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Unraveling the association between microbiome and plant phenotype can illustrate the

effect of microbiome on host and then guide the agriculture management. Adequate

identification of species and appropriate choice of models are two challenges in

microbiome data analysis. Computational models of microbiome data could help in

association analysis between the microbiome and plant host. The deep learning methods

have been widely used to learn the microbiome data due to their powerful strength

of handling the complex, sparse, noisy, and high-dimensional data. Here, we review

the analytic strategies in the microbiome data analysis and describe the applications

of deep learning models for plant–microbiome correlation studies. We also introduce

the application cases of different models in plant–microbiome correlation analysis and

discuss how to adapt the models on the critical steps in data processing. From the

aspect of data processing manner, model structure, and operating principle, most deep

learning models are suitable for the plant microbiome data analysis. The ability of feature

representation and pattern recognition is the advantage of deep learning methods in

modeling and interpretation for association analysis. Based on published computational

experiments, the convolutional neural network and graph neural networks could be

recommended for plant microbiome analysis.

Keywords: plant microbiome, plant-microbiota association analysis, deep learning, plant phenotype, microbiome

data analysis

INTRODUCTION

The plant-associated microbiota refers to the whole microorganisms colonizing inside the plant
organs and on the plant surface, which includes rhizosphere, phyllosphere, and endophyte
microbiome (Muller et al., 2016). Numerous species of bacteria, eukaryotes, archaea, and virus
inhabit the plant root together. Most of them use the plant carbon nutrient and play a
part in plant growth and health (Duran et al., 2018). While under attack of pathogens or
insects, plants produce the root exudates that can draw protective microorganisms to resist
the invader. When the plant faces the stress, microbiota communities help to strengthen plant
tolerance (Yang et al., 2009; Xiong et al., 2020). In return, plant genetics and metabolism
can also shape and affect the communities (Li et al., 2018). With the understanding of the
associations between microbiome and plants, we can leverage the information of microbiome
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and predict the host phenotype in advance. Accordingly, we can
use microbiological engineering to promote the augmentation of
plant production and resistance ability under biotic or abiotic
stress (Toju et al., 2018a).

Next-generation sequencing technologies facilitate the
collection of genetic information from plant microbiome.
Among the sequencing techniques, the 16S amplicon sequencing
(Ward et al., 1990) and the metagenomics shotgun sequencing
(Sharpton, 2014) are commonly used in plant microbiome
studies. The amplicon sequencing focuses on identifying their
species and assigning them into certain nodes in the phylogeny
tree. However, insufficient reference genome and taxonomy
database restricts the taxonomy identification resolution
in data analysis, especially in the level of species or strains
(Johnson et al., 2019). Comparatively, metagenomic shotgun
sequencing makes the acquisition of functional information
possible (Breitwieser et al., 2019). The combination of these two
strategies can generate comprehensive information (Bulgarelli
et al., 2015; Zhang et al., 2016). By means of identification of
microbial composition, comparison of different communities,
inference of microbial functions, and the metagenome-wide
association studies (MWAS) can dig out the associations between
communities and plant phenotypes (Wang and Jia, 2016).

Considering the complexity of microbiome data, more
powerful and efficient tools are supposed to be explored to
interpret microbiome data and find microbiota–plant mutually
beneficial relationships (Bulgarelli et al., 2013). In response to
the technical demand, machine learning–based methods such as
random forest (RF) have been applied to study the impact of the
microbiome on plant growth (Chang et al., 2017). Deep learning–
based methods such as MetaPheno have been developed for
microbiome data pattern learning and data processing in
plant–microbiome association studies (LaPierre et al., 2019).
The MWAS aim to detect plant phenotype–associated core
microbes by plant–microbiome correlation analysis. To identify
significant associated microbes, the p-values of associations are
first estimated byWilcoxon rank-sum test and then computed by
multiple testing adjustments (Xu et al., 2019).

In this narrative review, we talk about the present researches
of associations between themicrobiome and plant productivity or
resistance to stress. We summarize the progress of deep learning
(DL) methods and its advantages compared with the classical
machine learning (ML) methods and the pipelines for extracting
the microbiome trait and perceiving its link to important plant
agricultural phenotypes.

DECODING THE PLANT–MICROBIOME
ASSOCIATION

Host-Specific Composition and Beneficial
Function
Different from axenic organism, plant grows accompanied by
countless microbes in the whole life cycle. The wild microbes
contest for nutrients and ecological niches (Dumbrell et al., 2010;
Freilich et al., 2011). The winners colonize and form a mutually
beneficial symbiont with host plant (Uroz et al., 2019). Serving

as the license for microbes to collaborate with plant, molecular
basis like genetic determinants and metabolic communications
are gradually discovered (Glick, 2014). Consequently, the
exploration of association study has evolved into two main steps.
First, the composition structure of plant-associated microbial
community should be profiled to define the core microbiome
taxa, which leads the community assembly and presents distinct
features (Agler et al., 2016). Second, the functional evidences
indicating causalities or interactions in plant–microbe network
under complex and varied environmental conditions would be
found (Toju et al., 2018b).

Methods for Microbiome Data Analysis
The methods for environmental microbiome data analysis
are similar with human microbiome study. The MWAS are
introduced to establish associations between the microbes
and the host genotypes by statistical quantitative comparisons
between different samples (Wang and Jia, 2016). The critical step
of MWAS is handling the sequencing data with multiple samples.
The raw sequence reads are preprocessed by removing sequence
errors to control the data quality (Caporaso et al., 2010). The
groups of same species are clustered to get operational taxonomic
units (OTUs) based on the similarity of sequences of marker
genes (Olson et al., 2019). As representative sequences, these
OTUs can be used to build the tree for identifying the species
based on the sequence’s phylogenetic distance and homology
database. In this step, the microbial community characteristics
like diversity, composition, and host specificity can be found
(Bulgarelli et al., 2012; Lundberg et al., 2012), for example,
stable and beneficial core microbiome relatives (Schlaeppi et al.,
2014), the heritable microbiome taxa in distinct maize lines
(Walters et al., 2018), and different microbial taxa and abundance
between the different genotypes and rootstock growth stage of the
same grapevine species (Berlanas et al., 2019). All of these cases
have shown the specific community structure and quantitative
characteristic of the plant-associated microbes.

Another vital step is to understand the effect of the microbiota
on plants based on functional gene discovery and annotation.
The workflow of metagenomics data analysis involves three sub-
steps compared with amplicon data: (1) assembling the reads to
at least contig level (Sangwan et al., 2016); (2) binning reads,
contigs, or genes to bins, species- or strain-level taxonomic units,
which initially reduce computational burden for latter analysis
(Alneberg et al., 2014); (3) mapping reads or contigs to reference
genome, marker genes, annotated contigs or genes, proteins, or
metabolic pathways (Quince et al., 2017). The diversity of species
and function endows microbial community with resilience and
redundancy, which can mediate the states of communities in
fluctuant environmental conditions (Hu et al., 2016; Garcia-
Garcia et al., 2019). Many microbial beneficial functions come
down to the promotion of symbiont health and the resistance to
stress (Lemanceau et al., 2017).

The strategies of functional association analysis in recent 10
years are listed in Table 1. The table describes four aspects of
microbiome’s impacts on host plant and the strategies to explore
the function of microbiome from amplicon and metagenome
sequence data. The table also presents how to discover the
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TABLE 1 | The methods and strategies of functional association study in plant-microbiome.

Function type Relationship Study and sequencing strategy Approach to define the core

plant-associated microbiota and reflect

the function

References

Help plant resist against pathogens

Soil-borne fungal

pathogens

Disease-suppressive microbes protect

plant against pathogen infection

1- Identify key bacterial taxa and genes

involved in suppression

2- Isolate key taxa to detect the biosynthetic

genes and pathways underlying

pathogen control

1- Bacterial taxa with abundance correlated

with different levels of pathogen control

2- Gene participating in protection and test by

mutant experiment

Mendes et al.,

2011

Soil-borne bacterium The resource competition among

resident community and pathogen that

impacts on the plant resistance to

pathogens

1- Isolate five non-virulent species to do

replicated invasion experiments

2- Use interaction network to describe

rhizosphere community and response to

invader and observe the effect of

pathogen invasion

1- Characterize bacterial resource competition

networks after inoculating pathogen or

2- Choose core taxa to investigate biodiversity

ecosystem function

3- Observe the relationship between the

microbial diversity and invasion resistance

by path analysis (model) or

correlation regression

Wei et al., 2015;

Hu et al., 2016

Leaf pathogen

(Arabidopsis thaliana)

Plant leaf response to colonization by

phyllosphere microbiome and pathogen

1- Plant inoculation experiment

2- Conduct RNA sequencing and plant mutant

experiment or

3- Directly observe plant physiological change

and promotion of plant growth

after inoculation

1- Select critical and known certain pathogen

species and beneficial bacteria for certain

disease

2- Perform differential expression analysis to

discover the regulated gene in response to

bacterial colonization or

3- Directly detect the activity of

defense-related enzymes to reflect the

beneficial bacteria function

Vogel et al., 2016;

Yasmin et al., 2016

Leaf pathogen

(Quercus robur L.)

The intra- and inter-relationships in

pathobiome community

1- Use ITS1 and 16S sequences to define the

taxonomic composition of microbial

community

2- Plant inoculation experiment

3- Compare the infection level and select the

highly pathogen-susceptible tree to

discover relationship between the level of

infection with composition of microbial

community (use PCA to detect difference)

1- Focus on 13 fungal and 13 bacterial OTUs

highly interacted with pathogen

2- Ecological networks to analyze association

among species and to distinguish the

positive or negative association

3- Network inference to decipher interactions

among pathogen with other

community members

Jakuschkin et al.,

2016

Citrus disease,

HuangLongBing

Disease impairs the root microbiome

enrichment; core microbiota maintain

the stable association between plants

under infection of HLB

1- Combine metagenomic and

metatranscriptomics approaches to identify

the taxonomic and functional properties of

root microbiome

2- Perform pairwise comparison of community

in different niche and health status/disease

symptom severity

3- Use assembled and taxonomic annotated

reads to predict unigenes and conduct the

functional annotation by blast to KEGG

1- Define the most abundant and dominant

bacterial family during HLB disease

progression as core bacteria or confirm

several main previously proved plant

disease–associated bacteria

2- Perform network analysis to identify the

mutual relationship between pathogen and

core members in community

3- Predict unigenes and pathways

by metatranscriptomics

Blaustein et al.,

2017; Zhang et al.,

2017

(Continued)
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TABLE 1 | Continued

Function type Relationship Study and sequencing strategy Approach to define the core

plant-associated microbiota and reflect

the function

References

Kiwifruit disease

caused by Psa

Leaf epiphytic bacteria influence the

initial infection process of pathogen Psa

pathogen also affects the

phyllosphere microbiome

1- Reveal the species- and organ-specific of

leaf epiphytic bacterial by 16S (V3, V4)

sequencing and classified OTU analysis

2- Observe the change of community structure

and biodiversity under pathogen infection

3- Measure three biodiversity indices to find

differences in microbiota structures

4- Use multiple regression test (statistical

analysis) on microbiome–pathogen

infection association

1- Select main beneficial bacteria together with

pathogenic consortium

2- Statistically analyze their interactions and

correlations, and connect them to the

healthy status and plant genotype to study

the role of bacteria in promoting plant health

Purahong et al.,

2018

Enhance plant physical tolerance to stress

Drought (grapevine) Some strains have plant-promoting

(PGP) traits in drought conditions

1- Select some culturable bacteria

2- Conduct isolation and inoculation

experiment to demonstrate the PGP ability

3- Control grow condition to find inducement

of ability

1- Find core beneficial microbiome according

to previous research

2- Measure the root biomass and metabolite

to test the promotion ability

Rolli et al., 2015

Drought (rice) Drought stress result in root-associated

microbiome restructuring

1- Sequencing the 16S (V4 region) to survey

the diversity

2- Control the drought treatment to observe

the microbiome change in 4 distinct

genotypes and 3 field conditions

3- Assess the abundance of OTUs under

water deprivation to find core OTUs driving

the composition change

1- Perform phylum-level analysis to study the

abundance variation, enriched or depleted,

in drought-stressed communities

Santos-Medellin

et al., 2017

Harsh habitat in desert

(salt-secreting desert

tree)

Leaf bacteria help plants to adapt to

high salinity, high alkalinity, high UV

radiation, and periodic desiccation

1- Use 16S amplicon classification to reveal

the relationship of microbial community

diversity and plant species, environment

2- Assemble the metagenomic reads to know

functional characteristics of bacteria

exposed to multiple stress factors

1- Binning the contigs into 17 bacterial

genomes to locate the core taxa

2- Compare the genomic bins to the closest

relatives to reveal function by KEGG

annotation, find the main signature:

light-sensing genes

Finkel et al., 2016

Cd/Zn contamination

in Sedum alfredii

Different structure and function of

root-associated microbiomes in un-

and hyperaccumulating plant genotype

1- Compare two plant genotype

root-associated microbiota by 16S profiling

2- Observe the visible symptoms of metal

toxicity and plant biomass

3- Predict the function gene related to

membrane transporters and energy

metabolism to uptake and accumulation of

heavy metal

1- Cluster OTUs and taxonomic assign against

Greengenes database to identify several

genera whose abundance variation can

change the metal hyperaccumulation

2- Map 16S rRNA genes to closed reference

metagenome profiling and conduct KEGG

pathway annotation (use PIRUSt)

Luo et al., 2017

(Continued)
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TABLE 1 | Continued

Function type Relationship Study and sequencing strategy Approach to define the core

plant-associated microbiota and reflect

the function

References

Cd contamination in

rice

Different response to Cd-contaminated

soil suppression in genotype-specific

bacterial community

1- Compare the two rice cultivars—highly or

weakly accumulating Cd

2- Analyze the genotype specificity of bacterial

community diversity and abundance by

bacterial 16S (V3, V4 region) sequencing

3- identify the bacteria taxa specifically

enriched in two cultivars, find the

rhizosphere microbiome function difference

1- Identify the bacterial taxa specifically

enriched in two different cultivars by

comparison

2- Find core function taxa related to metal

accumulation and activation, and plant

growth promotion related to metabolism

Hou et al., 2018

Promote growth and augment productivity

Wheat Rhizobacteria community that has

stable composition and balanced

abundance ratio impact productivity

1- Find 16S OTUs that associated with the

biomass by regression analysis

2- Define the positive and negative associated

taxa and positive-to-negative OTU ratios

3- Observe the relationship between

community composition trait with

biomass change

1- Select 8 representative OTUs that show the

most positive or negative association with

biomass

2- The function are reflected by the

contribution of bacteria taxa to the biomass

measure from statistical aspect

Anderson and

Habiger, 2012

Arabidopsis thaliana Genotypic variations in host plant

influence and select the microbiome

1- Test hundreds of Arabidopsis accessions to

determine the effect of level change of

WCS365

2- Perform correlation statistical analysis to

know which determines the strain specificity

of wCS365 among bacteria genotype or

host genotype

1- Focus on the proved beneficial bacteria P.

fluorescens WCS365

2- Test the function of WCS365 by observation

of the rhizosphere community changes and

plant growth and resistance after

inoculating in field experiment

Haney et al., 2015

Soybean crop in field Different soil microbiome results in high

and low productivity fields

1- Shotgun metagenomic analysis to

investigate the composition of soil

microbiome

2- Use metagenome-wide association studies

to determine if abiotic or biotic factors and

which taxa associate with high and low

crop productivity

1- Different community composition reflect

different influence on productivity by

Random Forest prediction model

Chang et al., 2017

Ecological function

Arabidopsis thaliana

leaf microbiome

Host-genetic factors play role in leaf

microbial colonization and community

structure formation

1- Decipher the community composition by

16S OTUs and ITS2 sequences analysis

2- Look for evidence that host genotypes

shape the microbial community by

correlation analysis

3- Conduct GWAS and genome-wide SNP

detection to reveal influence of host plant

loci and gene variance that cause difference

in community composition

1- Find most heavily sequenced bacterial

OTUs and show the most frequently

observed genomic region

2- Define the gene family enriched to biological

processes such as defense mechanism and

cell wall integrity

Horton et al., 2014

(Continued)
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TABLE 1 | Continued

Function type Relationship Study and sequencing strategy Approach to define the core

plant-associated microbiota and reflect

the function

References

Arabidopsis thaliana

symbionts

Hub microbes interact with each other

and act as drivers to colonization

selected by specific plant genotype

1- Establish the community correlation network

topology based on 16S amplicon OTUs

2- Use constrained ordination of factors that

affect community assembly to find hub

microbe and its contribution

3- Correlation analysis to find the factors that

impact on community diversity and variation

1- Discover hub microbes that suppress other

microbes and control the abundance of

other competitors

Agler et al., 2016

Legume plant

microbiome

Detailed characterization of Trifolium

root microbiome is deciphered

1- Describe the root bacteria microbiome

composition character with both culture and

non-culture methods

2- Conduct climate chamber experiment to

know whether field conditions do matter in

differing the composition

3- Perform inoculation experiment to evaluate

the plant–microbiota interaction potential by

scoring effects of the bacteria on plant

growth and thus find what genus generates

positive or negative impacts

1- Identify the high relative abundant root

microbiome OTUs

2- Discover the function traits by finding out

nutrient-providing Rhizobia bacteria and

protection from pathogenic disease

Hartman et al.,

2017

Grass microbiome Microbiome function diversity and

complexity traits can predict nutrient

cycling ecosystem function

1- Quantify 10 functions reflecting ecosystem

nutrient cycling to asses 3 plant functional

groups

2- Profile the soil bacteria and fungi

communities by 16S and ITS OTU analysis

3- Construct microbial association networks to

analyze the linkage density between OTUs,

functional complexity, community traits, and

so on

1- Use randomization test to assess whether

each taxa predicts particular ecosystem

functions

2- Use net regularization to predict all taxa

community by feature selection

3- Infer the positive or negative functional

contribution of each OTU

Wagg et al., 2019

Soil microbiome Soil microbiome composition indicates

and predicts the soil physico-chemical

traits

1- Collect soil physico-chemical variables from

606 sites to characterize the soil

environment

2- Sequence the 16S (V3–V4) amplicons to

represent the soil microbiome composition

3- Concentrate on the bacteria OTUs after

taxonomic annotation by Greengenes

database reference

4- Use random forest model to connect OTUs

to soil trait values and scores

1- Use bacterial community composition to

predict soil conditions by prediction model

Hermans et al.,

2020

F
ro
n
tie
rs

in
G
e
n
e
tic
s
|w

w
w
.fro

n
tie
rsin

.o
rg

6
O
c
to
b
e
r
2
0
2
1
|
V
o
lu
m
e
1
2
|A

rtic
le
6
9
7
0
9
0

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Deng et al. Deep Learning for Plant-Microbiota Associations

core functional divers and how to establish extensive association
between microbiome function and host plant. The researches
have tended to directly isolate the beneficial bacteria that were
discovered in healthy plant and proved to inhibit pathogen
growth or exhibit the plant growth–promoting ability (Haney
et al., 2015; Wei et al., 2015). The inoculation experiments
have been conducted to test whether participation of selected
microbiome consortia has positive effects on host plant under
natural suppression from pathogen toxicity, drought, and heavy
metal contamination. These studies have provided experimental
proof of microbiome influence on host plant. With the
development of metagenomic data analysis, the deconstruction
of microbiome composition became easier (Hartman et al.,
2017). Three issues are focused by the researches, i.e., the
discovery of beneficial core microbe taxa, the description of the
structure of microbe communities, and the identification of the
functional elements (Liu et al., 2020). These effects are embodied
in both microbiome community’s variations and host plant
physical change signs (Luo et al., 2017; Santos-Medellin et al.,
2017), plant growth status assessment (Anderson and Habiger,
2012; Purahong et al., 2018), and plant defensive response–
related metabolism observation (Rolli et al., 2015; Hou et al.,
2018). To seek functional elements including the coding genes
(Horton et al., 2014; Finkel et al., 2016), transcripts (Vogel
et al., 2016; Zhang et al., 2017), and enzymes (Yasmin et al.,
2016), the genes are identified by database homology searches
or de novo prediction and then attributed into protein families
or metabolic pathway. Furthermore, cooperative or competitive
associations in microbial community members also have an
influence on host plant (Jakuschkin et al., 2016; Blaustein et al.,
2017). As a commonly used method, network analysis can help
in illuminating the association between microbiome function
and plant phenotype. A network presents the correlation of
functional elements or pathways in microbial communities. The
analysis of functional profiles could be done using MetagenoNets
(Nagpal et al., 2020). In addition, the microbial community
reconstruction is an effective mean that can validate the
linkage between the plant microbiome trait and plant phenotype
(Mavromatis et al., 2007; Edwards et al., 2015). The efficiency
of these analyses is supported by a powerful bioinformatics tool,
which can be found in the MicrobiomeAnalyst platform (Chong
et al., 2020; Liu et al., 2020).

PLANT PHENOTYPE PREDICTION: A NEW
ANGLE

Predicting Phenotype Based on Plant
Microbiome
The traditional research patterns of plant-associated microbiome
involve profiling the microbiome composition and finding
metabolic function units (Figure 1). Recently, some works have
turned attention into direct prediction of plant agronomic traits
according to the features of overall microbial community. The
stable heritability of several certain core microbiome taxa with
certain function units can signal some characteristics in terms
of plant genotypes (Lundberg et al., 2012), plant adaption to

FIGURE 1 | The scheme of plant on symbiosis with microorganisms. The

plant provides microbial community carbon, nitrogen nutrient substance, and

some root exudate metabolites, such as amino acids, sugars, and organic

acids. These substances can drive the enrichment of microbes from bulk soil

to the region of rhizosphere. Microbes that are adapted to the exudate

metabolites can pass the selection by plant and finish colonization. Microbes

also produce metabolites, such as hormones and secondary metabolites, to

participate in the regulation of metabolism.

stress (Zhang et al., 2020), and plant productivity (Jin et al.,
2017). This allows us to speculate on the quality of host
plant according to microbiome data. The resolution limitation
of microbe fingerprinting and the knowledge bottleneck of
complex microbiome are two challenges in microbiome data
analysis. To address these challenges, the tendency of research
has transformed the analysis from finding unilateral correlation
to forecasting overall phenotype (Chang et al., 2017). First, we
cannot absolutely reach species- and strain-level high resolution
because of the incompleteness in taxonomic annotation. The
subtle differences in strains that may influence the impact of
microbiome on host such as the differences in pathogenicity
or toxicity of strains (Blaustein et al., 2017), and the species
without taxonomic or functional annotation both can leave us a
dilemmawhether we can ignore them in data processing (Mendes
et al., 2011). Second, as shown in Table 1, the interactions among
microbiome community members or between microbiome and
host are bilateral and interlaced. The interference factors are
hard to be excluded by a few sample sets. These complex
associations make the prediction of phenotype difficult. In
general, more attention is paid to find the unilateral association
between microbiome and host. In fact, the dispersive features
and multilateral associations are synergistically determined by
plant genotypes (Walters et al., 2018), soil conditions (Santos-
Medellin et al., 2017), degree and time of stress (Blaustein et al.,
2017), and other invisible factors. In other words, it is the
whole community that performs the function on host rather
than the merely several core taxa (Wagg et al., 2019). Similarly,
the host plant phenotype should be considered as the aggregate
consequence ofmany changeful andmutually restricted influence
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factors from plant-associated microbiome traits and natural
environmental variables.

New Requirement of Data Integration
The understanding of multilateral associations needs adequate
information such as the microbes at different taxonomy level,
the multi-omics data like metagenome and transcriptome, the
characters of core microbiome taxa and whole communities,
and the influences of synergistic factors on host (Xiong et al.,
2020). These different types of data should be integrated to
directly and efficiently predict the plant’s important agricultural
phenotype with which the plant growth states can be understood
(Chang et al., 2017; Gu et al., 2020) and then be managed
to improve the adaptation of plant to the environmental
change and stress (Hermans et al., 2020). With the ability of
representing the metagenomic sequence data and extracting the
important features and associations in the host–microbiome
system, supervised learning methods for the high-dimensional
and complex microbiome data have sprung out. As a branch
of machine learning method, the deep learning methods
have a flexible model to process high dimension data (Zou
et al., 2019). Thus, the deep learning methods provide the
advantage of studying the plant–microbiome associations that
link comprehensive microbiome genetic information to host
phenotypic traits and physiological states of plants (Knights et al.,
2011a; LeCun et al., 2015).

Representation Learning for Microbiome
Data
Four kinds of DL models have been introduced to model
genomic data (Eraslan et al., 2019). The tutorial of model
designs and training steps tailored for different types of data has
been provided. The features of genomic sequence data can be
represented by k-mer counts (Tu et al., 2014; Liu et al., 2017),
position weight matrix (Stormo, 2000; Alipanahi et al., 2015),
and network-structured data like protein–protein interactions.
There have been some reviews that summarized the applications
of ML in human microbiome data analysis for different tasks.
The classification of microbial species, the prediction of host
phenotypes and ecological environments, the investigation of
interactions between community members, and the prediction
of associations between microbiome and disease are the key
tasks (Qu et al., 2019; Zhou and Gallins, 2019). More and more
DL models show advantages in human metagenomics data in
detecting biomarkers that characterize the microbiome traits and
host phenotype, such as MetaPheno (LaPierre et al., 2019) and
MDeep (Wang et al., 2020). The ML method has succeeded
in predicting productivity based on plant soil metagenomic
data. Therefore, the DL methods can also help to improve
performances in plant-associated microbiome data analysis. In
this review, we summarize recent DL methods designed for
metagenomic data in recent years. We discuss the specific role
of DL methods in learning the pattern from microbiome data
and modeling for prediction task. We also discuss the advantages
of DL methods in dealing with problems in practical limitation
of plant microbiome compared with traditional ML methods
(Chang et al., 2017).

The microbiome data harbor three aspects of information,
i.e., the taxonomic and functional compositions of all microbial
species, the interactions among each member in community,
and the associations between microbiome and host plant in a
certain environment (Figure 2A). The objective of modeling is
learning inherent patterns and finding significant features from
this information. A training model should be able to precisely
predict the plant-associated knowledge of interest. In a training
study, the implementation follows four steps: (1) prepare dataset
for a prediction task; (2) construct suitable model architecture;
(3) train and optimize themodel; (4) finish end-to-end prediction
task and test performances on new datasets. There are also
detailed implementations and guidance of model training. The
main program of modeling for MWAS includes three steps: (1)
prepare and parse the input data; (2) learn the pattern of data
and identify the relevant features by DL models; (3) execute the
classification or regression task based on causal correlation (Li
et al., 2019; Zou et al., 2019).

Detect Biomarkers From Data
The input data include 16S amplicon or shotgun sequencing
data. The sequencing data can be numerically encoded into one-
hot matrix (Pan and Shen, 2018) and feature table that are
processed by classical bioinformatics analysis pipeline like OTU
table (Bolyen et al., 2019) or amplicon sequence variant (ASV)
table (Callahan et al., 2016). The first step ofMWAS is to discover
the microbial biomarkers from high-dimensional, sparse, and
noisy metagenomic data. Similar sequences are clustered and
aligned to the databases of marker genes, i.e., 16S, 18S, and ITS
(internal transcribed spacer). The sequences with the maximum
similarity to the reference sequences are the representative
sequences, namely, OTUs. The OTUs with high abundance in
samples represent the core taxa that reflect component specificity
in microbiome community. For the shotgun sequencing data,
the predicted function genes act as biomarkers to represent the
function signature (Segata et al., 2011).

The limitation of data analysis is that existing methods of
feature representation like OTU tables are not comprehensive
enough to give a complete picture of the whole microbiome. For
instance, a single threshold like 97% for taxonomic classification
may not be optimal for all kinds of microbiome datasets.
What is more, the core taxa may belong to multiple different
taxonomic levels ranging from class, genus, and species. In
this case, the selected microbial signatures that fall in different
classification levels are much harder to be represented (Knights
et al., 2011b). For the ML methods, the feature representation
was manually designed by microbiology experts who adopt
OTUs, ASVs, or alpha-diversity to describe the data feature
composition and abundance. This kind of feature engineering
and pattern learning in DL tasks is automatically conducted by
the multilayer perception in deep neural network (DNN). The
first advantage of DL is capacity of data feature representation
compared withML. Viamultiple hidden layer process, the hidden
features of input data will be learned and represented layer
by layer, making the connection of input signal with output
prediction target much tighter (LeCun et al., 2015). As a basic
deep neural network, deep feed-forward network is made of
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input layer, hidden layer, and output layer. Actually, to improve
the prediction performances of deep learning, optimizing the
representations of data features is a general strategy. Commonly,
the ML methods treat tables of OTU abundance as input features
that represent the composition and quantity information. This
has worked well in human microbiome sequence classification
especially in RFs and support vector machines (SVM) (Statnikov
et al., 2013). As for metagenomic shotgun sequencing data,
MetaphlAn2 can generate taxonomic profiles shaped like OTU
tables from metagenomic sequence assigned to marker gene
or functional gene database. The input datasets are generally
represented by the OTU tables in a tabular format, which show
the abundance of each taxa in each sample. Identification of
biomarkers is carried out through data representation and feature
extraction (Truong et al., 2015).

Data Representation and Feature
Extraction
The OTU features collect and represent a subset of similar
sequences, but the DNA mutations are ignored when disturbing
cluster division (Koeppel and Wu, 2013). In some models,
the k-mer representation has been proved to outperform on
the same datasets owing to less computation complexity and
independence on reference database (Vervier et al., 2016; Asgari
et al., 2018). The k-mer counting means the frequency of
all subsequences of different length k in a given sequence
data. The embedding representation has shown the advantage
of encoding the 16S amplicon sequence into low-dimensional
space and preserving species-level resolution of sequences.
These low-dimensional representation methods could emulate
the original features of vast sequence data and preserve the
sequence similarity and difference. The k-mers can be encoded to
vectors through embedding and then be fed into the input layer
(Woloszynek et al., 2019).

In the OTU-feature representations, a cluster of similar
sequences are represented by a representative sequence. This
method can correct the sequencing errors but erase subtle
differences of sequences and result in taxonomic classification
bias (Callahan et al., 2017). Short sequences with small k cannot
detect the subtle differences. The larger k tends to cause the curse
of dimensionality. To alleviate this problem, sequence can be
mapped into low-dimensional space through embedding. The
embedding method transforms feature maps into image format
by t-SNE (t-Distributed Stochastic Neighbor Embedding) (van
der Maaten and Hinton, 2008). A study of 2D embedding has
shown how to map species-abundance datasets to 1D or 2D
images for convolutional neural network model (Hai Nguyen
et al., 2017). The 1D image arranges the features according to
increasingly taxonomical order. The colors with different depths
are used to distinguish the abundance. The black (white) color
means presence (absence) of certain species (Figure 2B). The
2D images are a low-dimensional projection of feature points
from all samples by t-SNE (van der Maaten and Hinton, 2008).
As a prior knowledge of evolutional relationship in a microbial
community, phylogenetic tree helps to understand the inherent
structure of microbiome data. This kind of spatial information

among numerous features may not be captured by OTUs or
k-mers (Albanese et al., 2015; Fioravanti et al., 2018).

After integrating the phylogenetic tree into matrix, the
feature map has both quantitative information and the spatial
relationship of feature nodes in the tree. The phylogenetic trees
are constructed by OTU abundance tables. The nodes in trees are
OTUs that ranged based on the evolutionary distance between
different representative sequences. Then trees with abundance
and location information are embedded into a matrix where
the root node is on the top left corner and each row is filled
with the child nodes, and vacant position is padded with 0.
Multi-dimensional scaling (Cox, 2001) can also preserve the
defined tree distances between two OTU points when mapping
OTUs into a subspace (Fioravanti et al., 2018). This format of
matrix is suitable for convolutional neural network, which is
especially good at handing the pattern recognition of 2D image–
like input data with pixels. In addition, given the complex inside
relationship between microorganisms, a method that built a
sparse correlation network from OTU abundance data and then
embedded the network into the DL model (GEDFN) has been
raised. Embedding feature maps into graph-like matrices and
outperforming the tree-based representation and traditional ML
feature selection, this model is a reasonable representation (Zhu
et al., 2019).

The significance of appropriate numerical encoding and
representations for this kind of complex microbiome data
in subsequent modeling is self-evident. It enables the better
interpretation of complex and structurized microbial data, which
helps to fully leverage the information of microbiome data
to predict the host phenotype. As underlying signals, different
features make the microbiome communities different. So the
features should be precisely identified for phenotype prediction
(LaPierre et al., 2019). There are three types of features including
the taxa abundance, the k-mer distribution of raw reads, and
the function gene. The OTU abundance and k-mer distribution
are quantitatively statistical features of the sequence itself. The
embedding methods can map the high-dimensional features
into lower-dimensional plane space or embed the quantitative
characteristics into phylogenetic trees. This belongs to image-
based and tree-based representations (Hai Nguyen et al., 2017).

After feature representation and dimension reduction, feature
selection is another data preprocessing task to improve the
accuracy of the prediction model. The goal of feature selection
is to select the most relevant feature subset and remove the
irrelevant feature and redundant feature. Five kinds of feature
selection methods have been conducted (Statnikov et al., 2013).
All these methods have improved the classification accuracy.
The traditional feature extraction methods (i.e., PCA and PCoA)
for OTUs do not improve the performances in prediction and
classification due to the information consumption in excessive
dimension reduction and multilevel feature filtration. Therefore,
the feature engineering needs more simple and effective methods.
The ensemble feature selection methods (Pes et al., 2017; Seijo-
Pardo et al., 2017) applying to MWAS have been introduced and
tested (Zhu et al., 2020). The MDeep model has been developed
to simulate the phylogenetic tree structure of microbial taxa
at different taxonomical levels. It indicated that convolutional
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FIGURE 2 | Two routes of microbiome data analysis. (A) The processes of traditional association study by bioinformatics tools. (B) The processes of

microbiome–phenotype connection by DL model. The model can integrate more information of data at the same time. In this example, a binary-classification CNN

model, in which the abundance of features matrix is input and the outputs are the probability values of two class labels (0, 1). In hidden layers, operations of

convolution and maximum pooling can extract the informative features by auto-updating the weight of each unit (feature). The filters in the black window down-sweep

the input feature and get new matrices for each sample. The exact number of layers will be decided according to prediction accuracy about 3–5 layers based on

experience. The last two layers are fully connected with their weight. The weights of connection represent the importance values of the units, as shown by the black

dotted line with different color depths. Activation function at last layer can produce the probability vector that can be used for the final classification or prediction.

neural network could automatically learn representation and
map a complex feature to the simple one by convolutional
multilayers (Wang et al., 2020).

The step of feature selection alleviates the data complexity
and high dimension. It decides the most discriminative features
among samples and identifies the most relevant core biomarkers
for microbiome-associated phenotype of host. Instead of classical
ML feature selection methods, the DL models handle the raw
data better since they can learn the representation and extract
important features automatically in an end-to-endmanner. Some
features that are endowed with high importance score will be
reflected on the relatively larger connection weights of neural
node during DL prediction model training. This operation can
leave out the feature selection steps for reduction of excessive loss
of information (Ditzler et al., 2015).

DEEP LEARNING MODELS FOR
PREDICTION

The DL models with high computational efficiencies include
convolutional neural networks (CNN), recurrent neural
networks (RNN), and graph convolutional neural networks
(GCN). Here, we introduce three categories of tasks that the DL
methods applied in microbial data analysis (Eraslan et al., 2019).

Deciphering Species Composition of
Microbiome Data
Microbiome data are characterized by a mixture of known

and unknown species that makes data high-dimensional and

sparse. The application of supervised classification of microbiota

has been demonstrated to be feasible (Knights et al., 2011a).
An open question has been raised as to how to incorporate
the phylogenetic information into OTUs. As PhyloRelief has
indicated, the tree-based representation can deal with this
problem (Albanese et al., 2015).

The CNN and deep belief network (DBN) architectures have
been used for taxonomic classification based on emulated 16S
reads generated by artificial simulation tool Grinder (Angly
et al., 2012). The classification models have been applied on
each taxonomic level from phylum to genus based on k-mer
representation (Fiannaca et al., 2018). This model has been
proved to outperform the considered baseline-RDP classifier. For
instance, with k = 5 prepared taxonomy annotation table and k-
mer frequency table are transformed into a matrix with k-mers or
taxonomy label (such as genera) of each sequence ID as rows and
sequence ID as columns. This matrix is the training data X for
microbial communities. Classes of each datasets are transformed
into numerical labels as training Y for each sequence ID, such as
−1, 0, and 1. In both CNN and DBN, features of input X can be
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mapped to a lower dimensional feature space through the hidden
layers. The feature maps are then sent to a fully connected layer
to conduct the binary classification. Besides, we can compare the
performances of separated models with different k to define the
best k setting. In this way, the models can finish unsupervised
feature extraction and supervised classification in architecture,
simplifying the feature engineering and supervised learning task
in machine learning (Wang et al., 2007).

The Ph-CNN is a CNN architecture endowed with
auxiliary information of hierarchical structure by tree-based
representation (Fioravanti et al., 2018). It processes data in a
format of digital image with pixels. It uses a designed Phylo-Conv
keras layer that sums the leaves of the tree in which each leaf
represents the abundance of OTU at a certain position on the
phylogenetic tree. Then it uses filters to slide over all points
of input variables and convolve for detecting neighborhood of
leaves. The model ranks the neighborhood of each OTU based
on distance, which can help to detect most discrimination taxa
among different samples. DeepMicrobes model has developed a
toolbox of taxonomic classification for metagenomic sequences
with more complete fragments than amplicons (Liang et al.,
2019). Based on k-mer representation, the RNN models are
trained on reference genomes. They have built models for each
taxonomic level of phylum, class, order, family, and genus with
different read lengths. The models are built to distinguish similar
taxa. The researchers have also compared the k-mers and one-hot
encoding methods in other architectures like ResNet-like CNN
models (Jaganathan et al., 2019) and LSTM models (Hochreiter
and Schmidhuber, 1997). The results have shown that k-mer
representation could improve performances of classification by
dealing with short sequences.

It is impractical for all real sequenced data to be equipped
with reference genome and known taxonomic category especially
in the natural environment. The collection of worldwide plant
microbiome data sample is far more hard and costly than
human gut microbiome, which makes reference genomes and
labeled data insufficient. The applications of DL modes are more
powerful for mining microbiome data and processing new data
independent of reference database than classical ML methods.

Functional Analysis by Deep Learning
Methods
Functional gene prediction is a contributory as significant taxa’s
marker gene identified in association analysis. However, gene
finding in metagenomic sequences is limited by incompleteness
and fragmentation. The gene caller has been developed to extract
complete and incomplete open reading frames (ORFs) from
short reads and recognize coding ORFs by ML classification
methods (El Allali and Rose, 2013). An integrative framework has
been built to predict the functions of microbial communities by
ML method that combined composition structure of microbial
communities with knowledge contexts such as phylogenetic tree
structure in communities (Wassan et al., 2019). This method
aims to discover the biomarkers (OTU features) and assess their
functions. A CNN model has also shown the feasibility of DL
in functional annotation of genome sequences (Khodabandelou

et al., 2020). The authors have recognized the short sequences
with certain known functions, such as functions of the promoters
in different species. A CNN model (CNN-MGP) has been built
to recognize genes from raw metagenomic DNA sequences
without manual feature selection (Al-Ajlan and El Allali, 2019).
The model can automatically learn the features of sequences
within the regions of certain function elements, and distinguish
coding and non-coding regions according to ORF recognition.
The authors have encoded L-length ORFs into one-hot matrix
(L∗4) as numerical representation (Al-Ajlan and El Allali, 2019).
They have specially chosen the one-dimensional CNN that is
suitable for DNA sequence data. They have built models for
each different GC content interval range, and then used input
layers and convolution layers to extract features. Lastly, they have
used a fully connected layer with non-linear activation function
to generate output-probability values. The post-processing step
involves a list of some candidate genes with probability values
above 0.5. The greedy algorithm are used to iteratively select
fragments with maximal probability and remove the overlap
smaller than 60 bp (Hoff et al., 2008). The method can be used
for function annotation on metagenomic reads in a supervised
manner, by reference of gene annotations in GenBank, KEGG
Orthologs or Pathways, FunGene (Fish et al., 2013), COG
(Galperin et al., 2019), and MG-RAST (Wilke et al., 2015).

Directly Predicting the Host Phenotype
An important step forward in association study of microbiome
and host is the application ofMLmodels inMWAS. In this study,
the RF methods are used to perform a binary classification and
divide the samples into high or low productivity with a threshold
value based on the certain amounts of microbial taxa at each
taxonomic level (Chang et al., 2017). The model has calculated
the importance of each taxon that contributes to indicate the
corresponding sample productivity traits. Then more researchers
have begun to explore the DL methods to conduct this end-
to-end way of prediction. The Ph-CNN model has used gut
microbiome data from patients with six kinds of inflammatory
bowel disease (IDB) to divide the data into different classes based
on OTU abundances and phylogenetic distance information
(Fioravanti et al., 2018). The study of MetaNN has also
introduced the classical ML methods (Lo and Marculescu, 2019).
The authors have tested DNN and CNN models on differential
OTU abundances to divide the disease states of IDB and Type 2
diabetes with data perturbation. The PopPhy-CNN has provided
a paradigm of CNN framework linking the metagenomic data
with host phenotype (Reiman et al., 2020). The framework
includes the metagenomic profile representation, important
feature extraction, and disease prediction. They have evaluated
DNN methods compared with other ML methods on predicting
samples from 16S gene with k-mer based representation, which
demonstrates the advantages of DL models at large datasets
(Asgari et al., 2018).

In specific research of plant, the collection of a large number
of duplicate samples covering all the conditions is unpractical.
For instance, we cannot collect the microbiome samples from all
possible temperatures, soil pH values, and concentrations of salt
or heavy metal. This limitation results in the small size of training
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TABLE 2 | Datasets of the plant-associated microbiome.

Datasets Sample

size

Number of

features (total)

Classes Prediction tasks References

Drought-amplicon

(NCBI) (rice)

216+216 1,461 OTUs

(genus)

2 Classification of state of drought (1) or

watered (0)

Santos-Medellin et al.,

2017

HLB disease-metagenome

(NCBI) (citrus)

6+6 7,577,213

unigenes

(bacterial)

2 Classification of healthy (0) or HLB

disease (1) sample

Zhang et al., 2017

Productivity-amplicon

(EBI) (foxtail millet)

2,882 16,109 OTUs 30 Prediction of 30 productivity group

according to the grain weight per plant

(1∼30g)

Jin et al., 2017

Productivity-metagenome

(MG-RAST) (soybean)

6+6 7,073 OTUs

(genus)

2 Prediction of high (1) or low (0)

productivity

Chang et al., 2017

Disease-amplicon and

metagenome

(NCBI) (cassava)

30+30+30 166,097 OTUs

(16S)

22,339 OTUs

(ITS)

4 Prediction of response level of sensitive

(−2), medium sensitive (−1), medium

resistance (1), resistance (2)

Zhang et al., 2020

dataset that causes the over-fitting of models. Most researchers
generate simulated samples to augment data and adopt cross-
validation or bootstrapping methods to divide the training and
testing dataset. The Deep Forest based on random forest has been
adopted in a robust ensemble model with less parameter to tune.
It is a good attempt to combine deep cascade structure with ML
method for the insufficient large datasets (Zhu et al., 2020).

To be described as variables, the plant-associated microbiome
data should contain enough samples and specific phenotypic
traits. The available datasets that can be used for training DL
model to do prediction task are summarized in Table 2. These
datasets were generated by some projects of association studies
on crop productivity (Chang et al., 2017; Jin et al., 2017), drought
stress (Santos-Medellin et al., 2017), and plant disease (Zhang
et al., 2017, 2020). By deciphering the composition structure
and functional hits, these studies intended to make the related
comparisons for different host phenotypes, for example, the
states of drought or control, the states of health or HLB disease,
the resistances to disease, and the states of productivity. With
the results, we can define the classified unit (OTUs) with its
abundance value as the predictive variables and use trait of
each sample as the response variables (labels) to conduct the
prediction task through DL models. The abundance table is in
the shape of matrix Nn∗p, where N is a set of natural numbers,
and n and p are the number of samples and features, respectively.
Calculated by the OTU processing method MetaNN, each vector
of samples di= [di1, di2, di3,. . . , dip] represents relative taxonomy
abundances of features. These OTUs serve as input features for
the neural network models. The classes of sample label can be
defined as data points such as 0 (low productivity) and 1 (high
productivity) (Lo and Marculescu, 2019).

There are multiple factors that affect the host plant
phenotypes. For instance, the factors affecting yield include
genotypes of host, states of growth, and resistances to stress.
The microbial communities also make differences. The previous
studies have used single factor and microbiome composition
data to model and predict host phenotype of interest. After
finding that the rhizoplane microbiome plays a part in sample

differentiation, the researches have turned to the rhizoplane
microbiome taxa and their correlation with the host phenotype
(Zhang et al., 2017). For the large capacity of high-dimensional
data, the DL model is used to aggregate the data of different
types and batches. There are three types of microbiome data
that can be aggregated, i.e., the abundance information of taxa,
the tree or network structure information of communities, and
functional unigenes.

The key challenge of the plant microbiome data analysis
is the insufficiency of sample number in plant association
studies, which may cause over-fitting of model. Therefore, we
recommend the pre-training model based on the same class
data such as environment metagenome reference sequence in
MetaMetaDB (Yang and Iwasaki, 2014) and rice-associated
microbiome data (Kim and Lee, 2020). Current data are
scattered over the different separate study, so the comprehensive
benchmark datasets are desperately needed for the plant
microbiome. The cross-validation (CV) is an efficient method
in model training (Xing et al., 2020). For instance, the k-
fold CV divides the observation datasets into k groups with
the same size. Each k fold is set aside for validation and the
accuracies are calculated in epochs. The whole process produces
k average MSEs. The results of k-fold CV is estimated by
averaging these values. By comparing the accuracy of 10-fold
cross-validation, the CNN model with 2D kernel improved the
accuracy by up to 5.6% (Hai Nguyen et al., 2017). Due to the
better ability of pattern learning, the CNN model with tree-
based representation performed better than RF and SVM at the
species level (Reiman et al., 2020). With 5-fold cross-validation,
the graph embedding DNNmodel GEDFN largely outperformed
to the SVM model on the same training set (Zhu et al., 2019).
These cross-validation tests have proved the good performance
of deep learning models prior to machine learning models.
Besides, we can use Grinder (Angly et al., 2012) and CAMISIM
(Fritz et al., 2019) to generate simulated metagenome abundance
data and append them into training sets. Most OTUs (features)
are filtered by common bioinformatics tools in the universal
threshold of 97%.
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CONCLUSION

The association study between plant microbiome and host plant
phenotype can be considered as a data mining strategy that
extracts composition and quantity features from microbiome
sequence data. It facilitates the understanding of plant
microbiome traits and their impact on phenotype of host
plant. The deep learning models have become predominantly
methods on dealing with microbiome data which features
by multi-species mixture, high-dimensionality of data, and
sparsity due to incomplete annotation knowledge. Until very
recently, to conduct a prediction task and statistical association
between microbiome data and host phenotype, researchers
have used machine learning methods to process. However, the
requirements for better integration of more information in
microbiome data to predict the agronomic trait of host plant
more precisely have presented opportunities for deep learning
methods. The advantages include higher capacity for high-
dimensional data, flexibility architecture for processing data of
different formats, and good ability in representation of intrinsic
features and structure in data. This allows the deep learning
models to automatically learn complex structural pattern and
quantitative characteristics of plant-associated microbiome
data. These advantages make deep learning models stand out in
prediction tasks. Based on existing study strategies of association
discovery, the application of deep learning models is a new angle
of building relationship between the microbiome data and the

host. The models of pattern recognition such as convolutional
neural networks and graph neural networks can assist in some
critical steps of association researches. Moreover, more attempts
need to be conducted to figure out which deep neural network
can best fit the real plant microbiome data and how to adapt
transfer learning to use the finite data resources of environment
microbiome for processing changeable plant microbiome under
a flexible natural environment.
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