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AN EFFICIENT RECOGNITION AND SYNTAX-ANALYSIS ALGORITHM

FOR CONTEXT-FREE LANGUAGES*

m Tr .1 T. Kasami

Abstract

An efficient algorithm of recognition and syntax-analysis for the full

class of context-free languages without the difficulty of exponential growth

of computing time with the length n of input sequence is presented. This

algorithm makes use of a fundamental algebraic property of a context-free
3language. It is shown in this paper that a context-free language is n 

recognizable in the sense of Hartmanis and Stearns by a double-tape or double-
4head single-tape Turing machine and it is n -recognizable by a single-head

single-tape Turing machine. The size of memory required for recognition is 
2proportional to n . If we use a random-access memory whose size is proportional

2to n , the computing time required for syntax-analysis is upper-bounded by 
3 2C^n + C^n N, where N denotes the number of non-equivalent valid derivation

sequences for a given input sequence and C^'s are constants independent of
2input sequences. If we use two tapes of length C^n and two tapes of length

C^n as working memories, the computing time for syntax-analysis is upper- 
3bounded by n (C,. + C^N).
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1. Introduction and Preliminaries

Since the introduction of Chomsky the theory of context-free languages 

and its applications to natural or programming languages have been studied 

extensively (1 - 10). It is important in the theory and its application to 

find efficient algorithms for recognition or syntax-analysis of sequences of 

a context-free language (CFL). For some practically important but considerably 

restricted sublcasses of CFL's, several highly efficient algorithms of syntax- 

analysis have been proposed in which the computing time is proportional to 

the length of an input sentence (9, 10). These algorithms have difficulty 

in pinpointing the locations of the errors for a syntactically incorrect 

input sequence. To the author's knowledge, however, there was no known 

general method of recognition or syntax-analysis of a CFL in which the time 

required for recognition or analysis does not increase exponentially with the 

length of input sequence (10).

An efficient algorithm of recognition and syntax-analysis for the full 

class of CFL without the difficulty of exponential growth of computing time 

is presented in this paper. This algorithm may be modified to give some 

diagnostic information on errors (15) .

For convenient reference, the relevant definitions and notions of 

context-free grammar are presented here briefly. The set of all finite 

sequences, including the null sequence A, over a finite alphabet E is
•kdenoted by I . A context-free grammar G is an ordered quadruple 

(VN > VT > p > S) in which

The author became aware of an unpublished work by D. H. Younger, after he 
submitted the original manuscript.
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(1) VN and are disjoint finite alphabets which are the nonterminal 

and terminal vocabularies of G, respectively. Let V = VN U T^.

(2) P is a finite set of rewriting rules of the form,

Y  -  (j>

where Y s | s V* and (j) ^ A.

(3) S e V^. S is the initial symbol.

We shall mainly use a grammar in Greibach^s standard 2-form (6).

Let us name rewriting rules in P as .,g ,..., respectively. We

adopt the left to right derivations without any loss of generality|(5). We 

then write
8i

?! - <f2

if cpx = w^Yw^, cp̂  = w^ (j) w^, w^ e V^, w^ e V* and rewriting rule Y (j)

is in P. The language generated by G is defined as the set {cp} of sequences

over V,j, such that there exists sequence cp ,... ,cp and rewriting rules in
§iP g p  • . . ,gm with cpQ = S, cpm = cp and c p ^  - cpi (1 < i < m) . Sequence 

g p  • • • » is ̂ said to be a valid derivation sequence (d.s.) of G for cp. The 

language generated by a context-free grammar is said to be a context-free 

language (CFL). Hereafter, let G denote a context-free grammar and let L 

denote the CFL generated by G over an alphabet A(=V,p. By a recognition 

algorithm of L, we mean a procedure for testing whether for any sequence a 

over A, a is in L. By a syntax-analysis algorithm of L generated by G, we 

mean a procedure to find all valid derivation sequences of G for any given 

sequence in L. Since we adopt the left to right derivations, different 

valid derivations for a sequence in L are not equivalent to each other.
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One reasonable method to estimate the efficiency of algorithm is to 

see how the computing time and the size of required memory grow with n, the 

length of input sequence. Hartmanis and Stearns have introduced the concept 

"T(n)-recognizable" to measure the complexity of a recognition problem (11).

As a standard automaton, they considered a Turing machine TM with a one-way 

input tape using the symbols in a finite alphabet A and a one-way output 

tape using two symbols "1" and "0" besides working tapes. A TM is said to 

recognize L if and only if for any input sequence a on A, the n-th output

digit of T is "l" if the first n digits of a is in L and is "0" otherwise.
*

L is said to be T(n)-recognizable if and only if tfyere is a TM which 

recognizes L and, for any input sequence a, prints the n-th output digit in 

T(n) or fewer operations.
3It is shown in this paper that any context-free language is n -recognizable

by a double-tape or a double-head single-tape Turing machine and n^-recognizable

by a single-head single-tape Turing machine. The size of memory required for
2recognition is proportional to n . The measures of efficiency of the syntax- 

&analysis algorithm presented here are as follows. We hereafter use notation

to designate constants independent of input sequences. If we use a random-
2access memory whose size is proportional to n , the computing time is upper- 

3 2bounded by C ^ n  + C-^n N, N being the number of non-equivalent valid

derivation sequences for a given input sequence. If we use two tapes of 
2length C ^ n  and two of length C ^ n  as working memories, the computing time

3is upper-bounded by n (C22 + C^N) .

*This algorithm also rejects input sequences which are not in L.
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2. Derivation Sequences

Since we can effectively construct a grammar in standard 2-form strongly 

equivalent to a given grammar (Greibach (6)), we shall use a grammar G in 

standard 2-form for L. A grammar is in standard 2-form if all of the rules 

are of the forms:

Type I: Y - a Y ^ ,

Type II: Y -* a Y^ ,

Type III: Y - a .

We use notations Y, Y^, Y^ ••• for nonterminal symbols and a, a^, a^ ... 

for terminal symbols. Let us name the rules of type I, the rules of type II 

and the rules of type III, , p^,...,pm , and , respectively.

For nonterminal symbol Y and terminal symbol a, R(Y,a), R^(Y,a), R2 (Y,a) and 

R^(Y,a) denote the set of rules, the set of rules of type I, the set of rules 

of type II and the set of rules of type III respectively, in which the non

terminal symbol on the left side is Y and the terminal symbol is a. R(Y,a) 

is possibly empty. R^CYja) is empty or consists of one rule. Let N(p^) 

denote the nonterminal symbol on the right-hand side of rule p^ and let 

and denote the first and second nonterminal symbols in the right-hand

side of rule respectively. The following arguments are illustrated by a 

running example.

Example 1: Consider a grammar G = (Vm , V„ , S, P ) where--------- o To No o
VTo = {(,), +, v], VNo = [s] and

S - (S + S) ,

s -» ss,

S - v.
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This grammar generates a simple class of familiar algebraic forms. By 

Greibach's procedure, we can easily construct a grammar in standard form 

strongly equivalent to G as follows:

G1 ■ {VTo> VNo’ S> Pl5 >

where consists of the rules:

S - (S + S) ,

S — (S + S)S,

S -* vS,

S - v.

We can further construct a grammar Ggx in 2-standard form strongly 

equivalent to G^ as follows:

where v = { s ,  N

: = {v,ex To * V  s> P2} ’

V, W] and ]P2consists of the rules

V S —> (SU,

eg S —* (SV,

V U - +SE,

V V —»+SW,

pr S - vS,

P2: W —¥ ) s ,

V S —» v,

V E —» )•

Let Lpy denote the language generated by G . Although for this grammar 

there exists a much simpler and more efficient algorithm than the general 

method in this paper, we have chosen this running example because of its
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simplicity and familiarity. For G^, N ^ X ^  = S, N^Xj) = U, N ^ )  = S,

R ( S , (  ) «  U v A21, R ( s , v )  = t p1, q 1} ,  R(U,+) = {je3} ,  R(V,+) = {x 4 } ,

R(W, )) = {P2?’ R (E > )) = {^2  ̂ and other R(Y,a) are empty.
We shall introduce a "dummy" symbol r^ for each X^ and rewrite the

right-hand side of rule X . by inserting r. between N, (X.) and N0(X.), i.e.,
1 1 1 1 2 1
,. by 
1 inserting r

X.; Y - aY,Y01 1 2

X.;1 Y “* aYiriY2

No sequence should be substituted for r.; its function is to indicate
1

the relation between N-^Xj) and N ^ X p  explicitly, as will be made clear in 

the following sections.

Let a (= a ^ ...,a ) be an input sequence on A. A Y-derivation 

sequence (Y - d.s.) of G for a is defined as follows;

1) If R(Y,ap is empty, there is no Y-d.s. Otherwise, as the

first step choose any one rule, say (or p^ or q_j) , in R(Y,ap . 

Then write

iv  N^X.), r.^CX.)

(or P^> N(p^) or q.) , which is called a partial Y-d.s.

2) Suppose that j-1 steps have been done. If the partial Y-d.s.§
. *contains no nonterminal symbol or j-1 = n, terminate the 

procedure. Then, the sequence is a Y-d.s. Otherwise, let the first non

terminal symbol of § be Y^. If R (Yh >aj) is empty, terminate the procedure. 

The sequence § is a Y-d.s. Otherwise, choose any rule of R(Yh ,a ) and

^i* Pi5 and r are not regarded as nonterminal symbols.
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substitute for the sequence consisting of the name of the chosen rule and 

the left-hand side of the rule in the same manner as in step 1) . For example, 

assume that the chosen rule is and the symbol just preceding the ’’Ŷ '* is 

rk „ The substitution for "Y^" is "r^j^, N^JL) , r^C^).'* Note that we do 

not write a cdmma between an r symbol and the symbol following it.

If a Y-d.s. is obtained through exactly n steps (substitutions) and 

contains no nonterminal symbol, this Y-d.s. is said to be valid.

Remark 1s The last symbol in a valid Y-d.s. is a q symbol.

Remark 2; There exists a one to one correspondence between th$ set of 

valid S-d.s. for a and the set of valid d.s. for a. A valid d.s. is obtained 

from a valid S-’d.s. by deleting all r symbols. Conversely, it follows 

immediately from the definition of S-d.s. that for a given valid d.s. g there 

is a unique valid S-d.s. from which g is obtained by deleting all r symbols.

Therefore, a is in L if and only if there exists a vaid S-d.s. for a.
-

Example 2; Let a = (v + (v + v)) . A valid S-d.s. is derived as follows

a = (

i. riu

riu

r1^3

(

r3E

+ v ) )

rlu r3E

rlu r3E

r A S r3E r3E

ql r3E r3E

r3q2 r 3E

r3q2

We shall omit the commas between symbols.
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Sequence P-̂ j S, r^V is also a S-d.s. for a, but this sequence is not 
valid.

Let us define R(a,a) as follows:

(1) If a is or rhJl±, R(a,a) = R(N1 (X ) ,a) .
(2) If a is p. or ^p,, R(a,a) = R(N(p ) ,a).

(3) If a is q. or r ^ ,  R(a,a) = U {rmx|x e R(N2(ĵm),a)}
all m m

Example 3: For Ggx, note that N̂ jfc.) = N(p ,) = S

< 1 < 4 > 1 < i' 5 2) . R(ii, ( ) = R(rhji., ( ) = I(p.,, ( ) =

R(rhPi" ( ) = R(S, ( ) = U r A2}, 1(1., v) = R(rhl.,v) = R(p., ,v) = 

i(rhpl’’v) = R <S’V> - i ( V > ) )  " = {r3q2,r4p2},
>+) = >+) = and other R(Y,a) are empty.

Hereafter let a, a-, , a9,..., 6, B15... designate either i. , p , q , r i1 z 1 1 i’ ni h i’(k) (k)*
rh^i’ rh^i’ ^h °r ^h and ^et x ’ y* z **' designate either p .  or 

If a(= a1}a2,,..,an) satisfies the following conditions:

(1) ax e RCY.ap

(2) e R(«j_1,ap (1 < j < n)

(3) an is q. or rhq. (1 < h < n^, 1 < i < m ) ,

a is said to be a quasi-valid Y-s. for input sequence a = a ,a a If1 2  ’ n
cl is a valid Y-d.s., it is also a quasi-valid Y-s.

If a sequence can be reduced to null sequence A by eliminating all the 

symbols other than and r^ (1 < h < m^) and by applying the rules

V h "* A (1 - h - m].) ’
we say that the sequence satisfies the D-condition.

Example 4 ; The first sequence in Example 2 is a quasi-valid S-s. 
satisfying the D-condition.

 ̂ and  ̂ are defined in Section 3.
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Theorem 1: A quasi-valid Y-s. is a valid Y-d.s., if and only if it 

satisfies the D-condition.

Proof: In the derivation of a Y-d.s., the partial Y-d.s. of the first

step satisfies the D-condition. If the partial Y-d.s. of the (j-l)-th step
*

satisfies the D-condition, it is easily verified that it still does after

one substitution. By induction on j, we see that a Y-d.s. satisfies the

D-condition. Since a valid Y-d.s. is a quasi-valid Y-s., we have the

Mq'nly if part.” The "if part" also is proved by induction on n, the length

of input sequence. If n = 1, then a quasi-valid Y-s. consists of only one

q symbol. It is obvious that the sequence consisting of this q-symbol

also is a valid Y-d.s. Assume that for n < m, the "if part" holds.

Suppose that n = m and a is a quasi-valid Y-s. satisfying the D-condition.

If a contains no i symbols, a is obviously a valid Y-d.s. Suppose that a.

is the first l symbol and a. - <&,. Then there exists an a,, which contains
J h j '

the r-symbol paired with a.. Let a.. = r,x. Subsequence a,,...,a. ,J J h 1 j-1
contains neither J0 nor r-symbols. Subsequence a ^,...,a  ̂ is a quasi-

valid N1(«j) -s. for input sequence a ^ .... a fi>1 satisfying the D-condition,
'i

and subsequence x,cr , • • • ,«n is a quasi-valid ^(a^-s. for input 

sequence a ,,...,aR satisfying the D-condition. It follows from the in

duction hypothesis that both subsequences are valid. Therefore a is also 

valid by the definition of valid d.s.

Corollary 1; Sequence a is in L if and only if there exists a quasi-
—— ^ valid S-s. for a which satisfies the D-condition.

This corollary may be considered a version of the fundamental theorem due 
to Chomsky and Schutzenberger (2, 6).
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This corollary is the fundamental basis of our recognition algorithm.

3. Main Theorem

Let a = (a^»a2 ,...,an) be an input sequence on A. Let us define
noFj (1 < j < n, 0 < k < j) as follows:

(1) F^0) = {(qs>a 1) 1|a1 « ^3(S»a1)} U

{(qs’a l)o|al ® Ri<S’ai> U r 2(S>a1) 3 ,
where qg is a special symbol indicating the beginning of the input sequence

Fj0) = f <a j-i>aj)v l 3 a^ a ’aj-l) e Fj-1^; aj
v = 1 if is a q symbol or a combination of an r symbol 

and a q symbol, v = 0 otherwise}, 

where (a,6) means (a,&) ̂ or (a,6)q,

(2) For each (a a ) e , let T, Act. , ,a.) and
J J - J V  J K“ 1 J “ 1 J

TT ( («j „ -j_9G£ j) y) defined as follows:

Case I: a . = r, or a . = r, x (l < h < mO .----—  j h j h — - V

If a ^ 1 is qg or £h* (h 4 h*) , Tk_1 and rr are not defined. If a =

V Tk-i(ij-i>a ]> = ehk’1)- °the™laa» Tk-i(aj - r aj) = V
*h nor rhx (1 < h < m^) . If a is rh*Case II: a. is neither r,------- J

(k-1)
Tk-l^aj-l,0Jĵ  = ^h * If a^„i is rhx, Tk_x(«j_x = x ‘ Otherwise, 

Tk-l^j-l’aĵ  = aj-l*
The definition of T^Ca.B) is summarized in Table 1.

If v = 1 and â  is not an 4 symbol, TT((a ,a )^) is defined to be 1, 

Otherwise, tt(  (o^ _ 1 ,a ̂  v) = 0.



a
or r^x(only for k=l) ^i,>pi,>qi,> _1) or _1) (j* < k-1)

r. 1 r h
x Oc-i)
1

r^x (only for k=l) r h X

ft( k-1) 
&h *h

A. (i $ h) 1 not defined l.1

% not defined qs

pi> V
6«> or \<J) 1 1
(j < k-1)

r h a

Table 1. Definition Table of T, , (a,B).k-1
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(3) FJ £(Tk-l<aj-2«°j-l> ’ V l < aJ.X*<*j)>n^(«^.’1, ^ l

(a a ) e ^  ' (a ci 'l e j - 2 ’ a j - l '  ® Fj - 1  ’ 6 Fj

Example 5; For a = (v + ( v + v)) , , F ^  , . . . , F ^  are listed in
Table 2.

For a sequence a(=a.,.. . ,«m) (k-1 < j) , let T ^ a  = Tk.1(aj ,«j+1) , • • • ,

T^_i(am_i,«m) • If cl contains any adjacent incompatible pair (j^f ,r̂ )

(h’ 4 h) or (qs>rh) 5 Tk_ia is not defined. Otherwise,  ̂ deletes the last 

non-r symbol and each non-r symbol in a preceding an r symbol, moves the re

maining non-r symbols to the right by one place, replaces each r^ by 6 ^  if

the preceding symbol is leaves the remaining r symbols unchanged and

writes X (k-1)h in each empty place following an r symbol. It will be shown

that we can easily test whether a satisfies the D-condition by applying 

^k-1’̂ k’’’* successively to a • ' The following arguments are based on this 
simple idea. But the problem is that we must consider a set of sequences in

stead of a single sequence and test whether the set contains a sequence 

satisfying the D-condition. For this purpose, we need some device and have

We shall show someintroduced the extra symbols 6,^ ^  and ^h h
elementary properties of F ^  in Lemmas 1 and 2.

(0)Lemma 1; (a) If (x,a) or (rhx,a) e Fj ' and (rh,x,Y) e F

(rhix ,a) e F ^  .

(b) If (r^x,a) and (x,6) e F ^  , then (x,a) e F ^  .

(c) If (a,rhx) e F ^  , then a = q., or i r ^ i •

,(0) then

,(0) (0)(d) If (a,rhy) e Fj and (rhx,B) e F j+j , then (a,rhx) e Fj,(0)



Table 2. Examples of  Fj(k )

j 1 2 3 4 5 6 7 8 9

a ( V + ( V + V ) )

F<°>
J (qs , ^ l ) 0 (^1 ’ Pl> 0 A ,r  A ^ o <r 1X3 ’ ^l) 0 A ,p P o A ’ r A ^ O (r A *  p A <ql , r 3q2>1 (r3q2 »r 3q 2 ) 1

^qs (^ 1 ,q 1) 1 (ql ’ r 2 ^ 0 ( r A  A ^ O (^1 ,q 1) 1 (ql ’ r 2' V o (r 1^3 ’ ql> 1 (ql ’ r4p2) 0 (r3q2 ’ r4 p2) 0

A ,PA ( r 2^4 ’ 0 (*2>Pl)0 ( r 2V pl>0

(^2 >qP i ( r2^4 ’ ^2^0 ($2 ’ qi ) 1 ( r 2i 4* q l) l

FP
J A ’ A o A , r  A ( r r V o A ,r  A (t 1»^3) (i-3 , r 3) 1 (r3 ’ r3) 1

A  A ^ O ( i I>r 2>0 A  A ^ O < w (W o (r2 > V A ’ r4^0 (r3 ’ r4>0

(W  0 (W 0 (^4>r3) 1

(^ 25 r  2)  0 ^ 4 5 ̂ 2^ A A ^ O A 5 A  0

F<2)
J

f e (1) X (1 )3 (e l  ,A,1 ^0 ^  1  ̂ ’ ^3  ̂0 A , 6 1 ^ 0 , p (i> x < A  (e i A  } o
a ( ! )  , ( l k(A. ̂ , ® 3 / y ( e (1) r )( 3 ’ 3; 1

(q e (1 )) W s' 2 ■’ o
( e d )  X ( V  
( 2 ’ 2 ’ 0 < ^ 1} > V o A , 6 2 ^ 0

, e ( D  > < V  
(®2 >X2 } 0 ( x (1) e (1 ) )( 2 , e 4 ' 0 ( e (1) r )

(S3 ’ V o

^ 4  ’ 6 1 ^ 0

- A ’ ®2 ^ 0

CO



F<3>
J

( qs ’ e2 1 } ) 0

, e ( i )  x ( 1 ) î(^1 »*]_ ) q 

< « ^ > 0

(X1  ̂ 5 ^3^0

(^2  ̂ » * V  0

^ 3 ,S 1 ^ 0  

^ 3 ,S2 ^ 0

« V ' ? X

^ 4 \

f0a)  * c i k

, e ( l )  X( 1 ) ï( e 2 >À2 ' o

<X1  ̂ , r 3> 1

f <4)
J « . - • i X

« A \

, e ( l )  X( 1 ) i 
( e i  >x i  >0 (^ i  >^3) 0

(X2  ̂ ’ V o

^ 3 , e l  ^  1

« A \

(^ 4»e i  ) i

(^4 ’ e2 ^ 0

( € (1) r  )l i  ’ V i

F<5>
J ( q sV* Î 1>)0

(q s>, 21>)0

( c (1) x ( 1 ) )*-e l  ’ 1 ; 0 (X^x) ,X3>

^ 2 ^ ’ V

(^3 ,1:3) l 

(^4>r 3) l

f (6)
j « A \

t o . A \

f s (1) X( 1 ) ){ 1 ’ 1 ' 0

« F A X

F<7)
J <q s>Si 1 )>0

< V ^ > o

x i } x x

F (8)
j -
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,(0)(e) If (r^x, *^y) e , then x e and x is determined

uniquely by h and â

(f) There exists neither nor X.^ .h h
Proof: (a) Note that R(x,a.) = R(rhx,a.) = R(rh,x,a.). Since (x,a)

J J J
or (rhx,a) e F ^  , a e R(rhtx,a^) . Since (rh,x,Y) e F ^  , j > 2 and there 

exists 6 such that (B,rh,x) e F ^  by the definition of F ^  . Therefore,

(rh,x,a) e F^0^ .

(b) It is shown similarly that a e R(rhx,a^) = R(x,a_.) and there exists a*

such that (a’ ,x) e . By the definition of F ^  , (x,a) e F ^  .J - l  j j
(c) Since (a,r^x) e F^  ̂, r^x e R(a,a.). By the definition of R(a,a.),J J J
a = qi °r rh'qi

,(0)(d) Since (r x,6) e F ^ ,  there exists a' such that (a* ,r, x) e F ^  . Therein j+ i  h j

fore, r^x e R(aII,a^). According to (c) , a and a' are q symbols or combinations 

of an r symbol and a q symbol. Consequently, rhx e R(a,a^) (=R(a',a^)) . This 

implies that (a,r^x) e F^^ •

(e) Since (r x,r y) e F ^  , j > 2 and there exists a such that (a,r, x) e F ^n 1 J — h j-l
and r^x e R(a,a^_.j) . By (c) , x is a q symbol and a is a q symbol or a 

combination of an r symbol and a q symbol. By the definition of R(a,a. ^), 

x e ,aj-P ‘ R^(Y,a) contains at most one element.

(f) (c) implies that ^can not exist. It follows from the definition of

TQ(a,B) that X<°> does not exist
<k)Lemma 2; Suppose that e Fj (k > 2) .

(a) If al = rh , then a2 is (k-1) or an r symbol.

(b) If a^  ̂, then k > k! and a^ is X ^   ̂ or an r symbol
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(c) If a  ̂- X^  ̂ (k1 > 2) , then k > kf and a2 is X^k or an r symbol.

(d) If «2 = X^k ^  , then a  ̂is or ^  .

(e) If a2 = Xh(k,) (k* < k-1) , is X^k’+1) or .

(f) ^  a 2 =  ̂» then a  ̂ is neither r^,, &^k  ̂ nor X^k  ̂ (kf' ' > 1) .

( k )Proof: Since (a1,«2) e Fj (k > 2) , there exist 13p  B2 and B3 such that

(ei>B2) e Fj-l1) * (S2’B3) e Fjk"1)> «i = Tk-i(B1>62) and a2 = Tk-1(B2’B3) '
(a) Since rh = Tk _ 1 (B-,̂ ,B2) > must be rh from Table 1. Then « 2 (=Tk-1 (rh ’B3>)

k- 
h
(k-1)is X\ 7 or an r symbol

(b) From Table 1, k > k'. Note that fî k V = T (B.,B„). If k' = k-1,h k-1 v 1 2 ’
B2 = according to Table 1. Thus, (b) is valid. Assume that (b) holds if

k-k* < i. Consider the case where k* = k-i (i > 1) . Thqn, 13, must be £^k^
1 h

from Table 1. Since (fî k  ̂,B2) e F ^ " 1̂  , B2 is X^k '̂  or an r symbol by the 

induction hypothesis. Hence, « 2 (=Tk„ i (&2 ,IB3)) is °r an r symbo1 from
Table 1.

(c) From Table 1, k > k'. Note that X^k  ̂ = T ^ C B ^ B ^ .  If k' = k-1, B 

must be rh and B2 is not an r symbol according to Table 1. Then, it follows 

from (a) that B2 is X^k“2) . Therefore, <*2 (=Tk_ 3 (X^k“2) ,6 3)) is X^k"2) or an r 

symbol from Table 1. Assume that (c) holds if k-k' < i. Consider the case 

where k' = k-i > 2 and i > 1. Then, B-̂  = X^k  ̂ and 6 2 is not an r symbol 

from Table 1. Since (B3 ,B2) s F^ _ 3  ̂> B2 is X^k ^  by the induction 

hypothesis. Therefore, «2(=Tk_1(^kk *B3>) is ^  or an r symbol from 
Table 1.

(k- 1)(d) Since Xh = Tk_^(B2 ,B3) , B2 must be r^ from Table 1. Then =
(k-nTk_i(6 i»rh)* Therefore, a1 is rh or ' according to Table 1.
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(e) Since X^  ̂ = T ^ C B ^ B g )  , 62 must be X^k  ̂ from Table 1. By Lemma 1 (f) 

k' > 1- Hence> k > 3. If k' - k-2, Bx is rh or ft<k,) by (d) . Since a =

Tk - l ^ l ’̂ h a l is  ̂ (= + ^  or  ̂* Assume that (e) holds if
k-k* < i. Consider the case in which k' = k-i and i > 2. Since (B X (k*) f\, 1’ h 7
^j_ 1 > -*-s ^   ̂ or  ̂ hy the induction hypothesis. Consequently,

. . (k' + l) _(k')
cli is X' or £,v ; .1 h h
(f) Note that = T ^ ^ B ^ B ^ )  . ^  k* = k“l> B2 = ^  according to Table 1

Ck-1)Since e , it follows from (a), (b) , and (c) that B^ is neither
(k,f) nor (k*1 (k1 1 ’ > 1) if k > 2. If k = 2, B^ cannot be an 6-

symbol or a X symbol by Lemma 1 (f) . Since = T ^ B ^ y  , a1 is neither

rh»» ^h' nor ^h* (k*1 * > 1) from Table 1. Assume that (f) holds if
k-k1 < i. Consider the case in which k' = k-i and i > 2. From Table 1,
B0 = t.(k') (kJ) Ck-1')Since ) e Fj_^ > it follows from the induction

hypothesis that B1 is neither rh, , ^  nor X ^ " ^  (k» 5 1 > 1). Since

al = Tk-l(Bl,ehk ^  ’ al is neither rh,, ) nor X ^ " ^  (k1 * f > 1).
By a k-chain (0 < k < n), we shall mean a sequence a, such thatk n

(a.iya )v s F y (k < j < n) and V =1.
J j J n

Lemma 3: The set of quasi-valid ^s. is identical with that of 0-chains
from which the first symbol q^ is deleted.

This lemma is obvious from the definitions of F ^  and 0-chainj
Lemma 4: Let a (= be a k-chain. Then Tka is a (k+1)-chain

if and only if is not an symbol.

This lemma follows directly from the definitions of T,a, k-chain andK. ^

TT((a ,S )v) .
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Now we shall consider the inverse of T, . Let a ,alC be au ,flW l ’’*,,au+v
subsequence of a k-chain a. , . . . ,a and let U, (a _____a ) =k n k,uv u ’ u+v

t(Bu-l.... Su+v-l)l(Bu+ i-l>6u+ i) e Fu+'i1} :(0 i 1 < v); “u+i = Tk-l(Bu+i-l’

Bu+P ’ 3  Bu + v ^ Bu+v-1 ’Bu+v^ e Fu+v ’ “u+v = Tk-1 ̂Bu+v-1 ’ Bu+v^ ’ lf u + v * n >
Tk- 1}then (B ,,Bn)^ e and Br is not an j&-symbol]}.

Lemma 5; (a) u (au ’au+i) is not empty.

u+v(b) If is not an r symbol, ’•••>au+v_^ are r symbols and either a

is not an r symbol or u + v = n, then U, (ft ,...,a ) is not empty.k, u u u+v r J
Proof; (a) The definition of implies (a) .

(b) We shall assume that k > 2. The case k = 1 will be covered by the proof 
of Lemma 5 *'(b).

Since (au >au+ )̂ e an<̂  au+i an r symbol, there exist B^  ̂ and B
such that (Bu . r 8 u) e F̂\(B ^ , )  c and =

K ’V P -  Since (“u+i-l’“u+i> 6 Fu+i <2 < 1 < v-!) and b°th a ^ . j  and
(k- 1) If ft„, = r and a is not an u+v-1 h u+va,. are r symbols,(a . -,a , .) e F . u+i u+ i — 15 u+r u+i

rmbol, it follows from Lemma 2(a)
,(k )

r symbol, it follows from Lemma 2(a) that a = X,^"1̂  . Since (r X ^ “1̂  ev u+v h v h* h '
there exists a non r symbol 6 , such that (r, ,B ) = (a ,6 ) eu+v u+v v h ’ u+v v u+v-1’ u+v;(k-1) £ nFu+V • If u + v = n, then there exists 6n such that (an ^,Bn>1 e F^ ,

an = Tk - l ^ * n - 1 and is not an ^ symbol, because (a ,,a ), e . It11 ^ A u -l u n n-1 n 1 n
is obvious that (15 ,,6 ,a ......a ,) ! U, (a ,a ,a ).u- 1  u u+1 u+v-1 k,u u u+1 u+vy

Lemma 5*: Let k > 2 and let (R— u-1
(a) If au h u-1

(b) If a CQ
rH1'w' fr<fIIu n u-1

(c) If au is neither r, , h ’

,B , )  e u. (a  , .  . .  , a  ) .u+v-1 k, u v u u+v
■ V
= V
e (k-l)
6h (1 < h < mp, Bu.1 = au, (k-1)nor X,; 'h
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(a') If a - e (k‘1}, p L .u+v h u+v--I h!
(b *) If a = ^(k'1}, p r, .u+v h * u+v-■1 h
(C) If a is nei ther r, , £ (k-•1)

u+v h h

3 _ au+v- 1 u+v

nor ^  (1 < h < m^) ,

The proof is obvious from Table 1.

Lemma 5'1: Assume that a is not an r symbol.

(a) If “u+l is not an r SFmbol> “l . u ^ u ' V P  = t(a,au+i) | (a,au+1) « F^0) ;
a = “ u °r r h“ u 0 < h < m-j)} .
(b) U l , u < V V "  •’ r h ,a , ) = , u + v £ (a,qi > r h y>l . F (0)Uv -  1 1 1 v - 1

( q i > r h q i  > e 
1 1

pVu J • 
u + l ’ a = a o r  r a 

u h u
(1 < h < \ ) ; ^

j e V N2< V > *j
a . 'U + J - l

(1 < j  < v - 1) ; Y = au + v i f  a i s  u + v
n o t  a n r  s y m b o l , and

Y e R3(N2(^h ) >au+v) otherwise},
v-1

(c) Ul , n - l (“ n - l ’ rh> = U a . q p U a . q . )  « F ^ ,  3 x [ ( q i , v > 1 e F<0 ) ] ;  a =

°r rh* ,an-l (1 - h’ ' £ mi)5 •

Proof: (a) Since (a ,a ) e F ^ n , there exist 0 .,0 and 0 . suchu u+i u+i u-1 u u+l

that <Bu-l'Bu> e Fu0)> (gu'Pu+ l) s Fu+1> V Bu-l’Bu ’Bu+l> ■ < V V l > >  and
if u + 1 = n, (Su ,eu+1)x « Fn(0) It follows from Table 1 that 0, . = au** 1 u
°r rhau and 3u " V l  °r riau+l* since au(=To(Bu - r Pu)) is not an r symbo1» 
Pu ^ riau+ r  Conversely, any (a,a p  satisfying the condition in Lemma
belongs to U, (a ,a ,.).l,u u u+l
(c) Similarly we can prove (c).

(b) Since sequence a ,r, ,...,r, , a , is a subsequence of a 1-chain, itu n - n - u+v1 v-1
follows from Table 1 that there exist .... V l ’yv-l’Bu+v

.(0)such that (Sjjl;Bu) • f (°\ (Bu ,r yx) e F ® ,  (r x v y )
1 J-l j

e Fo+j
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(1 < j < V-1) , (rh^ i V l , B J  « C l ’ To<Bu-l>Bu*rh1yl) = < V rh )
.(A)T (r, X r 1 ,6 ) = a , and if u + v = n, (ro n - v-l u+v u+v vv-1

,6...). e F'h .v-1* u+V 1 v-1
Since

a is not an r symbol and a = T (6 ,,B ), B , is a or r, a from Table 1u u o u-1 u u-1 u h u
and 6 is a q symbol from Lemma 1(c) * If a is not an r symbol, x , = au u+v J ’ v- 1 u+v
By Lemma 1(e), x̂  e ^3 >au+^_P (1 < i < v-1) and x^ is determined

uniquely. That is, x = q . If a ^ = r, , then B , = r, y. By Lemma 1(e),J 1 . u+v h u+v h. v / jJ v v
Xv-1 6 R3^N2 ^ h  ^ ’au + v - P ’ 0n the other hand> Lemma 1(d) indicates that we v
can choose y (1 < j < v-1) so that y. = x . . It is obvious that (B ,,J “ “ J J u-1’

Bu>rhiqi1 --"-rhv_2qiv_2 -rhv_1V l ) * Ul,u(“u-rh 1 ----’rhv_1 ’au+v) -

Remark 3: The first symbol of k-chain is q . This is true for k = 0.s
Note that T, (q ,a) is defined only for non-r symbol a and T, (q ,a) = q .

k. s k s s

By induction we have this remark.

Lemma 6 : Let a(=ak , . . . ,«n) be a k-chain (k > 1). Then there exists

a (k-1)-chain 6 (=6k_ 1,. . . ,6n) such that T ^ B  = a.

Proof: Let a. be the last non-r symbol except for a and let a
J n n j  1n n- 1

be the last non-r symbol preceding a. unless a. = q . By Lemma 5, thereJ l sn Jn
exist a sequence B. ^ , . . . , 6  and a sequence 6 . B. _9,B’. , suchJn ^ 1 L J ™^ j * 1
that (6jn.r ...;6nrl) « \ >jn(«jn. •••.%). s is not an
1-symbol, and (B B. 9,6 '. ,) e U, (a, ,...,«,). At

n- 1 Jn Z V A k’Jn-l Jn- 1 Jn
first, assume that k > 2. According to Lemma 5', we see that if a. =
(k-1) (k-1)

^h (or ^h ) ’ -1 = -1 = \  ^°r rĥ  and otherwise> B. , =Jn Jn~ Jn“ 1
6 *. a. . We now assume that k = 1. 6 . , is a. or r La . from Lemma 5'*v.1 Jti J -1 j h jn n n Jn Jn
Suppose that a. _ 1 = rh, . (Or suppose that a. 1 is not an r-symbol) . Then,

Jn Jn
by Lemma 5**-, B! , = r a. (or B! , = « . ) .  Since (a . - ,ct. ) e F (1\j-i n * i  i-i 1 i - 1 i i ’n Jn J n Jn Jn Jn Jn
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there exists 6 such that (r fa. ,6) e (or (a. ,6) e F ^ )  . Since
(0) Jn Jn Jn Jn m\(6. _1}6 ) 0 F , we have that (a ,6. ) or (r a. ,6. ) e F. . Using (a)

n n n n n ( t o  J n  J n  Jn  ( t o(or (b)) in Lemma 1, we have (rh ,a. ,B. ) e F u  (or (a . ,6. )e F) }) . There-
Jn Jn Jn Jn Jn Jn

fore, according to Lemma 5'' we can choose 6„ -so thatj -1 Jn

Bj - i = 6j -i - rh*“jn Jn Jn

( ° r  Bj . !  -  BJ _ x -  «  )
n Jn Jn

Consequently, we see that there exists 6. _,...,B such that (6J_ -.-I n v j -1» 5n“i n-1
^n~P 6 Uk,j *0 * • ’an) » (Bn.i»Bn)i e and is not an l symbol.
By repeating the same arguments, we can prove this Lemma.

Lemma 7; Let a be a k-chain (0 < k < n-1). T a  is a (k+1)-chainK.
satisfying the D-condition if and only if a satisfies the D-condition.

Proof; If a satisfies the D-condition, a the last symbol of a, is

not an i symbol. Therefore, T^a is a (k+1)-chain by Lemma 4. Tk preserves

l symbols and r symbols in order except for cancelling adjacent L and rh h
pairs and deleting the last symbol unless this symbol is an r symbol. There

fore, T^a satisfies the D-condition. Assume that a does not satisfy the 

D-condition. If an is an l symbol, Tka can not be a (k+1)-chain. Only if 

a contains no incompatible adjacent ¿-repairs, Tka is defined, but it can not 

be a (k+1)-chain satisfying the D-condition because of the property of Tk
stated above.

Theorem 2; a(=a^,...,an) e L if and only if F^° ^  contains an element

of the form (q ,a),, where a is either p symbol, q symbol or (1 < h < ms i  n — — 1’
1 < k < n-1) .
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Proof: It follows from Corollary 1 and Lemma 3 that a s L, if and

only if there exists a 0-chain satisfying the D-condition. According to
i

Lemmas 6 and 7, there exists a 0-chain satisfying the D-condition if and

only if there exists an (n-1)-chain (q ,a) satisfying the D-condition- An

(n-1)-chain (q ,a) ̂  satisfies the D-conditions, if and only if a is neither

4 symbol nor r symbol. By Lemma 2(d) or (e) , a can not be (1 < h < m ,h — — 1
1 < k < n-1). Thus we have Theorem 2.

Example 6: In Example 5, = { (qg ,e^^) } . By Theorem 2,

a = (v + (v+v)) e Lex
This theorem gives an efficient recognition and syntax-analysis 

algorithm for CFL*s described in Sections 4 and 5.

4. Recognition Algorithm

Let = [4i (1 < i < m^) , pi (1 < i < mp , q̂  ̂ (1 < i < m^) , r 

(i < i < mp , (1 < i < m.) , (1 < i < mp} and S2 = {X<k) , £<k)

(1 < h < m^, 2 < k < n-1)}. Lemma 2 shows that the pairs of f Î^ containing 
S2 symbols are:

for 2 < 4 < k

a  (4) (4-1) (4) (4) (4) (4) .
(Xh ’ Xh > ’ (fih » Xh > ’ (Xh » rh')j (&h ’ V )}

(et, £ ^ )  ; a e a ^ (1 < i < mp
and for 4 = k-1, (rh , X ^ )  •

Let Fj^ (2 < 4 < k) be the subset of F^k  ̂ consisting of the pairs of the
forms shown above and let

k-1
F U ) = F ik ) '  U F i ?  <2 <  k <  n- D  >4=2
(k) = F (k) (0 < k < 2) .
jl
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It is clear that for any k, j, and i

I I < C, ,

where C, is a constant independent of input sequence* and |f ^ |  means the 
1 J*’

.00number of the elements of set F

Table 3 shows all combinations of (a. , ,a.) e F̂ ,, (2 < i < k) ,J-l J jX -
(ajj«j+ l) e Fj^» (2 < < k) and T̂ (cẑ  _ ̂ • If there exists

a e S2 such that (a,^) e F ^  , we shall add (X,rh) to F ^  , where X i 

special symbol. Then we can replace two rows indicated by an asterisk 
in Table 3 by the row

(X,rh), ( V ^ ) ,  (rh ,X^k)).

This modified table indicates that we need only F ^  and F ^  (i = 1J-li- ji v
i -1, i) to get F ^ +  ̂ (2 < H < k) . Moreover, in Table 3 there is only one

row indicated by a double asterisk whose third column entry belongs to
(k+1) (lr\ /U\ /UNF.-, . If we use a random access memory and store F v, ,FV '.... Fv inji J jl ’ j2 ’ * jk-1

a block with successive addresses, the number of elementary operations for

finding F ^  from F^_^ and F ^  can be bounded by C_k. Let n be the

length of the input sequence a(=a_,...,a ). We can find [f . .... F ^ " 1̂ }
(0) '2 I n  J j

from [f F^_1 '} and a. sequentially. Therefore, the computing time
J •L J “  J

and the size of memory required to decide whether a e L are bounded by 
3 2C^n and C^n respectively. As shown below, we can get an upperbound of

y
the same order by using suitably organized serial memories.

We shall construct a Turing machine in the sense of Hartmanis and Stearns 

which can recognize L and has a working tape with one head for reading and

is a

Hereafter, CL is a constant independent of input sequence even though it is 
not stated.



Table 3

(aj ■aj+ i) Tk(aj-l’“j ,aj+P

*00 *(X-1)n 5 Ah , (¿-1) , (A-2)
n ’ Xh >(« , (i-D

■ xh

,00
Ah ■ xh X ( M )  r Ah ’ h9 *C0 _n 5 h9

,(« X Weh ’ Ah
, W  , (A-i) 
Ah ’ «<« . X <« h h

,00 *00 ®h ’ Ah rh ’ h' ,«> rh ’ V

w
“ > sh ,00 *00 

eh ’ Ah
(A)

“ * eh

** a e a, eh «<*> r h ’ h' a, rh,

rh* Ah Ah ’ h9 X(k) r Ah 5 h9

r X ^  h’ h
x(k-l) *(k-2) 
h 5 Ah

, (k) ,(k-l) 
\  ’ Xh

* X W  r h 5 rh' r ■ X(k-:)h ’ V r X(k)h9 * h9

. (X)
h ’ rh9 r X ^h9 ’ V r X<k>h9 ’ h9

a e E and a \ r. (1 < i < m.) 1 i  — — r
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another independent head for writing besides one-way input and output tapes.

Let us divide the working tape into sections of the same length, TQ0, T^Q , 

Tll* TH *  T22’ T22’ T32’ T32’ T335 T33»* • * »Ti,o» Ti',o»• • • whek2’ Ak2 ■kk’ kk: re

Tki ^°r Tki^ (2 < i < k) is used to store for odd (or even) j and some

control marks, and Tkk (or T^) (k = 0 ,  1,...) is used to store F ^  for odd 

(or even) j and some control marks.

Suppose that the first j-1 symbols on the input tape have been read 

and j-1 is odd (or even) and that T, . (or T' ) (0 < k < j-1, 2 <-i < j-1)-u k
contains the information on . and T, , (or T*,) contains that on F^,,.J — 1J6 kk kk j-ll
Then, the operation of this machine proceeds as follows:

1) Read the j-th input symbol a ̂ . From a^ and F ^ ^  on Tqq (or Tq q) 

calculate f Î^ and store it into Tqq (or Tq q) .
, ( h )2) Assume that F./'s (0 < h < k, 1 < i < h) have been obtained and J &

stored in (or Th 0) and (or T,^) . Copy the information on F^hV
(k)

kk kk
(k)

j-ll and
Fjl in Tkk and Tkk into a finite working memory of the control unit.

Obtain F<2+1) from F ^  in Tk2 (or T^) , F<!f in (or Tk2) , F ^  and
(k)F ^  in and store it into Tk+^2 (or ^+12^* Simultaneously store the 

obtained partial results for Fj^+ ^  in a working finite memory W2 of the 

control unit. Suppose that Ff2+ \  ...,F^^^ (i< k) have been obtained and 

stored in i.1 (or Tk+12>... ,T ^  . Then, calculate F<*+1)
(k)from F^'., (i* = i-l,i) in Tki, (or T^,), F $  in T^, (or Tkl,) and F ^

(k) Jand F ^  in Wx and store it in T^+ u  (or TR lt) (Fig. 1). Simultaneously

store the obtained partial results for F^+l) in W2- For each i, the number

of these operations is bounded by C^, because this machine has one head for

reading and another independent head for writing. Repeat this cycle on i

Ji
.(k)
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(k+1)up to i = k. Copy Fj^ which has been obtained and stored in into

T£+i k+i (or k+P * ^or eac^ k, the total number of these operations is
bounded by C^k.

Repeat this cycle on k until F ^ " ^ ' s  (1 < i < i-1) are found. In the
Ji “

last cycle in which k = j-1, test whether F ^ ' ^ ’s (1 < i < i-1) contain an
Ji “

element of the form (qg,£z)̂ , where a is either a p symbol, a q symbol, or an 

£• symbol. If so, print a "1" as the j-th output digit on the output tape, 

and otherwise print a "O".

For each j, the total number of the operations mentioned above is 
2bounded by C^j . Therefore, this machine prints the j-th output digit in 

3C^j of fewer operations.

If the machine has only one head, then in each cycle on i the head-

shifts from Tki_r  T ^ ,  Tki or T'. to or Tfe+11 must be taken into

account, and the number of the operations in this i cycle can be bounded by

C ^ k  instead of C^. Consequently, it is easily shown that the machine prints
4the j-th output digit in C'^j or fewer operations. Similarly we can form

a double tape Turing machine which recognizes L and prints the j-th output 
3digit in CB,5j or fewer operations. In this machine, the additional tape

is used as a temporary memory for Ff^ ,F f ^ ,...,F f , F . After allj jJ jk“l jl
(k)the F ^  (0 < i < k) have been found, the contents of the second tape are 

transferred to the first main tape. We can form a Turing machine of the 

same type for which the constant C5 (or C’5, or C*'5) is equal to one (11).

We summarize the results above in Theorem 3.
3 4Theorem 3; Any context free language is n “recognizable (or n - 

recognizable) by a double tape or a double-head single-tape (or a single-



Working Tape Reading Head Writing Head

H O O T* ... Q0 Tk2 T*k2 *** Tkĵ -1 Tkjfc-1 T*kj& . . . T T* kk kk ... T T*k + U  k + U Tk+ije+i Tk+ii+i

.(0) D (0) v(k> *(k> F (k) F (k> ,<k> r>(k) F (k) F(k+1) _(k+l) (k+i) (k+i) 
Fj-U+1 F j-24+1 •**j-11 jl j“12 j 2 j-U-1 FjX-l j - U  ‘jl ••• Fj“ii Fji ••• Fj - U  V

F<k> F(?j-11 jl

Partial results of jl

Figure 1
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head single-tape) Turing machine in the sense of Hartmanis and Stearns.

5. Syntax-Analysis Algorithm

We shall show a syntax-analysis algorithm for a CFL. Let a(=a^,a^,...,an) 

be in L. The problem is to find all valid S-d.s.'s for a. Hereafter we shall 

fix the input sequence a. If a sequence a = cl , ,... ,a satisfies the
Wt “ -L W-rK

D-condition and the following conditions:

1) (V “»fP s F^ i or (rufX, ,a , € F ^ t for some h® , h' h w+1 w+1 *

2) (V i - i ’V i } e Fw+1 (1 < i < k+1) ,

3) (V k >  rhx> e F^l+1 for some x,

then we shall call this sequence aa(w,k,h) - s.d.s. or a s.d.s

Let a = a ,a ,, ,... ,a u u+1 t ,a ,, ,.=.,a be a valid S-d.s. or a s.d.s w+k v
If a is L or r.X, for some i, a1 = a w h i n w+l’00°’aw+k is a (w >k >h)~s»d-s- and
aw+k+1 is r x for some x, then the (w,k,h) - s.d.s. a® is said to be in a

and this relation is denoted by a® c  a . In the transformation process of a

into A by applying the rules - A (1 < h < n^) , an( symbol* and an rh

symbol to which the rule "X^r^ -* A" is applied will be called paired

symbols. It is obvious that this pairing is unique. If a® = a , ,. . . ,aw+1 w+k
is a (w,k,h) - s.d.s. in a, then the L symbol in a and the r, symbol in, h w h
aw+k+l are Paired symbols. For a® satisfies the D-condition. Consequently,
if two s. d. s. ® s a' and a1 * in a overlap, then a 1 c  q[m  or a "  c  a®, because

the r symbol paired with an X symbol in a . (0 < i < k) must be in aw+i — w+j
(1 < j < k). Therefore, for any s.d.s. a® in a, there is a unique 

sequence of B ,(^,...,8 of s.d.s.®s in a such that

We discern an X^ symbol in a position from an X^ symbol in another position.
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1) Bq = a 2) for i = 1 ,2 ,...,t, B^_^ ^  B^ and there exists no s.d.s. B such 

that B^_^ —5 B ^  B^,and 3) B̂ _ = a.1 . Then, qj9 will be said to be of order t 

in a. If a' is of order in a and a ' 9 is of order t in a 9, then a 9 9 is 

of order t^ + in a by definition. If a 9 and a 99 are of the same order in 

a, a* and a®® do not overlap.

Let a be a valid S-d.s. or a s.d.s. By P^a, we mean the sequence derived

from a by the following steps; 1) Replace each (w,k,h) ~ s.d.s. a 9 of order

t in a by sequence X^,...,X^ of length k,and 2) delete the remaining r symbols.

Here, Xh is a special symbol. We shall call the sub-sequence Xh ,...,X from

the (w+1) -st place to the (w-f-k)-th place a (w,k,h) - X - s.

Remark 4 ; If in a we replace each (w,k,h) - s.d.s. a of order (t-1)w ? k. j n
by ^ h and delete the remaining r symbols, we can get P a. in other
words, if in pt-i“ we replace each (w,k,h) - X - s. by a Pl“w,k,h’ we
V . This follows directly from the definition.

Example 7; Let a = (v + (v+v)) and

a
= qiv: Jji i n :qi> r.3q2

(Example 2)
P-jŒ = a , X l* ^3 ’ X3’ X3’ X3 , X3, q2,
P2« = qi> ¿3, lv xi* ^3, X3’ q 2 ’ q2’
P3“ = , qr ¿3 , Av ¿3, V q2* ^2 ’

Remark 5; If there is a s.d.s. of order d but no s. d.s. of order <
in a, then P^a = P is obtained from a by deleting all r symbols.

Therefore, if a is a valid S-d.s. for a, then P ,a is a valid d.s. for a.d
Since a symbol preceding an r symbol is a q symbol, d < n/2 .
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Lemma 8 ; Let a be a valid S-d.s. for a and a9 be a (w,k,h) - s.d.s, in

a- Let 6 be a sequence obtained from a by replacing a" by a"9, another

(w,k,h) - s.d.s. Then, B is also a valid S-d.s. for a.

Proof; Let a = a-̂ ,a 2 >**o}an and av = > - • • >°^+k° Then, by definition,

or (r, , j L a 1 .) e for some h" , (a9 . - ,a9 .) e F^.h w+ 1 h9 h ’ w+1' w+ 1 w+i- 1 w+i' w+i
(1 < i < k+1) and (a _̂j_k>rtiX) e Fw+k+l ^or some x* On t̂ie other hand, =

K  or V h  and “w+k+l = rhy- Therefore> (“„’“¿H-P « FW°}1 by Lerama Ua)
or (b) and ( a ^ k ,«w+k+1) ® Fw+k+l by Lemma * Hence, B is a qausi-valid
S-s. Also, B satisfies the D-condition by definition. Consequently, this 

lemma follows from Theorem 1.
We shall now show a procedure for finding {Pt«|a is a valid S-d.s. for

a} from F ^  (0 < k < j , 0 < j < n) .
~(1) “ (2)Le t a — cl . )CL. -,>»»«,qj.5, qj — cl . »

Ji Jr  Ji 3 2
>a.s (ji < j9) , 

3 2
, a (u)

= a. (j*_^ < j ) be the s.d.So9s of the first order in a and let
Ju Ju U U

“j'.+l = rh.xi (! < 1 < u> • Let Boo = qs> B = a. (1 < j < n) , VQ = qs>
1 1  J  -J

a and

k-1 0 T1T0 Yo Bkk’ Bkk+1’ Bkk+2’* *°,Bkn (x < k < n)
(k)From the definitions of T^ and F^ , we have the following 

(1) For jj. + 1 < j < j i+ 1 - l  (1 < i < u) ,

Blj+ 1 B2j+2 

(2) For ji + 1 = j < ji+1-l,

= B . = a .n-jn j

Blj+ 1 " B2j+2 = B . = x .n-jn l

(3) For j = ji - 1,
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Blj+ 1 " B2j+2 1 1
h. ’l

= 6
1 1 n-j^+ln = e (n-Ji+i>

(4) For j t < j < (1 < i < u ) ,

Bj[“j+2j^+2 " Bj[-j+3j}+3
(jj-j+l)

= 6 . = X,n-in h .l

(5) If = n-1,

B, = B0In 2n = Bn~ i n Ju
= r. n-j +ln u -

= £(n"Ju) 
u

(6»1) Bn is neither an i symbol nor an r symbol (by Lemma 7).

(6 .2) 6n-ln-l = qs (Remark 3) •
(6-3) ( \ n.V \ n>1 « F<k) ( 0 < k < n ) .

<6 ' 4> V Bk n -l ’ Bkn> -  Bk+ln (0 < W < n-1) .

From (1) through (5), we have the following;
(k\(7) If in sequence 6 , ,B 0 ,.».,8. ,B , we replace £/■ } by L  andn-ln’ n~2n ’ In on’  ̂ h J h h

(k)

a =

T0a

T1 V

T2 T1 V

T3T2 T1 V

T4T3T2 T1 V

t 5 .. V

t 6 ... V

T? ... V

P.a

in case of Bon ■ rhx, delete this V then we obtain P^a

Let a = jer V rJL̂ ,li j q ̂ j i 2^2 ’ ̂ 3q2 (Example 7) ,

ll qi rli3 h qi V 3 qi r3q2 r3q2

rl X3 h  ri X3 r3 r3
,01)
&1 *3 X P r3

o (!) 
6 1 X P  1 , XP r3

,(D ,(1) 
6 1 X 1 ■*3

F (l)
^1 r3

e (D ¿2 r3
e (D

X P
e (5)

e (D
xi1}

■ h x i Z3 X3 X3 x3 X3 X3 q2
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Conversely, suppose that sequences B'Bl,...,B' and B!’,B®®,...,B8
1 2 n 1 2  n

satisfy the following conditions ;

1) B^ is neither an Ü symbol nor an r symbol

o o

2) B”  - qs
(n-j)3) (6 j * »Bp X 6

4) V . C B ^ B p  = B ^  ( l < j < n ) .

Now, if B'. = £<k), let B. = «... If B'. = or r, , let B. = X, . IfJ n J h  j h  h j h

B! = r.x, let B = x n h n Otherwise, let B^ = B® . The sequences B = B 1 ,B2,

and B® = B^,6^>°•»,B^ will be said to be a P^-chain and the sequence 

associated with B respectively.

Now, let Yn_-L = B^?,B^. Then, Yn_-̂ is an (n-l)-chain satisfying the 

D-condition. We shall prove that there exist k-chain y (0 < k < n) such that
tv

(a) y satisfies the D-condition, (b) the last symbol of y, is B® , and (c)K 'k n-k v
V i  = Tk V

Proof; Assume that for n - l > k >  i > 0  there exists y satisfying theK.
conditions (a), (b) and (c). From Lemmas 6 and 7, there exists i-chain v BT i
satisfying conditions (a) and (c) . Let y be the sequence obtained from

y® by replacing the last symbol by B® .. Now, consider cl such that r n- 1

T. (<r,B) = 6 ® . , iv ' n-i-1

If ^n-i- 1 not an r symbo1 an<̂  1 > i> then a is determined uniquely and 
independently of B from Table 1. Then it follows from 4) that the second 

last symbol of y| is 6^',. Consequently, y is an i-chain from 3). On the 

other hand, B^_^ is neither an i symbol nor an r symbol by 3) and 4). Hence, 

Y^ satisfies the conditions (a), (b) and (c) .
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If i = 0 and B! , is not an r symbol, then a = 6 * , or r,B' , for some n- 1 n- 1 h n- 1

h from Table 1. Therefore, 6 ** = 6 * , or r,6 8 , by 4). Let v , and yn n- 1 h n- 1 'n- 1 1 n
denote the last two symbols of v 8 . Then, (v _,y ), 6 and v , = B8 ,o XTn-l,Tn'l n Tn- 1 n- 1

or rh,Sn-l“ By Lemma x(a) or (b) and 3), (Yn.1 ,B^ ) 1 e F^ ■. Since 6^ 
contains neither an H symbol nor an r symbol from 3) and 4), y satisfies 

the conditions (a), (b) and (c).

If ®n-i-l = rh anc* i — I> then B^_^ = r^ by 4) and the last symbol of
Y8. is also r by (c) . Hence, y. = y\ . If i = 0 and B 8 , = r, , then y =

1 n i i  n- 1 h n
rhx and 6n = rhy ‘ Since < V l ’V  1 * ^  and <Sn' •6n) 1 e ^  ’ x and y are 
q symbols and therefore x and y e R3(N2(\),an) . Since R3 (N2 (J&h),a ) contains
at most one element, y = y 8 .' o o

Let y be the sequence obtained from yQ by deleting the first symbol q . 

Then y is a valid S-d.s. By (7) and the definition of y,

B = Px Y .

To summarize, we have Lemma 9.

Lemma 9°. If a is a valid S-d.s», then P â. is a P^-chain and conversely

if B is a P^-chain, then there exists a valid S-d.s. a such that P^a = 6\

In order to extend this lemma we need several simple lemmas.

Lemma 10; (1) If and only if there is a (w,k,h) - X - s. in a p^~

chain B, then the w-th symbol B 8 of the sequence associated with B isw
(R)f'h * (2) If there is a (w,k,h) - X -s. in a P^-chain, then

6 Fw+k+l°
Proof: The same notations as those in the definition of a P^-chain

w i l l  be used.
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a) Suppose that Bl = X ^  (k > 1). Then, it follows from Table 1

and 4) of the definition of P ..-chain that if k = n - i-1, B88, = r, and
1 J j+ 1 h

otherwise B 8̂  = X^ ' and that Bl+ 1 is not an r symbol. Hence, B8.+ 1 =
(k-l) ^X^ by Lemma 2(a) or (c). On the other hand, if k = n - j-1, B 88 is

(k)either r, or by 3) and Lemma 2(d), and otherwise B88 is either orn n j h
X^k+1  ̂ by 3) and Lemma 2(e) . Therefore, 6 8_ 1 is or X^k+^  from 4)

> 1

b) Suppose that 6 8 = r, . Then, B8. , = r, or Q “ J/ by 4) and Table j h j - 1 h u J '

h h
(n-j)
'h

1 and if j = n-1 , B8. , = r,x and otherwise B8 .. = r. .J+1 h j+1 h
c) Suppose that B8 = . If k = n-j-1, then B8 = r by 4) and

Table 1. Otherwise, B 8 , is not an r symbol and B88, = £■j+ 1

B^+  ̂= X<k> by Lemma 2(b)

j+ 1
-  P.<k)

j+ 1
Therefore,

The first part of this lemma follows immediately from a) , b) , c) and 

the definition of B.
m  m If i = k+1, thisd) If (a,e<k)) t F<l), then « F<k).+ k + 1

follows from Table 1. Otherwise, there exists a 8 such that (a8,£^k )̂

e Thus, d) can be proved by induction.

From the first part of this lemma it follows that (B88, ^ ^ )  e ow h 7 n
Therefore, the second part of this lemma follows from d).

(k) ii!
L e m m a  1 1 ; S u p p o s e  that (X^,r^) e F ^ k + l *  T h e n ,  t h e r e  exiist s e q u e n c e s  

a n d  B ^ 8 »Bi/ , ■> • • ,B^' such t h a t  1) B ^  is n e i t h e r  a n  H  s y m b o l  n o r  

a n  r s y m b o l ,  2) or ( o n l y  if  k  =  1), 3) ( B ' . ' . B D j  e F ^ k ” ^

(1 < j < k) and 4) Tk_j (B’ * ,B’) = Bl  ̂ (1 < j < k> .
(”kjProof; From the assumption and the definition of F; 7, there exist 

B 8̂ , .. . ,B£.,B8̂ 8 ,. .. , B ^ 8 such that

a) 6 ^ 8 = Xh or r ^ ^  (only if k = 1),
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b) e F (k-j)w+k
, (0)

, (6 ’ r,) e F,(k-j) w+k+ 1 (! £ J < k) >

(ek ’rhx) e Fw+k+l for some x> and

c) - (Bj - r rh> v < i < v .

W = (Bk-i>rh>-
Here, 6 . (1 ^ j ^ k) can not be an X symbol by c) and B,® is a q symbol orJ K
a combination of r and q symbols by Lemma 1(c). Therefore, (B®®,6 ®) e
. . .  j j 1,(k-j) 
w+kF v" J/ (1 < j < k) .

(k)Assume that (\,rh) e F^ + 1 and let B® = BJ_,...,B£ be the sequence in

Lemma 11. If B® = ̂  } , let Bj = . If 6 " = X ^  or r ^  , let 6 . = X ^  .

If 6^ = r^,x, let B^ = x. Otherwise, let 6  ̂ = B!. The sequence B =

B^,...,B^ and 6 ' = B^,...,B^ will be said to be a (w,k,h)-chain and the

sequence associated with B respectively. We shall define a((w,k,h)-chain
(k)only if (^>rti) ® I1*16 following lemma can be proved by using almost

the same argument as that in the proof of Lemma 9.

Lemma 9° ; If a is a (w,k,h)-s.d.s. , then P a  is a (w,k,h)-chain and

conversely if B is a (w,k,h)-chain, then there exists a (w,k,h)-s.d.s. a

such that P = B.

The proof of the following lemma is analogous to the proof of Lemma 10. 

Lemma 108 ; (1) If and only if there is a (w,k,h) - X - s. in a 

(w®,k®,h®)-chain B, then the w-th symbol of the sequence associated with
6 is ft(k) (2) If there is a (w,k,h) - X - s. in a (w®,k®,h®)-chain, 

(k)then (X, ,r, ) e F , . .h ’ W  w+k+1

We shall now define Pfc+̂ -chain as a sequence derived from a Pt»chain 

by replacing each (w,k,h) - X - s. in the P^-chain by a (w,k,h)-cahin. We 

shall prove that if there is a (w,k,h) - X - s. in a P -chain, there is
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always a (w,k,h)-chain. If t = 1, this follows from Lemmas 10 and 11. If 

t > 2 , it follows from the definition of P that this (w,k,h) - X - s. is in 

a (w8,k8,h8)-chain which is substituted for a (w8,k8,h8) - X - s. in a P - 

chain. Therefore, the proof is obvious from Lemmas 108 and 11.

Now we have Lemma 12.

Lemma 12: (1) If a is a valid S-d.s., then P^a is a P^-chain. (2)

If 8 is a Pt-chain, then there exists a valid S-d.s. a such that

Pfca = B.

Proof; We shall prove this lemma by induction. For t = 1, this lemma 

holds from Lemma 9. Assume that for t - 1 this lemma holds.

The proof of (1). Let k h denote a (w,k,h)-s.d.s. of order (t-1) in 

a. From induction hypothesis, P ^ a  is a P^-chain. By Lemma 98 ,

Pla T7 k h is a (w>k,h)-chain. Therefore since P a  is derived from P _a byX W , K. ,11 t t-1
replacing each (w,k,h) - X - s. by Pna , , (Remark 4), P a is a P -chainl w , k , n t t
by definition.

The proof of (2). (a) By definition, a P^-chain B is derived from a

Pt ~ r chain by rePlacin§ each (w,k,h) - X - s. in B8 by a (w,k,h)-chain
6w ^ (b) By induction hypothesis there exists a valid S-d.s. a 8 such

that P ,a8 = 6 * . (c) For each 6 . , , it follows from Lemma 98 thatL“ -L w , k, h
there exists a (w,k,h)-s.d.s. ari , , such that Pna , , = B , . . (d) Letw,k,h 1 w,k,h w,k,h v 7

a denote the sequence obtained from a 8 by replacing each (w,k,h)-s.d.s. of 

order (t-1) by k By Lemma 8 , a is a valid S-d.s. By construction, 

Pt_1a = P ^ a 8 = B8 . (e) From Remark 4, Pta is derived from P (= B8)

by replacing each (w,k,h) - X - s. by P ^  R h (= \  k h) • Consequently, 

by (a), Pta = B.
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In forming a P^-chain or a (w,k,h)-chain, there may be permissible 

alternatives. From Lemma 12, if B and 6 are different P^-chains, there 

exist at least two different valid S-d.s.'s a and y such that

Pta = B and P y = 6 .

Therefore, there exist at least two different valid d.s.'s (Remark 2).

If grammar G is unambiguous, there are no alternatives. To summarize, we 

have Theorem 4.

Theorem 4 ; (1) If a P^-chain B contains no X^-symbols (1 < h < m ) ,

B is a valid d.s. (2) Any valid d.s. is a P^-chain for some t (t < n/2) . 

(3) Any choice of alternatives in forming P^-chain leads to a valid d.s. 

and, furthermore, different choices of alternatives generate different 

valid d.s.'s.

Example 9: Let a = (v + (v+v)). Referring to Table 2, we have the

following:

P^-chain: V x i ’ " S ’ V X 3 , X 3 , ^3 ’ X 3 ’ q 2 ;

(1, 1, 1) -chain: V (3, 5, 3 ) -chain: &Y » V X 3 ,

P 2 ~chain: q i> i-3 , V x i> ‘S * X 3> q 2 ’ 4 2 5

(4, 1, 1) -chain: V (6 , 1, 3 ) -chain: q l ;
P^-chain: V V ¿ 3 , V V i-3 , q l> V V

Lemma 12 is verified for this example by comparing these with P a  

(1 < t < 3) in Example 7. Since the P^-chain contains no X^ symbols, this 

is the valid d.s. for a, which is determined uniquely because there is no 

alternative in forming the P^-chain, the (1, 1, 1)-chain, the (3, 5, 3)-chain, 

the (4, 1, 1)-chain and the (6 , 1, 3)-chain.
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Let CT denote the computing time required for syntax-analysis and let

N denote the number of different nonequivalent valid d.s. for a given
3

i n p u t  s e q u e n c e .  If we  u s e  a r a n d o m - a c c e s s  m e m o r y  of s i z e  C ^ n  , we  c a n

proceed as follows: Form the table of (0 < k < j , 1 < j < n) .

Test whether the given input sequence a is in L. If a e L, form an initial

part of P^-chain. In order to find a next symbol of a partially formed

P^-chain or (w,k,h)-chain, look up the table of F ^  from the bottom of

the table. If there are alternatives, choose the first one and write a

special mark on the chosen one which is used for tracing the whole tree of

alternatives without repetition.
(k)Whenever we encounter ££ in the w-th place of the sequence associated

wiith a P -chain or a (w* ,k' ,hc)-chain, let 6 = L and find 6
1 w h w+1

from the conditions of the (w,k,h)-chain and proceed as far as a new
( k 1 1)

s y m b o l  is n o t  c h o s e n .  If w e  r e a c h  the e n d  of the c u r r e n t  ( w , k , h ) -

chain, then return to the corresponding place in the latest (wB,k®,h8)-

chain or P^chain and restart from this point. The linkages of such jumps

can be controlled efficiently by using a push down store.

As it will be shown below, the size of required memory can be reduced 
2to the order of n . It follows from the proof of Lemma 10 that the entry

in F r e q u i r e d  for obtaining a (w,k,h)-chain are of the form (a,6) ,

where a is an 1 symbol, a p symbol, a q symbol or X<» (1 < h < m^) and

6 is a p symbol, a q symbol, an r symbol, a combination of an r symbol and

a q symbol or an l symbol. Except for entries of the form ( « > ^ ^ 1 ’ the

number of such entries in F̂   ̂ is bounded above by a constant. Furthermore,

the following lemmas show that the all valid d.s.8s can be generated without
(k)referring to entries of the form (a,£^
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Lemma 13; Let i > k+2. Then, (a,^ ) € F; , if and only if(k) (i)

< ^ k)> t f & i

and there exists non r-symbol B such that for i = k+2

/ on _ (i-k-1) „(1)( r h ,B) e f k . = Fj

(1)

and for i > k+2

(X ^ 1 } ,B) e F^ i *"k ” 1)

(2)

(3)

Proof; (1) The "only if" part follows from a), c) and d) of the proof 

of Lemma 10. (2) Consider the case of i-k = 2. Assume that (1) and (2)

hold. Then, from (1)

< W  e r J i  (4)

Thus, for 1 < i* < k, there exists non ¿-symbol B^g such that

Hence, it follows from (2), (4) and (5) that

< W ’ > * f

(5)

(1 < i < k)

thus, by (1)

< k )  e Ff +1)

( c t , ^ k ) ) e F^k+2) =h j j

(3) Suppose that the "if" part holds for i-k < m. Let i-k = m > 2. From 

(3), there exists non r-symbol y such that

(i-k-2)
( r h ,Y ) « F j . ! , if m = 3, ( 6)

(Xh1} ’Y) 6 Fj!ik~2) > if m > 3 (7)
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By (6) or (7) and the induction hypothesis,

(a;6f ) . F < ^ (8)

The same argument as that of (a) and (c) of the proof of Lemma 10 gives 

< V ^ i}) or a < i,+1> ¿ f ' b  e f < W - 2 )j- 1

(1 < 1 * < k)

< < l ) . > i B > • i 1; 2’  •

ijjiAg these relations with (3) and (8) ,

<Xh1,+1) ^ h 1' ^  s Fj 1" k+1' - 1 ) . (I  S  i '  < k)

( a , e ^ k ) ) e F j l }  .

The next lemma follows directly from Lemma 13 and the definition of

n« V i > “ i V  •
Lemma 13' : Let i > k+2. Then, (ct,Z^)1 e F (l\  if and only if

( a ^  e Fj-i+k+l and there exists non symbol B such that for i = J^2 , 
(rh ,B) 1 € and for i > k+2 , ( X ^  ,6) x .

Let be the set consisting of the following elements:

1) (a,6) such that (a,B) 1 e and a and 6 are neither - symbols
(k)nor (k > 1) symbols.

2) ( a >S p  i f  f o r  some k > i  e F ^  .

3) ( a , i f  (a,^i_1)) « F<i} .

Then, the number of elements in F̂  can be bounded above by a constant

independent of input sequences. It follows from Lemma 13' that F ^ ' s
j

5  J 5  n! 0 < i < j) have enough information to generate all valid d.s.'s.
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The procedure for generating valid d.s. from 1 is almost the same as the

one for generating them from except for the operations on (a
J h

The Tables of f P  (1 < j < n; 0 < i < j) can be formed as follows;

For each j, obtain {f <0) ,F<l) ,. . . ,F^j“1) ) and {f <0) ,F< X) , . . . /f P " 1) } fromJ J J J J J

• • • ,Fj-l2^  and aj- Erase Repeat this
step up to j = n. The size of required memory can be bounded above by

2 o
C20n * we use a randotn access memory or two tapes of length C ^ n  and
one tape of length C^n, then the computing time is bounded above by

„ 3 . ,or C^2n > respectively.

One of the procedures which produce all the valid d.s. serially in 

some order without repetition will be shown below. A special mark indicates 

the end of each valid d.s. and the maximal initial subsequence of each valid

d.s. which is also an initial subsequence of the immediately preceding valid 

d.s. will be omitted. Let j, i and w be indices, PL be a push down store 

and [p l] be the context of the top cell of PL. Index w indicates that the 

w-th symbol of a valid d.s. is looked for in the current step. Let a and 

6 be working registers. For simplicity of notations, the context of register 

cl or 6 will be denoted by cl or (3 respectively.

1) Initial setting“ 1 -» w, n -* j, and qg - a. Go to 2) .

2) Selection of the w-th rule name of a current valid d.s.; If w > n, 

then go to 4). Find the first symbol-pair in F^^  ̂ whose first symbol 

is a. Store the second symbol of this pair into register G. Mark 
this pair (a,G) with *.

2.0) If 6 = ^  ^or some h, then go to 2.3).
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2.1) Write 13 as the w-th symbol of the current valid d.s. If j | w, 

go to 2 .2) . j + [p l] j. w+ 1 -* w.

If [PL] = 1, then B "* a , pop up PL and go to 3) .

If [PL] = 2, then r^ “* a.

If [PL] > 2, then “* a.

Pop up PL and go to 2) .

2 .2) 6 - a

2.3)

2.4)

w+ 1 “* w 

Go to 2).

If (a,£^) e , then set i = 0 and go to 2.4) .

Otherwise, find the smallest i such that («,£,') e F ^ . W ^  and!, h7 j-i
there exists a non r-symbol y such that (r^,y) or ^  .

Mark the pair (a,€^) with *. 

i+1 -» PL

Write as the w-th symbol of the current valid d.s.

j-i- 1 j

3)

4)

w+ 1 “* w 

Go to 2) .

Find the first symbol-pair of the form (a,r^x) in F ^ ^ .

Mark this pair with *. 

x B

Go to 2.1).

Write a special mark indicating the end of the current valid d.s 

as the output.

Go to 5) .
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5) Searching for the starting 

If w = 0 , then stop. 

Otherwise, find the marked 

an £’«symbol.

ftsymbol of the next valid d.s.sy

— ( j - w) pair in F;J whose second symbol y is not

Store the first symbol of this pair to register a.

If Y = ^  for some h, then go to 5 .2).

Erase the mkrk on the pair (a,y).

5.0) Look for a symbol-pair in f P  whose first symbol is a and which 

follows the previously marked entry (a,y). If any, store the second 

symbol of this pair to register 6 and go to 2 .0).

Otherwise, go to 5.1).

5.1) w- 1 -* w.

If Y = rhx> then j- 1 -* j and 1 -* Pi.

If a = rh or , then j-w - PL and w -» j .

If a = j&h , then j + [p l] -* j and pop up PL.

Go to 5) .

5.2) Find a marked pair in  ̂ for some Is (0 < i* < j) .

Erase the mark on this pair.

Look for the smallest i such that i > i! , («,£,') e andh j-i
there exists a non r-symbol 6 such that (rh ,6) or ,6) e .

If there exists such an i, then go to 2.4).

Otherwise, erase the mark on the pair (a,y) and go to 5.0).

If the access time to memory is assumed to be independent of n, then 

the computing time at each step 2) , 3) or 5) can be bounded above by C^n. 

For each valid d.s., step 2), 3) or 5) is repeated at most n times.
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Therefore, the computing time for each valid d.s. can be bounded above by 
2C2 3n . After the last valid d.s. is typed out, step 5) is repeated n times 

and the procedure terminates. Thus, we have

CT < C ^ n 3 + C24n2N.
t

Consider the case where there are used two working tapes of length C^n'

and two tapes of length C ^ n  for counting and copying. Form Tables 
r<°> T?(°) *U) ¥(0) i(0) •=(!) ..

1 »‘'2 >*'2 ,JL3 >rn )•••>* in this order on the maintape
2 - •• ...........................- ( «

?r' ,f; ',f; ',f  ̂ , •«• ,f_ ' ,f^ -/ ,... ,fi

of length C^n"". Write a special mark at the end of each F)^ (0 < i < j-1)

and another mark at the end of each F^3"^. Use one tape for index w and

another for push down store PL which keeps the current and previous values

of index i. The position of the head on the main tape or a special mark can

indicate the current value of index j. At the beginning of step 2.3) or

5.2) copy Tables ^ ,...,F^ W ^  to a working tape from the main tape.

Then, it is easily shown that the computing time at each step 2), 3) or
25) can be bounded above by C ^ n  • Consequently, we have

CT < C3 2n3 + C34n3N .

We have assumed that grammar G is in standard 2-form. If given grammar 

G is not in standard 2-form, we can effectively construct grammar G in 

standard 2-form strongly equivalent to G as shown by Greibach (6), (16).

It can be easily seen that the additional computing time to convert a 

derivation sequence in Gg into the corresponding one in G is asymptotically 

dominated by the terms derived above (16). Moreover, our algorithm can be 

applied directly to grammar in general standard form with some modifications. 

If a rule is of the form;
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Y - a Yx Y2 . . . Yu (u > 2) ,

we name this rule as L and rewrite it as followsh

For the D-condition, we use the rules of the form

x -* A if x is neither an i symbol nor an r symbol, and

r.hv,h
- A .

The extension is straightforward. This extended algorithm may be 

somewhat more efficient and practical refinements are currently under 

investigation at Osaka University.

The advantage of using a standard form grammar is that we can simplify 

the procedure for generating all valid derivation sequences which is 

essentially much more complicated than the procedure for converting each 

derivation sequence in a standard form grammar to the corresponding one 

in the original grammar.

Concluding Remarks

Hartmanis and Stearns showed an example of a CFL which is not n-

recognizable by multi-head multi-tape Turing machine (11) . There is a
3gap between n and n . It is not known whether there is a CFL which is not

2n -recognizable. It is also not known whether a general syntax-analyzer 

is possible which would require a memory space proportional only to n 

without an exponential growth of computing time.

For a linear grammar (1) , the procedures can be so simplified that

the upperbound of computing time is reduced by one degree (14). The
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framework of the algorithm presented in this paper is relatively suitable 

to be incorporated with a capability of syntax-error analysis (15). The 

details are under investigation at Osaka University.
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