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ABSTRACT Photovoltaic (PV) output power is significantly random and fluctuating due to its sensitivity to 

meteorological factors, making PV power forecasting a big challenge. Accurate short-term PV power 

forecasting plays a crucial role for the stable operation and maintenance management of PV systems. To 

achieve this target, the paper proposes a novel Spatial-Temporal Genetic-based Attention Networks 

(STGANet), which consists of a spatial-temporal module (STM) and a genetic-based attention module 

(GAM). STM serves to predict the missing solar irradiance to support the generation forecast, and contains a 

graph convolutional neural network to learn the spatial and temporal dependencies between historical 

meteorological data, while using dilated convolution as the non-linear part to simplify the network structure. 

The GAM efficiently explores for potential relationships in input features with attentional mechanism and 

uses genetic-based operation and LSTM which takes forecasting error as reference to find global optimal 

solutions and to avoid getting trapped in local optimal solutions. The model is verified through comparative 

experiment with several benchmark models using a real-world historical meteorological dataset and a power 

generation dataset of PV plants in southeastern China. The results have illustrated that the proposed model 

can provide better prediction performance in PV systems. 

INDEX TERMS photovoltaic output power forecasting, long short term memory model, attention 

mechanism, genetic algorithm. 

I. INTRODUCTION 

In recent years, with the shortage of traditional resources 

and the need for environment protection, the demand for 

Renewable Energy Sources (RESs) has increased dramatically 

[1]. Among all RESs, solar energy, as the most typical one, 

has attracted wide attention for its abundance and accessibility 

nearly everywhere. At the same time, it has a multitude of 

advantages over other forms of power generation, such as 

hydropower [2], [3]. As a result, the scale of Photovoltaic (PV) 

power generation has grown rapidly. The global PV market 

has continued to grow in recent years, with 99.8 GW of new 

capacity installed worldwide in 2018. China is the world's 

largest PV market with about 45 GW of new installed capacity 

and this growth is expected to continue at a similar or higher 

rate in the future. 

However, the randomness, volatility, and intermittence of 

PV power generation which because of its dependence on 

immediate meteorological factors such as atmospheric 

temperature, total cloud cover, and humidity makes it more 

challenging to utilize than traditional generation sources [4]. 

In some distributed photovoltaic power plants, the precise 

measurement of meteorological factors is often ignored, which 

brings more difficulties to the prediction of power generation. 

These uncertainties can degrade real-time control performance, 

reduce system economics, and jeopardize the stable operation 

of the power system, thus posing significant challenges to the 

management and operation of the power and energy systems.  

To overcome these shortcomings, accurate PV power 

prediction is required. Besides, it also could provide a 

reference for power grid dispatching and operation of PV 

power stations, which is significant for security and economic 

efficiency [5]. PV power generation forecasts can be 

categorized as ultra-short-term forecast (< 1 h), short-term 
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forecast (1 h~ 24 h), medium-term forecast (1 day ~1 month), 

and long-term forecast (1 month ~ 1 year). Short-term 

forecasting is useful for pre-scheduling and equipment 

maintenance to prevent improper output power. In addition, 

excessive or insufficient PV output power affects the safe and 

reliable operation of the grid, which limits the use of large 

grid-connected PV systems. Therefore, it is necessary to 

establish an accurate short-term PV prediction model to ensure 

the PV power stations remain stable and reliable. 

Various recent researches reported different approaches to 

establish appropriate PV output power forecasting models 

aiming for higher accuracy and lower computation cost. The 

persistence model, as the most basic model, requires only 

historical data to predict PV power, and the result is equal to 

the actual output power of the same period of the previous day 

[6]. Therefore, this model usually acts as a benchmark for 

other models [7]. The statistical techniques generally both 

include the classical ones, such as the time series methods [8], 

regression methods [9], [10], regression trees [12], and the 

advanced ones, such as machine learning methods. In statistic 

models, the output power is forecasted by the statistical 

analysis of the different input variables, which include 

historical data and meteorological factors. The classical 

statistical methods play a crucial role in PV power forecasting 

and are easy to implement. In Semero et al. [10], a hybrid 

model with Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS) was reported, which achieved superior 

performance of the proposed method as compared with 

commonly used forecasting approaches.   

Machine learning methods, such as Artificial Neural 

Network (ANN) [13]-[15], Support Vector Machine (SVM) 

[16]-[18], [20], Multilayer Oerceptron (MLP) [19], [21] are 

the most effective techniques for PV power forecasting. In 

dealing with non-linear data, limitations of statistical 

techniques due to variable meteorological factors have led to 

the application of artificial neural networks for predicting PV 

output power. Wang et al. [13] proposed a model using an 

analog plus neural network ensemble method for the very-

short-term PV power forecasting and achieved great 

improvements. Cervone et al. [14] proposed a methodology 

based on ANN and an analog ensemble that tested on extreme-

scale supercomputer simulations and outperformed each 

method run individually. Persson et al.[11] presented a non-

parametric machine learning approach used for multi-site 

prediction of short-term PV power generation prediction, 

which was simple and has competitive performance. In 

Grimaccia et al. [15], a procedure to set up the main 

characteristics of the hybrid artificial neural networks using a 

physical hybrid method for day ahead PV power prediction 

was proposed. Malvoni et al. [17] developed a hybrid model 

with the principal component analysis and support vector 

machine for reducing the input data size. Jang et al. [18] 

developed a PV power forecasting model based on SVM 

which could have better forecasting accuracy. Mendonca el at. 

[19] proved multigene genetic programming presented more 

accurate and robust in a single PV prediction case, whereas 

ANN presented more accurate results for ensemble 

forecasting. Huang et al. [21] proposed a robust genetic MLP 

neural network that was developed for day-ahead forecasting 

of hourly PV power. However, the reliability of these methods 

is affected by the random initial data and is sensitive to the 

parameters. Meanwhile, the complexity may significantly 

increase due to the stacked network structure.  

Most currently available methods are restricted by limited 

data and are not able to uncover underlying correlation and 

related information [25]. Deep learning has been the most 

popular among researchers on account of its powerful 

capability to describe potential dependencies between data. 

Long Short-Term Memory network (LSTM), as one of the 

typical deep learning techniques, is broadly applied in PV 

power forecasting [5], [25]-[27]. Zhou et al. [27] used the 

stack LSTM model for adaptively focusing on input features 

that are more significant in forecasting, and conducted 

experiments with real-world photovoltaic power generation 

datasets. However, the output predicted by the traditional 

LSTM network is unstable, and methods to strengthen time 

linkages may fall into partial optimal solutions. 

Hybrid methods [4],[22]-[24] combine two or more 

techniques could include advantages of both methods and 

exclude their limitations. Lin et al. [22] proposed a novel 

hybrid model for short-term PV output power interval 

forecasting based on ensemble empirical mode decomposition 

as well as relevance vector machine, which achieved relatively 

higher forecasting accuracy. Raza et al. [23] proposed a 

multivariate neural network with a Bayesian model averaging 

technique for predicting a day ahead PV output power. Lin et 

al. [24] proposed a multivariate neural network ensemble 

forecast framework, which substantially improved the forecast 

accuracy in short-term forecasting horizons. Chang et al. 

proposed a novel Deep Belief Network (DBN) combined with 

a grey theory-based data preprocessor for generation 

forecasting, which was superior to other models in forecasting 

accuracy. 

In recent years, many studies based on deep learning have 

also been conducted. Li et al. [35] constructed a hybrid deep 

learning model combining wavelet packet decomposition 

(WPD) and LSTM networks for one-hour-ahead PV power 

forecasting. Kushwaha et al. [36] compared the accuracy of 

four artificial intelligence methods in forecasting Taiwan’s 

renewable energy sources based on historical data from 2000 

to 2015, and results showed that seasonal auto regressive 

integrated moving average random vector functional link 

neural network is suitable for small dataset forecast. Korkmaz 

et al. [37] used a deep CNN structure combining with 

Empirical Mode Decomposition (EMD) algorithm which is 

greatly improved the accuracy of prediction. Yildiz et al. [38] 

applied an ANN-based system for very short-term (2 to 4-h) 

PV power forecasting. Compared with the individual LSTM-
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RNN networks, this model showed a superior forecasting 

performance. 

Inspired by the previous research efforts, a novel Spatial-

Temporal Genetic-based Attention Networks (STGANet) was 

proposed to predict day-ahead and 5 days ahead horizons. The 

method aims to achieve more accurate results by leveraging 

the interconnections of inputs and stabilizing the predicted 

output results. The network consists of a spatial-temporal 

module (STM) and a genetic-based attention module (GAM). 

STM consists of temporal and spatial submodules for 

predicting solar irradiance of PV plants without weather 

collectors to support power generation forecasting and 

contains a graph convolutional neural network to learn the 

spatial and temporal dependencies between historical weather 

data while using dilated convolution as the nonlinear part to 

simplify the network structure. The result combined with 

historical generation and weather data is used as input features 

for GAM. GAM combines the predicted solar irradiance and 

historical power generation data to predict the power 

generation of PV plants using an attention mechanism to 

efficiently explore the potential relationships in the input 

features and using genetic-based operations and an LSTM that 

takes the prediction error as a reference to find the globally 

optimal solution and avoid getting trapped in a locally optimal 

solution. The main contributions of this study are as listed: 

1) We proposed a hybrid ensemble deep learning model, the 

spatial-temporal genetic-based attention network, 

considering historical meteorological and power 

generation data. 

2) We proposed a spatial-temporal module to predict the 

missing solar irradiance data utilizing the spatial 

dependencies between photovoltaic plants.  

3) We proposed a novel attention mechanism based on 

LSTM and genetic algorithm to predict PV power, 

exploring the deep connection between data and 

searching for the globally optimal solution. 

The paper is organized as follows. Section II presents the 

information and analysis of real PV plants’ data; Section III 

presents a comprehensive description of the methods applied 

to forecast the PV power generation; Section IV indicates the 

performance metrics to evaluate the forecasting models and 

the benchmark algorithms; Section V discusses the results of 

the proposed model including comparison and validations; 

finally, Section VI summarizes and concludes the study. The 

abbreviation and full name in this paper are listed in Table I. 
Table I.  Abbreviation and full name 

Abbreviations Full Name  

PV Photovoltaic 

STGANet Spatial-Temporal Genetic-based Attention Networks 

STM Spatial-Temporal Module 

GAM Genetic-based Attention Module 

GSO Genetic-based Search Operator 

CNN Convolutional Neural Network 

LSTM Long Short-Term Memory 

GA Genetic Algorithm 

PSO Particle Swarm Optimization 

ANFIS Adaptive Neuro-Fuzzy Inference Systems 

SVM Support Vector Machine 

MLP Multilayer Perceptron 

EMD Empirical Mode Decomposition 

WPD Wavelet Packet Decomposition 

II. DATASET ANALYSE AND PROCESSING 

A. DATA DESCRIPTION AND ANALYSIS 

The datasets used in the experiments are collected from 

three PV plants distributed in different areas in Southeastern 

China, 2019. Table II summarizes the information of the 

collected datasets. Output power and meteorological factors 

(i.e., solar irradiance, temperature, humidity, and total clouds 

cover) are managed separately from each power plant. The 

power generation data are presented at five-minute intervals, 

whereas the meteorological data are presented at one-hour 

intervals due to the limitations of the weather collection 

system. The meteorological data include solar irradiance, 

temperature, humidity and total clouds cover, where total 

clouds cover is expressed as percentages. Since solar 

irradiance can be collected only during the daytime, data from 

7:00-17:00 are used in the experiment. 
Table II. Information of the dataset used for the experiment. 

Environmental 
Parameters 

Max Min Mean Resolution Unit 

Solar irradiance 1064.71 195.68 594.51 1 hour W/m2 

Temperature 41.95 13.79 26.67 1 hour ℃ 

Humidity 99.23 33.00 68.15 1 hour %RH 
Total clouds 

cover 
1.00 0.00 0.88 1 hour % 

Power 56.01 0.00 19.65 5 min kW 

Fig. 1 illustrates the daily PV output power generated by 

each plant for July 2019. As is shown in Fig. 1, the output 

power is comparatively low in the eighth and twelfth day due 

to the rainy or heavy cloudy weather condition. Meanwhile, 

output power relatively high on the days of 13, 14, and 15 in 

July due to the sunny weather and clear sky condition, which 

is because the output power fluctuates with variations in the 

weather conditions. 

 
Figure 1.  Daily output power of July 2019. 

Meteorological factors strongly influence photovoltaic 

output power. Fig. 2(a) illustrates the pattern of PV output 
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power for rainy or heavy cloudy days, and Fig. 2(b) 

illustrates the pattern of PV output power for sunny days. In 

abnormal weather conditions such as rainy and cloudy days, 

solar irradiance fluctuates without an apparent change in 

trend. In contrast, solar irradiance tends to increase on sunny 

days, peaking at noon and then decreasing. As shown in Fig. 

2(a), due to the large fluctuations in solar irradiance on 

cloudy days, the outputs of PV power plants are also unstable. 

Under sunny days, however, three PV plants’ output tends to 

increase and then decrease, as does solar irradiance, 

indicating the PV output depends entirely on solar irradiance. 

Under sunny conditions, the output power of the three plants 

is different, and the curves fluctuate due to the various 

meteorological factors of the location and the influence of 

the PV modules on the generation of electricity. 

 
(a) Pattern of PV output power for rainy or heavy cloudy days. 

 
(b) Pattern of PV output power for sunny days. 

FIGURE 2. Pattern of PV output power under different weather conditions. 

Table III illustrates the correlation between the 

meteorological factors (i.e., solar irradiance, temperature, 

humidity and total clouds cover) and average PV output power. 
Table III. The correlation between the meteorological factors and 
average PV output power. 

 
solar 
irradiance 

temperature humidity 

total 

clouds 

cover 

Pearson 
correlation 

0.703 0.305 -0.385 -0.38 

B. DATA PRE-PROCESSING 

In order to avoid large differences in data scales that can 

impair the effectiveness of the model, the data pre-processing 

is normalization, so that the data are restricted in range 0 to 1. 

The normalization speeds up the gradient descent to the 

optimal solution, increases the comparability of the data, and 

improves the precision of the data. The formula is: 

                           𝑥𝑖𝑛
′ =

𝑥𝑖𝑛−min⁡(𝑥𝑖𝑛)

max(𝑥𝑖𝑛)−min⁡(𝑥𝑖𝑛)
       (1) 

where 𝑥𝑖𝑛
′  is the normalized input data; 𝑥𝑖𝑛  is the origin 

input data(PV output power and meteorological factors data); 

and max(∙)  and min⁡(∙)  are the maximum and minimum 

values of the origin input data, respectively. 

III. METHODOLOGY DESCRIPTION 

A. OVERVIEW 

In practical application, weather factors in distributed 

photovoltaic power stations are not precisely collected, which 

brings great difficulties to power generation prediction. 

Therefore, the whole process is divided into two parts. Firstly, 

the meteorological factors are predicted, and then the power 

generation is predicted. 

The overall framework of the proposed model is illustrated 

in Fig. 3. Our proposed STGANet consists of a spatial-

temporal module (STM) and a genetic-based attention 

module(GAM). The STM is used to predict the missing 

meteorological information, and the GAM uses the 

meteorological information obtained from STM and historical 

power generation data to forecast power generation. STM 

contains two temporal sub-modules, a spatial sub-module in 

the middle and a fully connected layer in the end. The STM 

processes the input data uniformly to jointly explore spatial 

and temporal dependencies and then generates integrated 

features by the output layer to generate the final 

meteorological prediction. The GAM firstly constructs the 

input matrix consisting of historical generation data and 

meteorology data by sliding window, secondly generates the 

weights of the input matrix by genetic-based search operator, 

then feeds the input matrix into LSTM layer to get the loss for 

further iterations and to obtain better weights. Subsequently, 

the model will be trained until loss convergence and obtains 

the predicted power result. The flow of model training is 

shown in Fig 4. 

1) The historical meteorological data are normalized and 

mapped to the interval [0, 1]; 

2) Weather factors such as solar irradiance are sent to the 

spatial temporal module to predict the missing values; 

3) The completed meteorological data is sent to genetic-

based attention module as input to predict the actual 

power generation of distributed photovoltaic power 

station; 

4) Calculate the loss function and judge whether the 

training has converged; 

5) If loss has converged turn to the end, otherwise jump 

to step 2 to start a new round of training. 
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Figure 3. PV short-term forecasting framework..

Start

Normalization

predict the missing meteorological 

information from STM module

predict the power generation from GAM 

module

Loss function convergence?

End

Yes

No

 
FIGURE 4. FLOW CHART OF MODEL TRAINING 

B. SPATIAL-TEMPORAL MODULE 

In this work, we define the distribution of PV plants with 

structured meteorological time series in undirected graph, 

𝐺𝑡 = (𝑉𝑡 , 𝜀,𝑊), where 𝑉𝑡 is a finite of vertices each of which 

means the meteorological factor at time 𝑡 , 𝜀  is the set of 

edges and 𝑊  is the adjacency matrix of the graph. The 

meteorological factor data prediction on graphs can be 

represented by 

 [𝑑𝑡−𝑃+1, … , 𝑑𝑡]
𝑓
→ [𝑑̂𝑡+1, … 𝑑̂𝑡+𝐻] (2) 

where P is the number of historical data, H is the number of 

the predicted data. 

1) SPATIAL SUB-MODULE 

Graph Convolutional Networks (GCN)[28] generalizes CNN 

to graph domains by computing in the spectral domain with 

the graph Fourier transform as 

 𝑔𝜃(∙) ∗ 𝑥 = U𝑔𝜃(Λ)𝑈
𝑇𝑥 (3) 

where U  is the matrix of eigenvectors of the normalized 

graph Laplacian L = 𝐼𝑁 − 𝐷−1 2⁄ 𝐴𝐷−1 2⁄ = 𝑈Λ𝑈 , with a 

diagonal matrix of its eigenvalues Λ  and 𝑈𝑇𝑥  being the 

graph Fourier transform of 𝑥. 

Organizing the data as a graph according to the 

distribution of PV plants can make efficient use of spatial 

information, meanwhile we apply the graph convolution 

operation directly on the structured data to extract deep 

patterns and features in the space domain. However, the 

matrix multiplication of eigenvectors in (3) might be 

computationally expensive for large graphs, Chebyshev 

polynomials approximation and layer-wise linear 

formulation can be applied to overcome it. 

To reduce the time complexity, the filter is 

approximated by a truncated expansion in terms of 

Chebyshev polynomials 𝑇𝑘(𝑥) up to 𝐾𝑡ℎ order. Then we can 

rewrite graph convolution as 

 𝑔𝜃(∙) ∗ 𝑥 ≈ ∑ 𝜃𝑘𝑇𝑘(𝐿̌)𝑥
𝐾
𝑘=0  (4) 

where 𝐿̌ = 2L 𝜆𝑚𝑎𝑥⁄ − 𝐼𝑛 can be computed by (𝑈Λ𝑈𝑇)𝑘 =
𝑈Λ𝑘𝑈𝑇 . The time complexity of (4) is reduced by computing 

the K-local convolution through polynomial approximation. 
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By limiting K = 1, the graph convolution function can be 

made linear on the graph Laplacian. Further, since the neural 

network can adapt to scale variation, we can approximate 

𝜆𝑚𝑎𝑥 = 2.  

 𝑔𝜃(∙) ∗ 𝑥 ≈ 𝜃0𝑥 − 𝜃1(𝐷
−
1

2𝑊𝐷−
1

2)𝑥 (5) 

where 𝜃0 and 𝜃1 are two shared filter parameters. To reduce 

the occurrence of overfitting and numerical manipulation, 

the  𝜃0 and 𝜃1 can be exchanged to a single parameter θ by 

letting θ = 𝜃0 = − 𝜃1;𝑊̃ = 𝑊 + 𝐼𝑁 and 𝐷̃𝑖𝑖 = ∑ 𝑊̃𝑖𝑗𝑗 .Then 

we have the following expression as: 

 𝑔𝜃(∙) ∗ 𝑥 = 𝜃 (𝐷̃−
1

2𝑊𝐷̃−
1

2) 𝑥 (6) 

2) TEMPOROL SUB-MODULE 

RNN-liked models have been suffered from time-consuming 

issue and the inability to cope with variable data due to the 

complicated gate mechanism, while CNNs have the 

advantage of fast training and can achieve parallel training 

process by stacking convolutional layers. Therefore, we 

apply gated linear unit with a  𝐾𝑡   width kernel and 1-D 

dilated convolution on the time dimension of the input data, 

as shown in Fig. 5. 

The input of temporal sub-module can be viewed as a 

sequenceZ ∈ ℝ𝑀×𝐶𝐼  of length M with 𝐶𝑖  channels and the 

kernel size is Γ ∈ ℝ𝐾𝑡×𝐶𝐼×2𝐶𝑜 . After entering the module, two 

separate dilated convolution operations are performed to 

obtain two output of the same size as [𝐴⁡𝐵] ∈ ℝ(𝑀−𝐾𝑡+1)×𝐶𝑜 . 

The d-dilated convolution operation can be represented as 

 F(x) = ∑ 𝑓(𝑖) ∙ 𝑥𝑡−𝑑×𝑖
𝑘−1
𝑖=0  (7) 

where d is the dilated parameter which controls the skipping 

distance, ⁡𝑓 ∈ ℝ𝑘  is the kernel, 𝑥𝑡  is the t-th value of the 

sequence x. 

The A and B pass through the sigmoid function and fusion 

operation respectively, and finally Hadamard product is 

performed to acquire the result. The sigmoid function helps 

to filter the inputs that are instrumental in discovering the 

dynamic change pattern of the data, and the nonlinear gate 

can capture the information of the data in general. Finally, 

the temporal convolution can be defined as 

 ℎ(Γ)Z = F(𝐴) ⊗ F(σ(𝐵)) (8) 

where σ  is the sigmoid function; ⊗  is the element-wise 

Hadamard product operation. 

 
Figure 5. The Structure of Temporal Sub-Module 

C. GENETIC-BASED ATTENTION MODULE 

The genetic-based attention module (GAM) consists of the 

LSTM model, attention mechanism and genetic-based search 

operator (GSO). The input of GAM is the predicted result 

concentrate on historical meteorological data and historical 

power data. The LSTM is used to deal with long-term 

dependencies, the attention mechanism enhances the influence 

of important factors, and the GSO searches for optimal 

weights. As a specific of the recurrent neural network, LSTM 

[29] was proposed, which introduced the memory cell and gate 

mechanism to perform time-series data efficiently. To begin 

with, the attention weights for N length of time steps are 

expressed as: 

                        W𝑎𝑡𝑡 = (𝑊1,𝑊2, … ,𝑊𝑁)                  (9) 
Then the importance-based input data (PV output power 

and meteorological factor data) with attention weights are 

defined as: 

 𝑋̃𝑡 = (𝑥1𝑡𝑊1, 𝑥2𝑡𝑊2, … , 𝑥𝑁𝑡𝑊𝑁) (10) 

At time t, sequence input vector𝑋̃𝑡, hidden layer output ℎ𝑡−1 

and cell state 𝐶𝑡−1 are fed into cell, then get LSTM hidden 

layer output ℎ𝑡 ⁡and cell state 𝐶𝑡 as output. The calculation of 

cell state 𝐶𝑡 is combines the state of previous period and state 

of current candidate cell whose proportions are occupied by 

the forget gate and input gate respectively. The candidate cell 

state 𝐶̃𝑡  is calculated by a hyperbolic tangent activation 

function. The update progress of LSTM can be described as 

follows: 

                            𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑋̃𝑡] + 𝑏𝑓)              (11) 

                             𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑋̃𝑡] + 𝑏𝑖)             (12) 

                            𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑋̃𝑡] + 𝑏𝑜)             (13) 

                     𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ∙ [ℎ𝑡−1, 𝑋̃𝑡] + 𝑏𝑐)⁡         (14) 

                            𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶̃𝑡                       (15) 

                                 ℎ𝑡 = 𝑜𝑡 ∙ tanh⁡(𝐶𝑡)                        (16) 

where 𝑊𝑓 ,𝑊𝑖 ,𝑊𝑜,𝑊𝑐  denote weight parameters and 

𝑏𝑓 , 𝑏𝑖 ,𝑏𝑖 , 𝑏𝑐 denote bias parameters of forget gate, bias of input 

gate, bias of output gate and bias of  internal cell state, 

respectively; and σ stands for the sigmoid activation function. 

The attention mechanism [30] helps assign more weight to 

the critical inputs while giving less weight to the rest of the 

analysis to soften their influence. We use a genetic-based 

search operator (GSO) to train attention weights by taking 

training loss as a reference to acquire optimal parameters in 

the attention layer of the LSTM network for better utilizing the 

intrinsic relationship between meteorological factors and 

power generation data. The basic steps of GSO are shown in 

Fig. 6. The detailed process of GSO will be introduced as 

follows. 

The attention weights set W𝑎𝑡𝑡 = (𝑊1,𝑊2, … ,𝑊𝑀)⁡ is 

encoded by binary values as 𝑊𝑆 = (𝑊1
𝑆,𝑊2

𝑆, … ,𝑊𝑀
𝑆) and 

the initial code is randomly generated. The 𝑊𝑖 which denotes 

attention weights for historical generated data and 

meteorological factors will be delivered to the networks and 

produce corresponding fitness score based on the training 

loss. Then the fittest subset space W𝑎𝑡𝑡̃ is selected according 

to the fitness score of corresponding 𝑊𝑆 =
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(𝑊1
𝑆,𝑊2

𝑆, … ,𝑊𝑀
𝑆) where the selected subsets will be equally 

divided into N segments[22] such as 𝑊𝑘
𝑆 = (𝑆𝑘

1, 𝑆𝑘
2, … , 𝑆𝑘

𝑁). 
New attention weights space will be rebuilt by crossover and 

mutation operation. 

• Crossover: Suppose the selected subsets are 𝑊𝑖
𝑆  and 

𝑊𝑗
𝑆 , the segments of both subsets will be chosen 

randomly for exchanging from themselves until the 

cross number is reached and the cross number is fixed. 

For example, S𝑗
𝑁  and S𝑖

𝑁  will generate S𝑘
𝑁  after 

crossover. 

• Mutation: In the new offspring formed, some of their 

segments may be mutated with random probability, 

which means that certain positions in the string can be 

flipped. In this work, the odd or even index segments 

which decided by random judgment will be flipped in 

the new generated string. 

We will traverse the subspace W𝑎𝑡𝑡̃  repeatedly until its 

size reach the default value M when rebuilding the 

optimization space. The GSO is shown in the optimization 

problem as follows: 

                        min 𝐿(𝑦𝑝(𝐹𝑎𝑡𝑡(𝜃,W𝑎𝑡𝑡)), 𝑦)                       (17) 

where 𝐿(∙) is loss function, 𝐹𝑎𝑡𝑡(∙) is the entire network, 𝜃 is 

parameter space in LSTM when acquiring predicted 

values,⁡𝑦𝑝 denotes predicted output,⁡𝑦 denotes actual value.

 
Figure 6. Basic steps of GSO. 

IV. EVALUATION 

A.METRICS 

In this paper, three metrics are used to evaluate the 

forecasting accuracy of our model, which are the mean 

absolute error (MAE), the mean absolute percentage error 

(MAPE) and the root mean square error (RMSE). The 

definitions of these three evaluation indexes are shown as 

(18), (19) and (20): 

 

                          𝛿𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1                          (18) 

                         𝛿𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖−𝑦̂𝑖|

𝑦𝑖

𝑛
𝑖=1                           (19) 

                    𝛿𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                       (20) 

Where 𝑦𝑖  is the actual value, 𝑦̂𝑖 is the predicted value of 

the model and n is the number of testing samples. 

B. BENCHMARK ALGORITHMS 

To verify the performance of the proposed model for day 

ahead PV power generation forecasting, we set contrast 

experiments with some benchmark models. The GRU[31] 

and CNN[32] were selected as the benchmark for the solar 

irradiance prediction experiment. The CNN [33], LSTM [5], 

GT-DBN [34], W-RVFL[36] and WPD-LSTM[35] models 

were selected as competitors for power generation prediction 

experiment. The actual PV power generation data and 

meteorological data of three PV stations were applied in the 

experiments. 

V. RESULT AND DISCUSSION 

In this section, we conduct a series of comparative 

experiments to verify the performance of our proposed 

model. First, the STM is utilized to predict solar irradiance 

for the five days ahead in the training set to cope with 

missing data. The adjacency matrix fed into STM stores the 

distances between PV plants, which is calculated from their 

latitude and longitude. The predicted data is then 

concentrated with the original historical meteorological data 

and fed into GAM together with the historical generation 

data for the final generation forecast for the next 24 hour. 

These two predictions for the next 24 hour will be compared 

with different benchmark experiments. 

A. PERFORMANCE OF SPATIAL-TEMPORAL MODULE 

The spatial-temporal module uses spatio-temporal features 

to predict the five days ahead solar irradiance in the missing 

regions. The prediction results are shown in Table IV. Since 

solar irradiance can only be collected during the day, the 

predictions for the next 5 days from 8:00-18:00 are shown in 
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Fig. 7. No-Spa is the module that removes the spatial sub-

module. The results of No-Spa are much more accurate than 

GRU and CNN, which indicates that the temporal sub-

module can extract more global temporal information.  The 

STM is superior to No-Spa, proving that capturing spatial 

and temporal features is essential and effective for solar 

irradiance prediction. The predicted result will be fed into 

GAM as part of the input for generation power forecasting. 
Table IV. Summary of Solar Irradiance Prediction. 

model MAE RMSE MAPE 

GRU 128.448 147.567 18.691 

CNN 119.082 136.853 17.838 
No-Spa 110.216 130.803 15.972 

STM 106.542 123.673 15.951 

 
Figure 7. Solar Irradiance Prediction Result (only contains 8:00-18:00) 

B. POWER GENERATION PREDICTION FOR A DAY 
AHEAD 

1)OVERALL RESULT  

The categorized meteorological data show that rainy weather 

data accounts for only 16.7% of the overall data, while sunny 

weather data is only 8.3%.  

For the overall evaluation, the results of the three power 

plants are taken together to calculate the metrics. The solar 

irradiance obtained from STM predictions provides the basis 

for the forecasting of photovoltaic power generation. The 

overall predicted results were shown in Table V. The 

prediction accuracy of our STGANet model is higher than all 

benchmark methods, and it has the best performance overall 

compared to methods in general under different weather 

conditions. The MAPE of W-RVFL under rainy conditions 

is lower than STGANet because the PV plant generation is 

close to 0 in the evening on a rainy day. Due to the way 

MAPE is calculated, even minor errors can cause significant 

fluctuations in percentage. Compared to the other 

comparable models, the average MAE metrics of STGANet 

under cloudy conditions decreased by 2.993, 2.848, 2.659, 

2.663 and 0.996, respectively. Similarly, the average MAE 

metrics under rainy conditions were reduced by 7.086, 2.148, 

3.048, 1.133 and 1.052, respectively. 

In STGANet, the errors calculated on cloudy days are 

mostly smaller than those on sunny and rainy days because 

the sample size on cloudy days is more significant than that 

on sunny and rainy days. Therefore the model can learn the 

features better. However, despite the small sample size of 

rainy and sunny days, STGANet still obtains promising 

results, indicating its vital learning and generalization ability. 

2)ANLYZE OF RESULTS IN DIFFERENT WEATHER 
CONDITION 

The summaries of the forecasting performance of the 

sunny day, cloudy day and rainy day are shown in Table VI, 

Table VII and Table VIII, respectively. During sunny days, 

the power generation and solar irradiance will vary regularly 

together. While in cloudy and rainy days, the solar irradiance 

and output power fluctuate more and have smaller values, 

with more volatility and less regularity. Because the sample 

size of sunny days is too small, its MAE and RMSE are 

larger than other weather conditions. Because the fluctuation 

of solar irradiance on rainy days is too large, its MAPE is 

much larger than that of sunny and cloudy days. Most 

methods perform better in plant-1 and plant-3 than plant-2, 

perhaps caused by differences in geographic location and 

hardware devices. 

As shown in Table VI, all metrics of STGANet performed 

well in the cloudy experiment, with minimal prediction 

errors and stable results, indicating its validity and accuracy. 

As shown in Table VII, the regularity of meteorological 

factors data and PV power generation data decreases in rainy 

conditions compared to cloudy days. While RMSE and MAE 

of STGANet and other benchmark models have decreased, 

their MAPE has increased. Compared with the CNN, LSTM, 

GT-DBN, W-RVFL and WPD-LSTM methods, the MAPE 

metric of plant-1 has been decreased by 112.586%, 6.658%, 

58.465%, 6.703% and 7.804%, respectively. 

Under sunny conditions, as shown in Table VIII, due to 

the regular fluctuation of solar irradiance, the predictions of 

the models vary less among all benchmark models. However, 

our STGANet still achieves the best results. Moreover, the 

result proves that our model has a strong learning ability even 

for small sample data. 

The results of the proposed model for PV plant-1 under 

different weather conditions (i.e., sunny day, cloudy day, 

rainy day) are shown in Fig. 8. The curve for sunny days 

shows a clear trend of increasing and decreasing, with the 

peak of power generation occurring at noon. The curve for 

cloudy days, on the other hand, shows significant 

fluctuations, and no significant peak appears. The curve for 

rainy days is more volatile than other weathers, and the 

power generation value decreases significantly in the 

afternoon, and even to 0 in the last two hours. The predicted 

curve of CNN fluctuates fiercely when the actual curve 

fluctuates, resulting in significant discrepancies in the output. 

The LSTM and RNN outperform CNN. Particularly, the 

predicted curve of our STGANet model fits better than any 

other methods. The prediction curves of our model almost 

matched the actual measured curve of PV power generation 

in all weather conditions, and the prediction curve and actual 

curve matched a little less well under rainy conditions. 
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Table V. Summary of the overall performance for a day ahead. 

Metrics Methods Sunny Days Cloudy Days Rainy Days 

MAE 

CNN 3.535 4.622 8.362 

LSTM 4.842 4.477 3.424 

GT-DBN 4.252 4.288 4.324 

W-RVFL 5.404 4.292 2.409 

WPD-LSTM 2.722 2.625 2.328 

STGANet 2.002 1.629 1.276 

RMSE 

CNN 20.884 34.860 88.369 

LSTM 25.092 21.715 14.219 

GT-DBN 21.563 23.251 22.801 

W-RVFL 11.980 29.000 40.975 

WPD-LSTM 5.234 4.008 6.812 

STGANet 5.085 3.598 2.233 

MAPE(%) 

CNN 25.648 41.903 354.639 

LSTM 23.353 27.528 75.719 

GT-DBN 20.679 26.125 109.807 

W-RVFL 18.457 18.517 34.585 

WPD-LSTM 10.570 12.081 89.587 

STGANet 9.399 9.902 76.301 

Table VI. Summary of the performance of the cloudy day for a day ahead. 

Metrics Methods Plant-1 Plant-2 Plant-3 

MAE 

CNN 3.081 6.736 4.066 

LSTM 5.713 4.484 3.246 

GT-DBN 6.027 5.031 1.937 

W-RVFL 3.990 2.673 6.187 

WPD-LSTM 2.446 1.921 1.510 

STGANet 2.365 1.606 0.921 

RMSE 

CNN 16.305 55.985 32.435 

LSTM 33.051 20.775 11.403 

GT-DBN 6.027 27.185 4.0496 

W-RVFL 23.261 13.574 49.895 

WPD-LSTM 6.128 3.698 3.198 

STGANet 6.103 3.196 1.510 

MAPE(%) 

CNN 13.256 66.623 38.980 

LSTM 28.521 35.882 18.310 

GT-DBN 28.370 38.573 11.629 

W-RVFL 13.881 14.210 27.178 

WPD-LSTM 13.221 18.166 8.918 

STGANet 12.493 12.994 4.287 

Table VII. Summary of the performance of the rainy day for a day ahead. 

Metrics Methods Plant-1 Plant-2 Plant-3 

MAE 

CNN 7.500 8.000 9.339 

LSTM 4.028 3.915 2.123 

GT-DBN 5.827 4.966 1.904 

W-RVFL 1.506 2.621 3.296 

WPD-LSTM 2.473 2.184 2.121 

STGANet 1.425 1.470 0.932 
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RMSE 

CNN 62.845 78.582 117.327 

LSTM 18.725 16.986 5.679 

GT-DBN 36.383 27.325 3.827 

W-RVFL 2.378 15.648 17.071 

WPD-LSTM 7.633 5.983 4.896 

STGANet 2.377 3.231 1.057 

MAPE(%) 

CNN 164.670 446.788 416.529 

LSTM 58.742 109.420 34.785 

GT-DBN 110.549 139.085 56.709 

W-RVFL 58.787 29.225 42.535 

WPD-LSTM 59.888 108.701 75.906 

STGANet 52.084 153.574 18.680 

Table VIII. Summary of the performance of the sunny day for a day ahead. 

Metrics Methods Plant-1 Plant-2 Plant-3 

MAE 

CNN 2.859 4.834 3.682 

LSTM 6.022 4.810 3.652 

GT-DBN 5.788 4.679 2.124 

W-RVFL 4.925 3.751 7.941 

WPD-LSTM 2.816 2.810 2.139 

STGANet 2.717 2.029 1.224 

RMSE 

CNN 8.655 34.514 18.915 

LSTM 36.768 24.392 13.784 

GT-DBN 35.806 22.994 4.953 

W-RVFL 31.226 3.751 75.058 

WPD-LSTM 8.401 5.361 5.989 

STGANet 7.893 5.301 1.892 

MAPE(%) 

CNN 11.554 42.280 20.150 

LSTM 23.891 29.745 14.916 

GT-DBN 21.365 30.107 8.342 

W-RVFL 15.166 21.568 25.220 

WPD-LSTM 16.792 15.268 8.7150 

STGANet 11.454 11.842 4.245 

 
(a) PV output power of plant-1 in sunny condition. 

 
(b) PV output power of plant-1 in cloudy condition. 
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(c) PV output power of plant-1 in rainy condition. 

FIGURE 8. PV output power of plant-1. 

C. POWER GENERATION PREDICTION FOR THE NEXT 
FIVE DAYS 

In order to investigate the performance of the STGANet 

model in different time horizons, we also conducted long-

term experiments to verify the model's predictive 

performance for the next five days of generation. Table IX 

lists the overall performance of the compared models.  As 

shown in the table, the prediction error of each model is 

increased compared to the result of sunny days in the short-

term prediction. However, all of them are lower than rainy 

days, perhaps because there are fewer rainy days and more 

sunny days in these five days. There is considerable 

improvement in error measures and error variance of 

STGANet compared to all the other forecast models.  The 

results at each prediction horizon generated by the CNN 

method are the worst compared to other benchmarks. At all 

prediction horizons in the case studies, the proposed method 

has the smallest RMSE metrics, which shows the best 

forecasting performance compared to other methods.
Table IX.  Summary of the performance  for the next five days 

 CNN LSTM GT-DBN W-RVFL WPD-LSTM STGANet 

MAE 9.224 5.264 6.253 6.611 3.088 2.956 

RMSE 30.359 15.033 17.053 10.314 7.664 5.531 

MAPE(%) 36.678 64.786 29.463 19.382 17.269 14.843 

VI. CONCLUSION 

In this paper, a novel deep learning network called STGANet 

is proposed, which focuses on short-term distributed PV 

power prediction. This model integrates the spatial-temporal 

graph convolution for solar irradiance prediction and a 

genetic-based attention mechanism for power prediction. 

Specifically, we utilize the spatial connection between PV 

plants by graph convolution for prediction and capture both 

the global and global dependencies by attention mechanism. 

This method can overcome the missing of weather data in 

distributed photovoltaic power stations, so as to achieve 

accurate power generation prediction. A real-world dataset 

collected from PV power plants in southeastern China is 

employed for experiments. We conducted a comprehensive 

comparative study to compare the proposed STGANet 

method with existing state-of-the-art methods, including 

CNN, LSTM, GT-DBN, W-RVFL, and WPD-LSTM models 

over two different error ranges of one day lead and five days 

lead. All prediction ranges were compared using three 

different error metrics, i.e., MAE, RMSE, and MAPE. 

Compared to the CNN, LSTM, GT-DBN, W-RVFL, and 

WPD-LSTM models, the average MAE metrics of STGANet 

under cloudy conditions decreased by 2.993, 2.848, 2.659, 

2.663 and 0.996, respectively. The results show that our 

method has more competitive effects than other models in 

PV power forecasting, which proves our method could 

effectively approximate optimal attention weights and 

efficient mining of spatial-temporal dependencies. 
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