solutions in most of the cases.
With an upper bound, it is more accurate than the RANSAC
implemented in OpenCV.

The first row of Fig. 4a plots the mAA scores on scene British
Museum as the function of the inlier-outlier threshold used for
the estimation. We chose this scene since it is the first one in the
validation set when the scene names are ordered alphabetically. All
methods expect for MAGSAC and MAGSAC++, have a similar
trend, i.e., their results increase slightly in the beginning while
the threshold approaches its optimal value – for example, 0.75 px

https://github.com/ducha-aiki/ransac-tutorial-2020-data
https://github.com/ducha-aiki/ransac-tutorial-2020-data
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Average processing time (milliseconds) Average error (pixels)
H F E H F E

m > m m > m m > m m > m m > m m > m

LLT 0.002 – – – – – 10−8 – – – – –
LDLT 0.003 – – – – – 10−8 – – – – –
PartialPivLU 0.003 – – – – – 10−11 – – – – –
FullPivLU 0.003 – 0.011 – 0.060 – 10−11 – 10−12 – 10−14 –
HouseholderQR 0.005 0.099 0.014 0.028 0.067 0.081 10−11 10−7 10−9 10−7 10−12 10−6

ColPivHouseholderQR 0.006 0.085 0.015 0.027 0.069 0.077 10−10 10−7 10−10 10−7 10−13 10−8

FullPivHouseholderQR 0.006 0.103 0.014 0.026 0.066 0.075 10−11 10−7 10−12 10−7 10−14 10−3

JacobiSVD 0.023 22.356 0.028 0.039 0.079 0.088 10−6 10−6 10−4 10−6 10−13 10−7

BDCSVD 0.024 27.954 0.028 0.040 0.080 0.089 10−6 10−6 10−4 10−6 10−13 10−7

TABLE 1. The average processing times (in milliseconds) and errors (in pixels) in the estimated homographies (H), fundamental (F) and
essential (E) matrices using different methods for solving the linear systems in their solvers when estimating the model parameters from a
minimal (m) or a larger-than-minimal (> m) sample. Each test is repeated 100 000 times. The size of the larger-than-minimal sample is selected
uniformly randomly from range [m+ 1, 1000]. For error calculation, the re-projection was used for homographies, and Sampson-distance for
fundamental and essential matrices. The tested methods solving linear systems are the ones implemented in the Eigen library.
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(c) Homography estimation

Fig. 3. The mean Average Accuracy of the tested robust estimators on fundamental matrix, relative pose and homography estimation. For
each problem, the methods are ordered according to their scores. We used all scenes from the test set of the CVPR IMW 2020 PhotoTourism
challenge. For F and E estimation, the methods were tested on a total of 54450 image pairs. Abbrevations used: OpenCV RANSAC (RANSAC),
GC-RANSAC + DEGENSAC (GC + DEG), GC-RANSAC + DEGENSAC + MAGSAC++ scoring (GC + DEG + M++). Higher value is better.

for USAC. Then their accuracy starts dropping dramatically. The
trend of MAGSAC and MAGSAC++ is different. If the maximum
threshold is set to a too low value, e.g. < 1 px, the results are
inaccurate as it is expected. Between 1 and 10 pixels, the results
are reasonably stable. This range is much wider than for the other
methods which are only stable in-between 0.5−1.5 pixels. Graph-
Cut RANSAC with DEGENSAC and the proposed MAGSAC++
scoring shows an interesting trend, since it leads to almost constant
mAA score in-between 0.1 − 1.5 px threshold, then it starts
deteriorating, however, less significantly than most of the other
methods. The second row of Fig. 4a shows the processing time as
the function of the threshold. It can be seen that MAGSAC++
is faster than MAGSAC as it is expected. It leads to similar
processing time to its other less accurate alternatives.

The first column of Table 2 reports the threshold-insensitivity
score on scene British Museum calculated as proposed in (16).
MAGSAC++ combined with DEGENSAC yields the highest score
and, thus, that method is the least sensitive to the setting of the
inlier-outlier threshold – it is the easier to be used when applying
robust estimation to a yet unseen scene.

7.2 Essential matrix estimation

The methods compared on relative pose (i.e., essential matrix)
estimation are OpenCV RANSAC [1], OpenCV LMedS [50],
LO-RANSAC [26], GC-RANSAC [51], USAC [40], AC-

F E H AVG
OpenCV RANSAC 0.076 0.342 0.358 0.259
OpenCV RHO – – 0.329 –
USAC 0.096 0.590 0.452 0.379
GC + DEG 0.113 – – –
AC-RANSAC 0.118 0.670 0.421 0.403
GC-RANSAC 0.125 0.489 0.261 0.292
GC (+ DEG) + M++ 0.170 0.564 0.275 0.336
MAGSAC 0.215 0.797 0.519 0.510
MAGSAC++ 0.273 0.776 0.514 0.521
MAGSAC++ + DEG 0.279 – – –

TABLE 2. The insensitivity (16) to the inlier-outlier threshold (or its
upper bound) is shown on fundamental matrix (F), essential matrix
(E), and homography (H) fitting. The best values are shown in red,
the second best ones are in blue.

RANSAC [30], MAGSAC, MAGSAC++, and GC-RANSAC with
MAGSAC++ quality function. DEGENSAC is not included in
these tests since it is for recovering the fundamental matrix
from scenes with dominant planar structures. For the five-point
algorithm [46], planar scenes are not degenerate. Since the datasets
used for fundamental matrix estimation contain the intrinsic cam-
era parameters as well, we used the same scenes.

Fig. 3b shows that the most accurate essential matrices are
clearly obtained by MAGSAC++ which achieves ≈4% higher
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(c) Homography estimation

Fig. 4. The mean Average Accuracy (top row; higher is better) and average processing time (bottom; in seconds; lower is better) plotted as the
function of the inlier-outlier threshold (or its upper limit; horizontal axis) parameter. For fundamental matrix and relative pose estimation, only
scene British Museum was used. Homographies were estimated from both the EVD and HPatches datasets. The threshold (horizontal axis) is
shown on a logarithmic scale – the right half of the plots covers a significantly larger area than the left one.

mAA score than the second best MAGSAC. The other methods
which do not need to a set a single threshold value, i.e. AC-
RANSAC and LMeDS, are significantly less accurate, however,
they are better than for fundamental matrix estimation. AC-
RANSAC without an upper bound (AC-RANSAC ∞) fails to
return reasonable solutions in most of the cases. With an upper
bound, it is more accurate than OpenCV RANSAC and USAC.

The top row of Fig. 4b shows similar trend as for fundamental
matrix estimation. All methods but MAGSAC and MAGSAC++
have a clear “best” threshold. If it is exceeded, their accuracy de-
teriorates dramatically. The results of MAGSAC and MAGSAC++
are almost constant throughout the range of thresholds. Interest-
ingly, MAGSAC++ is the most accurate when the threshold upper
bound is set to a small value, e.g., 0.1. Its results are just slightly
less accurate for other threshold values. AC-RANSAC performs
better here than for fundamental matrix estimation. The processing
times are shown in the bottom row of Fig. 4b. MAGSAC++
is significantly faster for most of the threshold values than the
other robust estimators. While AC-RANSAC leads to reasonable
accuracy, it is significantly slower than the other methods.

7.3 Homography estimation
For homography estimation, we used the ExtremeView [14]
(EVD) and HPatches [16] datasets partitioned into test and
validation sets as done in [47]. They consist of image pairs of
different sizes from 329 × 278 up to 1712 × 1712 with point
correspondences provided. The pairs of EVD undergo an extreme

view change, i.e., wide baseline or extreme zoom. The HPatches
scenes are extracted from a number of image sequences, where
each sequence contains images of some planar object, e.g. a paint-
ing or a wall with graffiti. Since the datasets contain significantly
fewer images then the ones used for epipolar geometry estimation,
we repeated every method 100 times on each image pair. Besides
the methods used for epipolar geometry estimation, we included
the RHO [52] method implemented in OpenCV. The validation
set was used to tune the hyper-parameters of the methods. The
accuracy is measured on the test set.

It can be seen in Fig. 3c that the most accurate results are
estimated by GC-RANSAC, MAGSAC++ and LO-RANSAC with
a marginal difference of 0.002 – 0.005 in their mAA scores. The
same trend can be observed for AC-RANSAC and LMeDS as
before. AC-RANSAC with its threshold upper bound tuned works
reasonably well. LMeDS fails to return accurate results. The mAA
scores on the test set using varying threshold values are shown in
the top row of Fig. 4c. Since the methods do not seem to be
as sensitive to the inlier-outlier threshold as when fitting epipolar
geometry, we tested a much wider range 0.1 – 100 than previously.
The performance of MAGSAC and MAGSAC++ is very stable
if σmax is chosen from interval [5, 100], where the accuracy
difference is small. They achieve their maximum accuracy at
σmax = 25, however, the accuracy drops only marginally for
higher values. The bottom plot of Fig. 4c shows the processing
time in seconds as the function of the inlier-outlier threshold. If
the threshold is set to a small value (≤ 1) all methods, except
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Fig. 5. The inliers of the estimated homography selected by the
proposed adaptive strategy with varying the parameter nmin which
controls the minimum number of required inliers.

RHO, gets slow. However, if τ(σ) or τ(σmax) is greater than 3 the
proposed MAGSAC and MAGSAC++ is similarly fast as the other
methods running at real-time speed. While RHO is extremely fast
for all settings, it is reasonably accurate only for a narrow range
of thresholds, where all the other methods are similarly fast.

7.4 Iteratively Re-weighted Least-Squares on 2D Lines
We compare the proposed iterative re-weighting strategy without
the other components of MAGSAC++. To do so, we generated 100
2D points stemming from a 2D line and outliers. The outliers were
generated uniformly randomly within a window of size 1000 ×
1000. A 2D line passing through the middle of the window is
generated with a random normal. Points were sampled from the
line uniformly randomly and, then, zero-mean Gaussian-noise was
added to their coordinates. We tested the following parameters:
noise σ ∈ {0, 5, . . . , 50}; outlier ratio µ ∈ {0.0, 0.1, . . . , 0.9};
threshold multiplier τ ∈ {1, 2, 5, 10, 25}. The actual inlier-outlier
threshold is calculated by multiplying τ with the noise scale σ. For
each configuration, 10 000 tests were run.

Fig 6 plots the average angular errors (in degrees) as the
function of the tested parameters. The compared robust weight-
ing techniques are the proposed MAGSAC++; MSAC, assigning
weight 1 if the point is closer than the threshold and, otherwise
0; Tukey bi-square weighting; Huber weights and re-descending
Huber weights. It be seen that the MAGSAC++ weights guide
the IRLS more successfully than the other compared techniques.
Thus, the final errors of MAGSAC++ are smaller if threshold is set
reasonably large. Also, it is the least sensitive to over-estimating
the threshold value – its results are just slightly affected even if the
actual threshold is 25 times the noise scale. Note that the offset
errors of the estimated lines show a similar trend.

7.5 Inlier Selection
To test the proposed inlier selection, we generated a syn-
thetic scene similarly as in the previous section. We compared

the proposed technique with MINPRAN [29] and a contrario
RANSAC [30]. We measured the average model error (15), in
pixels, and the number of returned inliers. All algorithms got
the ground truth line as input to select the inliers. Each test was
repeated 10 000 times. The results are shown in Fig 7. The average
model accuracy (left) and the number of inliers returned (right) of
the compared adaptive threshold selection techniques are plotted
as the function of the image noise, in pixels. From the left plot, it
can be seen that the proposed technique returns inlier sets which
lead to significantly more similar models, to the input one, than the
other algorithms. The average model error of the proposed method
for inlier ratio 0.1 is lower than the error of the other method
for inlier ratio 0.9. For the fair comparison, it is important to
note that MINPRAN and AC-RANSAC solve a different problem,
i.e., selecting the noise scale which minimizes the randomness of
the points which fall closer than the threshold. Their objective
function is designed to select both the model and noise scale
together. In our case, the input model is accurate and, therefore,
we only need a set of inliers leading to a similarly accurate model.

From the right plot of Fig 7, it can be seen that the proposed
inlier selection usually returns fewer points than the other methods
if the inlier ratio is higher than 0.1. The number of points that
suffices depends on a particular application where the proposed
method is used. For example, for doing a cheirality check after
decomposing an essential matrix, a few correspondences are
usually enough, while a scene reconstruction might need many
points. Setting the minimum number of points required to nmin

is straightforward by initially including the nmin points with the
lowest residuals. The algorithm starts adding new points from the
(nmin + 1)th closest one. The upper bound of nmin is the number
of points with residuals smaller than τ(σmax).

Example scenes showing the proposed adaptive inlier selection
with different values for nmin in the cases of homography and
fundamental matrix estimation are shown in Figs. 5, 8, respec-
tively. Three different values are tested for nmin which are m (4
for homographies; 8 for fundamental matrices), |P|/8 and |P|/4.
In these examples, all the selected inliers are correct. Moreover, a
reasonable number of inliers are returned even when nmin = m.
Note that even if the ground truth inlier number is lower than, e.g.
|P|/4, the algorithm is guaranteed to return the inliers which lead
to an as similar model as possible to the input one.

8 CONCLUSION

We formulate a novel marginalization procedure as an iteratively
re-weighted least-squares (IRLS) approach. We introduce a new
model quality (scoring) function, that is increased by this IRLS
approach, and a termination criterion for RANSAC-like robust
estimation that does not require a crisp inlier-outlier decision.
Also, a new method for adaptive inlier selection is proposed
assuming that an accurate model is known. Combining the pro-
posed techniques, the “bells and whistles” of USAC [40], e.g. pre-
emptive verification, degeneracy testing, and a number of technical
improvements, we propose MAGSAC++.

To the experiments, MAGSAC++ leads to the most accurate
relative pose estimation. When all methods are tested using
their “best” inlier-outlier thresholds, the most accurate funda-
mental matrices are obtained by combining the proposed quality
function with GC-RANSAC [51]. For homography estimation,
MAGSAC++ is the second most accurate method with only
marginally higher errors than first one, i.e. GC-RANSAC. In



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3103562, IEEE
Transactions on Pattern Analysis and Machine Intelligence

5 10 15 20 25
Threshold (  Noise )

2

3

4

5

6

7

8

9

10

A
n

g
u

la
r 

E
rr

o
r 

( °
)

MAGSAC++
MSAC
Tukey bisquare
Huber
r. Huber

10 20 30 40 50
Noise (px)

0

2

4

6

8

10

12

A
n

g
u

la
r 

E
rr

o
r 

(°
)

0 0.2 0.4 0.6 0.8
Outlier Ratio

0

2

4

6

8

10

12

14

16

A
n

g
u

la
r 

E
rr

o
r 

(°
)

Fig. 6. The average results of iteratively re-weighted least-squares fitting using different robust weights (i.e., the proposed MAGSAC++,
MSAC, Tukey bisquare, Huber and redescending Huber weights) when fitting 2D lines. The methods were repeated 10 000 times using each
parameter setting. (Left) The angular error, in degrees, of the estimated lines are plotted as the function of inlier-outlier threshold multiplier.
The actual threshold is calculated by multiplying the noise σ by the values shown on the horizontal axis. (Middle) The angular error is plotted
as the function of the noise σ added to the point coordinates. (Right) The angular error is plotted as the function of the outlier ratio.
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Fig. 7. The avg. model error (left) and the number of returned inliers
(right) of adaptive threshold selection techniques are plotted as the
function of the image noise (in pixel). Synthetic scene: points from
a 2D line with zero-mean Gaussian-noise and uniformly distributed
outliers (in total, 100 points), 10 000 runs on each setting.

practice, this “best” threshold is usually unknown. In those cases,
both MAGSAC and MAGSAC++ are significantly less sensitive
to the setting of the noise scale or its upper limit than the
other state-of-the-art robust estimators. The source code and
examples implemented both in C++ and Python are available at
https://github.com/danini/magsac and in OpenCV.
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