

AN EFFICIENT RECOGNITION AND SYNTAX-ANALYSIS ALGORITHM FOR CONTEXT-FREE LANGUAGES
 T. Kasami

This work was supported in part by the Joint Services Electronics Program (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract No. DA 28043 AMC 00073(E).
 Portions of this work were also supported by the National Science Foundation under Grant NSF GK-690.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

DDC Availability Notice: Qualified requesters may obtain copies of this report from DDC. This report may be released to OTS.

AN EFFICIENT RECOGNITION AND SYNTAX-ANALYSIS ALGORITHM FOR CONTEXT-FREE LANGUAGES*

T. Kasami ${ }^{1}$

Abstract

An efficient algorithm of recognition and syntax-analysis for the full class of context-free languages without the difficulty of exponential growth of computing time with the length n of input sequence is presented. This algorithm makes use of a fundamental algebraic property of a context-free language. It is shown in this paper that a context-free language is n^{3} recognizable in the sense of Hartmanis and Stearns by double-tape or doublehead single-tape Turing machine and it is n^{4}-recognizable by a single-head single-tape Turing machine. The size of memory required for recognition is proportional to n^{2}. If we use a random-access memory whose size is proportional to n^{2}, the computing time required for syntax-analysis is upper-bounded by $C_{1} n^{3}+C_{2} n^{2} N$, where N denotes the number of non-equivalent valid derivation sequences for a given input sequence and C_{i}^{\prime} 's are constants independent of input sequences. If we use two tapes of length $C_{3} n^{2}$ and two tapes of length $\mathrm{C}_{4} \mathrm{n}$ as working memories, the computing time for syntax-analysis is upperbounded by $\mathrm{n}^{3}\left(\mathrm{C}_{5}+\mathrm{C}_{6} \mathrm{~N}\right)$.

[^0]
1. Introduction and Preliminaries

Since the introduction of Chomsky the theory of context-free languages and its applications to natural or programming languages have been studied extensively ($1-10$). It is important in the theory and its application to find efficient algorithms for recognition or syntax-analysis of sequences of a context-free language (CFL). For some practically important but considerably restricted sublcasses of CFL^{\prime} s, several highly efficient algorithms of syntaxanalysis have been proposed in which the computing time is proportional to the length of an input sentence $(9,10)$. These algorithms have difficulty in pinpointing the locations of the errors for a syntactically incorrect input sequence. To the author's knowledge, however, there was no known general method of recognition or syntax-analysis of a CFL in which the time required for recognition or analysis does not increase exponentially with the length of input sequence (10). *

An efficient algorithm of recognition and syntax-analysis for the full class of CFL without the difficulty of exponential growth of computing time is presented in this paper. This algorithm may be modified to give some diagnostic information on errors (15).

For convenient reference, the relevant definitions and notions of context-free grammar are presented here briefly. The set of all finite sequences, including the null sequence \wedge, over a finite alphabet Σ is denoted by Σ^{*}. A context-free grammar G is an ordered quadruple $\left(V_{N}, V_{T}, P, S\right)$ in which

[^1](1) $\quad \mathrm{V}_{\mathrm{N}}$ and V_{T} are disjoint finite alphabets which are the nonterminal and terminal vocabularies of G, respectively. Let $V=V_{N} \cup T_{T}$.
(2) P is a finite set of rewriting rules of the form,
$$
Y \rightarrow \phi
$$
where $Y \in V_{N}, \phi \in V^{*}$ and $\phi \neq \wedge$ 。
(3) $S \in V_{N} \cdot S$ is the initial symbol.

We shall mainly use a grammar in Greibach ${ }^{\gamma}$ s standard 2-form (6) .
Let us name rewriting rules in P as $g_{1}, \ldots, g_{i}, \ldots$, respectively. We adopt the left to right derivations without any loss of generality (5). We then write

$$
\varphi_{1} \xrightarrow{g_{i}} \varphi_{2}
$$

if $\varphi_{1}=w_{1} Y w_{2}, \varphi_{2}=w_{1} \phi w_{2}, w_{1} \in V_{T}^{*}, w_{2} \in V^{*}$ and rewriting rule $g_{i}: Y \rightarrow \phi$ is in P. The language generated by G is defined as the set $\{\varphi\}$ of sequences over V_{T} such that there exists sequence $\varphi_{0}, \ldots, \varphi_{m}$ and rewriting rules in P g_{1}, \ldots, g_{m} with $\varphi_{0}=S, \varphi_{m}=\varphi$ and $\varphi_{i-1} \rightarrow \varphi_{i}(1 \leq i \leq m)$. Sequence g_{1}, \ldots, g_{m} is said to be a valid derivation sequence (d.s.) of G for φ. The language generated by a context-free grammar is said to be a context-free language (CFL). Hereafter, let G denote a context-free grammar and let L denote the CFL generated by G over an alphabet $A\left(=V_{T}\right)$. By a recognition algorithm of L, we mean a procedure for testing whether for any sequence \bar{a} over A, \bar{a} is in L. By a syntax-analysis algorithm of L generated by G, we mean a procedure to find all valid derivation sequences of G for any given sequence in L. Since we adopt the left to right derivations, different valid derivations for a sequence in L are not equivalent to each other.

One reasonable method to estimate the efficiency of algorithm is to see how the computing time and the size of required memory grow with n, the length of input sequence. Hartmanis and Stearns have introduced the concept " $\mathrm{T}(\mathrm{n}$) -recognizable" to measure the complexity of a recognition problem (11). As a standard automaton, they considered a Turing machine TM with a one-way input tape using the symbols in a finite alphabet A and a one-way output tape using two symbols " 1 " and " 0 " besides working tapes. A TM is said to recognize L if and only if for any input sequence \bar{a} on A, the n oth output digit of T is " 1 " if the first n digits of \bar{a} is in L and is " 0 " otherwise。 L is said to be $T(n)$-recognizable if and only if there is a $T M$ which recognizes L and, for any input sequence \bar{a}, prints the n-th output digit in $T(n)$ or fewer operations.

It is shown in this paper that any context-free language is n^{3}-recognizable by a double-tape or a double-head single-tape Turing machine and n^{4}-recognizable by a single-head single-tape Turing machine. The size of memory required for recognition is proportional to n^{2}. The measures of efficiency of the syntaxanalysis algorithm* presented here are as follows. We hereafter use notation C_{i} to designate constants independent of input sequences. If we use a randomaccess memory whose size is proportional to n^{2}, the computing time is upperbounded by $C_{11} n^{3}+C_{12} n^{2} N$, N being the number of non-equivalent valid derivation sequences for a given input sequence. If we use two tapes of length $C_{20} n^{2}$ and two of length $C_{21} n$ as working memories, the computing time is upper-bounded by $\mathrm{n}^{3}\left(\mathrm{C}_{22}+\mathrm{C}_{23} \mathrm{~N}\right)$.

[^2]
2. Derivation Sequences

Since we can effectively construct a grammar in standard 2-form strongly equivalent to a given grammar (Greibach (6)), we shall use a grammar G in standard 2-form for L. A grammar is in standard 2 -form if all of the rules are of the forms:

Type I: $\quad Y \rightarrow a Y_{1} Y_{2}$,
Type II: $\quad Y \rightarrow a Y_{1}$,
Type III: $\quad \mathrm{Y} \rightarrow \mathrm{a}$ 。
We use notations $Y, Y_{1}, Y_{2} \ldots$ for nonterminal symbols and $a, a_{1}, a_{2} \ldots$ for terminal symbols. Let us name the rules of type I, the rules of type II and the rules of type III, $\ell_{1}, \ldots, l_{m_{1}}, p_{1}, \ldots, p_{m_{2}}$, and $q_{1}, \ldots, q_{m_{3}}$, respectively. For nonterminal symbol Y and terminal symbol $a, R(Y, a), R_{1}(Y, a), R_{2}(Y, a)$ and $R_{3}(Y, a)$ denote the set of rules, the set of rules of type I, the set of rules of type II and the set of rules of type III respectively, in which the nonterminal symbol on the left side is Y and the terminal symbol is a. $R(Y, a)$ is possibly empty. $R_{3}(Y, a)$ is empty or consists of one rule. Let $N\left(p_{i}\right)$ denote the nonterminal symbol on the right-hand side of rule p_{i} and let $N_{1}\left(\ell_{i}\right)$ and $N_{2}\left(l_{i}\right)$ denote the first and second nonterminal symbols in the right-hand side of rule ℓ_{i} respectively. The following arguments are illustrated by a running example.

Example 1: Consider a grammar $G_{0}=\left(V_{T o}, V_{N o}, S, P_{0}\right)$ where $\mathrm{V}_{\mathrm{To}}=\{(),,+, \mathrm{v}\}, \mathrm{V}_{\mathrm{No}}=\{\mathrm{s}\}$ and P_{o} : $S \rightarrow(S+S)$, $S \rightarrow S S$, $S \rightarrow v$ 。

This grammar generates a simple class of familiar algebraic forms. By Greibach's procedure, we can easily construct a grammar G_{1} in standard form strongly equivalent to G_{o} as follows:

$$
\mathrm{G}_{1}=\left\{\mathrm{V}_{\mathrm{To}}, \mathrm{~V}_{\mathrm{No}}, \mathrm{~S}, \mathrm{P}_{1}\right\},
$$

where P_{1} consists of the rules:

$$
\begin{aligned}
& s \rightarrow(s+s) \\
& s \rightarrow(s+s) s \\
& s \rightarrow v s \\
& s \rightarrow v
\end{aligned}
$$

We can further construct a grammar $G_{\text {ex }}$ in 2-standard form strongly equivalent to G_{1} as follows:

$$
G_{e x}=\left\{v_{T o}, V_{N}, S, P_{2}\right\},
$$

where $V_{N}=\{S, E, U, V, W\}$ and P_{2} consists of the rules:

$$
\begin{aligned}
& \ell_{1}: \quad \mathrm{S} \rightarrow(\mathrm{SU}, \\
& \ell_{2}: \mathrm{S} \rightarrow(\mathrm{SV}, \\
& \ell_{3}: \mathrm{U} \rightarrow+\mathrm{SE}, \\
& \ell_{4}: \mathrm{V} \rightarrow+\mathrm{SW}, \\
& \mathrm{p}_{1}: \mathrm{S} \rightarrow \mathrm{vS} \\
& \left.\mathrm{p}_{2}: \mathrm{W} \rightarrow\right) \mathrm{S} \\
& \mathrm{q}_{1}: \mathrm{S} \rightarrow \mathrm{v} \\
& \left.\mathrm{q}_{2}: \mathrm{E} \rightarrow\right)
\end{aligned}
$$

Let $L_{\text {ex }}$ denote the language generated by G ex. Although for this grammar there exists a much simpler and more efficient algorithm than the general method in this paper, we have chosen this running example because of its
simplicity and familiarity. For $G_{e x}, N_{1}\left(\ell_{1}\right)=S, N_{2}\left(l_{1}\right)=U, N\left(p_{1}\right)=S$, $R\left(S,()=\left\{l_{1}, l_{2}\right\}, R(S, v)=\left\{p_{1}, q_{1}\right\}, R(U,+)=\left\{\ell_{3}\right\}, R(V,+)=\left\{l_{4}\right\}\right.$, $\left.R(W),)=\left\{p_{2}\right\}, R(E),\right)=\left\{q_{2}\right\}$ and all other $R(Y, a)$ are empty.

We shall introduce a "dummy" symbol r_{i} for each l_{i} and rewrite the right-hand side of rule l_{i} by inserting r_{i} between $N_{1}\left(l_{i}\right)$ and $N_{2}\left(l_{i}\right)$, i.e.,

$$
\begin{aligned}
& \ell_{i}: Y \rightarrow a Y_{1} Y_{2} \\
& \ell_{i}: Y \rightarrow a Y_{1} r_{i} Y_{2}
\end{aligned}
$$

No sequence should be substituted for r_{i}; its function is to indicate the relation between $N_{1}\left(l_{i}\right)$ and $N_{2}\left(l_{i}\right)$ explicitly, as will be made clear in the following sections.

Let $\bar{a}\left(=a_{1}, a_{2}, \ldots, a_{n}\right)$ be an input sequence on A. A Y-derivation sequence (Y - d.so) of G for \bar{a} is defined as follows:

1) If $R\left(Y, a_{1}\right)$ is empty, there is no Y-d.s. Otherwise, as the first step choose any one rule, say $\ell_{i}\left(\right.$ or p_{i} or q_{i}), in $R\left(Y, a_{1}\right)$. Then write

$$
l_{i}, N_{1}\left(l_{i}\right), r_{i} N_{2}\left(l_{i}\right)
$$

(or $p_{i}, N\left(p_{i}\right)$ or q_{i}), which is called a partial Y-d.s.
2) Suppose that $j-1$ steps have been done. If the partial Y-d.s. \bar{y} contains no nonterminal symbol* or $j-1=n$, terminate the procedure. Then, the sequence is a Y-d.s. Otherwise, let the first nonterminal symbol of ξ be Y_{h}. If $R\left(Y_{h}, a_{j}\right)$ is empty, terminate the procedure. The sequence $\bar{\xi}$ is a Y-d.s. Otherwise, choose any rule of $R\left(Y_{h}, a_{j}\right)$ and

[^3]substitute for Y_{h} the sequence consisting of the name of the chosen rule and the left－hand side of the rule in the same manner as in step 1）．For example， assume that the chosen rule is ℓ_{i} and the symbol just preceding the＂Y_{h}＂is r_{k} 。 The substitution for＂Y_{h}＂is＂$r_{k} \ell_{i}, N_{1}\left(\ell_{i}\right), r_{i} N_{2}\left(\ell_{i}\right)$ ．＂Note that we do not write a camma between an r symbol and the symbol following it．

If a $\mathrm{Y}-\mathrm{d} . \mathrm{s}$ ．is obtained through exactly n steps（substitutions）and contains no nonterminal symbol，this $Y-d . S$ ．is said to be valid．

Remark 1：The last symbol in a valid Y－d． $\mathrm{S}_{\text {。 }}$ is a q symbo1．
Remark 2：There exists a one to one correspondence between the set of valid S－d．s．for \bar{a} and the set of valid $d . s$ ．for \bar{a} ．A valid d．s．is obtained from a valid $S^{\circ} \mathrm{d}_{\mathrm{d}} \mathrm{s}$ 。 by deleting all r symbols．Conversely，it follows immediately from the definition of $S-d$ ． 。 that for a given valid d．s． \bar{g} there is a unique valid $S-d . s$ ．from which \bar{g} is obtained by deleting all r symbols． Therefore， \bar{a} is in L if and only if there exists a vaid $S-d \circ s$ ．for \bar{a} ．

Example 2：Let $\bar{a}=(v+(v+v))^{*}$ ．A valid $S-d . s$ ．is derived as follows： $\bar{a}=(v+\quad v) \quad+\quad)$
$\ell_{1} \quad S \quad r_{1} U$
$\mathrm{q}_{1} \quad \mathrm{r}_{1} \mathrm{U}$ $r_{1} l_{3} \quad S \quad r_{3} E$ $\ell_{1} \quad \mathrm{~S} \quad \mathrm{r}_{1} \mathrm{U} \quad \mathrm{r}_{3} \mathrm{E}$
$\mathrm{q}_{1} \quad \mathrm{r}_{1} \mathrm{U} \quad \mathrm{r}_{3} \mathrm{E}$ $r_{1} \ell_{3} \quad S \quad r_{3} E \quad r_{3} E$
$\mathrm{q}_{1} \quad \mathrm{r}_{3} \mathrm{E} \quad \mathrm{r}_{3} \mathrm{E}$
$\mathrm{r}_{3} \mathrm{q}_{2} \quad \mathrm{r}_{3} \mathrm{E}$
$\mathrm{r}_{3} \mathrm{q}_{2}$

[^4]Sequence $l_{2}, p_{1}, S, r_{2} V$ is also a $S-d . s$. for \bar{a}, but this sequence is not valid.

Let us define $\overline{\mathrm{R}}(\alpha, a)$ as follows:
(1) If α is l_{i} or $r_{h} \ell_{i}, \bar{R}(\alpha, a)=R\left(N_{1}\left(\ell_{i}\right), a\right)$.
(2) If α is p_{i} or $r_{h} p_{i}, \bar{R}(\alpha, a)=R\left(N\left(p_{i}\right)\right.$, a).
(3) If α is q_{i} or $r_{h} q_{i}, \bar{R}(\alpha, a)=\bigcup \underset{a l l}{U}\left\{r_{m} x \mid x \in R\left(N_{2}\left(\ell_{m}\right), a\right)\right\}$

Example 3: For $G_{e x}$, note that $N_{1}\left(l_{i}\right)=N\left(p_{i}{ }^{\prime}\right)=S$
$\left(1 \leq i \leq 4,1 \leq i^{\prime} \leq 2\right) \cdot \bar{R}\left(l_{i},()=\bar{R}\left(r_{h} l_{i},()=\bar{R}\left(p_{i},()=\right.\right.\right.$ $\bar{R}\left(r_{h} p_{i} \prime,()=R\left(S,()=\left\{l_{1}, l_{2}\right\}, \bar{R}\left(l_{i}, v\right)=\bar{R}\left(r_{h} l_{i}, v\right)=\bar{R}\left(p_{i}, v\right)=\right.\right.$ $\left.\left.\bar{R}\left(r_{h} p_{i^{\prime}}, v\right)=R(S, v)=\left\{p_{1}, q_{1}\right\}, \bar{R}\left(q_{i^{\prime}},\right)\right)=\bar{R}\left(r_{h} q_{i^{\prime}},\right)\right)=\left\{r_{3} q_{2}, r_{4} p_{2}\right\}$, $\bar{R}\left(q_{i},+\right)=\bar{R}\left(r_{h} q_{1},+\right)=\left\{r_{1} \ell_{3}, r_{2} \ell_{4}\right\}$ and all other $\bar{R}(Y, a)$ are empty. Hereafter let $\alpha, \alpha_{1}, \alpha_{2}, \ldots, B, \beta_{1}, \ldots$ designate either $\ell_{1}, p_{i}, q_{i}, r_{h} \ell_{i}$, $r_{h} p_{i}, r_{h} q_{i}, \varepsilon_{h}^{(k)}$ or $\lambda_{h}^{(k) *}$ and let $x, y, z \ldots$ designate either ℓ_{i}, p_{i} or q_{i}. If $\bar{\alpha}\left(=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ satisfies the following conditions:
(1) $\alpha_{1} \in R\left(Y, a_{1}\right)$
(2) $\quad \alpha_{j} \in \bar{R}\left(\alpha_{j-1}, a_{j}\right) \quad(1<j \leq n)$
(3) α_{n} is q_{i} or $r_{h} q_{i}\left(1 \leq h \leq m_{1}, 1 \leq i \leq m_{3}\right)$,
$\bar{\alpha}$ is said to be a quasi-valid Y-s. for input sequence $\bar{a}=a_{1}, a_{2}, \ldots, a_{n}$. If $\bar{\alpha}$ is a valid Y-d.s., it is also a quasi-valid Y-s.

If a sequence can be reduced to null sequence \wedge by eliminating all the symbols other than ℓ_{h} and $r_{h}\left(1 \leq h \leq m_{1}\right)$ and by applying the rules

$$
\ell_{\mathrm{h}} \mathrm{r}_{\mathrm{h}} \rightarrow \wedge \quad\left(1 \leq \mathrm{h} \leq \mathrm{m}_{1}\right),
$$

we say that the sequence satisfies the D-condition.
Example 4: The first sequence in Example 2 is a quasi-valid S-s. satisfying the D-condition.

[^5]Theorem 1: A quasi-valid Y-s. is a valid Y-d.s., if and only if it satisfies the D-condition.

Proof: In the derivation of $a \mathrm{Y}-\mathrm{d} . \mathrm{s} .$, the partial $Y-d . s$. of the first step satisfies the D-condition. If the partial $Y-d . s$. of the $(j-1)-$ th step satisfies the D-condition, it is easily verified that it still does after one substitution. By induction on j, we see that a Y-d.s. satisfies the D-condition. Since a valid Y-d.s. is a quasi-valid Y-s., we have the "qnly if part." The "if part" also is proved by induction on n, the length of input sequence. If $n=1$, then a quasi-valid $Y-s$. consists of only one q symbol. It is obvious that the sequence consisting of this q-symbol also is a valid Y-d.s. Assume that for $n<m$, the "if part" holds. Suppose that $n=m$ and $\bar{\alpha}$ is a quasi-valid Y-s. satisfying the D-condition. If $\bar{\alpha}$ contains no ℓ symbols, $\bar{\alpha}$ is obviously a valid Y-d.s. Suppose that α_{j} is the first ℓ symbol and $\alpha_{j}=\ell_{h}$. Then there exists an α_{j}, which contains the r-symbol paired with α_{j}. Let $\alpha_{j^{\prime}}=r_{h}$. Subsequence $\alpha_{1}, \ldots, \alpha_{j-1}$ contains neither ℓ nor r-symbols. Subsequence $\alpha_{j+1}, \ldots, \alpha_{j}, 1$ is a quasi. valid $N_{1}\left(\alpha_{j}\right)$-s. for input sequence $a_{j+1}, \ldots, a_{j}{ }^{\prime}-1$ satisfying the D-condition, and subsequence $x, \alpha_{j^{\prime}+1}, \ldots, \alpha_{n}$ is a quasi-valid $N_{2}\left(\alpha_{j}\right)-s$. for input sequence a_{j}, $, \ldots, a_{n}$ satisfying the D-condition. It follows from the induction hypothesis that both subsequences are valid. Therefore $\bar{\alpha}$ is also valid by the definition of valid d.s.

Corollary 1: Sequence \bar{a} is in L if and only if there exists a quasivalid S-s. for \bar{a} which satisfies the D-condition.*

[^6]This corollary is the fundamental basis of our recognition algorithm.

3. Main Theorem

Let $\bar{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be an input sequence on A. Let us define $\mathrm{F}_{\mathrm{j}}^{(\mathrm{k})}(1 \leq \mathrm{j} \leq \mathrm{n}, 0 \leq \mathrm{k}<\mathrm{j})$ as follows:
(1) $\mathrm{F}_{1}^{(0)}=\left\{\left(\mathrm{q}_{\mathrm{s}}, \alpha_{1}\right){ }_{1} \mid \alpha_{1} \in \mathrm{R}_{3}\left(\mathrm{~s}, \mathrm{a}_{1}\right)\right\} U$

$$
\left\{\left(q_{s}, \alpha_{1}\right)_{o} \mid \alpha_{1} \in R_{1}\left(s, a_{1}\right) \cup R_{2}\left(s, a_{1}\right)\right\}
$$

where q_{s} is a special symbol indicating the beginning of the input sequence.

$$
\begin{aligned}
F_{j}^{(0)}= & \left\{\left(\alpha_{j-1}, \alpha_{j}\right)_{v} \mid \exists \alpha\left[\left(\alpha, \alpha_{j-1}\right) \in F_{j-1}^{(0)}\right] ; \alpha_{j} \in \bar{R}\left(\alpha_{j-1}, a_{j}\right) ;\right. \\
& v=1 \text { if } \alpha_{j} \text { is a q symbol or a combination of an r symbol } \\
& \text { and a q symbol, } v=0 \text { otherwise }\},
\end{aligned}
$$

where (α, β) means $(\alpha, \beta)_{1}$ or $(\alpha, \beta)_{0}$,
(2) For each $\left(\alpha_{j-1}, \alpha_{j}\right)_{\nu} \in F_{j}^{(k-1)}$, let $T_{k-1}\left(\alpha_{j-1}, \alpha_{j}\right)$ and $\pi\left(\left(\alpha_{j-1}, \alpha_{j}\right) v\right)$ be defined as follows:

Case I: $\alpha_{j}=r_{h}$ or $\alpha_{j}=r_{h} \times\left(1 \leq h \leq m_{1}\right)$.
If α_{j-1} is q_{s} or $\ell_{h}^{\prime}\left(h \neq h^{9}\right), T_{k-1}$ and π are not defined. If $\alpha_{j-1}=$ $\ell_{h}, T_{k-1}\left(\alpha_{j-1}, \alpha_{j}\right)=\varepsilon_{h}^{(k-1)}$. Otherwise, $T_{k-1}\left(\alpha_{j-1}, \alpha_{j}\right)=r_{h}$.

Case II: α_{j} is neither r_{h} nor $r_{h} x\left(1 \leq h \leq m_{1}\right)$. If α_{j-1} is r_{h}, $T_{k-1}\left(\alpha_{j-1}, \alpha_{j}\right)=\lambda_{h}^{(k-1)}$. If α_{j-1} is $r_{h} x, T_{k-1}\left(\alpha_{j-1}, \alpha_{j}\right)=x$. Otherwise, $T_{k-1}\left(\alpha_{j-1}, \alpha_{j}\right)=\alpha_{j-1}$.

The definition of $T_{k-1}(\alpha, \beta)$ is summarized in Table 1.
If $\nu=1$ and α_{j} is not an ℓ symbol, $\pi\left(\left(\alpha_{j-1}, \alpha_{j}\right)_{\nu}\right)$ is defined to be 1 . Otherwise, $\pi\left(\left(\alpha_{j-1}, \alpha_{j}\right)_{\nu}\right)=0$.

B	r_{h} or $r_{h} \mathrm{x}$ (only for $k=1$)	$\ell_{i^{\prime}}, p_{i^{\prime}}, q_{i^{\prime}}, \varepsilon_{i^{\prime}}^{\left(j^{\prime}-1\right)}$ or $\lambda_{i^{\prime}}^{\left(j^{\prime}-1\right)}\left(j^{\prime}<k-1\right)$
r_{i}	r_{h}	$\lambda_{i}^{(k-1)}$
$\mathrm{r}_{\mathrm{i}} \times($ only for $\mathrm{k}=1)$	$r_{\text {r }}$	x
$\ell_{\text {h }}$	$\varepsilon_{h}^{(k-1)}$	$\ell_{\text {h }}$
$\ell_{i}(i \neq h)$	not defined	ℓ_{i}
q_{s}	not defined	$\mathrm{q}_{\text {s }}$
$\begin{aligned} & p_{i}, q_{i}, \\ & \varepsilon_{i}^{(j)} \text { or } \lambda_{i}^{(j)} \\ & (j<k-1) \end{aligned}$	$r_{\text {r }}$	α

Table 1. Definition Table of $T_{k-1}(\alpha, \beta)$.
(3) $\quad F_{j}^{(k)}=\left\{\left(T_{k-1}\left(\alpha_{j-2}, \alpha_{j-1}\right), T_{k-1}\left(\alpha_{j-1}, \alpha_{j}\right)\right)_{\pi}^{\prime}{ }^{\prime}\left(\alpha_{j-1}, \alpha_{j}\right) \nu_{\nu}\right) \mid$ $\left.\left(\alpha_{j-2}, \alpha_{j-1}\right) \in F_{j-1}^{(k-1)} ;\left(\alpha_{j-1}, \alpha_{j}\right)_{\nu} \in F_{j}^{(k-1)}\right\}$.
Example 5: For $\bar{a}=(v+(v+v)), F_{j}^{(0)}, F_{j}^{(1)}, \ldots, F_{j}^{(8)}$ are listed in Table 2.

For a sequence $\bar{\alpha}\left(=\alpha_{j}, \ldots, \alpha_{m}\right) \quad(k-1 \leq j)$, let $T_{k-1} \bar{\alpha}=T_{k-1}\left(\alpha_{j}, \alpha_{j+1}\right), \ldots$, $\mathrm{T}_{\mathrm{k}-1}\left(\alpha_{\mathrm{m}-1}, \alpha_{\mathrm{m}}\right)$. If $\bar{\alpha}$ contains any adjacent incompatible pair $\left(\ell_{\mathrm{h}}, \mathrm{r}_{\mathrm{h}}\right)$ ($h^{\prime} \neq h$) or (q_{s}, r_{h}), $T_{k-1} \bar{\alpha}$ is not defined. Otherwise, T_{k-1} deletes the last non-r symbol and each non-r symbol in $\bar{\alpha}$ preceding an r symbol, moves the remaining non-r symbols to the right by one place, replaces each r_{h} by $\varepsilon_{h}^{(k-1)}$ if the preceding symbol is l_{h}, leaves the remaining r symbols unchanged and writes $\lambda_{h}^{(k-1)}$ in each empty place following an r symbol. It will be shown that we can easily test whether $\bar{\alpha}$ satisfies the D-condition by applying $\mathrm{T}_{\mathrm{k}-1}, \mathrm{~T}_{\mathrm{k}}, \ldots$ successively to $\bar{\alpha}_{\text {. }}$. The following arguments are based on this simple idea. But the problem is that we must consider a set of sequences instead of a single sequence and test whether the set contains a sequence satisfying the D-condition. For this purpose, we need some device and have introduced the extra symbols $\varepsilon_{h}^{(k-1)}$ and $\lambda_{h}^{(k-1)}$. We shall show some elementary properties of $\mathrm{F}_{\mathrm{j}}^{(\mathrm{m})}$ in Lemmas 1 and 2 .

Lemma 1: (a) If (x, α) or $\left(r_{h} x, \alpha\right) \in F_{j}^{(0)}$ and $\left(r_{h}, x, \gamma\right) \in F_{j}^{(0)}$, then $\left(r_{h}, x, \alpha\right) \in F_{j}^{(0)}$.
(b) If $\left(r_{h} x, \alpha\right)$ and $(x, \beta) \in F_{j}^{(0)}$, then $(x, \alpha) \in F_{j}^{(0)}$.
(c) If $\left(\alpha, r_{h} x\right) \in F_{j}^{(0)}$, then $\alpha=q_{i}$ or r_{h}, q_{i}.
(d) If $\left(\alpha, r_{h} y\right) \in F_{j}^{(0)}$ and $\left(r_{h} x, \beta\right) \in F_{j+1}^{(0)}$, then $\left(\alpha, r_{h} x\right) \in F_{j}^{(0)}$.

Table 2. Examples of $\mathrm{F}_{\mathrm{j}}^{(\mathrm{k})}$

j	1	2	3	4	5	6	7	8	9
a	$($	v	$+$	$($	v	$+$	v))
$\mathrm{F}_{\mathrm{j}}{ }^{(0)}$	$\begin{aligned} & \left(q_{\mathrm{s}}, l_{1}\right)_{0} \\ & \left(\mathrm{q}_{\mathrm{s}}, l_{2}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\ell_{1}, \mathrm{p}_{1}\right)_{0} \\ & \left(\ell_{1}, \mathrm{q}_{1}\right)_{1} \\ & \left(l_{2}, \mathrm{p}_{1}\right)_{0} \\ & \left(\ell_{2}, \mathrm{q}_{1}\right)_{1} \end{aligned}$	$\begin{aligned} & \left(q_{1}, r_{1} \ell_{3}\right)_{0} \\ & \left(q_{1}, r_{2} \ell_{4}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(r_{1} l_{3}, l_{1}\right)_{0} \\ & \left(r_{1} l_{3}, l_{2}\right)_{0} \\ & \left(r_{2} l_{4}, l_{1}\right)_{0} \\ & \left(r_{2} l_{4}, l_{2}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\ell_{1}, \mathrm{p}_{1}\right)_{0} \\ & \left(\ell_{1}, \mathrm{q}_{1}\right)_{1} \\ & \left(\ell_{2}, \mathrm{p}_{1}\right)_{0} \\ & \left(\ell_{2}, \mathrm{q}_{1}\right)_{1} \end{aligned}$	$\begin{aligned} & \left(\mathrm{q}_{1}, \mathrm{r}_{1} \ell_{3}\right)_{0} \\ & \left(\mathrm{q}_{1}, \mathrm{r}_{2} \mathrm{l}_{4}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(r_{1} l_{3}, p_{1}\right)_{0} \\ & \left(r_{1} l_{3}, q_{1}\right)_{1} \\ & \left(r_{2} l_{4}, p_{1}\right)_{0} \\ & \left(r_{2} l_{4}, q_{1}\right)_{1} \end{aligned}$	$\begin{aligned} & \left(\mathrm{q}_{1}, \mathrm{r}_{3} \mathrm{q}_{2}\right)_{1} \\ & \left(\mathrm{q}_{1}, \mathrm{r}_{4} \mathrm{p}_{2}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(r_{3} q_{2}, r_{3} q_{2}\right)_{1} \\ & \left(r_{3} q_{2}, r_{4} p_{2}\right)_{0} \end{aligned}$
$\mathrm{F}_{\mathrm{j}}{ }^{(1)}$		$\begin{aligned} & \left(q_{s}, l_{1}\right)_{0} \\ & \left(q_{s}, l_{2}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(l_{1}, r_{1}\right)_{0} \\ & \left(l_{1}, r_{2}\right)_{0} \\ & \left(l_{2}, r_{1}\right)_{0} \\ & \left(l_{2}, r_{2}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(r_{1}, l_{3}\right)_{0} \\ & \left(r_{2}, l_{4}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(l_{3}, l_{1}\right) \\ & \left(l_{3}, l_{2}\right) \\ & \left(l_{4}, l_{1}\right) \\ & \left(l_{4}, l_{2}\right) \end{aligned}$	$\begin{aligned} & \left(l_{1}, r_{1}\right)_{0} \\ & \left(\ell_{1}, r_{2}\right)_{0} \\ & \left(l_{2}, r_{1}\right)_{0} \\ & \left(\ell_{2}, r_{2}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(r_{1}, l_{3}\right) \\ & \left(r_{2}, l_{4}\right) \end{aligned}$	$\begin{aligned} & \left(l_{3}, r_{3}\right)_{1} \\ & \left(l_{3}, r_{4}\right)_{0} \\ & \left(l_{4}, r_{3}\right)_{1} \\ & \left(l_{4}, r_{4}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(r_{3}, r_{3}\right)_{1} \\ & \left(r_{3}, r_{4}\right)_{0} \end{aligned}$
$\mathrm{F}_{\mathrm{j}}{ }^{(2)}$			$\begin{aligned} & \left(q_{s}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(q_{s}, \varepsilon_{2}^{(1)}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\epsilon_{1}^{(1)}, \lambda_{1}^{(1)}\right)_{0} \\ & \left(\epsilon_{2}^{(1)}, \lambda_{2}^{(1)}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\lambda_{1}^{(1)}, \ell_{3}\right)_{0} \\ & \left(\lambda_{2}^{(1)}, \ell_{4}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(l_{3}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(\ell_{3}, \varepsilon_{2}^{(1)}\right)_{0} \\ & \left(\ell_{4}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(l_{4}, \epsilon_{2}^{(1)}\right)_{0} \end{aligned}$	$\left\|\begin{array}{l} \left(\epsilon_{1}^{(1)}, \lambda_{1}^{(1)}\right)_{0} \\ \left(\epsilon_{2}^{(1)}, \lambda_{2}^{(1)}\right)_{0} \end{array}\right\|$	$\begin{aligned} & \left(\lambda_{1}^{(1)}, \epsilon_{3}^{(1)}\right)_{1} \\ & \left(\lambda_{2}^{(1)}, \epsilon_{4}^{(1)}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\varepsilon_{3}^{(1)}, r_{3}\right)_{1} \\ & \left(\varepsilon_{3}^{(1)}, r_{4}\right)_{0} \end{aligned}$

$\mathrm{F}_{\mathrm{j}}{ }^{(3)}$				$\begin{aligned} & \left(q_{s}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(q_{s}, \varepsilon_{2}^{(1)}\right)_{0} \end{aligned}$	$\left\|\begin{array}{l} \left(\epsilon_{1}^{(1)}, \lambda_{1}^{(1)}\right)_{0} \\ \left(\epsilon_{2}^{(1)}, \lambda_{2}^{(1)}\right)_{0} \end{array}\right\|$	$\begin{aligned} & \left(\lambda_{1}^{(1)}, \ell_{3}\right)_{0} \\ & \left(\lambda_{2}^{(1)}, \ell_{4}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\ell_{3}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(\ell_{3}, \varepsilon_{2}^{(1)}\right)_{0} \\ & \left(\ell_{4}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(\ell_{4}, \varepsilon_{2}^{(1)}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\varepsilon_{1}^{(1)}, \lambda_{1}^{(1)}\right)_{1} \\ & \left(\varepsilon_{2}^{(1)}, \lambda_{2}^{(1)}\right)_{0} \end{aligned}$	$\left(\lambda_{1}^{(1)}, r_{3}\right)_{1}$
$\mathrm{F}_{\mathrm{j}}{ }^{(4)}$					$\begin{aligned} & \left(\mathrm{q}_{\mathrm{s}}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(\mathrm{q}_{\mathrm{s}}, \varepsilon_{2}^{(1)}\right)_{0} \end{aligned}$	$\left\|\begin{array}{l} \left(\varepsilon_{1}^{(1)}, \lambda_{1}^{(1)}\right)_{0} \\ \left(\epsilon_{2}^{(1)}, \lambda_{2}^{(1)}\right)_{0} \end{array}\right\|$	$\begin{aligned} & \left(\lambda_{1}^{(1)}, \ell_{3}\right)_{0} \\ & \left(\lambda_{2}^{(1)}, \ell_{4}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\ell_{3}, \varepsilon_{1}^{(1)}\right)_{1} \\ & \left(\ell_{3}, \varepsilon_{2}^{(1)}\right)_{0} \\ & \left(\ell_{4}, \varepsilon_{1}^{(1)}\right)_{1} \\ & \left(\ell_{4}, \varepsilon_{2}^{(1)}\right)_{0} \end{aligned}$	$\left(\varepsilon_{1}^{(1)}, r_{3}\right)_{1}$
$\mathrm{F}_{\mathrm{j}}{ }^{(5)}$						$\begin{aligned} & \left(\mathrm{q}_{\mathrm{s}}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(\mathrm{q}_{\mathrm{s}}, \varepsilon_{2}^{(1)}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\varepsilon_{1}^{(1)}, \lambda_{1}^{(1)}\right)_{0} \\ & \left(\epsilon_{2}^{(1)}, \lambda_{2}^{(1)}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\lambda_{1}^{(1)}, l_{3}\right) \\ & \left(\lambda_{2}^{(1)}, \ell_{4}\right) \end{aligned}$	$\begin{aligned} & \left(\ell_{3}, r_{3}\right)_{1} \\ & \left(\ell_{4}, r_{3}\right)_{1} \end{aligned}$
$\mathrm{F}_{\mathrm{j}}{ }^{(6)}$							$\begin{aligned} & \left(\mathrm{q}_{\mathrm{s}}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(\mathrm{q}_{\mathrm{s}}, \varepsilon_{2}^{(1)}\right)_{0} \end{aligned}$	$\begin{aligned} & \left(\varepsilon_{1}^{(1)}, \lambda_{1}^{(1)}\right)_{0} \\ & \left(\varepsilon_{2}^{(1)}, \lambda_{2}^{(1)}\right)_{0} \end{aligned}$	$\left(\lambda_{1}^{(1)}, e_{3}^{(5)}\right)_{1}$
$\mathrm{F}_{\mathrm{j}}{ }^{(7)}$								$\begin{aligned} & \left(\mathrm{q}_{\mathrm{s}}, \varepsilon_{1}^{(1)}\right)_{0} \\ & \left(\mathrm{q}_{\mathrm{s}}, \varepsilon_{2}^{(1)}\right)_{0} \end{aligned}$	$\left(\varepsilon_{1}^{(1)}, \lambda_{1}^{(1)}\right)_{1}$
$\mathrm{F}_{\mathrm{j}}{ }^{(8)}$									$\left(\mathrm{q}_{s}, \epsilon_{1}^{(1)}\right)_{1}$

(e) If $\left(r_{h} x, r_{i} y\right) \in F_{j}^{(0)}$, then $x \in R_{3}\left(N_{2}\left(l_{h}\right), a_{j-1}\right)$ and x is determined uniquely by h and ${ }_{j-1}$.
(f) There exists neither $\varepsilon_{h}^{(0)}$ nor $\lambda_{h}^{(0)}$.

Proof: (a) Note that $\bar{R}\left(x, a_{j}\right)=\bar{R}\left(r_{h} x, a_{j}\right)=\bar{R}\left(r_{h}, x, a_{j}\right)$. Since (x, α) or $\left(r_{h} x, \alpha\right) \in F_{j}^{(0)}, \alpha \in \bar{R}\left(r_{h}, x, a_{j}\right)$. Since $\left(r_{h}, x, \gamma\right) \in F_{j}^{(0)}, j \geq 2$ and there exists B such that $\left(B, r_{h}, x\right) \in F_{j-1}^{(0)}$ by the definition of $F_{j}^{(0)}$. Therefore, $\left(r_{h}, x, \alpha\right) \in F_{j}^{(0)}$.
(b) It is shown similarly that $\alpha \in \bar{R}\left(r_{h} x, a_{j}\right)=\bar{R}\left(x, a_{j}\right)$ and there exists α^{\prime} such that $\left(\alpha^{\prime}, x\right) \in F_{j-1}^{(0)}$. By the definition of $F_{j}^{(0)},(x, \alpha) \in F_{j}^{(0)}$.
(c) Since $\left(\alpha, r_{h} x\right) \in F_{j}^{(0)}, r_{h} x \in \bar{R}\left(\alpha, a_{j}\right)$. By the definition of $\bar{R}\left(\alpha, a_{j}\right)$, $\alpha=q_{i}$ or $r_{h^{\prime}} q_{i}$.
(d) Since $\left(r_{h} x, \beta\right) \in F_{j+1}^{(0)}$, there exists α^{\prime} such that $\left(\alpha^{\prime}, r_{h} x\right) \in F_{j}^{(0)}$. Therefore, $r_{h} x \in \bar{R}\left(\alpha^{\prime}, a_{j}\right)$. According to (c), α and α^{\prime} are q symbols or combinations of an r symbol and a q symbol. Consequently, $r_{h} x \in \bar{R}\left(\alpha, a_{j}\right)\left(=\bar{R}\left(\alpha^{\prime}, a_{j}\right)\right)$. This implies that $\left(\alpha, r_{h} x\right) \in F_{j}^{(0)}$.
(e) Since $\left(r_{h} x, r_{i} y\right) \in F_{j}^{(0)}, j \geq 2$ and there exists α such that $\left(\alpha, r_{h} x\right) \in F_{j-1}^{(0)}$ and $r_{h} x \in \bar{R}\left(\alpha, a{ }_{j-1}\right)$. By (c), x is a q symbol and α is a q symbol or a combination of an r symbol and a q symbol. By the definition of $\bar{R}\left(\alpha, a{ }_{j-1}\right)$, $x \in R_{3}\left(N_{2}\left(l_{h}\right), a_{j-1}\right) . R_{3}(Y, a)$ contains at most one element.
(f) (c) implies that $\varepsilon_{h}^{(0)}$ can not exist. It follows from the definition of $T_{0}(\alpha, \beta)$ that $\lambda_{h}^{(0)}$ does not exist.

Lemma 2: Suppose that $\left(\alpha_{1}, \alpha_{2}\right) \in \mathrm{F}_{\mathrm{j}}^{(\mathrm{k})}(\mathrm{k} \geq 2)$.
(a) If $\alpha_{1}=r_{h}$, then α_{2} is $\lambda_{h}^{(k-1)}$ or an r symbol.
(b) If $\alpha_{1}=\varepsilon_{h}^{\left(k^{\prime}\right)}$, then $k>k^{\prime}$ and α_{2} is $\lambda_{h}^{\left(k^{\prime}\right)}$ or an r symbol.
(c) If $\alpha_{1}=\lambda_{h}^{\left(k^{\prime}\right)}\left(k^{\prime} \geq 2\right)$, then $k>k^{\prime}$ and α_{2} is $\lambda_{h}^{\left(k^{\prime}-1\right)}$ or an r symbol.
(d) If $\alpha_{2}=\lambda_{h}^{(k-1)}$, then α_{1} is r_{h} or $\varepsilon_{h}^{(k-1)}$.
(e) If $\alpha_{2}=\lambda_{h}^{\left(k^{\prime}\right)}\left(k^{\prime}<k-1\right), \alpha_{1}$ is $\lambda_{h}^{\left(k^{\prime}+1\right)}$ or $\varepsilon_{h}^{\left(k^{\prime}\right)}$.
(f) If $\alpha_{2}=\varepsilon_{h}^{\left(k^{\prime}\right)}$, then α_{1} is neither $r_{h^{\prime}}, \varepsilon_{h}^{\left(k^{\prime \prime}\right)}$ nor $\lambda_{h^{\prime}}^{\left(k^{\prime \prime \prime}\right)}\left(k^{\prime \prime \prime}>1\right)$. Proof: Since $\left(\alpha_{1}, \alpha_{2}\right) \in F_{j}^{(k)}(k \geq 2)$, there exist B_{1}, B_{2} and B_{3} such that $\left(B_{1}, B_{2}\right) \in F_{j-1}^{(k-1)},\left(B_{2}, B_{3}\right) \in F_{j}^{(k-1)}, \alpha_{1}=T_{k-1}\left(B_{1}, B_{2}\right)$ and $\alpha_{2}=T_{k-1}\left(B_{2}, B_{3}\right)$.
(a) Since $r_{h}=T_{k-1}\left(B_{1}, \beta_{2}\right), B_{2}$ must be r_{h} from Table 1. Then $\alpha_{2}\left(=T_{k-1}\left(r_{h}, \beta_{3}\right)\right)$ is $\lambda_{h}^{(k-1)}$ or an r symbol.
(b) From Table 1, $k>k^{\prime}$. Note that $\varepsilon_{h}^{\left(k^{\prime}\right)}=T_{k-1}\left(B_{1}, \beta_{2}\right)$. If $k^{\prime}=k-1$, $B_{2}=r_{h}$ according to Table 1. Thus, (b) is valid. Assume that (b) holds if $k-k^{0}<i$. Consider the case where $k^{0}=k-i \quad(i>1)$. Then, B_{1} must be $\varepsilon_{h}^{\left(k^{0}\right)}$ from Table 1. Since $\left(\varepsilon_{h}^{\left(k^{\rho}\right)}, B_{2}\right) \in F_{j-1}^{(k-1)}, B_{2}$ is $\lambda_{h}^{\left(k^{\prime}\right)}$ or an r symbol by the induction hypothesis. Hence, $\alpha_{2}\left(=T_{k-1}\left(B_{2}, B_{3}\right)\right)$ is $\lambda_{h}^{\left(k^{0}\right)}$ or an r symbol from Table 1.
(c) From Table 1, $k>k^{\prime}$. Note that $\lambda_{h}^{\left(k^{\prime}\right)}=T_{k-1}\left(B_{1}, B_{2}\right)$. If $k^{\prime}=k-1, B_{1}$ must be r_{h} and B_{2} is not an r symbol according to Table 1. Then, it follows from (a) that B_{2} is $\lambda_{h}^{(k-2)}$. Therefore, $\alpha_{2}\left(=T_{k-1}\left(\lambda_{h}^{(k-2)}, B_{3}\right)\right)$ is $\lambda_{h}^{(k-2)}$ or an r symbol from Table 1. Assume that (c) holds if $k-k^{0}<i$. Consider the case where $k^{\prime}=k-i \geq 2$ and $i>1$. Then, $B_{1}=\lambda_{h}^{\left(k^{\prime}\right)}$ and B_{2} is not an r symbol from Table 1. Since $\left(B_{1}, B_{2}\right) \in F_{j-1}^{(k-1)}, B_{2}$ is $\lambda_{h}^{\left(k^{\prime}-1\right)}$ by the induction hypothesis. Therefore, $\alpha_{2}\left(=T_{k-1}\left(\lambda_{h}^{\left(k^{\prime}-1\right)}, B_{3}\right)\right)$ is $\lambda_{h}^{\left(k^{\prime}-1\right)}$ or an r symbol from Table 1.
(d) Since $\lambda_{h}^{(k-1)}=T_{k-1}\left(B_{2}, B_{3}\right), B_{2}$ must be r_{h} from Table 1. Then $\alpha_{1}=$ $\mathrm{T}_{\mathrm{k}-1}\left(\beta_{1}, \mathrm{r}_{\mathrm{h}}\right)$. Therefore, α_{1} is r_{h} or $\varepsilon_{\mathrm{h}}^{(\mathrm{k}-1)}$ according to Table 1 .
(e) Since $\lambda_{h}^{\left(k^{\prime}\right)}=T_{k-1}\left(B_{2}, B_{3}\right), B_{2}$ must be $\lambda_{h}^{\left(k^{\prime}\right)}$ from Table 1. By Lemma 1 (f), $k^{\prime} \geq 1$. Hence, $k \geq 3$. If $k^{\prime}=k-2, B_{1}$ is r_{h} or $\varepsilon_{h}^{\left(k^{\prime}\right)}$ by (d). Since $\alpha_{1}=$ $T_{k-1}\left(B_{1}, \lambda_{h}^{\left(k^{\prime}\right)}\right), \alpha_{1}$ is $\lambda_{h}^{(k-1)}\left(=\lambda_{h}^{\left(k^{\prime}+1\right)}\right)$ or $\varepsilon_{h}^{\left(k^{\prime}\right)}$. Assume that (e) holds if $k-k^{\prime}<i$. Consider the case in which $k^{\prime}=k-i$ and $i>2$. Since $\left(B_{1}, \lambda_{h}^{\left(k^{\prime}\right)}\right.$) ε $F_{j-1}^{(k-1)}, B_{1}$ is $\lambda_{h}^{\left(k^{\prime}+1\right)}$ or $\varepsilon_{h}^{\left(k^{\prime}\right)}$ by the induction hypothesis. Consequently, α_{1} is $\lambda_{h}^{\left(k^{\prime}+1\right)}$ or $\varepsilon_{h}^{\left(k^{\prime}\right)}$.
(f) Note that $\varepsilon_{h}^{\left(k^{\prime}\right)}=T_{k-1}\left(B_{2}, B_{3}\right)$. If $k^{\prime}=k-1, B_{2}=\ell_{h}$ according to Table 1 . Since $\left(B_{1}, l_{h}\right) \in F_{j-1}^{(k-1)}$, it follows from (a), (b), and (c) that B_{1} is neither $r_{h^{\prime}}, \varepsilon_{h}^{\left(k^{\prime \prime}\right)}$ nor $\lambda_{h^{\prime}}^{\left(k^{\prime \prime \prime}\right)}\left(k^{\prime \prime \prime}>1\right)$ if $k>2$. If $k=2, B_{1}$ cannot be an ε symbol or a λ symbol by Lemma 1 (f). Since $\alpha_{1}=T_{1}\left(\beta_{1}, l_{h}\right), \alpha_{1}$ is neither $r_{h^{\prime}}, \varepsilon_{h^{\prime}}^{\left(k^{\prime \prime}\right)}$ nor $\lambda_{h^{\prime}}^{\left(k^{\prime \prime \prime}\right)}\left(k^{\prime \prime \prime}>1\right)$ from Table 1 . Assume that (f) holds if $k-k^{\prime}<i$. Consider the case in which $k^{\prime}=k-i$ and $i \geq 2$. From Table 1 , $B_{2}=\varepsilon_{h}^{\left(k^{\prime}\right)}$. Since $\left(B_{1}, \varepsilon_{h}^{\left(k^{\prime}\right)}\right) \in F_{j-1}^{(k-1)}$, it follows from the induction hypothesis that B_{1} is neither $r_{h^{\prime}}, \varepsilon_{h^{\prime}}^{\left(k^{\prime \prime}\right)}$ nor $\lambda_{h^{\prime}}^{\left(k^{\prime \prime \prime}\right)}\left(k^{\prime \prime \prime}>1\right)$. Since $\alpha_{1}=T_{k-1}\left(B_{1}, \varepsilon_{h}^{\left(k^{\prime}\right)}\right), \alpha_{1}$ is neither $r_{h^{\prime}}, \varepsilon_{h^{\prime}}^{\left(k^{\prime \prime}\right)}$ nor $\lambda_{h^{\prime}}^{\left(k^{\prime \prime \prime}\right)}\left(k^{\prime \prime \prime}>1\right)$.

By a k-chain $(0 \leq k<n)$, we shall mean a sequence $\alpha_{k}, \ldots, \alpha_{n}$ such that $\left(\alpha_{j-1}, \alpha_{j}\right)_{\nu_{j}} \in F_{j}^{(k)}(k<j \leq n)$ and $\nu_{n}=1$.

Lemma 3: The set of quasi-valid S-s. is identical with that of 0 -chains from which the first symbol q_{s} is deleted.

This lemma is obvious from the definitions of $\mathrm{F}_{\mathrm{j}}^{(0)}$ and 0 -chain.
Lemma 4: Let $\bar{\alpha}\left(=\alpha_{k}, \ldots, \alpha_{n}\right)$ be a k-chain. Then $T_{k} \bar{\alpha}$ is a $(k+1)$-chain if and only if α_{n} is not an $\&$ symbol.

This lemma follows directly from the definitions of $T_{k} \bar{\alpha}, k$-chain and $\pi\left((\alpha, B)_{\nu}\right)$.

Now we shall consider the inverse of T_{k}. Let $\alpha_{u}, \alpha_{u+1}, \ldots, \alpha_{u+v}$ be a subsequence of a k-chain $\alpha_{k}, \ldots, \alpha_{n}$ and let $U_{k, u}\left(\alpha_{u}, \ldots, \alpha_{u+v}\right)=$ $\left\{\left(B_{u-1}, \ldots, \beta_{u+v-1}\right) \mid\left(B_{u+i-1}, \beta_{u+i}\right) \in F_{u+i}^{(k-1)}(0 \leq i<v) ; \alpha_{u+i}=T_{k-1}\left(B_{u+i-1}\right.\right.$, $\left.B_{u+i}\right) ; \exists B_{u+v}\left[\left(B_{u+v-1}, B_{u+v}\right) \in F_{u+v}^{(k-1)} ; \alpha_{u+v}=T_{k-1}\left(B_{u+v-1}, B_{u+v}\right) ;\right.$ if $u+v=n$, then $\left(B_{{ }_{\eta-1}}, B_{n}\right)_{1} \in F_{n}^{(k-1)}$ and B_{n} is not an ℓ-symbol]\}.

Lemma 5: (a) $U_{k, u}\left(\alpha_{u}, \alpha_{u+1}\right)$ is not empty.
(b) If α_{u} is not an r symbol, $\alpha_{u+1}, \ldots, \alpha_{u+v-1}$ are r symbols and either α_{u+v} is not an r symbol or $u+v=n$, then $U_{k, u}\left(\alpha_{u}, \ldots, \alpha_{u+v}\right)$ is not empty.

Proof: (a) The definition of $\mathrm{F}_{\mathrm{u}+1}^{(\mathrm{k})}$ implies (a).
(b) We shall assume that $k \geq 2$. The case $k=1$ will be covered by the proof of Lemma $5^{\prime \prime}$ (b).

Since $\left(\alpha_{u}, \alpha_{u+1}\right) \in F_{u+1}^{(k)}$ and α_{u+1} is an r symbol, there exist B_{u-1} and B_{u} such that $\left(\beta_{u-1}, \beta_{u}\right) \in F_{u}^{(k-1)},\left(\beta_{u}, \alpha_{u+1}\right) \in F_{u+1}^{(k-1)}$ and $T_{k-1}\left(\beta_{u-1}, \beta_{u}, \alpha_{u+1}\right)=$ $\left(\alpha_{u}, \alpha_{u+1}\right)$. Since $\left(\alpha_{u+i-1}, \alpha_{u+i}\right) \in F_{u+i}^{(k)}(2 \leq i \leq v-1)$ and both α_{u+i-1} and α_{u+i} are r symbols, $\left(\alpha_{u+i-1}, \alpha_{u+i}\right) \in F_{u+i}^{(k-1)}$. If $\alpha_{u+v-1}=r_{h}$ and α_{u+v} is not an r symbol, it follows from Lemma 2(a) that $\alpha_{u+v}=\lambda_{h}^{(k-1)}$. Since $\left(r_{h}, \lambda_{h}^{(k-1)}\right.$) ε $F_{u+v}^{(k)}$, there exists a non r symbol B_{u+v} such that $\left(r_{h}, \beta_{u+v}\right)=\left(\alpha_{u+v-1}, \beta_{u+v}\right) \varepsilon$ $F_{u+v}^{(k-1)}$. If $u+v=n$, then there exists B_{n} such that $\left(\alpha_{n-1}, \beta_{n}\right)_{1} \in F_{n}^{(k-1)}$, $\alpha_{n}=T_{k-1}\left(\alpha_{n-1}, \beta_{n}\right)$ and B_{n} is not an ℓ symbol, because $\left(\alpha_{n-1}, \alpha_{n}\right)_{1} \in F_{n}^{(k)}$. It is obvious that $\left(\beta_{u-1}, \beta_{u}, \alpha_{u+1}, \ldots, \alpha_{u+v-1}\right) \in U_{k, u}\left(\alpha_{u}, \alpha_{u+1}, \ldots, \alpha_{u+v}\right)$.

Lemma 5^{\prime} : Let $k \geq 2$ and $\operatorname{let}\left(\beta_{u-1}, \ldots, \beta_{u+v-1}\right) \in U_{k, u}\left(\alpha_{u}, \ldots, \alpha_{u+v}\right)$.
(a) If $\alpha_{u}=\varepsilon_{h}^{(k-1)}, B_{u-1}=\ell_{h}$.
(b) If $\alpha_{u}=\lambda_{h}^{(k-1)}, \beta_{u-1}=r_{h}$.
(c) If α_{u} is neither $r_{h}, \varepsilon_{h}^{(k-1)}$ nor $\lambda_{h}^{(k-1)}\left(1 \leq h \leq m_{1}\right), \beta_{u-1}=\alpha_{u}$.
(a^{\prime}) If $\alpha_{u+v}=\varepsilon_{h}^{(k-1)}, \beta_{u+v-1}=l_{h: ~}$
(b') If $\alpha_{u+v}=\lambda_{h}^{(k-1)}, \beta_{u+v-1}=r_{h}$.
(c') If α_{u+v} is neither $r_{h}, \varepsilon_{h}^{(k-1)}$ nor $\lambda_{h}^{(k-1)}\left(1 \leq h \leq m_{1}\right)$,
$\beta_{u+v-1}=\alpha_{u+v^{*}}$.
The proof is obvious from Table 1.
Lemma 5'1: Assume that α_{u} is not an r symbol.
(a) If α_{u+1} is not an r symbol, $U_{1, u}\left(\alpha_{u}, \alpha_{u+1}\right)=\left\{\left(\alpha, \alpha_{u+1}\right) \mid\left(\alpha, \alpha_{u+1}\right) \in F_{u}^{(0)}\right.$; $\alpha=\alpha_{u}$ or $\left.r_{h} \alpha_{u}\left(1 \leq h \leq m_{1}\right)\right\}$.
(b) $U_{1, u}\left(\alpha_{u}, r_{h_{1}}, \ldots, r_{h_{v-1}}, \alpha_{u+v}\right)=\left\{\left(\alpha, q_{i}, r_{h_{1}} q_{i_{1}}, \ldots, r_{h_{v-1}} \gamma\right) \mid\left(\alpha, q_{i}\right) \in F_{u}^{(0)}\right.$;
$\left(q_{i}, r_{h_{1}} q_{i_{1}}\right) \in F_{u+1}^{(0)} ; \alpha=\alpha_{u}$ or $r_{h} \alpha_{u}\left(1 \leq h \leq m_{1}\right) ; q_{i_{j}} \in R_{3}\left(N_{2}\left(l_{h}\right), a_{u+j-1}\right)$,
$(1 \leq j<v-1) ; \gamma=\alpha_{u+v}$ if α_{u+v} is not an r symbol, and
$\gamma \in R_{3}\left(N_{2}\left(\ell_{h-1}\right), a_{u+v}\right)$ otherwise\}.
(c) $U_{1, n-1}\left(\alpha_{n-1}, r_{h}\right)=\left\{\left(\alpha, q_{i}\right) \mid\left(\alpha, q_{i}\right) \in F_{n-1}^{(0)}, \quad \exists x\left[\left(q_{i}, r_{h} x\right)_{1} \in F_{n}^{(0)}\right] ; \alpha=\alpha_{n-1}\right.$ or $\left.r_{h^{\prime}}, \alpha_{n-1}\left(1 \leq h^{\prime \prime} \leq m_{1}\right)\right\}$.

Proof: (a) Since $\left(\alpha_{u}, \alpha_{u+1}\right) \in F_{u+1}^{(1)}$, there exist β_{u-1}, β_{u} and β_{u+1} such that $\left(\beta_{u-1}, \beta_{u}\right) \in F_{u}^{(0)},\left(\beta_{u}, \beta_{u+1}\right) \in F_{u+1}^{(0)}, T_{o}\left(\beta_{u-1}, \beta_{u}, \beta_{u+1}\right)=\left(\alpha_{u}, \alpha_{u+1}\right)$, and if $u+1=n,\left(\beta_{u}, \beta_{u+1}\right)_{1} \in F_{n}^{(0)}$. It follows from Table 1 that $\beta_{u m 1}=\alpha_{u}$ or $r_{h} \alpha_{u}$ and $\beta_{u}=\alpha_{u+1}$ or $r_{i} \alpha_{u+1}$. Since $\alpha_{u}\left(=T_{o}\left(\beta_{u-1}, \beta_{u}\right)\right)$ is not an r symbol, $\beta_{u} \neq r_{i} \alpha_{u+1}$. Conversely, any $\left(\alpha, \alpha_{u+1}\right)$ satisfying the condition in Lemma belongs to $\mathrm{U}_{1, \mathrm{u}}\left(\alpha_{\mathrm{u}}, \alpha_{\mathrm{u}+1}\right)$.
(c) Similarly we can prove (c).
(b) Since sequence $\alpha_{u}, r_{h_{1}}, \ldots, r_{h_{v-1}}, \alpha_{u+v}$ is a subsequence of a 1-chain, it follows from Table 1 that there exist $\beta_{u-1}, \beta_{u}, x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{v-1}, y_{v-1}, \beta_{u+v}$ such that $\left(\beta_{u-1}, \beta_{u}\right) \in F_{u}^{(0)},\left(\beta_{u}, r_{h_{1}} y_{1}\right) \in F_{u+1}^{(0)},\left(r_{h_{j-1}} x_{j-1}, r_{h_{j}} y_{j}\right) \in F_{u+j}^{(0)}$
$(1<j \leq v-1),\left(r_{h_{v-1}} x_{v-1}, \beta_{u+v}\right) \in F_{u+v}^{(0)}, T_{o}\left(\beta_{u-1}, \beta_{u}, r_{h_{1}} y_{1}\right)=\left(\alpha_{u 1} r_{h}\right)$, $T_{0}\left(r_{h} x_{v-1} x_{v-1}, \beta_{u+v}\right)=\alpha_{u+v}$ and if $u+v=n,\left(r_{h}{ }_{v-1} x_{v-1}, \beta_{u+v}\right)_{1} \in F_{n}^{(d)}$. Since α_{u} is not an r symbol and $\alpha_{u}=T_{o}\left(B_{u-1}, B_{u}\right), B_{u-1}$ is α_{u} or $r_{h} \alpha_{u}$ from Table 1 and B_{u} is a q symbol from Lemma 1 (c). If α_{u+v} is not an r symbol, $x_{v-1}=\alpha_{u+v}$. By Lemma $1(e), x_{j} \in R_{3}\left(N_{2}\left(\ell_{h_{i}}\right), a_{u+i-1}\right)(1 \leq i<v-1)$ and x_{i} is determined uniquely. That is, $x_{j}=q_{i}$. If $\alpha_{u+v}=r_{h_{v}}$, then $\beta_{u+v}=r_{h_{v}} y$. By Lemma $1(e)$, $x_{v-1} \in R_{3}\left(N_{2}\left(\ell_{h}\right), a_{u+v-1}\right)$. On the other hand, Lemma $1(d)$ indicates that we can choose $y_{j}(1 \leq j \leq v-1)$ so that $y_{j}=x_{j}$. It is obvious that (B_{u-1}, $\left.B_{u}, r_{h_{1}} q_{i_{1}}, \ldots, r_{h}{ }_{v-2} q_{i_{v-2}}, r_{h_{v-1}} x_{v-1}\right) \in U_{1, u}\left(\alpha_{u}, r_{h_{1}}, \ldots, r_{h}, \alpha_{u-1}\right)$.

Remark 3: The first symbol of k-chain is q_{s}. This is true for $k=0$. Note that $\mathrm{T}_{\mathrm{k}}\left(\mathrm{q}_{\mathrm{s}}, \alpha\right)$ is defined only for non-r symbol α and $\mathrm{T}_{\mathrm{k}}\left(\mathrm{q}_{\mathrm{s}}, \alpha\right)=\mathrm{q}_{\mathrm{s}}$. By induction we have this remark.

Lemma 6: Let $\bar{\alpha}\left(=\alpha_{k}, \ldots, \alpha_{n}\right)$ be a k-chain $(k \geq 1)$. Then there exists a $(k-1)$-chain $\bar{B}\left(=\beta_{k-1}, \ldots, \beta_{n}\right)$ such that $T_{k-1} \bar{B}=\bar{\alpha}$.

Proof: Let $\alpha_{j_{n}}$ be the last non-r symbol except for α_{n} and let $\alpha_{j_{n-1}}$ be the last non-r symbol preceding $\alpha_{j_{n}}$ unless $\alpha_{j_{n}}=q_{s}$. By Lemma 5, there exist a sequence $B_{j_{n}-1}, \ldots, B_{n}$ and a sequence $B_{j_{n-1}}{ }^{-1}, \ldots, B_{j_{n}-2}, B_{j_{n}}^{1}$-1 such that $\left(B_{j_{n}-1}, \ldots, \beta_{n-1}\right) \in U_{k, j_{n}}\left(\alpha_{j_{n}}, \ldots, \alpha_{n}\right),\left(B_{n-1}, B_{n}\right)_{1} \in F_{n}^{(k-1)}, B_{n}$ is not an l-symbol, and $\left(B_{j_{n-1}-1}, \ldots, \beta_{j_{n}-2}, \beta^{\prime}{ }_{j_{n}-1}\right) \in U_{k, j_{n-1}}\left(\alpha_{j_{n-1}}, \ldots, \alpha_{j_{n}}\right)$. At first, assume that $k \geq 2$. According to Lemma 5^{\prime}, we see that if $\alpha_{j_{n}}=$ $\varepsilon_{h}^{(k-1)}$ (or $\lambda_{h}^{(k-1)}$), $B_{j_{n}-1}=B_{j_{n}-1}^{\prime}=\ell_{h}$ (or r_{h}) and otherwise, $B_{j_{n}}-1=$ $B_{j_{n}-1}^{\prime}=\alpha_{j_{n}}$ 。 We now assume that $k=1$. $B_{j_{n}-1}$ is $\alpha_{j_{n}}$ or $r_{h} \alpha_{j_{n}}$ from Lemma $5^{\text {!! }}$.. Suppose that $\alpha_{j_{n}-1}=r_{h^{\prime}}$. (Or suppose that $\alpha_{j_{n}-1}$ is not an r-symbol). Then, by Lemma $5^{\text {pl }}, B_{j_{n}-1}^{\prime}=r_{h}, \alpha_{j_{n}}\left(\right.$ or $\left.B_{j_{n}^{\prime}-1}^{\prime}=\alpha_{j_{n}}\right)$. Since $\left(\alpha_{j_{n}-1}, \alpha_{j_{n}}\right) \in F_{j_{n}}^{(1)}$,
there exists B such that $\left(r_{h}, \alpha_{j_{n}}, B\right) \in F_{j_{n}}^{(0)}$ (or $\left(\alpha_{j_{n}}, \beta\right) \in F_{j_{n}}^{(0)}$). Since $\left(B_{j_{n}-1}, \beta_{j_{n}}\right) \in F_{j_{n}}^{(0)}$, we have that $\left(\alpha_{j_{n}}, \beta_{j_{n}}\right)$ or $\left(r_{h} \alpha_{j}, \beta_{j_{n}}\right) \in F_{j_{n}}^{(0)}$. Using (a) (or (b)) in Lemma 1, we have $\left(r_{h}, \alpha_{j_{n}}, \beta_{j_{n}}\right) \in F_{j_{n}}^{(0)}\left(\operatorname{or}\left(\alpha_{j_{n}}, \beta_{j_{n}}\right) \in F_{j_{n}}^{(0)}\right.$). Therefore, according to Lemma $5^{\prime \prime}$ we can choose $B_{j_{n}}$-1 so that

$$
\begin{aligned}
& B_{j_{n}-1}=B_{j_{n}-1}^{\prime}=r_{h}, \alpha_{j_{n}} \\
& \left(\text { or } B_{j_{n}-1}=B_{j_{n}-1}^{\prime}=\alpha_{j_{n}}\right. \text {) }
\end{aligned}
$$

Consequently, we see that there exists $\beta_{j_{n-1}}, \ldots, B_{n}$ such that $\left(B_{j_{n-1}}-1, \ldots\right.$, $\left.B_{n-1}\right) \in U_{k, j_{n-1}}\left(\alpha_{j_{n-1}}, \ldots, \alpha_{n}\right),\left(B_{n-1}, \beta_{n}\right)_{1} \in F_{n}^{(k-1)}$ and B_{n} is not an $\&$ symbol. By repeating the same arguments, we can prove this Lemma.

Lemma 7: Let $\bar{\alpha}$ be a k-chain ($0 \leq k<n-1$). $T_{k} \bar{\alpha}$ is a ($k+1$)-chain satisfying the D -condition if and only if $\bar{\alpha}$ satisfies the D -condition.

Proof: If $\bar{\alpha}$ satisfies the D -condition, α_{n}, the last symbol of $\bar{\alpha}$, is not an ℓ symbo1. Therefore, $T_{k} \bar{\alpha}$ is a ($k+1$)-chain by Lemma 4. T_{k} preserves ℓ symbols and r symbols in order except for cancelling adjacent ℓ_{h} and r_{h} pairs and deleting the last symbol unless this symbol is an r symbol. Therefore, $T_{k} \bar{\alpha}$ satisfies the D-condition. Assume that $\bar{\alpha}$ does not satisfy the D-condition. If α_{n} is an ℓ symbol, $T_{k} \bar{\alpha}$ can not be a $(k+1)$-chain. Only if $\bar{\alpha}$ contains no incompatible adjacent $\ell-r-p a i r s, T_{k} \bar{\alpha}$ is defined, but it can not be a $(k+1)$-chain satisfying the D-condition because of the property of T_{k} stated above.

Theorem 2: $\bar{a}\left(=a_{1}, \ldots, a_{n}\right) \in L$ if and only if $F_{n}^{(n-1)}$ contains an element of the form $\left(q_{s}, \alpha\right)_{1}$, where α is either p symbol, q symbol or $\varepsilon_{h}^{(k)}\left(1 \leq h \leq m_{1}\right.$, $1 \leq \mathrm{k}<\mathrm{n}-1$).

Proof: It follows from Corollary 1 and Lemma 3 that $\bar{a} \in L$, if and only if there exists a 0-chain satisfying the D-condition. According to Lemmas 6 and 7, there exists a 0 -chain satisfying the D-condition if and only if there exists an $(n-1)$-chain $\left(q_{s}, \alpha\right)_{1}$ satisfying the D-condition. An $(\mathrm{n}-1)$-chain $\left(\mathrm{q}_{s}, \alpha\right)_{1}$ satisfies the D -conditions, if and only if α is neither \& symbol nor r symbol. By Lemma $2(d)$ or $(e), \alpha$ can not be $\lambda_{h}^{(k)}\left(1 \leq h \leq m_{1}\right.$, $1 \leq \mathrm{k}<\mathrm{n}-1)$. Thus we have Theorem 2 .

Example 6: In Example 5, $\mathrm{F}_{9}^{(8)}=\left\{\left(\mathrm{q}_{s}, \varepsilon_{1}^{(1)}\right)_{1}\right\}$. By Theorem 2, $\bar{a}=(v+(v+v)) \in L_{e x}$.

This theorem gives an efficient recognition and syntax-analysis algorithm for CFL^{\prime} s described in Sections 4 and 5.

4. Recognition Algorithm

Let $\Sigma_{1}=\left\{\ell_{i}\left(1 \leq i \leq m_{1}\right), p_{i}\left(1 \leq i \leq m_{2}\right), q_{i}\left(1 \leq i \leq m_{3}\right), r_{i}\right.$ $\left.\left(1 \leq i \leq m_{1}\right), \lambda_{i}^{(1)}\left(1 \leq i \leq m_{i}\right), \varepsilon_{i}^{(1)}\left(1 \leq i \leq m_{1}\right)\right\}$ and $\Sigma_{2}=\left\{\lambda_{h}^{(k)}, \varepsilon_{h}^{(k)}\right.$ $\left.\left(1 \leq h \leq m_{1}, 2 \leq k \leq n-1\right)\right\}$. Lemma 2 shows that the pairs of $F_{j}^{(k)}$ containing Σ_{2} symbols are:
for $2 \leq \ell<k$

$$
\begin{aligned}
& \quad\left(\lambda_{h}^{(\ell)}, \lambda_{h}^{(\ell-1)}\right),\left(\varepsilon_{h}^{(\ell)}, \lambda_{h}^{(\ell)}\right),\left(\lambda_{h}^{(\ell)}, r_{h^{\prime}}\right),\left(\varepsilon_{h}^{(\ell)}, r_{h^{\prime}}\right) \\
& \quad\left(\alpha, \varepsilon_{h}^{(\ell)}\right) ; \alpha \in \Sigma_{1}, \alpha \neq r_{i}\left(1 \leq i \leq m_{1}\right) \\
& \text { and for } \ell=k-1,\left(r_{h}, \lambda_{h}^{(\ell)}\right) \text {. }
\end{aligned}
$$

Let $\mathrm{F}_{\mathrm{j} \ell}^{(\mathrm{k})}(2 \leq \ell<k)$ be the subset of $\mathrm{F}_{\mathrm{j}}^{(\mathrm{k})}$ consisting of the pairs of the forms shown above and let

$$
\begin{aligned}
& F_{j 1}^{(k)}=F_{j}^{(k)}-\bigcup_{\ell=2}^{k-1} F_{j l}^{(k)}(2<k<n-1), \\
& F_{j 1}^{(k)}=F_{j}^{(k)} \quad(0 \leq k \leq 2)
\end{aligned}
$$

It is clear that for any k, j, and ℓ

$$
\left|\mathrm{F}_{\mathrm{j} \ell}^{(\mathrm{k})}\right| \leq \mathrm{c}_{1},
$$

where C_{1} is a constant independent of input sequence ${ }^{*}$ and $\left|F_{j \ell}^{(k)}\right|$ means the number of the elements of set $\mathrm{F}_{\mathrm{j} \ell}^{(\mathrm{k})}$.

Table 3 shows all combinations of $\left(\alpha_{j-1}, \alpha_{j}\right) \in F_{j \ell}^{(k)}(2 \leq \ell<k)$, $\left(\alpha_{j}, \alpha_{j+1}\right) \in F_{j \ell^{\prime}}^{(k)}\left(2 \leq \ell^{\prime}<k\right)$ and $T_{k}\left(\alpha_{j-1}, \alpha_{j}, \alpha_{j+1}\right)$. If there exists $\alpha \in \Sigma_{2}$ such that $\left(\alpha, r_{h}\right) \in F_{j}^{(k)}$, we shall add $\left(X, r_{h}\right)$ to $F_{j l}^{(k)}$, where X is a special symbol. Then we can replace two rows indicated by an asterisk in Table 3 by the row

$$
\left(x, r_{h}\right),\left(r_{h}, \lambda_{h}^{(k-1)}\right),\left(r_{h}, \lambda_{h}^{(k)}\right)
$$

This modified table indicates that we need only $F_{j-1 i}^{(k)}$. and $F_{j i}^{(k)}(i=1$, $\ell-1, \ell)$ to get $\mathrm{F}_{\mathrm{j} \ell}^{(\mathrm{k}+1)}(2 \leq \ell<\mathrm{k})$. Moreover, in Table 3 there is only one row indicated by a double asterisk whose third column entry belongs to $F_{j 1}^{(k+1)}$. If we use a random access memory and store $F_{j 1}^{(k)}, F_{j 2}^{(k)}, \ldots, F_{j k-1}^{(k)}$ in a block with successive addresses, the number of elementary operations for finding $F_{j}^{(k+1)}$ from $F_{j-1}^{(k)}$ and $F_{j}^{(k)}$ can be bounded by $C_{2} k$. Let n be the length of the input sequence $\bar{a}\left(=a_{1}, \ldots, a_{n}\right)$. We can find $\left\{F_{j}^{(0)}, \ldots, F_{j}^{(j-1)}\right\}$ from $\left\{F_{j-1}^{(0)}, \ldots, F_{j-1}^{(j-2)}\right\}$ and a_{j} sequentially. Therefore, the computing time and the size of memory required to decide whether $\bar{a} \in L$ are bounded by $C_{3} n^{3}$ and $C_{4} n^{2}$ respectively. As shown below, we can get an upperbound of the same order by using suitably organized serial memories.

We shall construct a Turing machine in the sense of Hartmanis and Stearns which can recognize L and has a working tape with one head for reading and

[^7]Table 3

$\left(\alpha_{j-1}, \alpha_{j}\right)$	$\left(\alpha_{j}, \alpha_{j+1}\right)$	$T_{k}\left(\alpha_{j-1}, \alpha_{j}, \alpha_{j+1}\right)$
$\lambda_{h}^{(\ell)}, \lambda_{h}^{(\ell-1)}$	$\lambda_{h}^{(l-1)}, \lambda_{h}^{(l-2)}$	$\lambda_{h}^{(\ell)}, \lambda_{h}^{(l-1)}$
$\lambda_{h}^{(\ell)}, \lambda_{h}^{(\ell-1)}$	$\lambda_{h}^{(l-1)}, r_{h}{ }^{\text {d }}$	$\lambda_{h}^{(\ell)}, r_{h}$
$\varepsilon_{h}^{(\ell)}, \lambda_{h}^{(\ell)}$	$\lambda_{h}^{(l)}, \lambda_{h}^{(l-1)}$	$\epsilon_{h}^{(\ell)}, \lambda_{h}^{(\ell)}$
$\varepsilon_{h}^{(\ell)}, \lambda_{h}^{(\ell)}$	$\lambda_{h}^{(\ell)}, r_{h}$,	$\varepsilon_{h}^{(\ell)}, r_{h^{\prime}}$
$\alpha, \epsilon_{h}^{(l)}$	$\epsilon_{h}^{(\ell)}, \lambda_{h}^{(\ell)}$	$\alpha, \varepsilon_{h}^{(\ell)}$
** $\alpha, \varepsilon_{h}^{(l)}$	$\varepsilon_{h}^{(l)}, r^{\prime}{ }^{\prime}$	$\alpha, r^{\prime}{ }^{\text {d }}$
$r_{h}, \lambda_{h}^{(k-1)}$	$\lambda_{h}^{(k-1)}, r^{\prime}{ }^{\prime}$	$\lambda_{h}^{(k)}, r^{\prime}{ }^{\prime}$
$r_{h}, \lambda_{h}^{(k-1)}$	$\lambda_{h}^{(k-1)}, \lambda_{h}^{(k-2)}$	$\lambda_{h}^{(k)}, \lambda_{h}^{(k-1)}$
* $\lambda_{h}^{(\ell)}, r^{\prime}{ }^{\prime}$	$r_{h}{ }^{\ell}, \lambda_{h^{\prime}}^{(k-1)}$	$r_{h^{\prime}}, \lambda_{h^{\prime}}^{(k)}$
* $\varepsilon_{h}^{(\ell)}, r_{h^{\prime}}$	$r_{h^{\prime}}, \lambda_{h^{\prime}}^{(k-1)}$	$r_{h^{\prime}}, \lambda_{h^{\prime}}^{(k)}$

another independent head for writing besides one-way input and output tapes. Let us divide the working tape into sections of the same length, $\mathrm{T}_{00}, \mathrm{~T}_{00}^{0}$, $T_{11}, T_{11}^{\prime}, T_{22}, T_{22}^{\gamma}, T_{32}, T_{32}^{\gamma}, T_{33}, T_{33}^{\gamma}, \ldots, T_{k 2}, T_{k 2}^{\gamma}, \ldots, T_{k k}, T_{k k}^{\gamma}, \ldots$, where $T_{k \ell}$ (or $T_{k \ell}^{\mathrm{p}}$) $\left(2 \leq \ell<k\right.$) is used to store $\mathrm{F}_{\mathrm{j} \ell}^{(\mathrm{k})}$ for odd (or even) j and some control marks, and $T_{k k}$ (or $T_{k k}^{p}$) $(k=0,1, \ldots)$ is used to store $F_{j 1}^{(k)}$ for odd (or even) j and some control marks.

Suppose that the first $j-1$ symbols on the input tape have been read and $j-1$ is odd (or even) and that $T_{k \ell}$ (or $\left.T_{k \ell}^{\prime}\right)(0 \leq k<j-1,2 \leq \ell<j-1)$ contains the information on $\mathrm{F}_{\mathrm{j}-1 \ell}^{(\mathrm{k})}$ and T_{kk} (or $\mathrm{T}_{\mathrm{kk}}^{\mathrm{g}}$) contains that on $\mathrm{F}_{\mathrm{j}-11^{\circ}}^{(\mathrm{k})}$ Then, the operation of this machine proceeds as follows:

1) Read the j-th input symbol a_{j}. From a_{j} and $F_{j-11}^{(0)}$ on T_{00} (or T_{00}^{ρ}) calculate $\mathrm{F}_{\mathrm{jl}}^{(0)}$ and store it into T_{00}^{0} (or T_{00}).
2) Assume that $\mathrm{F}_{\mathrm{j} \ell}^{(\mathrm{h})} \mathrm{s}(0 \leq \mathrm{h} \leq \mathrm{k}, 1 \leq \ell<\mathrm{h})$ have been obtained and stored in $T_{h \ell}^{\rho}\left(\right.$ or $T_{h \ell}$) and $T_{k k}^{\rho}$ (or $T_{k k}$). Copy the information on $F_{j-11}^{(k)}$ and $\mathrm{F}_{\mathrm{j} 1}^{(\mathrm{k})}$ in T_{kk} and $\mathrm{T}_{\mathrm{kk}}^{\mathrm{p}}$ into a finite working memory W_{1} of the control unit. Obtain $F_{j 2}^{(k+1)}$ from $F_{j-12}^{(k)}$ in $T_{k 2}\left(\right.$ or $\left.T_{k 2}^{0}\right), F_{j 2}^{(k)}$ in $T_{k 2}^{0}$ (or $T_{k 2}$), $F_{j=11}^{(k)}$ and $\mathrm{F}_{\mathrm{j} 1}^{(\mathrm{k})}$ in W_{1} and store it into $\mathrm{T}_{\mathrm{k}+12}^{\prime}$ (or $\mathrm{T}_{\mathrm{k}+12}$). Simultaneously store the obtained partial results for $\mathrm{F}_{\mathrm{j} 1}^{(k+1)}$ in a working finite memory W_{2} of the control unit. Suppose that $F_{j 2}^{(k+1)}, \ldots, F_{j i-1}^{(k+1)}(i \leq k)$ have been obtained and stored in $T_{k+12}^{p}, \ldots, T_{k+1 ~ i-1}^{\prime}$ (or $T_{k+12}, \ldots, T_{k+1 ~ i-1}$). Then, calculate $F_{j i}^{(k+1)}$
 and $F_{j 1}^{(k)}$ in W_{1} and store it in $T_{k+1 i}^{\prime}$ (or $T_{k+1 i}$) (Fig。1). Simultaneously store the obtained partial results for $\mathrm{F}_{\mathrm{jl}}^{(k+1)}$ in W_{2}. For each i, the number of these operations is bounded by C_{3}, because this machine has one head for reading and another independent head for writing. Repeat this cycle on i
up to $i=k$. Copy $\mathrm{F}_{\mathrm{j} 1}^{(\mathrm{k}+1)}$ which has been obtained and stored in W_{2} into $T_{k+1}^{k} k+1$ (or $T_{k+1} k+1$). For each k, the total number of these operations is bounded by $C_{3} k$.

Repeat this cycle on k until $\mathrm{F}_{\mathrm{ji}}^{(\mathrm{j}-1)}$ is $(1 \leq i<j-1)$ are found. In the last cycle in which $k=j-1$, test whether $F_{j i}^{(j-1)}$'s $(1 \leq i<j-1)$ contain an element of the form $\left(q_{s}, \alpha\right)_{1}$, where α is either a p symbol, a q symbol, or an ε symbol. If so, print a " 1 " as the j-th output digit on the output tape, and otherwise print a "0"。

For each j, the total number of the operations mentioned above is bounded by $\mathrm{C}_{4} \mathrm{j}^{2}$. Therefore, this machine prints the j -th output digit in $C_{5} \mathrm{j}^{3}$ of fewer operations.

If the machine has only one head, then in each cycle on i the headshifts from $T_{k i-1}, T_{k i-1}^{1}, T_{k i}$ or $T_{k i}^{p}$ to $T_{k+1 i}^{p}$ or $T_{k+1 i}$ must be taken into account, and the number of the operations in this i cycle can be bounded by $C^{\prime}{ }_{3} \mathrm{k}$ instead of C_{3}. Consequently, it is easily shown that the machine prints the j -th output digit in $\mathrm{C}^{\prime}{ }_{5}{ }^{4}$ or fewer operations. Similarly we can form a double tape Turing machine which recognizes L and prints the j-th output digit in $\mathrm{C}^{\prime n}{ }_{5} \mathrm{j}^{3}$ or fewer operations. In this machine, the additional tape is used as a temporary memory for $F_{j 2}^{(k)}, F_{j 3}^{(k)}, \ldots, F_{j k-1}^{(k)}, F_{j 1}^{(k)}$. After all the $\mathrm{F}_{\mathrm{ji}}^{(\mathrm{k})}(0<\mathrm{i}<\mathrm{k})$ have been found, the contents of the second tape are transferred to the first main tape. We can form a Turing machine of the same type for which the constant C_{5} (or $C^{\prime}{ }_{5}$, or $\mathrm{C}^{\prime 0}{ }_{5}$) is equal to one (11). We summarize the results above in Theorem 3.

Theorem 3: Any context free language is n^{3}-recognizable (or n^{4} recognizable) by a double tape or a double-head single-tape (or a single-

$$
\frac{T_{00} T_{00}^{\prime} \cdots T_{k 2} T_{k 2}^{p} \cdots T_{k \ell-1} T_{k \ell-1}^{p} T_{k \ell} T_{k \ell}^{\ell} \ldots T_{k k} T_{k k}^{p} \cdots T_{k+1 \ell} T_{k+1 \ell}^{\prime} T_{k+1 \ell+1} T_{k+1 \ell+1}^{p} \cdots}{F_{j-11}^{(0)} F_{j 1}^{(0)} \ldots F_{j-12}^{(k)} F_{j 2}^{(k)} \ldots F_{j-1 \ell-1}^{(k)} F_{j \ell-1}^{(k)} F_{j-1 \ell}^{(k)} F_{j \ell}^{(k)} \ldots F_{j-11}^{(k)} F_{j 1}^{(k)} \ldots F_{j-1 \ell}^{(k+1)} F_{j \ell}^{(k+1)} \quad F_{j-1 \ell+1}^{(k+1)} F_{j-2 \ell+1}^{(k+1)} \cdots}
$$

W_{1}
$\mathrm{~F}_{\mathrm{j}-11}^{(\mathrm{k})} \mathrm{F} \mathrm{F}_{\mathrm{j} 1}^{(\mathrm{k})}$
W_{2}
Partial results of $\mathrm{F}_{\mathrm{j} 1}^{(\mathrm{k}+1)}$

Figure 1
head single-tape) Turing machine in the sense of Hartmanis and Stearns.

5. Syntax-Analysis Algorithm

We shall show a syntax-analysis algorithm for a CFL. Let $\bar{a}\left(=a_{1}, a_{2}, \ldots, a_{n}\right)$ be in L. The problem is to find all valid $S-d . s{ }^{\prime}$'s for \bar{a}. Hereafter we shall fix the input sequence \bar{a}. If a sequence $\bar{\alpha}=\alpha_{w+1}, \ldots, \alpha_{w+k}$ satisfies the D-condition and the following conditions:

1) $\left(l_{h}, \alpha_{w+1}\right) \in F_{w+1}^{(0)}$ or $\left(r_{h}, l_{h}, \alpha_{w+1}\right) \in F_{w+1}^{(0)}$ for some h^{\prime},

2) $\left(\alpha_{w+k}, r_{h} x\right) \in F_{w+k+1}^{(0)}$ for some x,
then we shall call this sequence $\bar{\alpha} a(w, k, h)-s . d . s$. or a s.d.s.
Let $\bar{\alpha}=\alpha_{u}, \alpha_{u+1}, \ldots, \alpha_{w}, \ldots, \alpha_{w+k}, \ldots, \alpha_{v}$ be a valid $S-d . s$. or a s.d.s. If α_{w} is l_{h} or $r_{i} l_{h}$ for some $i, \bar{\alpha}^{\prime}=\alpha_{w+1}, \ldots, \alpha_{w+k}$ is a $(w, k, h)-$ s.d.s. and α_{w+k+1} is $r_{h} x$ for some x, then the $(w, k, h)-s . d . s 。 \bar{\alpha}^{\prime}$ is said to be in $\bar{\alpha}$ and this relation is denoted by $\bar{\alpha} \subset \bar{\alpha}$. In the transformation process of $\bar{\alpha}$ into \wedge by applying the rules $\ell_{h} r_{h} \rightarrow \wedge\left(1 \leq h \leq m_{1}\right)$, an $n_{1} \ell_{h}$ symbol* and an r_{h} symbol to which the rule " $\ell_{h} r_{h} \rightarrow \wedge$ " is applied will be called paired symbols. It is obvious that this pairing is unique. If $\bar{\alpha}^{\beta}=\alpha_{w+1}, \ldots, \alpha_{w+k}$ is a $(w, k, h)-s . d . s$. in $\bar{\alpha}$, then the ℓ_{h} symbol in α_{w} and the r_{h} symbol in $\alpha_{\omega+k+1}$ are paired symbols. For $\overline{\alpha^{\prime}}$ satisfies the D-condition. Consequently, if two s.d.s.'s $\overline{\alpha^{\prime}}$ and $\overline{\alpha^{\prime \prime}}$ in $\bar{\alpha}$ overlap, then $\bar{\alpha} \subset \bar{\alpha}^{\prime \prime}$ or $\bar{\alpha}^{\prime \prime} \subset \overline{\alpha^{\eta}}$, because the r symbol paired with an ℓ symbol in $\alpha_{w+i}(0<i \leq k)$ must be in α_{w+j} $(1<j \leq k)$. Therefore, for any s.d.s. $\bar{\alpha}{ }^{\prime}$ in $\bar{\alpha}$, there is a unique sequence of $\bar{B}_{o}, \bar{B}_{1}, \ldots, \bar{B}_{t}$ of s.d.s. ${ }^{1} s$ in $\bar{\alpha}$ such that
[^8]1) $\bar{B}_{0}=\bar{\alpha}$ 2) for $i=1,2, \ldots, t, \bar{B}_{i-1} \supset \bar{B}_{i}$ and there exists no s.d.s. \bar{B} such that $\bar{B}_{i-1} \supset \bar{B} \supset \bar{B}_{i}$, and 3) $\bar{B}_{t}=\bar{\alpha}^{\prime}$. Then, $\bar{\alpha}^{\prime}$ will be said to be of order t in $\bar{\alpha}$. If $\overline{\alpha^{\prime}}$ is of order t_{1} in $\bar{\alpha}$ and $\bar{\alpha}^{\prime \prime}$ is of order t_{2} in $\bar{\alpha}^{\prime}$, then $\bar{\alpha}^{\prime \prime}$ is of order $t_{1}+t_{2}$ in $\bar{\alpha}$ by definition。 If $\overline{\alpha^{\prime}}$ and $\bar{\alpha}^{\prime \prime}$ are of the same order in $\bar{\alpha}, \bar{\alpha}^{\prime}$ and $\bar{\alpha}^{\prime \prime}$ do not overlap.

Let $\bar{\alpha}$ be a valid $S-d . s$. or a s.d.s. By $P_{t} \bar{\alpha}$, we mean the sequence derived from $\bar{\alpha}$ by the following steps: 1) Replace each (w,k,h) - s.d.s. $\bar{\alpha}^{1}$ of order t in $\bar{\alpha}$ by sequence $\lambda_{h}, \ldots, \lambda_{h}$ of length k, and 2) delete the remaining r symbols. Here, λ_{h} is a special symbol. We shall call the sub-sequence $\lambda_{h}, \ldots, \lambda_{h}$ from the $(\omega+1)-$ st place to the $(\omega+k)-$ th place $a(\omega, k, h)-\lambda-s$.

Remark 4: If in $\bar{\alpha}$ we replace each (w, k, h) - s.d.s. $\bar{\alpha}_{w, k, h}$ of order ($t-1$) by $P_{1} \bar{\alpha}_{w, k, h}$ and delete the remaining r symbols, we can get $P_{t} \bar{\alpha}^{\text {. }}$. In other words, if in $P_{t-1} \bar{\alpha}$ we replace each $(w, k, h)-\lambda-s$. by a $P_{1} \bar{\alpha}_{w, k, h}$, we can get $P_{t} \bar{\alpha}$. This follows directly from the definition.

Example 7: Let $\overline{\mathrm{a}}=(\mathrm{v}+(\mathrm{v}+\mathrm{v}))$ and
$\bar{\alpha}=\ell_{1}, \quad q_{1}, \quad r_{1}, l_{3}, \quad \ell_{1}^{r}, \quad \mathrm{q}_{1}, \quad r_{1} \quad \ell_{3}, \quad q_{1}, \quad r_{3} q_{2}, \quad r_{3} q_{2}$
(Example 2).
${ }_{P_{1}} \bar{\alpha}=l_{1}, \quad \lambda_{1}, \quad \ell_{3}, \quad \lambda_{3}, \quad \lambda_{3}, \quad \lambda_{3}, \quad \lambda_{3}, \quad \lambda_{3}, \quad q_{2}$,
$\mathrm{P}_{2} \bar{\alpha}=l_{1}, \quad \mathrm{q}_{1}, \quad \ell_{3}, \quad \ell_{1}, \quad \lambda_{1}, \quad \ell_{3}, \quad \lambda_{3}, \quad q_{2}, \quad \mathrm{q}_{2}$,
$P_{3} \bar{\alpha}=l_{1}, \quad q_{1}, \quad l_{3}, \quad l_{1}, \quad q_{1}, \quad l_{3}, \quad q_{1}, \quad q_{2}, \quad q_{2}$,
Remark 5: If there is a s.d.s. of order d but no s.d.s. of order $d+1$ in $\bar{\alpha}$, then $P_{d} \bar{\alpha}=P_{d+1} \bar{\alpha}$ is obtained from $\bar{\alpha}$ by deleting all r symbols. Therefore, if $\bar{\alpha}$ is a valid S-d.s. for \bar{a}, then $P_{d} \bar{\alpha}$ is a valid d.s. for \bar{a}. Since a symbol preceding an r symbol is a q symbol, $d \leq n / 2$.

Lemma 8: Let $\bar{\alpha}$ be a valid S-d.s. for \bar{a} and $\overline{\alpha^{\prime}}$ be $a(w, k, h)$ - s.d.s. in $\bar{\alpha}$. Let $\bar{\beta}$ be a sequence obtained from $\bar{\alpha}$ by replacing $\bar{\alpha}^{\eta}$ by $\bar{\alpha}^{00}$, another $(w, k, h)=$ s.d.s. Then, \bar{B} is also a valid $S-d . s$. for $\bar{a}_{\text {。 }}$

Proof: Let $\bar{\alpha}=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and $\bar{\alpha}^{\prime}=\alpha_{w+1}^{\prime}, \ldots, \alpha_{w+k^{\prime}}^{\prime}$. Then, by definition, $\left(l_{h}, \alpha_{w+1}^{\prime}\right)$ or $\left(r_{h} \circ \ell_{h}, \alpha_{w+1}^{0}\right) \in F_{w+1}^{(0)}$ for some $h^{\rho},\left(\alpha_{w+i-1}^{1}, \alpha_{w+i}^{\prime}\right) \in F_{w+i}^{(0)}$ $(1<i<k+1)$ and $\left(\alpha_{w+k}^{0}, r_{h} x\right) \in F_{w+k+1}^{(0)}$ for some x. On the other hand, $\alpha_{w}=$ ℓ_{h} or $r_{j} l_{h}$ and $\alpha_{w+k+1}=r_{h} y$. Therefore, $\left(\alpha_{w}, \alpha_{w+1}^{0}\right) \in F_{w+1}^{(0)}$ by Lemma 1 (a) or (b) and $\left(\alpha_{w+k}^{p}, \alpha_{w+k+1}\right) \in F_{w+k+1}^{(0)}$ by Lemma 1 (d). Hence, \bar{B} is a qausi-valid Sis. Also, \bar{B} satisfies the D-condition by definition. Consequently, this lemma follows from Theorem 1.

We shall now show a procedure for finding $\left\{P_{t} \bar{\alpha} \mid \bar{\alpha}\right.$ is a valid $S-d . s$. for $\bar{a}\} \operatorname{from} F_{j}^{(k)}(0 \leq k<j, 0<j \leq n)$.

Let $\bar{\alpha}^{(1)}=\alpha_{j_{1}}, \alpha_{j_{1}+1}, \ldots, \alpha_{j_{1}^{\prime}}, \bar{\alpha}^{(2)}=\alpha_{j_{2}}, \ldots, \alpha_{j_{2}^{\prime}}\left(j_{1}^{p}<j_{2}\right), \ldots, \bar{\alpha}^{(u)}$ $=\alpha_{j_{u}}, \ldots, \alpha_{j_{u}^{\prime}}\left(j_{u-1}^{v}<j_{u}\right)$ be the s.d.s. ${ }^{\prime}$ s of the first order in $\bar{\alpha}$ and let $\alpha_{j}{ }_{i}+1=r_{h_{i}} x_{i}(1 \leq i \leq u)$. Let $B_{o o}=q_{s}, B_{o j}=\alpha_{j}(1 \leq j \leq n), \bar{\gamma}_{o}=q_{s}$, $\bar{\alpha}$ and

$$
T_{k-1} \cdots T_{1} T_{0} \bar{\gamma}_{o}=\beta_{k k}, \beta_{k k+1}, B_{k k+2}, \ldots, \beta_{k n}(1 \leq k<n)
$$

From the definitions of T_{k} and $F_{j}^{(k)}$, we have the following:
(1) For $j_{i}^{p}+1<j<j_{i+1}^{-1} \quad(1 \leq i \leq u)$,

$$
B_{o j}=B_{1 j+1}=B_{2 j+2}=\ldots=B_{n-j n}=\alpha_{j} \text {. }
$$

(2) For $j_{i}^{p}+1=j<j_{i+1}-1$,

$$
B_{1 j+1}=B_{2 j+2}=\ldots=B_{n-j n}=x_{i}
$$

(3) For $j=j_{i}-1$,

$$
\begin{aligned}
& B_{1 j+1}=B_{2 j+2}=\ldots=B_{j_{i}-j_{i}+1 j_{i}^{0}}=\ell_{h_{i}}, \\
& B_{j_{i}^{j}-j_{i}+2 j_{i}^{q}+1}=\ldots=B_{n-j_{i}+1 n}=\varepsilon_{h_{i}}^{\left(j_{i}^{p}-j_{i}+1\right)}
\end{aligned}
$$

(4) For $\mathrm{j}_{\mathrm{i}} \leq \mathrm{j} \leq \mathrm{j}_{\mathrm{i}}^{\mathrm{j}}(1 \leq \mathrm{i} \leq \mathrm{u})$,

$$
B_{j_{i}^{\prime}-j+2 j_{i}^{l}+2}=B_{j_{i}^{l}-j+3 j_{i}^{j}+3}=\ldots=B_{n-j n}=\lambda_{h_{i}}^{\left(j_{i}^{j}-j+1\right)}
$$

(5) If $j_{u}^{j}=n-1$,

$$
B_{1 n}=B_{2 n}=\ldots=B_{n-j_{u} n}=r_{h_{u}}, B_{n-j_{u}+1 n}=\varepsilon_{h_{u}}^{\left(n-j_{u}\right)}
$$

(6.1) $B_{n-1 n}$ is neither an l symbol nor an r symbol (by Lemma 7).
(6.2) $B_{n-1 n-1}=q_{s}$ (Remark 3).
(6.3) $\quad\left(B_{k n-1}, B_{k n}\right)_{1} \in F_{n}^{(k)} \quad(0 \leq k<n)$ 。
(6.4) $\mathrm{T}_{\mathrm{k}}\left(B_{\mathrm{kn}-1}, \beta_{\mathrm{kn}}\right)=B_{\mathrm{k}+1 \mathrm{n}}(0 \leq \mathrm{k}<n-1)$.

From (1) through (5), we have the following:
(7) If in sequence $B_{n-1 n}, \beta_{n-2 n}, \ldots, \beta_{1 n}, \beta_{o n}$, we replace $\varepsilon_{h}^{(k)}$ by l_{h} and $\lambda_{h}^{(k)}$ or r_{h} by λ_{h} and, in case of $\beta_{o n}=r_{h} x$, delete this r_{h}, then we obtain $P_{1} \bar{\alpha}_{\text {。 }}$

Example 8: Let $\bar{\alpha}=\ell_{1}, q_{1}, r_{1} \ell_{3}, \ell_{1}, q_{1}, r_{1} \ell_{3}, q_{1}, r_{3} q_{2}, r_{3} q_{2}$ (Example 7).

$$
\begin{aligned}
& \mathrm{T}_{0} \bar{\alpha}=\begin{array}{llllllll}
l_{1} & r_{1} & l_{3} & l_{1} & r_{1} & l_{3} & r_{3} & r_{3}
\end{array} \\
& \mathrm{~T}_{1} \mathrm{~T}_{0} \bar{\alpha}=\quad \varepsilon_{1}^{(1)} \lambda_{1}^{(1)} \ell_{3} \varepsilon_{1}^{(1)} \lambda_{1}^{(1)} \varepsilon_{3}^{(1)} \mathrm{r}_{3} \\
& \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{~T}_{0} \bar{\alpha}=\quad \varepsilon_{1}^{(1)} \lambda_{1}^{(1)} \ell_{3} \varepsilon_{1}^{(1)} \lambda_{1}^{(1)} \mathrm{r}_{3} \\
& \mathrm{~T}_{3} \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{~T}_{0} \bar{\alpha}= \\
& \varepsilon_{1}^{(1)} \lambda_{1}^{(1)} \ell_{3} \varepsilon_{1}^{(1)} r_{3} \\
& \mathrm{~T}_{4} \mathrm{~T}_{3} \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{~T}_{0} \bar{\alpha}= \\
& \mathrm{T}_{5} \ldots \quad \mathrm{~T}_{0} \bar{\alpha}= \\
& \mathrm{T}_{6} \cdots \mathrm{~T}_{0} \bar{\alpha}= \\
& \mathrm{T}_{7} \ldots \mathrm{~T}_{0} \bar{\alpha}= \\
& P_{1} \bar{\alpha}=l_{1} \quad \lambda_{1} \quad l_{3} \quad \lambda_{3} \quad \lambda_{3} \quad \lambda_{3} \quad \lambda_{3} \quad \lambda_{3} \quad q_{2}
\end{aligned}
$$

Conversely, suppose that sequences $B_{1}^{0}, B_{2}^{1}, \ldots, B_{n}^{\prime}$ and $B_{1}^{\prime}, B_{2}^{0}, \ldots, B_{n}^{0}$ satisfy the following conditions:

1) B_{1}^{η} is neither an ℓ symbol nor an r symbol
2) $B_{1}^{\prime \prime}=q_{s}$
3) $\left(B_{j}^{\prime \prime}, B_{j}^{\eta}\right)_{1} \in F_{n}^{(n-j)}$
4) $T_{n-j}\left(B_{j}^{\prime \prime}, B_{j}^{\eta}\right)=B_{j-1}^{\eta} \quad(1<j \leq n)$.

Now, if $B_{j}^{\prime}=\varepsilon_{n}^{(k)}$, let $B_{j}=\ell_{h}$. If $B_{j}^{\eta}=\lambda_{h}^{(k)}$ or r_{h}, let $B_{j}=\lambda_{h}$. If $B_{n}^{\prime}=r_{h} x$, let $B_{n}=x$. Otherwise, let $B_{j}=B_{j}^{p}$. The sequences $\bar{B}=B_{1}, B_{2}, \ldots, B_{n}$ and $\bar{B}^{\prime}=B_{1}^{\eta}, B_{2}^{\eta}, \ldots, B_{n}^{\prime}$ will be said to be a P_{1}-chain and the sequence associated with \bar{B} respectively.

Now, let $\bar{\gamma}_{n-1}=B_{1}^{\rho}, B_{1}^{0}$. Then, $\bar{\gamma}_{n-1}$ is an $(n-1)$-chain satisfying the D-condition. We shal1 prove that there exist k-chain $\bar{\gamma}_{k}(0 \leq k<n)$ such that (a) $\bar{\gamma}_{k}$ satisfies the D-condition, (b) the last symbol of $\bar{\gamma}_{k}$ is B_{n-k}^{0} and (c) $\bar{\gamma}_{k+1}=T_{k} \bar{\gamma}_{k}$.

Proof: Assume that for $n-1 \geq k>i \geq 0$ there exists $\bar{\gamma}_{k}$ satisfying the conditions (a), (b) and (c). From Lemmas 6 and 7 , there exists i-chain $\bar{\gamma}_{i}$ satisfying conditions (a) and (c). Let $\bar{\gamma}_{i}$ be the sequence obtained from $\bar{\gamma}_{i}^{\prime}$ by replacing the last symbol by B_{n-i}^{0}. Now, consider α such that

$$
T_{i}(\alpha, \beta)=\beta_{n-i-1}^{0}
$$

If B_{n-i-1}^{\prime} is not an r symbol and $i \geq 1$, then α is determined uniquely and independently of B from Table 1 . Then it follows from 4) that the second last symbol of $\bar{\gamma}_{i}^{\prime}$ is $\beta_{n-i}^{0 \prime}$. Consequently, \bar{Y}_{i} is an i-chain from 3). On the other hand, B_{n-i}^{0} is neither an ℓ symbol nor an r symbol by 3) and 4). Hence, $\bar{\gamma}_{i}$ satisfies the conditions (a), (b) and (c).

If $i=0$ and B_{n-1}^{0} is not an r symbol, then $\alpha=B_{n-1}^{0}$ or $r_{n} B_{n-1}^{0}$ for some h from Table 1. Therefore, $B_{n}^{\prime \prime}=B_{n-1}^{\prime}$ or $r_{h} B_{n-1}^{\prime}$ by 4). Let γ_{n-1} and γ_{n} denote the last two symbols of $\bar{\gamma}_{0}^{0}$. Then, $\left(\gamma_{n-1}, \gamma_{n}\right)_{1} \in F_{n}^{(0)}$ and $\gamma_{n-1}=B_{n-1}^{0}$ or $r_{h}{ }^{\circ} B_{n-1}^{0}$. By Lemma $1(a)$ or (b) and 3$),\left(Y_{n-1}, \beta_{n}^{0}\right)_{1} \in F_{n}^{(0)}$. Since B_{n}° contains neither an ℓ symbol nor an r symbol from 3) and 4), \bar{Y}_{0} satisfies the conditions (a), (b) and (c).

If $B_{n-i-1}^{0}=r_{h}$ and $i \geq 1$, then $\beta_{n-i}^{0}=r_{h}$ by 4) and the last symbol of $\bar{\gamma}_{i}^{\prime}$ is also r_{h} by (c). Hence, $\bar{\gamma}_{i}=\bar{\gamma}_{i}^{0}$. If $i=0$ and $B_{n-1}^{0}=r_{h}$, then $\gamma_{n}=$ $r_{h} x$ and $B_{n}^{\rho}=r_{h} y$. Since $\left(Y_{n-1}, \gamma_{n}\right){ }_{1} \in F_{n}^{(0)}$ and $\left(B_{n}^{0}, B_{n}^{0}\right)_{1} \in F_{n}^{(0)}$, x and y are q symbols and therefore x and $y \in R_{3}\left(N_{2}\left(\ell_{h}\right)\right.$, $\left.a_{n}\right)$. Since $R_{3}\left(N_{2}\left(\ell_{h}\right)\right.$, $\left.a_{n}\right)$ contains at most one element, $\bar{\gamma}_{0}=\bar{Y}_{0}^{\prime}$.

Let $\bar{\gamma}$ be the sequence obtained from $\bar{\gamma}_{0}$ by deleting the first symbol q_{s}. Then $\bar{\gamma}$ is a valid S-d.s. By (7) and the definition of $\bar{\gamma}$,

$$
\bar{B}=P_{1} \bar{\gamma}
$$

To summarize, we have Lemma 9 。
Lemma 9: If $\bar{\alpha}$ is a valid $S-d_{0}$., then $P_{1} \bar{\alpha}$ is a P_{1}-chain and conversely if \bar{B} is a P_{1}-chain, then there exists a valid $S-d . s . \bar{\alpha}$ such that $P_{1} \bar{\alpha}=\bar{B}$.

In order to extend this lemma we need several simple lemmas.
Lemma 10: (1) If and only if there is a $(w, k, h)-\lambda-s$. in a P_{1} chain \bar{B}, then the $w-t h$ symbol B_{w}^{0} of the sequence associated with \bar{B} is $\varepsilon_{h}^{(k)}$.
(2) If there is a $(w, k, h)-\lambda-s$ 。in a $P_{1}-$ chain, then $\left(l_{h}, r_{h}\right) \in F_{w+k+1}^{(k)}$

Proof: The same notations as those in the definition of a P_{1}-chain will be used.
a) Suppose that $B_{j}^{\prime}=\lambda_{h}^{(k)}(k>1)$. Then, it follows from Table 1 and 4) of the definition of P_{1}-chain that if $k=n-j-1, B_{j+1}^{\prime \prime}=r_{h}$ and otherwise $B_{j+1}^{10}=\lambda_{h}^{(k)}$ and that B_{j+1}^{1} is not an r symbo1. Hence, $B_{j+1}^{\prime}=$ $\lambda_{h}^{(k-1)}$ by Lemma 2 (a) or (c). On the other hand, if $k=n-j-1, B_{j}^{\prime \prime}$ is eferer r_{h} or $\varepsilon_{h}^{(k)}$ by 3) and Lemma 2(d), and otherwise $B_{j}^{\prime \prime}$ is either $\varepsilon_{h}^{(k)}$ or $\lambda_{h}^{(k+1)}$ by 3) and Lemma 2(e). Therefore, B_{j-1}^{0} is $\varepsilon_{h}^{(k)}$ or $\lambda_{h}^{(k+1)}$ from 4).
b) Suppose that $B_{j}^{r}=r_{h}$. Then, $B_{j-1}^{r}=r_{h}$ or $\varepsilon_{h}^{(n-j)}$ by 4) and Table 1 and if $j=n-1, B_{j+1}^{0}=r_{h} x$ and otherwise $B_{j+1}^{0}=r_{h}$.
c) Suppose that $B_{j}^{\prime}=\varepsilon_{h}^{(k)}$. If $k=n-j-1$, then $B_{j+1}^{\prime}=r_{h}$ by 4) and Table 1. Otherwise, B_{j+1}^{0} is not an r symbol and $B_{j+1}^{0}=\varepsilon_{h}^{(k)}$. Therefore, $B_{j+1}^{0}=\lambda_{h}^{(k)}$ by Lemma 2(b).

The first part of this lemma follows immediately from a), b), c) and the definition of $\bar{\beta}$.
d) If $\left(\alpha, \varepsilon_{h}^{(k)}\right) \in F_{j}^{(i)}$, then $\left(l_{h}, r_{h}\right) \in F_{j-i+k+1}^{(k)}$. If $i=k+1$, this follows from Table 1. Otherwise, there exists α^{0} such that ($\alpha^{\rho}, \varepsilon_{h}^{(k)}$) $\varepsilon F_{j-1}^{(i-1)}$. Thus, d) can be proved by induction.

From the first part of this lemma it follows that $\left(\beta_{W}^{\prime \rho}, \varepsilon_{h}^{(k)}\right) \in F_{n}^{(n-w)}$. Therefore, the second part of this lemma follows from d).

Lemma 11: Suppose that $\left(\ell_{h}, r_{h}\right) \in F_{w+k+1}^{(k)}$. Then, there exist sequences $B_{1}^{\prime}, B_{2}^{0}, \ldots, B_{k}^{\prime}$ and $B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{k}^{\prime \prime}$ such that 1) B_{1}^{\prime} is neither an ℓ symbol nor an r symbol, 2) $B_{1}^{\prime}{ }^{\prime}=l_{h}$ or $r_{h}{ }^{\ell} l_{h}(o n l y$ if $k=1)$, 3) $\left(B_{j}^{0}, B_{j}^{0}\right)_{1} \in F_{w+k}^{(k-j)}$ $(1 \leq j \leq k)$ and 4) $T_{k-j}\left(B_{j}^{\eta}, B_{j}^{\eta}\right)=B_{j-1}^{p}(1<j \leq k)$.

Proof: From the assumption and the definition of $\mathrm{F}_{\mathrm{j}}^{(\mathrm{k})}$, there exist $B_{1}^{\prime}, \ldots, B_{k}^{0}, B_{1}^{\prime}{ }^{\prime}, \ldots, B_{k}^{\prime \prime}$ such that
a) $B_{1}^{\prime \prime}=l_{h}$ or $r_{h} l_{h}($ only if $k=1)$,
b) $\left(B_{j}^{\eta}, B_{j}^{q}\right) \in F_{w+k}^{(k-j)},\left(B_{j}^{ๆ}, r_{h}\right) \in F_{w+k+1}^{(k-j)}(1 \leq j \leq k)$, $\left(B_{k}^{0}, r_{h} x\right) \in F_{w+k+1}^{(0)}$ for some x, and
c) $T_{k-j}\left(B_{j}^{\prime \prime}, B_{j}^{\prime}, r_{h}\right)=\left(B_{j-1}^{0}, r_{h}\right)(1<j<k)$, $T_{o}\left(B_{k}^{p}{ }^{\prime}, B_{k}^{p}, r_{h} x\right)=\left(B_{k-1}^{p}, r_{h}\right)$.
Here, $B_{j}^{p}(1<j \leq k)$ can not be an ℓ symbol by $\left.c\right)$ and B_{k}^{p} is a q symbol or a combination of r and q symbols by Lemma $1(c)$. Therefore, $\left(B_{j}^{0}, B_{j}^{0}\right)_{1} \varepsilon$ $F_{w+k}^{(k-j)} \quad(1 \leq j \leq k)$.

Assume that $\left(\ell_{h}, r_{h}\right) \in F_{w+k+1}^{(k)}$ and let $\bar{B}^{\prime}=B_{1}^{\prime}, \ldots, B_{k}^{\prime}$ be the sequence in Lemma 11. If $B_{j}^{\prime}=\varepsilon_{h^{\prime}}^{\left(k^{\prime}\right)}$, let $B_{j}=\ell_{h^{\prime}}$. If $B_{j}^{\prime}=\lambda_{h^{\prime}}^{\left(k^{\prime}\right)}$ or $r_{h^{\prime}}$, let $B_{j}=\lambda_{h^{\prime}}$ 。 If $\beta_{k}^{0}=r_{h} x$, let $\beta_{k}=x$. Otherwise, let $B_{j}=\beta_{j}^{0}$. The sequence $\bar{B}=$ B_{1}, \ldots, β_{k} and $\bar{B}^{\prime}=B_{1}^{p}, \ldots, B_{k}^{\prime}$ will be said to be $a(w, k, h)$-chain and the sequence associated with \bar{B} respectively. We shall define $a(w, k, h)$-chain only if $\left(l_{h}, r_{h}\right) \in F_{w+k+1}^{(k)}$. The following lemma can be proved by using almost the same argument as that in the proof of Lemma 9 .

Lemma 90: If $\bar{\alpha}$ is a (w, k, h)-s.d.s., then $P_{1} \bar{\alpha}$ is a (w, k, h)-chain and conversely if \bar{B} is a (w, k, h)-chain, then there exists a (w, k, h)-s.d.s. $\bar{\alpha}$ such that $P_{1} \bar{\alpha}=\bar{B}$.

The proof of the following lemma is analogous to the proof of Lemma 10 .
Lemma 10': (1) If and only if there is a $(w, k, h)-\lambda$ - soin a ($w^{\prime}, k^{\prime}, h^{\prime}$)-chain \bar{B}, then the $w-t h$ symbol of the sequence associated with \bar{B} is $\varepsilon_{h}^{(k)}$. (2) If there is a (w, k, h) - λ-s。in a ($\left.w^{\prime}, k^{0}, h^{0}\right)$-chain, then $\left(\ell_{h}, r_{h}\right) \in F_{w+k+1}^{(k)}$.

We shall now define P_{t+1}-chain as a sequence derived from a P_{t}-chain by replacing each $(w, k, h)-\lambda$ - s. in the P_{t}-chain by a (w, k, h)-cahin. We shall prove that if there is a $(w, k, h)-\lambda-s$. in a P_{t}-chain, there is
always a (w, k, h)-chain. If $t=1$, this follows from Lemmas 10 and 11 . If
$t \geq 2$, it follows from the definition of P_{t} that this (w, k, h) $-\lambda-s$. is in a (w^{1}, k^{0}, h^{0})-chain which is substituted for a $\left(w^{0}, k^{0}, h^{0}\right)-\lambda-s$. in a P_{t-1} chain. Therefore, the proof is obvious from Lemmas 10° and 11.

Now we have Lemma 12.
Lemma 12: (1) If $\bar{\alpha}$ is a valid S-d.s., then $P_{t} \bar{\alpha}$ is a P_{t}-chain.
If \bar{B} is a $P_{t}-$ chain, then there exists a valid S-d.s. $\bar{\alpha}$ such that

$$
P_{t} \bar{\alpha}=\bar{\beta} .
$$

Proof: We shall prove this lemma by induction. For $t=1$, this lemma holds from Lemma 9. Assume that for $t-1$ this lemma holds.

The proof of (1). Let $\bar{\alpha}_{w, k, h}$ denote a (w,k,h)-s.d.s. of order (t-1) in $\bar{\alpha}$. From induction hypothesis, $P_{t-1} \bar{\alpha}$ is a P_{t-1}-chain. By Lemma 9°, $P_{1} \bar{\alpha}_{w, k, h}$ is a (w,k,h)-chain. Therefore since $P_{t} \bar{\alpha}$ is derived from $P_{t-1} \bar{\alpha}$ by replacing each $(w, k, h)-\lambda-s$. by $P_{1} \bar{\alpha}_{w, k, h}$ (Remark 4), $P_{t} \bar{\alpha}$ is a P_{t}-chain by definition.

The proof of (2). (a) By definition, a P_{t}-chain \bar{B} is derived from a P_{t-1}-chain \bar{B}^{\prime} by replacing each $(w, k, h)-\lambda$ - s. in \bar{B}^{\prime} by a (w, k, h)-chain $\bar{B}_{w, k, h^{\circ}}$ (b) By induction hypothesis there exists a valid S-d.s. $\bar{\alpha}^{0}$ such that $P_{t-1} \bar{\alpha}^{\prime}=\bar{\beta}^{\prime}$. (c) For each $\bar{B}_{w, k, h}$, it follows from Lemma 9^{\prime} that there exists a (w, k, h)-s.d.s. $\bar{\alpha}_{w, k, h}$ such that $P_{1} \bar{\alpha}_{w, k, h}=\bar{B}_{w, k, h}$ (d) Let $\bar{\alpha}$ denote the sequence obtained from $\bar{\alpha}^{\ell}$ by replacing each (w,k,h)-s.d.s. of order (t-1) by $\bar{\alpha}_{w, k, h}$. By Lemma $8, \bar{\alpha}$ is a valid $S-$ d.s. By construction, $P_{t-1} \bar{\alpha}=P_{t-1} \bar{\alpha}^{\prime}=\bar{B}^{0}$. (e) From Remark 4, $P_{t} \bar{\alpha}$ is derived from $P_{t-1} \bar{\alpha}\left(=\bar{B}^{0}\right)$ by replacing each $(w, k, h)-\lambda$ - s. by $P_{1} \bar{\alpha}_{w, k, h}\left(=\bar{B}_{w, k, h}\right)$. Consequently, by (a), $P_{t} \bar{\alpha}=\bar{B}$.

In forming a P_{1}-chain or a (w, k, h)-chain, there may be permissible alternatives. From Lemma 12 , if \bar{B} and $\bar{\delta}$ are different P_{t}-chains, there exist at least two different valid S-d.s. ${ }^{\circ} s \bar{\alpha}$ and $\bar{\gamma}$ such that

$$
P_{t} \bar{\alpha}=\bar{B} \text { and } P_{t} \bar{\gamma}=\bar{\delta}
$$

Therefore, there exist at least two different valid d.s. ${ }^{\circ}$ s (Remark 2). If grammar G is unambiguous, there are no alternatives. To summarize, we have Theorem 4.

Theorem 4: (1) If a P_{t}-chain \bar{B} contains no λ_{h}-symbols $\left(1 \leq h \leq m_{1}\right)$, \bar{B} is a valid d.s. (2) Any valid d.s. is a P_{t}-chain for some $t(t \leq n / 2)$. (3) Any choice of alternatives in forming P_{t}-chain leads to a valid d.s. and, furthermore, different choices of alternatives generate different valid d.s. ${ }^{\circ}$ s.

Example 9: Let $\bar{a}=(v+(v+v))$. Referring to Table 2, we have the following:

P1-chain: $\quad \ell_{1}, \quad \lambda_{1}, \quad \ell_{3}, \quad \lambda_{3}, \quad \lambda_{3}, \quad \lambda_{3}, \quad \lambda_{3}, \quad \lambda_{3}, \quad q_{2} ;$ $(1,1,1)$-chain: $\mathrm{q}_{1} ; \quad(3,5,3)$-chain: $\quad \ell_{1}, \quad \lambda_{1}, \quad l_{3}, \quad \lambda_{3}, \quad \mathrm{q}_{2}$; P_{2}-chain: $\quad l_{1}, \quad q_{1}, \quad l_{3}, \quad l_{1}, \quad \lambda_{1}, \quad l_{3}, \quad \lambda_{3}, \quad q_{2}, \quad q_{2} ;$ $(4,1,1)$-chain: q_{1}; $(6,1,3)$-chain: q_{1}; P_{3}-chain: $\quad \ell_{1}, \quad \mathrm{q}_{1}, \quad \ell_{3}, \quad \ell_{1}, \quad \mathrm{q}_{1}, \quad \ell_{3}, \quad \mathrm{q}_{1}, \quad \mathrm{q}_{2}, \quad \mathrm{q}_{2}$.

Lemma 12 is verified for this example by comparing these with $P_{t} \bar{\alpha}$ $(1 \leq t \leq 3)$ in Example 7. Since the P_{3}-chain contains no λ_{h} symbols, this is the valid d.s. for \bar{a}, which is determined uniquely because there is no alternative in forming the P_{1}-chain, the $(1,1,1)$-chain, the $(3,5,3)$-chain, the $(4,1,1)$-chain and the $(6,1,3)$-chain.

Let CT denote the computing time required for syntax-analysis and let N denote the number of different nonequivalent valid d.s. for a given input sequence. If we use a random-access memory of size $C_{10} n^{3}$, we can proceed as follows: Form the table of $\mathrm{F}_{\mathrm{j}}^{(\mathrm{k})}(0 \leq k<j, 1 \leq j \leq n)$. Test whether the given input sequence \bar{a} is in L. If $\bar{a} \in L$, form an initial part of P_{1}-chain. In order to find a next symbol of a partially formed P_{1}-chain or (w, k, h)-chain, look up the table of $F_{j}^{(k)}$ from the bottom of the table. If there are alternatives, choose the first one and write a special mark on the chosen one which is used for tracing the whole tree of alternatives without repetition.

Whenever we encounter $\varepsilon_{h}^{(k)}$ in the $w-t h$ place of the sequence associated with a P_{1}-chain or a $\left(w^{0}, k^{0}, h^{0}\right)$-chain, let $\beta_{w}=\ell_{h}$ and find B_{w+1}, \ldots from the conditions of the (w, k, h)-chain and proceed as far as a new $\varepsilon_{h^{0}}^{\left(k^{0}\right)}$ symbol is not chosen. If we reach the end of the current (w, k, h) chain, then return to the corresponding place in the latest $\left(w^{0}, k^{0}, h^{0}\right)$ chain or P_{1}-chain and restart from this point. The linkages of such jumps can be controlled efficiently by using a push down store.

As it will be shown below, the size of required memory can be reduced to the order of n^{2}. It follows from the proof of Lemma 10 that the entry in $F_{j}^{(i)}$ required for obtaining a (w, k, h)-chain are of the form $(\alpha, \beta)_{1}$, where α is an ℓ symbo1, a p symbo1, a q symbol or $\lambda_{h}^{(1)}\left(1 \leq h \leq m_{1}\right)$ and B is a p symbol, a q symbol, an r symbol, a combination of an r symbol and a q symbol or an ε symbol. Except for entries of the form $\left(\alpha, \varepsilon_{h}^{(k)}\right)_{1}$, the number of such entries in $\mathrm{F}_{\mathrm{j}}^{(\mathrm{i})}$ is bounded above by a constant. Furthermore, the following lemmas show that the all valid $d . s .{ }^{\circ} s$ can be generated without referring to entries of the form $\left(\alpha, \varepsilon_{h}^{(k)}\right)_{1}$.

Lemma 13: Let $i \geq k+2$. Then, $\left(\alpha, \varepsilon_{h}^{(k)}\right) \in F_{j}^{(i)}$, if and only if

$$
\begin{equation*}
\left(\alpha, \varepsilon_{h}^{(k)}\right) \in F_{j-i+k+1}^{(k+1)} \tag{1}
\end{equation*}
$$

and there exists non r-symbol B such that for $i=k+2$

$$
\begin{equation*}
\left(r_{h}, B\right) \in F_{j}^{(i-k-1)}=F_{j}^{(1)} \tag{2}
\end{equation*}
$$

and for $\mathrm{i}>\mathrm{k}+2$

$$
\begin{equation*}
\left(\lambda_{h}^{(1)}, B\right) \in F_{j}^{(i-k-1)} \tag{3}
\end{equation*}
$$

Proof: (1) The "only if" part follows from a), c) and d) of the proof of Lemma 10. (2) Consider the case of $i-k=2$. Assume that (1) and (2) hold. Then, from (1)

$$
\begin{equation*}
\left(l_{h}, r_{h}\right) \in F_{j-1}^{(k)} \tag{4}
\end{equation*}
$$

Thus, for $1 \leq i^{\prime}<k$, there exists non ℓ-symbol $B_{i^{\prime}}$ such that

$$
\begin{equation*}
\left(B_{i^{0}}, r_{h}\right) \in F_{j-1}^{\left(i^{0}\right)} \tag{5}
\end{equation*}
$$

Hence, it follows from (2), (4) and (5) that

$$
\begin{aligned}
& \left(r_{h}, \lambda_{h}^{\left(i^{\prime}\right)}\right) \in F_{j}^{\left(i^{\prime}+1\right)} \quad(1 \leq i<k) \\
& \left(\varepsilon_{h}^{(k)}, \lambda_{h}^{(k)}\right) \in F_{j}^{(k+1)},
\end{aligned}
$$

thus, by (1)

$$
\left(\alpha, \varepsilon_{h}^{(k)}\right) \in F_{j}^{(k+2)}=F_{j}^{(i)}
$$

(3) Suppose that the "if" part holds for $i-k<m$. Let $i-k=m>2$. From (3), there exists non r-symbol γ such that

$$
\begin{align*}
& \left(r_{h}, \gamma\right) \in F_{j-1}^{(i-k-2)} \quad, \text { if } m=3 \tag{6}\\
& \left(\lambda_{h}^{(1)}, \gamma\right) \in F_{j-1}^{(i-k-2)}, \text { if } m>3 \tag{7}
\end{align*}
$$

By (6) or (7) and the induction hypothesis,

$$
\begin{equation*}
\left(\alpha, \varepsilon_{h}^{(k)}\right) \in F_{j-1}^{(i-1)} \tag{8}
\end{equation*}
$$

The same argument as that of (a) and (c) of the proof of Lemma 10 gives

$$
\begin{aligned}
& \left(r_{h}, \lambda_{h}^{(i)}\right) \text { or }\left(\lambda_{h}^{\left(i^{\prime}+1\right)}, \lambda_{h}^{\left(i^{\prime}\right)}\right) \in F_{j-1}^{\left(i-k+i^{\prime}-2\right)} \\
& \left(\varepsilon_{h}^{(k)}, \lambda_{h}^{(k)}\right) \in F_{j-1}^{(i-2)} .
\end{aligned}
$$

By ming these relations with (3) and (8),

$$
\begin{aligned}
& \left(\lambda_{h}^{\left(i^{\prime}+1\right)}, \lambda_{h}^{\left(i^{\prime}\right)}\right) \in F_{j}^{\left(i-k+i^{\prime}-1\right)}, \quad\left(1<i^{\prime}<k\right) \\
& \left(\varepsilon_{h}^{(k)}, \lambda_{h}^{(k)}\right) \in F_{j}^{(i-1)}, \\
& \left(\alpha, \varepsilon_{h}^{(k)}\right) \in F_{j}^{(i)} .
\end{aligned}
$$

The next lemma follows directly from Lemma 13 and the definition of $\left.\pi\left(\alpha_{i-1}, \alpha_{i}\right)_{\nu}\right)$.

Lemma 13': Let $i \geq k+2$. Then, $\left(\alpha, \varepsilon_{h}^{(k)}\right)_{1} \in F_{j}^{(i)}$, if and only if $\left(\alpha, \varepsilon_{h}^{(k)}\right) \in F_{j-i+k+1}^{(k+1)}$ and there exists non $\dot{\psi}$-symbol B such that for $i=h^{2}$, $\left(r_{h}, B\right)_{1} \in F_{j}^{(i-k-1)}$ and for $i>k+2,\left(\lambda_{h}^{(1)}, B\right)_{1} \in F_{j}^{(i-k-1)}$.

Let $\overline{\mathrm{F}}_{\mathrm{j}}^{(\mathrm{i})}$ be the set consisting of the following elements:

1) (α, β) such that $(\alpha, \beta)_{1} \in F_{j}^{(i)}$ and α and B are neither $\varepsilon_{h}^{(k)}$-symbols nor $\lambda_{h}^{(k)}(k>1)$ symbols.
2) $\left(\alpha, \varepsilon_{h}\right)$ if for some $k,\left(\alpha, \varepsilon_{h}^{(k)}\right)_{1} \in F_{j}^{(i)}$.
3) $\left(\alpha, \varepsilon_{h}^{\prime}\right)$ if $\left(\alpha, \varepsilon_{h}^{(i-1)}\right) \in F_{j}^{(i)}$.

Then, the number of elements in $\bar{F}_{j}^{(i)}$ can be bounded above by a constant independent of input sequences. It follows from Lemma 13^{\prime} that $\overline{\mathrm{F}}_{\mathrm{j}}{ }^{(\mathrm{i})}{ }^{1}$ s ($1 \leq \mathrm{j} \leq \mathrm{n} ; 0 \leq \mathrm{i}<\mathrm{j}$) have enough information to generate all valid d.s.'s.

The procedure for generating valid d.s. from $\overline{\mathbf{F}}_{\mathrm{j}}^{(\mathrm{i})}$ is almost the same as the one for generating them from $\vec{j}_{j}^{(i)}$ except for the operations on $\left(\alpha, \varepsilon_{h}^{(k)}\right)$. The Tables of $\bar{F}_{j}^{(i)}(1 \leq j \leq n ; 0 \leq i<j)$ can be formed as follows: For each j, obtain $\left\{F_{j}^{(0)}, F_{j}^{(1)}, \ldots, F_{j}^{(j-1)}\right\}$ and $\left\{\bar{F}_{j}^{(0)}, \bar{F}_{j}^{(1)}, \ldots, \bar{F}_{j}^{(j-1)}\right\}$ from $\left\{F_{j-1}^{(0)}, F_{j-1}^{(1)}, \ldots, F_{j-1}^{(j-2)}\right\}$ and a_{j}. Erase $F_{j-1}^{(0)}, F_{j-1}^{(1)}, \ldots, F_{j-1}^{(j-2)}$. Repeat this step up to $j=n$. The size of required memory can be bounded above by $C_{20} n^{2}$. If we use a random access memory or two tapes of length $C_{30} n^{2}$ and one tape of length $C_{31} n$, then the computing time is bounded above by $C_{21} n^{3}$ or $C_{32} n^{3}$, respectively.

One of the procedures which produce: all the valid d.s. serially in some order without repetition will be shown below. A special mark indicates the end of each valid d.s. and the maximal initial subsequence of each valid d.s. which is also an initial subsequence of the immediately preceding valid d.s. will be omitted. Let j, i and w be indices, PL be a push down store and [PL] be the context of the top cell of PL. Index w indicates that the w-th symbol of a valid d.s. is looked for in the current step. Let α and B be working registers. For simplicity of notations, the context of register α or β will be denoted by α or β respectively.

1) Initial setting: $1 \rightarrow w, n \rightarrow j$, and $q_{s} \rightarrow \alpha$. Go to 2).
 then go to 4). Find the first symbol-pair in $\overline{\mathrm{F}}_{\mathrm{j}}^{(\mathrm{j}-\mathrm{w})}$ whose first symbol is α. Store the second symbol of this pair into register B. Mark this pair (α, β) with *.
2.0) If $B=\varepsilon_{h}$ for some h, then go to 2.3).

2．1）Write B as the w－th symbol of the current valid d．s．If $j \neq w$ ， go to 2．2）．$j+[P L] \rightarrow j 。 w+1 \rightarrow w$ 。

If $[\mathrm{PL}]=1$ ，then $\beta \rightarrow \alpha$ ，pop up PL and go to 3 ）．
If $[\mathrm{PL}]=2$ ，then $\mathrm{r}_{\mathrm{h}} \rightarrow \alpha$ ．
If $[\mathrm{PL}]>2$ ，then $\lambda_{h}^{(1)} \rightarrow \alpha$ ．
Pop up PL and go to 2）．
2．2）$B \rightarrow \alpha$
$\mathrm{w}+1 \rightarrow \mathrm{w}$
Go to 2）．
2．3）If $\left(\alpha, \varepsilon_{h}^{\eta}\right) \in \bar{F}_{j}^{(j-w)}$ ，then set $i=0$ and go to 2．4）．
Otherwise，find the smallest i such that $\left(\alpha, \varepsilon_{h}^{\eta}\right) \in \bar{F}_{j-i}^{(j-w-i)}$ and there exists a non r－symbol γ such that $\left(r_{h}, \gamma\right)$ or $\left(\lambda_{h}^{(1)}, \gamma\right) \in \bar{F}_{j}^{(i)}$ ．
2．4）Mark the pair（ $\alpha, \varepsilon_{h}^{0}$ ）with＊。
$\mathrm{i}+1 \rightarrow \mathrm{PL}$
Write l_{h} as the w－th symbol of the current valid d．s．
j－i－1 \rightarrow j
$\ell_{h} \rightarrow \alpha$
$\mathrm{w}+1 \rightarrow \mathrm{w}$
Go to 2）．
3）Find the first symbol－pair of the form $\left(\alpha, r_{h} x\right)$ in $\bar{F}_{j}^{(0)}$ ．
Mark this pair with＊。
$x \rightarrow B$
Go to 2．1）．
4）Write a special mark indicating the end of the current valid d．s． as the output．

Go to 5）．
5) Searching for the starting symbol of the next valid d.s. \&ै

If $w=0$, then stop.
Otherwise, find the marked pair in $\overline{\mathrm{F}}_{\mathrm{j}}^{(\mathrm{j}-w)}$ whose second symbol γ is not an ε^{\prime}-symbol.

Store the first symbol of this pair to register α.
If $\gamma=\varepsilon_{h}$ for some h, then go to 5.2).
Erase the mark on the pair (α, γ).
5.0) Look for a symbol-pair in $\overline{\mathrm{F}}_{\mathrm{j}}^{(\mathrm{j}-\mathrm{w})}$ whose first symbol is α and which follows the previously marked entry (α, γ). If any, store the second symbol of this pair to register B and go to 2.0). Otherwise, go to 5.1).
5.1) w-1 \rightarrow.

If $\gamma=r_{h} x$, then $j-1 \rightarrow j$ and $1 \rightarrow P 1$.
If $\alpha=r_{h}$ or $\lambda_{h}^{(1)}$, then $j-w \rightarrow$ PL and $w \rightarrow j$.
If $\alpha=\ell_{h}$, then $j+[P L] \rightarrow j$ and pop up PL.
Go to 5).
5.2) Find a marked pair $\left(\alpha, \varepsilon_{h}^{\prime}\right)$ in $\bar{F}_{j-i^{\prime}}^{\left(j-w-i^{\prime}\right)}$ for some $i^{\prime}\left(0 \leq i^{\prime}<j\right)$.

Erase the mark on this pair.
Look for the smallest i such that $i>i^{\prime},\left(\alpha, \varepsilon_{h}^{\prime}\right) \in \bar{F}_{j-i}^{(j-w-i)}$ and there exists a non r-symbol δ such that $\left(r_{h}, \delta\right)$ or $\left(\lambda_{h}^{(1)}, \delta\right) \in \bar{F}_{j}^{(i)}$.
If there exists such an i, then go to 2.4).
Otherwise, erase the mark on the pair (α, γ) and go to 5.0).
If the access time to memory is assumed to be independent of n, then the computing time at each step 2), 3) or 5) can be bounded above by $\mathrm{C}_{22} \mathrm{n}^{\mathrm{n}}$. For each valid d.s., step 2), 3) or 5) is repeated at most n times.

Therefore, the computing time for each valid d.s. can be bounded above by $C_{23} n^{2}$. After the last valid d.s. is typed out, step 5) is repeated n times and the procedure terminates. Thus, we have

$$
\mathrm{CT} \leq \mathrm{C}_{21^{\mathrm{n}^{3}}}+\mathrm{C}_{24} \mathrm{n}^{2} \mathrm{~N} .
$$

Consider the case where there are used two working tapes of length $C_{30} n^{2}$ and two tapes of length $C_{31} n$ for counting and copying. Form Tables $\overline{\mathrm{F}}_{1}^{(0)}, \overline{\mathrm{F}}_{2}^{(0)}, \overline{\mathrm{F}}_{2}^{(1)}, \overline{\mathrm{F}}_{3}^{(0)}, \ldots, \overline{\mathrm{F}}_{\mathrm{n}}^{(0)}, \overline{\mathrm{F}}_{\mathrm{n}}^{(1)}, \ldots, \overline{\mathrm{F}}_{\mathrm{n}}^{(\mathrm{n}-1)}$ in this order on the maintape of length $C_{30} n^{2}$. Write a special mark at the end of each $\bar{F}_{j}^{(i)}(0 \leq i<j-1)$ and another mark at the end of each $\bar{F}_{j}^{(j-1)}$. Use one tape for index w and another for push down store PL which keeps the current and previous values of index i. The position of the head on the main tape or a special mark can indicate the current value of index j. At the beginning of step 2.3) or 5.2) copy Tables $\bar{F}_{j}^{(0)}, \bar{F}_{j}^{(1)}, \ldots, \bar{F}_{j}^{(j-w-1)}$ to a working tape from the main tape. Then, it is easily shown that the computing time at each step 2), 3) or 5) can be bounded above by $\mathrm{C}_{33} \mathrm{n}^{2}$. Consequently, we have

$$
\mathrm{CT} \leq \mathrm{C}_{32^{\mathrm{n}^{3}}+\mathrm{C}_{34^{\mathrm{n}^{3}}} \mathrm{~N} .}
$$

We have assumed that grammar G is in standard 2-form. If given grammar G is not in standard 2-form, we can effectively construct grammar G_{s} in standard 2-form strongly equivalent to G as shown by Greibach (6), (16). It can be easily seen that the additional computing time to convert a derivation sequence in G_{s} into the corresponding one in G is asymptotically dominated by the terms derived above (16). Moreover, our algorithm can be applied directly to grammar in general standard form with some modifications. If a rule is of the form:

$$
Y \rightarrow a Y_{1} Y_{2} \ldots Y_{u} \quad(u \geq 2),
$$

we name this rule as ℓ_{h} and rewrite it as follows:

$$
\ell_{h}: Y \rightarrow a Y_{1} r_{h 1} Y_{2} r_{h 2} \cdots r_{h v_{h}} Y_{u} ; \quad v_{h}=u-1
$$

For the D-condition, we use the rules of the form:

$$
\begin{aligned}
& x \rightarrow \wedge \text { if } x \text { is neither an } \ell \text { symbol nor an } r \text { symbol, and } \\
& \ell_{h} r_{h 1} \cdots r_{h v_{h}} \rightarrow \wedge .
\end{aligned}
$$

The extension is straightforward. This extended algorithm may be somewhat more efficient and practical refinements are currently under investigation at Osaka University.

The advantage of using a standard form grammar is that we can simplify the procedure for generating all valid derivation sequences which is essentially much more complicated than the procedure for converting each derivation sequence in a standard form grammar to the corresponding one in the original grammar.

Concluding Remarks

Hartmanis and Stearns showed an example of a CFL which is not nrecognizable by multi-head multi-tape Turing machine (11). There is a gap between n and n^{3}. It is not known whether there is a CFL which is not n^{2}-recognizable. It is also not known whether a general syntax-analyzer is possible which would require a memory space proportional only to n without an exponential growth of computing time.

For a linear grammar (1), the procedures can be so simplified that the upperbound of computing time is reduced by one degree (14). The
framework of the algorithm presented in this paper is relatively suitable to be incorporated with a capability of syntax-error analysis (15). The details are under investigation at Osaka University.

Acknowledgment

The author wishes to thank Professor W. W. Peterson for his help and comments, Professors H. Ozaki and M. E. Van Valkenburg for their support.

References

1. Chomsky, N., "Formal Properties of Grammars," in Handbook of Mathematical Psychology, II. Luce, R. D., Bush, R. R., and Galanter, E (Eds.), Wiley, New York, 1963.
2. Chomsky, N_{0}, and Schutzenberger, M. P., "The Algebraic Theory of Context-Free Languages," in Computer Programming and Formal Systems, Braffort, P., and Hirschberg, D. (Eds.), North Holland, Amsterdam, 1963.
3. Bar-Hillel, Y., Perles, M., and Shamir, E., "On Formal Properties of Simple Phrase Structure Grammars," Zeit. Phonet. Sprachwise. Kommunik. Forsch. 14, (1961).
4. Ginsburg, S., and Rice, H. G., HTwo Families of Languages Related to ALGOL," J. ACM 9, (July 1962), 350-371.
5. Matthews, G. H., "Discontinuity and Asymmetry in Phase Structure Grammars," Information and Control 6, (1963), 137-146.
6. Greibach, S. A., "A New Norma1-Form Theorem for Context-Free Phrase Structure Grammars," J. ACM 12, (January, 1965), 42-52.
7. Kuno, S. and Oettinger, A. G., "Multiple-Path Syntactic Analyzer," in Information Processing 62, C. M. Popplewell (Ed.), North Holland, Amsterdam, 1962-1963.
8. Irons, E. T., "An Error-Correcting Parse Algorithm," Comm。ACM 6, (nov. 1963), 669-673.
9. Evey, R. J., "Application of Pushdown-Store Machines," Proc. Fall Joint Computer Conference, 1963, 215-227.
10. Floyd, R. W., "The Syntax of Programming Languages $\infty-A$ Survey," IEEE Trans. EC-13, (1964), 346-353.
11. Hartmanis, J. and Stearns, R. E., "Computational Complexity of Recursive Sequences," Proc. the Fifth Annual Symposium of Switching Circuit Theory and Logical Design, (October 1964), 82-90.
12. Rabin, M. O. and Scott, D., "Finite Automata and Their Decision Problems," IBM J. Res. Dev. ${ }^{3}$ (1959), 114-125.
13. Kasami, T., "An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free Languages," Report of University of Hawaii, Contract No. AF 19(628)-4379, No. 2, July, 1965.
14. Kasami, T., "Some Results on Capabilities of One-Dimensional Iterative Logical Networks and Their Related Problems," Report of University of Hawaii. Contract No. AF 19(628)-4379, No. 4, August, 1965.
15. Kasami, T. and Tokura, N., "On Error Analysis Parsing," Report of PGEC, Inst. Elec. Commun. Engrs. of Japan, January, 1966. (In Japanese).
16. Abbott, R. and Kuno, S., "The Predictive Analyzer and Unrestricted Context-Free Languages," to appear.
17. Hartmanis, J., Lewis II, P. M., and Stearns, R. E., "Classifications of Computations by Time and Memory Requirements, " Proc. IFIP Congress-65, 31-35.

Distribution list as of March 1, 1965

Dr. Chalmers Sherwin
Dr. Chalmers Sherwin DDKRE Rm 3E1060
The Pentagon
Washington, D. C. 20301
Dr. Edward M. Reilley
Asst. Director (Research)
Ofc. of Defense Res $\&$ Eng
Department of Defense
Washington, D. C. 20301
Dr. James A. Ward
ffice of Deputy Director (Research and Information Rm 3D1037) Department of Defense The Pentagon
Washington, D. C. 20301
1 Director
Advanced Research Projects Agency Department of Defense
Washington, D. C. 20301

1 Mr. Charles Yost, Director for Materials Sciences Department of Defense
Washington, D. C. 20301

20 Defense Documentation Center Cameron Station, Bldg.
Alexandria, Virginia
22314 Attn: TISIA
1 Director
National Security Agency
Fort George G. Meade, Maryland 20755
Fort George G. Meade, M
Attn: Librarian C-332
1 Chief of Research and Development
Headquarters, Department of the Army Washington, D. C. 20310

1 Chief of Research and Development Headquarters, Department of the Army Washington, D. C. 20310 Attn: Mr. L. H. Geiger, Rm 34442

Research plans office
U. S. Army Research Office

3045 Columbia Pike
Arlington, Virginia
Commanding General
U. S. Army Materiel Command

Aten: AMCRD-RS-PE-E
Washington, D. C. 20315
Commanding General
U. S. Army Strategic Communications

Washington, D. C. 20315

Commanding officer

U. S. Army Materials Research Agency

Watertown Arsenal
Watertown, Massachusetts 02172
ding officer U. S. Army Ballistics Research Lab, Aberdeen Proving Ground Aberdeen, Maryland 21005 Attn: V. W. Richar
U. S. Army Balliser Aberdeen Proving Ground Aberdeen, Maryland 21005
Attn: Keats A. Pullen, Jr.

Commanding Officer U. S. Army Ballistics Res
Aberdeen Proving Ground Aberdeen Proving Ground
Aberdeen, Maryland 21005 Attn: George Crancis, Computing Lab
> U. S. Army Air
> P. O. Box 9390 Defense School

> Fort Bliss, Texas 79916
> Attn: Missile Sciences Div., C\&S Dept.

U. S. Army Missile Command
 Redstone Arsenal, Alabama

Attn: Technical Library
1 Commanding General
Frankford Arsenal
Attn: SMUFA-1310 (Dr. Sidney Ross)
1 Commanding General
Frankford Arsenal
Philadelphia, Pa. 19137
1 U. S. Army Munitions Command
Picatinney Arsenal
Dover, New Jersey 07801
Attn: Technical Information Branch
Commanding Officer
Harry Diamond Laboratories
Connecticut Ave, \& Van Ness St., N.W Washington, D. C. 20438 Attn: Mr. Berthold Altman

1 Commanding officer
Harry Diamond Laboratories
Attn: Library
Connecticut Ave. \& Van Ness St., N.W,

1 Commanding officer
U. S. Army Security Agency Arlington Hall
Arlington, Virginia 22212
1 Commanding officer
U. S. Army Limited War Laboratory Aberdeen, Maryland 21005 Attn: Technical Director
1 Commanding officer
Human Eng ineering Laboratories
Aberdeen Proving Ground, Maryland 21005
Director
U. S. Army EngineerGeodesy. Intelligence
and Mapping, Research \& Devel. Agency and Mapping, Research $\&$ Devel
Fort Belvoir, Virginia 22060
U. S. Army Command and General

Staff College
Fort Leavenworth, Kansas 66207
Attn: Secretary
Attn: Secretary
Dr. H. Robl, Deputy Director
U. S. Army Rese Box CM, Army Research Office (Durham) Durham, Duke Station

Commanding officer
Commanding Officer
U. S. Army Research Office (Durham)
U. S. Army Research Office (Du
P. O. Box CM, Duke Station
Durham, North Carolina 27706 Attn: CRD-AA-IP (Richard 0. Ulsh)
Commanding General
U. S. Army Electronics Command
Fort Monmouth, New Jersey Attn: AMSEL-SC

Director

U. S. Army Electronics Laboratories Attn: Dr S. New Jersey 07703 Attn. Institute for Exploratory Research
1 Director
U. S. Army Electronics Laboratories

Fort Monmouth, New Jersey 07703 Attn: Mr. Robert O. Parker, Executive

Superintendent
U. S. Military Academy

The Walter Reed Institute of Research Walter Reed Army Medical Center
Washington, D. C. 20012

Director

U. S. Army Electronics Laboratorie U. S. Army Electronics Laboratorie
Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-DR

1 Director

U. S. Army Electronics Laboratorie

Attn: AMSEL-RD-X
Fort Monmouth, New Jersey 07703
Director
U. S. Ar
Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-XE

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-XC

Director
U. S. Army Electronics Laboratorie Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-XS

Director

U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-NR

Director
U. S . A
U. S. Army Electronics Laboratorie

Fort Monmouth, New Jersey 07703
Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-NO

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-NP

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-SA

Director

U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-SE

Director

Director
U. S. Army Electronics Laboratorie
Fort Monmouth, New Jersey 07703
At A : AMSEL-RD-SR
Director
U. S. Army Electronics Laboratorie

Fort Monmouth, New Jersey 07703

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
AtEn: AMSEL-RD-PE

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703

Director
Director
U. S. Army Electronics Laboratories
Fort Monmouth, New Jersey 07703
Attn: AMSEL-RD-PR

Director
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703
Attn: AMSEL-RL-GF
U. S. Army Electronics Laboratories Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-ADT

Director Fort Monmouth, New Jersey 07703 Attn: AMSEL-RD-FU\#1
Commanding officer
U. S. Army Electronics R\&D Activity
Fort Huachuca, Arizona 85163

Commanding officer
U. S. Army Engineers R\&D Laboratory ginia 22060
Attn: STINFO Branch
U. S. Army Electronics :uxD Activity

White Sands Missile Range
New Mexico 88002
Director
Human Resources Research office
The George Washington University 300 N . Washington Street

Commanding Officer
U. S. Army Personnel Research office
Washington 25, D. C.
Commanding officer
U. S. Army Medical Research Laboratory
Fort Knox, Kentucky

Fort Knox, Kentucky
Commanding General S. Army Signal Center and School
Attn: Chief, Office of Academic
Fort Monmouth, New Jersey 07703
Dr. Richard H. Wilcox, Code 437
Department of the Navy
Washington, D. C. 20360
Chief, Bureau of Weapon
Attn: Technical Library, DL1-3
Department of the Navy
Washington, D. C. 20360
Chief, Bureau of Ships Department of the Navy
Washington, D. C. 20360 Attn: Code 680
Chief, Bureau of Ships Department of the Navy Attn: Code 732

Commander

U. S. Naval Air Development Center Johnsville, Pennsylvania

Commanding officer
Naval Electronics Laboratory San Diego, California 92052 Attn: Code 2222(Library)

Commanding officer
Naval Electronics Laboratory
San Diego, California 92052
Attn: Code 2800, c. S. Mannin
Commanding officer and Director
(Code 142 Library)
David W. Taylor Model Basin
Washington, D. C. 20007
6 Director
Naval Research Laboratory

Commanding officer
Office of Naval Research Branch office
219 s , Dearborn Street
Chief of Naval Operations Department of the Navy
Washington, Attn: OP-07T

Chief of Naval Operations
Department of the Navy Washington, D.
Attn: 0 O-03EG

Commanding officer
Office of Naval Research Branch Office 1000 Geary Street
San Francisco, California
94109

1 Commanding officer
U. S. Naval Weapons Laboratory

Asst. Director for Computation
Dah1gren, Virginis Dahigren, Virginia 22448
Attn: G. H. Gleissner (Code K-4)
1 Inspector of Naval Material
Bureau of Ships Technical Representative
St. Paul 4, Minnesota
5 Lt. Col. E. T. Gaines, SREE Chief, Electronics Division Directorate of Engineering Sciences
Air Force Office of Scientific Reseal Washington, D. C. 20333
1 Director of Science \& Technology Deputy Chief of Staff ($R \& D$)

Washington, D. C.
Attn: AFRST-EL/GU
1 Director of Science \& Technology
Deputy Chief of Staff (R\&D)
Washington, D. C.
Attn: AFRST-SC
1 Kar1 M. Fuechsel
Electronics Division
Director of Engineering Sciences
Air Force Office of Scientific
Air Force Office of Scientific Research
Washington, D. C. 20333
1 Lt. Col. Edwin M. Myers Headquarters, USAF (AFRDR)
Washington 25,

1 Director, Air University Library
Maxwell Air Force Base
Alabama 36112
Attn: CR-4803a
Commander
Research \& Technology Division
AFSC (Mr. Robert L. Feik)
AFSC (Mr. Robert L. Feik)
Office of the Scientific Director
Bolling AFB 25, D. C.

Research \& Technology Division
Office of the Scientific Director Bolling AFB 25, D. C.
Attn: RT
Air Force Cambridge Research Laboratories
Attn: Research Library
Attn: $\begin{gathered}\text { Research Library } \\ \text { CRMML-R }\end{gathered}$
L. G. Hanscom Field

Bedford, Massachusetts 01731
Dr. Lloyd Hollingsworth
AFCRL
L. G. Hanscom Field

Bedford, Massachusetts 01731

Air Force Cambridge Research Laboratories
Attn: Data Sciences Lab
L. G. Hanscom Field Kahne, CRB)
L. G. Hanscom Field
Bedford, Massachusetts
01731

Commander
Air Force Systems Command
Office of the Chief Scientist
(Mr, A. G. Wimer)
Andrews AFB, Maryland 20331
1 Commander
Air Force Missile Development Center
Attn: MDSGO/Major Harold Wheeler, Jr
Holloman Air Force Base, New Mexico
1 Commande
Research \& Technology Division
Attn: MAYT (Mr. Evans)
Wright-Patterson Air Force Base
Ohio 45433
Directorate of Systems Dynamics Analysis Aeronatical Systems Division
Wright-Patter son AFB, Ohio 4543

1 Hqs. Aeronautical Systems Division
AF Systems Command
Wright-Patterson AFB, Ohio 45433
Commander
Rome Air Development Center
Attn: Documents Library, RAALD
Griffiss Air Force Base
Rome, New York 13442
Commander
Rome Air Development Center
Attn: RAWI-Major W. H \boldsymbol{H} Harris
Griffiss Air Force Base
Rome, New York 13442
1 Lincoln Laboratory
Massachusetts Institute of Technology
P. O. Box 73

Attn: Library A-082
Continued next page

Distribution list as of March 1, 1965 (Cont'd.)

Lincoln Laborator
Massachusetts Institute of Technology
P. O. Box 73

Attn: Dr. Robert Kingston
APGC (PGAPI)
Eglin Air Force Base
Florida
1 Mr. Alan Barnum
Rome Air Development Center
Griffiss Air Force Base
Director
Research Laboratory of Electronics
Massachusetts Institute of Technology Cambridge, Massachusetts 02139
Polytechnic Institute of Brooklyn 55 Johnson Street
rooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator
Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027
Director
Coordinated Science Laboratory University of I11inois
Urbana, Illinois 61803

Director
Stanford Electronics Laboratories
Stanford University
Stanford, California
Director
Electronics Research Laboratory University of Californi

- Professor A. A. Dougal, Director aboratories for Electronics and Related University of Texas Austin, Texas 78712
Professor J. K. Aggarwa
Department of Electrical Engineerin Austin, Texas 78712

1 Director of Engineering \& Applied Physics 210 Pierce Hall Harvard Uniersity

Capt. Paul Johnson (USN Ret.) National Aeronautics \& Space Agency 1520 H. Street, N. W.

NASA Headquarters
office of Applications
400 Maryland Avenue, S.Q
Washington 25, D. C.
Attn: Code FC Mr. A. M. Greg Andru
1 National Bureau of Standards Research Information Center and Advisory Serv, on Info. Processing Data Processing System
Washington 25, D. c.

1 Dr. Wallace Sinaiko Institute for Defense Analyses Research \& Eng. Support Div. 1666 Connecticut Avenue, N. W. Washington 9, D. C.

1 Data Processing Systems Division National Bureau of Standards Conn. at Van Ness
Room 239, Bldg. 10
Washington 25, D. C.
Attn: A, K. Smilow
Exchange and Gift Division The Library of Congress Washington 25, D. C.
1 Dr. Alan T. Waterman, Director National Science Foundation Washington 25, D. C.
1 H. E. Cochran
Oak Ridge National Laboratory
Oak Ridge, Tennessee
1 U. S. Atomic Energy Commission Office of Technical Information Extensio Oak Ridge,

1 Mr. G. D. Watson Defense Research Member Canadian Joint Staff 2450 nissachusetts Avenue, N. W.
$1 \begin{aligned} & \text { Martin Company } \\ & \text { P. O. Box } 5837\end{aligned}$
P. O. Box 5837

Orlando, Florid
1 Laboratories for Applied Sciences
University of Chicago
6220 South Drexel
Chicago, Illinois 60637

1
Librarian
School of Electrical Engineering Lafayette, Indiana

1 Donald L. Epley
Dept. of Electrical Engineering
State University of Iowa
Iowa City, Lowa
1 Instrumentation Laboratory
Massachusetts Institute of Technology
68 Albany Street
68 albany Street
Cambridge 39 , Massachusetts
Syivania Electric Products, Inc.
Electronics System
Waltham Labs. Library
100 First Avenue
Wal tham 54, Massachusetts
2 Hughes Aircraft Company Centinela and Teale Streets Culver City, California
Attn: K. C. Rosenberg, Supervisor
Company Technical Document Center
3 Autonetics
9150 East Imperial Highway
Downey, California
1 Dr. Arnold T. Nordsieck
General Motors Corporation
6767 Hollister Avenue
Goleta, California
1 University of California
Lawrence Radiation Laboratory
P. O. Box 808

Livermore, California
1 Mr. Thomas L. Hartwick
Aerospace Corporation
P. O. Box 95085

Los Angeles 45, California
1 Lt. Col. Willard Levin
Aerospace Corporatio
Los Angeles 45, California

1. Sylvania Electronic Systems-West Electronic Defense Laboratories
E. O. Box 205

Mountain View, California
Attn: Documents Center
1 Varian Associates
Varian Associate
611 Hansen Way
611 Hansen Way
Palo Alto, California 9430
Attn: Tech. Library
1 Huston Denslow
Library Supervisor
California Institute of Technology
Pasadena, California
1 Professor Nicholas George
CaliforniaeInstitute of Technology
Electrical Engineering Department
Pasadena, California
1 Space Technology Labs., Inc
One Space Park
Redondo Beach, California
STL Technical Library
1 The Rand Corporation
1700 Main Street
Santa Monica, California
Attn: Library
M
1 Miss F. Cloak
Radio Corp. of America
RCA Laboratories
Princeton New Jersey Center
Princeton, New Jersey
$1 \quad \mathrm{Mr}, \mathrm{A}$. A. Lundstrom
Bell Telephone Laboratories
Room 2E-127
Room 2E-127
Whippany, New Jersey
1 Corne 11 Aeronautical Laboratory, Inc.
4455 Genesee Street
Attn: J. P. Desmond, Librarian
Sperry Gyroscope Company
Marine Division Library
Marine Division Library
155 Glenn
155 Glenn Cove Road
Carle Place, L. I., New York
Attn: Miss Barbara Judd
1 Library
Light Military Electronics Dept.
General Electric Company
Armament \& Control Products Section
Dr. E. Howard Holt
Director
Plasma Research Laboratory
Rennselaer Polytechnic Institute
Troy, New York
1 Battele-DEFENDER
Battelle Memorial Institute
505 King Avenue

1 Laboratory for Electroscience Research New York University Bronx 53, New York
$1 \begin{aligned} & \text { National Physical Laboratory } \\ & \text { Teddington, Middlesex }\end{aligned}$ England
Attn: Dr. A, M. Uttley, Superintendent Attn: Dr. A, M, Uttley, Su
1 Dr, Lee Huff
Behavioral Sciences
Advanced Research Projects Agency The Pentagon (Room 38175)
Washington, D. C. 20301

1 Dr. Glenn L. Bryan
Head, Personnel and Training Branct
Office of Naval Research
Navy Department
Washington, D. C. 20360
1 Instituto de Fisica Aplicado "L. Torres quevedo"
High Vacuum Laboratory
Madrid, Madrid, Jose

1 Stanford Resea Stanford Research Institute
Attn: G-037 External Attn: G-037 External Reports Menlo Park, California

REVISED U. S. ARMY DISTRIBUTION LIST
(As received at the Coordinated Science Laboratory 27 July 1965)

1 Dr. Chalmers Sherwin
Deputy Director (Research \& Technology)
DD\&RE Rm 3E1060
The Pentagon
Washington, D. C. 20301
1 Dr. Edward M. Reilley
Asst. Director (Research)
Ofc. of Defense Res. \& Eng
Department of Defense
Washington, D. C. 20301
1 Dr. James A. Ward Office of Deputy Director (Research and Information Rm 3D1037)
Department of Defense
The Pentagon
Washington, D. C. 20301
1 Director
Advanced Research Projects Agency
Department of Defense
Washington, D. C. 20301
1 Mr. E. I. Salkovitz, Director for Materials Sciences
Advanced Research Projects Agency
Department of Defense
Washington, D. C. 20301
1 Colonel Charles C. Mack
Headquarters
Defense Communications Agency (333)
The Pentagon
Washington, D. C. 20305
20 Defense Documentation Center
Attn: TISIA
Cameron Station, Building 5
Alexandria, Virginia 22314
1 Director
National Security Agency
Attn: Librarian C-332
Fort George G. Meade, Maryland 20755
1 U. S. Army Research Office Attn: Physical Sciences Division
3045 Columbia Pike
Arlington, Virginia 22204
1 Chief of Research and Development Headquarters, Department of the Army Attn: Mr. L. H. Geiger, Rm 3D442 Washington, D. C. 20310

1 Research Plans Office U. S. Army Research Office 3045 Columbia Pike Arlington, Virginia 22204

1 Commanding General
U. S. Army Materiel Command

Attn: AMCRD-RS-PE-E
Attn: AMCRD-RS-PE-E
Washington, D. C. 20315
1 Commanding General
U. S. Army Strategic Communications Command Washington, D. C. 20315

1 Commanding Officer
U. S. Army Materials Research Agency

Watertown Arsenal
Watertown Arsenal
Watertown, Massachusetts 02172
1 Commanding Officer
U. S. Army Ballistics Research Laboratory U. S. Army Ballistics Attn: V. W. Richards
Aberdeen Proving Ground
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding officer
U. S. Army Ballistics Research Laboratory U. S. Army Ballistics Resear Attn: Keats A. Pullen,
Aberdeen Proving Ground Aberdeen Proving Ground
Aberdeen, Maryland 21005

1 Commanding Officer
U. S. Army Ballistics Research Laboratory Attn: George C. Francis, Computing Lab. Attn: George C. Francis, Computing Lab.
Aberdeen Proving Ground, Maryland 21005

1 Commandant
U. S. Army Air Defense School

Attn: Missile Sciences Division, C\&S Dept. P. 0. Box 9390

Fort Bliss, Texas 79916
1 Commanding General
U. S. Army Missile Command

Attn: Technical Library
Attn: Technical Library
Redstone Arsenal, Alabama 35809
1 Commanding General
Frankford Arsenal
Attn: SMUFA-1310 (Dr. Sidney Ross) Philadelphia, Pennsylvania 19137

1 Commanding General
Frankford Arsenal
Attn: SMUFA-1300
Philadelphia, Pennsylvania 19137
1 U. S. Army Munitions Command
Attn: Technical Information Branch
Picatinney Arsenal
Dover, New Jersey 07801
1 Commanding Officer
Harry Diamond Laboratories
Attn: Mr. Berthold Altman
Connecticut Avenue and Van Ness St., N.W.
Washington, D. C. 20438
1 Commanding Officer
Harry Diamond Laboratories
Attn: Library
Connecticut Avenue and Van Ness St.,N.W.
Washington, D. C. 20438
1 Commanding Officer
U. S. Army Security Agency

Arlington Hall
Arlington, Virginia 22212
1 Commanding Officer
U. S. Army Limited War Laboratory

Attn: Technical Director
Aberdeen Proving Ground
Aberdeen, Maryland 21005
1 Commanding Officer
Human Engineering Laboratories
Aberdeen Proving Ground, Maryl and 21005
1 Director
U. S. Army Engineer Geodesy,

Intelligence \& Mapping
Research and Development Agency
Fort Belvoir, Virginia 22060
1 Commandant
U. S. Army Command and General Staff College Attn: Secretary
Fort Leavenworth, Kansas 66207
1 Dr. H. Robl, Deputy Chief Scientist U. S. Army Research Office (Durham) Box CM, Duke Station Durham, North Carolina 27706

1 Commanding Officer
U. S. Army Research Office (Durham)

Attn: CRD-AA-IP (Richard O. Ulsh)
Box CM, Duke Station
Durham, North Carolina 27706
1 Superintendent
U. S. Army Military Academy

West Point, New York 10996
1 The Walter Reed Institute of Research Walter Reed Army Medical Center Washington, D. C. 20012

1 Commanding Officer
U. S. Army Electronics R\&D Activity Fort Huachuca, Arizona 85163

1 Commanding Officer
U. S. Army Engineers R\&D Laboratory

Attn: STINFO Branch
Fort Belvoir, Virginia 22060
1 Commanding Officer
U. S. Army Electronics R\&D Activity White Sands Missile Range, New Mexico 88002
1 Director
Human Resources Research Office
The George Washington University
300 N. Washington Street
Alexandria, Virginia 22300
1 Cormmanding officer
U. S. Army Personnel Research Office Washington, D. C.
1 Commanding officer
U. S. Army Medical Research Laboratory Fort Knox, Kentucky 40120

1. Commanding General
U. S. Army Signal Center and School

Fort Monmouth, New Jarsey 07703 Attn: Chief, Office of Academic Operations

1 Dr. S. Benedict Levin, Director
Institute for Exploratory Research
U. S. Army Electronics Command

Fort Monmouth, New Jersey 07703

1 Director
Institute for Exploratory Research
U. S. Army Electronics Command

Attn: Mr. Robert 0. Parker, Executive
Secretary, JSTAC (AMSEL-XL-D)
Fort Monmouth, New Jersey 07703
1 Commanding General
U. S. Army Electronics Command

Fort Monmouth, New Jersey 07703
Attn: AMSEL-SC

$$
\begin{aligned}
& R D-D \\
& R D-G \\
& R D-M A F-I \\
& R D-M A T \\
& R D-G F
\end{aligned}
$$ RD-MN (Marine Corps LnO) XI-D $\mathrm{XL}-\mathrm{E}$

$\mathrm{XL}-\mathrm{C}$ $\mathrm{XL}-\mathrm{C}$
$\mathrm{XL}-\mathrm{S}$
$\mathrm{HL}-\mathrm{D}$ HL-L
HL-J
HL HL-P
HL-0
HL-R $\stackrel{\mathrm{Ni}}{\mathrm{NL}-2}$

NL-S
KL-D
KL-E
KL-S
KL-T
VL-D

1 Mr. Charles F. Yost
Special Assistant to the Director of Research
National Aeronautics \& Space Admin. Washington, D. C. 20546

1 Director
Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, Massachusetts 02139

1 Polytechnic Institute of Brooklyn 55 Johnson Street
Brooklyn, New York 11201
Attn: Mr. Jerome Fox
Research Coordinator
1 Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, New York 10027
1 Director
Stanford Electronics Laboratories
Stanford University
Stanford, California 94301
1 Director
Electronics Research Laboratory
University of California
Berkeley, California 94700
1 Director
Electronic Sciences Laboratory University of Southern Californi Los Angeles, California 90007

1 Professor A. A. Dougal, Director Laboratories for Electronics and Related Science Research University of Texas Austin, Texas 78712

1 Professor J. K. Aggarwal
Department of Electrical Engineering University of Texas Austin, Texas 78712

1 Division of Engineering and Applied Physics 210 Pierce Hall
Harvard University
Cambridge, Massachusetts 02138

Security Classification		
1. ORIGINATING ACTIVITY (Corporate author) University of Illinois Coordinated Science Laboratory Urbana, Illinois 61801	Unclassifi	
	ory	
AN EFFICIENT RECOGNITION AND SYNTAX-ANALYSIS ALGORITHM FOR CONTEXT-FREE IANGUAGES \qquad		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		
5. AUTHOR(S) (Last name, first name, initial		
Kasami, T.		
6. REPORT DATE March, 1966 8a. CONTRACT OR GRANT NO. DA 28043 AMC $00073(E)$ b. PROUECT NO. $20014501 B 31 F$ c. Also National Science Foundation Grant NSF GK-690.	7a TOTAL NO. OF PAGES 7b. NO. OF REFS. 47 17	
	9a. ORIGINATOR'S $4 \frac{1}{\text { REPORT NUMEER(S) }}$	
	R-257	
	9b.OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
Qualified requesters may obtain copies of this report from DDC. This report may be released to OTS.		
11. SUPPLEMENTARY NOTES 12.SPONSORING MILITARY ACTIVITY U. S. Army Electronics Command Ft. Monmouth, New Jersey 07703	12. SPONSORING MILITARY ACTIVITYU. S. Army Electronics Command Ft. Monmouth, New Jersey 07703	
13. ABSTRACT An efficient algorithm of recognition and syntax-analysis for the full class of context-free languages without the difficulty of exponential growth of computing time with the length n of input sequence is presented. This algorithm makes use of a fundamental algebraic property of a context-free $\frac{1}{3}$ anguage. It is shown in this paper that a context-free language is n^{3}-recognizable in the sense of Hartmanis and Stearns by a double-tape or double-head single-tape Turing machine and it is n^{4} recognizable by a single-head single-tape Turing machine. The size of memory required for recognition is proportional to n^{2}. If we use a randomaccess memory whose size is proportional to n^{2}, the computing time required for syntax-analysis is upper-bounded by $C_{1} n^{3}+C_{2} n^{2} N$, where N denotes the number of non-equivalent valid derivation sequences for a given input sequence and C_{i} 's are constants independent of input sequences. If we use two tapes of length $\mathrm{C}_{3} \mathrm{n}^{2}$ and two tapes of length $\mathrm{C}_{4} \mathrm{n}$ as working memories, the computing time for syntax-analysis is upper-bounded by $n^{3}\left(C_{5}+C_{6} N\right)$ 。		

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis inmediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
5. AUTHOR(S): Enter the name (s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, ε ow rank and branch of service. The name of the principal author is an absolute minimum requirement.
6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, \& 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
(5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Tec nical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract repoll end with an indication of the military security classhall end with an indication of the military security clas-
sification of the information in the paragraph, represented sification of the information
as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

[^0]: This paper is based on the author ${ }^{\text {'s }}$ previous report (13). The research reported in this paper was sponsored by the Air Force Cambridge Research Laboratories, Office of Aerospace Research under contract AF19 (628) - 4379, Grant NSF GK-690, and JSEP contract DA 28043 AMC 00073 (E). $1_{\text {University }}$ of Illinois, on leave from Osaka University.

[^1]: *The author became aware of an unpublished work by D. H. Younger, after he submitted the original manuscript.

[^2]: * This algorithm also rejects input sequences which are not in L.

[^3]: ${ }^{*} \ell_{i}, p_{i}, q_{i}$, and r_{i} are not regarded as nonterminal symbols.

[^4]: We shall omit the commas between symbols．

[^5]: ${ }^{*} \varepsilon_{h}{ }^{(k)}$ and $\lambda_{h}{ }^{(k)}$ are defined in Section 3.

[^6]: * This corollary may be considered a version of the fundamental theorem due to Chomsky and Schutzenberger $(2,6)$.

[^7]: *Hereafter, C_{i} is a constant independent of input sequence even though it is not stated.

[^8]: ${ }^{*}$ We discern an ℓ_{n} symbol in a position from an ℓ_{h} symbol in another position.

