Short Communication

Catalytic synthesis of *N*-methylpiperazine from diethanolamine and methylamine by cyclodehydration reaction[†]

K Nagaiah, A Sudhakar Rao^a, M Subrahmanyam, S J Kulkarni^{*} & A V Rama Rao

Indian Institute of Chemical Technology, Hyderabad 500 007, India Received 15 March 1994; accepted 26 July 1994

The intermolecular cyclization of diethanolamine and methylamine has been carried out over copper-chromite, zinc-chromite, Cu-Al₂O₃ and Ni-SiO₂ catalysts in the temperature range from 250 to 350°C and 80 atm. hydrogen pressure leading to *N*-methylpiperazine. The selectivity of *N*-methylpiperazine is higher (>95%) at a conversion of >75% for copper-chromite and Cu-Al₂O₃ in comparison to that of Ni-SiO₂ catalyst.

The synthesis of N-methylpiperazine was carried out in a number of ways in an autoclave under pressure¹. It is used as an intermediate in the manufacture of pharmaceuticals and insecticides and also as a surface-active agent and selective solvent for the extraction of aromatics from hydrocarbon mixtures². The inter- and intramolecular cyclization reactions of C1.3 aliphatics with ammonia or aliphatic amines and β -hydroxy-propyl-ethylenediamine to 1- or 2-N-containing heterocycles over chromite and various zeolite catalysts have already been reported³⁻⁵. N-Methylpiperazine has been synthesized⁶ from diethanolamine and methylamine over various zeolites at 300°C and 80 atm hydrogen pressure with >90% yield based on diethanolamine and >90% selectivity. In this communication, the cyclization of diethanolamine and methylamine to N-methylpiperazine has been reported under the same conditions except that copper-chromite, Cu-y-Al₂O₃, zinc-chromite and Ni-SiO₂ have been used as catalysts for the first time.

Experimental procedure—The Cu-1800P (CuO: $Cr_2O_3 = 51:46$, SA = 30 m²/g), Cu-0203T (CuO: $Cr_2O_3 = 80:20$, SA = 6 m²/g), Zn-0312T (ZnO: $Cr_2O_3 = 73:21$, SA = 130 m²/g) were supplied by

M/s Harshaw, Cleveland, USA. The Girdler (Lousivelle, USA) G-33 contains 27.3 wt% Ni over SiO₂ support with surface area of 96 m²/g. 30 Wt% Cu- γ -Al₂O₃ was prepared by the impregnation with required amount of copper nitrate over M/s Harshaw Al₂O₃-111-61E support of SA = 150 m²/g. The catalyst was dried in the oven at 120°C overnight. All the catalyst samples of 18-30 mesh size were used after reducing with hydrogen at 350°C for 4 h.

The reactions were carried out in an experimental set-up described elsewhere⁶. The reaction mixture was fed through a calibrated burette using the feeder (Lewa, Germany). The product was cooled using ice-cooled water and collected at the bottom. The ice-cooled traps were used at the outlet to collect the total amount. The product was collected every hour. The products were analyzed by GC using SE-30 (5%) column of 3 m length and 2 mm diameter. The analysis was confirmed by MS and GC-MS. The 50 g-catalyst (HZSM-5) scale experiment was carried out for the best catalyst under the optimized conditions and the isolated yields are given elsewhere⁶.

Results and discussion—The reaction of diethanolamine and methylamine was carried out in the temperature range from 250 to 350° C, $0.5 h^{-1}$ weight hourly space velocity (WHSV), 80 atm pressure of hydrogen and 1:2 molar ratio of diethanolamine to methylamine. The results are given in Table 1. The stoichiometric equation may be written as,

$$HN(CH_2CH_2OH)_2 + CH_3NH_2 \rightarrow \left(\begin{array}{c} N \\ N \\ N \\ I \\ CH_3 \end{array} \right) + 2H_2O$$

The detailed reaction parameters optimization was done for this reaction over zeolites and reported elsewhere⁶. At atmospheric pressure, the yield of *N*-methylpiperazine was < 10%. In the absence of hydrogen flow the selectivity and yield of *N*methylpiperazine was much lower due to the formation of 2-methylpyrazine and pyrazine particularly. In presence of hydrogen flow, however, piperazine was side product.

The yields of *N*-methylpiperazine at 250°C, under the present experimental conditions as mentioned above, were 77.0, 66.5, 90.2, 7.7 and 27.7 wt% based on diethanolamine over Cu-1800P, CuO-Al₂O₃, Cu-0203T, Zn-0312T and G-33 catalysts, respectively. The yields of *N*-methylpiperazine at 300°C were 76.5, 58.5, 77.1, 52.6 and 27.2 wt% based on

^{*}Author to whom correspondence should be addressed †IICT Communication No. 3236

^aDeceased

Dedicated to Dr A V Rama Rao on his 60th birthday

S No	Catalyst	Yield of <i>N</i> -methylpiperazine ^a , wt%					
		TOS ^h , h	Yield at 250°C	TOS,h	Yield at 300°C	TOS, h	Yield at 350°C
1	Cu-1800P	3	77.0(95) ^c	3	76.5(95)	1	42.4(95)
2	30% CuO-γ-Al ₂ O ₃	2	66.5(95)	1	58.5(95)	1	14.6(95)
3	Cu-0203T	3	90.2(95)	1	77.1(95)	1	49.6(95)
4	Zn-0312T	2	7.7(95)	3	52.6(95)	3	29.2(95)
5	G-33	2	27.7(56)	2	27.2(60)	3	12.3(49)

diethanolamine over Cu-1800P, CuO-Al₂O₃, Cu-0203T, Zn-0312T and G-33 catalysts respectively. Except for G-33 catalyst, the selectivities for *N*-methylpiperazine were >90% under H₂ flow. With the increase of reaction temperature and time on stream, the yield decreases due to the coking; and the time on stream corresponding to maximum yield is reported in Table 1.

Thus copper containing Cu-1800P, Cu-0203T are found to be better cyclization catalysts than $Ni-SiO_2$ (G-33) catalyst.

References

- 1 Roundhill D M, Chem Rev, 92 (1992) 1.
- 2 Grohe K. Chem Britain, 28 (1992) 34.
- 3 Subrahmanyam M, Kulkarni S J & Srinivas B, React Kinet Catal Lett, 49 (1993) 455.
- 4 Kulkarni S J, Subrahmanyam M & Rama Rao A V, Ind J Chem, 32A (1993) 28.
- 5 Rama Rao A V, Kulkarni S J, Ramachandra Rao R & Subrahmanyam M, Appl Catal, 111 (1994) L101.
- 6 Nagaiah K, Sudhakar Rao A, Kulkarni SJ, Subrahmanyam M & Rama Rao A V, *J Catal*, 147 (1994) 349.