Enriched Stratified systems for the Foundations
of Category Theory

Solomon Feferman

Abstract Four requirements are suggested for an axiomatic system S to provide the
foundations of category theory: (R1) S should allow us to construct the category of
all structures of a given kind (without restriction), such as the category of all groups
and the category of all categories; (R2) It should also allow us to construct the cate-
gory of all functors between any two given categories including the ones constructed
under (R1); (R3) In addition, S should allow us to establish the existence of the usual
basic mathematical structures and carry out the usual set-theoretical operations; and
(R4) S should be shown to be consistent relative to currently accepted systems of
set theory. This paper explains how all but parts of (R3) can be met using a system
S extending NFU enriched by a stratified pairing operation; to meet more of (R3) a
stronger system S* is introduced, but there are still some real obstacles to meeting
this requirement in full. For (R4) it is sketched how both S and S* are shown to be
consistent.

1 Introduction

This is the fourth in a series of intermittent papers on the foundations of category
theory stretching back over more than thirty-five years. The first three were “Set-
theoretical foundations of category theory” (1969), “Categorical foundations and
foundations of category theory” (1977), and much more recently, “Typical ambigu-
ity: Trying to have your cake and eat it too” (2004). The present paper summarizes
the results from a long (in two senses) unpublished manuscript,“Some formal sys-
tems for the unlimited theory of structures and categories” (1974), referred to below
simply as “Unlimited”. That MS can be found in full on my home page at http://
math.stanford.edu/~feferman/papers/Unlimited.pdf;thelengthy
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proof of its main consistency result is omitted here but the methods involved are out-
lined briefly in the Appendix below.

I have been concerned in these papers with set-theoretical foundations of cate-
gory theory not because I am a proponent of set theory — on the contrary I am
opposed to it on fundamental philosophical grounds! — but rather because it is
currently widely accepted, its ins and outs are well understood, and it has dealt suc-
cessfully with the problems surrounding objects that are somehow “too large”. It is
just such problems in what is sometimes called “naive” category theory that require
foundational attention. Namely, objects like the category of all groups, the category
of all topological spaces, etc., seem natural enough mathematically, but what about
the category of all categories? And, further, what about the category of all functors
between any two categories? Several proposals have been made for dealing with
these within the general framework of axiomatic set theory, most notably the famil-
iar ones of Mac Lane (1961, 1971) and Grothendieck (in Gabriel (1962)). This is
one reason that alternatives, such as my (1969; 2004) and the present one, are best
explored within the same framework for purposes of comparison. I do think that the
foundations of category theory ought also to be explored within other frameworks
such as those of constructive or semi-constructive mathematics of various stripes,
but the directions those might take is not touched on here.

There are some workers in the field who think that category theory does not need
foundations and in fact that it is category theory itself that provides the proper foun-
dations for all of mathematics, including itself; see, for example, Lawvere (1966),
Bénabou (1985) and, more recently, McLarty (2004). In my 1977 paper cited above,
I have argued against that position in a way that I think is no less compelling now
than then. Those arguments are not repeated here; in addition to my (1977), the
interested reader should also see their extension by Hellman (2003). But there are
further objections to be made. It is not clear what exactly is meant by categori-
cal foundations for category theory and how it proposes to handle the problem of
the category of all categories and that of arbitrary functor categories. There is also
a specific mathematical objection that has been raised by Rao (2006) concerning
the construction of localizations in homotopical algebra that make use of transfi-
nite induction and recursion. As he says, “[i]t is not clear how to formulate these
in categorical terms....Solving these problems [by such means] looks remote at the
moment.”

2 What the various proposals do and don’t do

In my 1977 paper cited above, on pp. 154-156 I suggested three requirements on a
system S for the foundations of category theory.” Rephrased from there, S should:

! See, for example, my collection of essays, In the Light of Logic (Feferman, 1998).
2 Bénabou (1985) proposes more specific requirements which need to be considered for a full scale
foundation of naive category theory.
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(R1) Allow us to construct the category of all structures of a given kind, e.g. the cate-
gory Grp of all groups, Top of all topological spaces, and Cat of all categories.

(R2) Allow us to construct the category B of all functors from A to B, where A and B
are any categories.

(R3) Allow us to establish the existence of the usual basic mathematical structures and
carry out the usual set-theoretical operations.

A further requirement was not stated there, but is implicit in the above:

(R4) S should be established to be consistent relative to currently accepted systems of
set theory.

Let us see how the existing proposals stack up against these requirements. Mac
Lane’s proposal was to work in the Bernays-Gddel (BG) system of sets and classes,
using the distinction between “small categories” and “large categories” according to
whether the categories are sets or proper classes. This meets (R1) in a rather modi-
fied form: one can only talk about the large categories Grpy,,, Topy,,, and Catgy of
all small groups, small topological spaces and small categories, respectively. (R2)
can be met only for A small, since the class of all functions from one proper class
into another does not exist in BG. (R3) and (R4) are of course met as is: BG is a
conservative extension of Zermelo-Fraenkel set theory ZF, and the same holds when
the Axiom of Choice AC is added to both systems.

Grothendieck’s proposal was to work in ZFC (= ZF + AC) with the addition of
a strong axiom of “universes”. Roughly speaking, a universe U is a transitive set
that contains the set @ of natural numbers, is closed under subsets, satisfies the
ZFC axioms, and in addition satisfies the inaccessibility condition that whenever
a €U and f:a— U then the range of f is in U. These conditions imply that the
cardinal number of U is a strongly inaccessible cardinal. The Grothendieck axiom is
that there are arbitrarily large universes, i.e. for every set a there is a universe U with
a € U. Again, requirements (R1) and (R2) are met only in a restricted form. Namely,
for any universe U, we may speak only of the category of all categories that lie in U;
it belongs to any larger universe U’. Also if A and B are two categories whose objects
and morphisms all lie in U, then B4 lies in U’. (R3) is met by assumption; (R4) is
met by the reduction to ZFC + “there exist arbitrarily large strongly inaccessible
cardinals.”

In my papers (1969; 2004), I worked in ZFC with one or more additional constant
symbols for universes U that are transitive, closed under subsets and satisfy the
reflection principle, i.e. the scheme for each formula @(x; ...x;) of the language of
ZFC (without the additional symbols):

Vxp . Yl e U — (09 (x . .q) < o(xg...x))]

3 Though inaccessible cardinals are not met in ordinary mathematical practice, working set-
theorists accept their existence without hesitation as constituting a natural extension of the ZFC
axioms, and indeed as only the first in a series of progressively stronger extensions. Godel (1947)
was an early proponent of this idea.
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This scheme insures that U satisfies the ZFC axioms. But it is not assumed that
U is closed under the inaccessibility condition. Requirements (R1) and (R2) are met
as in the Grothendieck proposal. (R3) is met by assumption. For (R4) it is shown in
both the cited papers that the system is conservative over ZFC. Thus one need not
assume the existence of inaccessible cardinals, though a few applications (such as
the Kan Extension theorem) apparently need U to satisfy the inaccessibility condi-
tion. The principal advantage of my proposal over Grothendieck’s is a conceptual
one: any U satisfying the above reflection condition looks, from the point of view of
the set-theoretical language, exactly like the universe V of all sets, and thus serves
as a stand-in for it. Thus anything we can contemplate doing over V can already be
done over U and in that way be fully expressed in ZFC.* This approach is also taken
by Rao (2006).

Though each of these solutions is adequate for normal applications of category
theory as in Mac Lane (1971), none of them satisfies (R1) and (R2) without modifi-
cation. The purpose of this paper is to show how those two requirements can be met
in full by working in certain systems of set theory extending Quine’s idea of strati-
fication, as explained in the next section. These systems are shown to be consistent
relative to standard systems of set theory (as proved in detail in the “Unlimited”
MS and outlined in the Appendix), so (R4) is also met. Finally, while (R3) is met
to a considerable extent, we shall see that there are two ubiquitous set-theoretical
constructions that can’t be carried out in these systems without ad hoc modification:
passage to equivalence classes under an equivalence relation, and formation of the
Cartesian product of an indexed family of classes. In addition, certain basic results
of category theory such as the Cartesian closedness of the category of all sets and
Yoneda’s Lemma can’t be formulated unrestrictedly. These drawbacks are the price
paid under the existing stratified approach in order to satisfy (R1) and (R2) in full.
It may be that there can be no solution to (R1)-(R4) without such trade-offs, but
nothing I know currently excludes that.

What is to be emphasized from all this work is not that naive category theory
ought further to be pursued within the framework of stratified systems (nor, equally,
that it ought not to be pursued in that way), but rather that it serves to illustrate how
one can meet at least some of the basic requirements without restriction, unlike cur-
rent standard set-theoretical approaches. Thus emboldened, one should seek ways
to meet all of the requirements without restriction.

3 The system NFU with stratified pairing

The system NF of “New foundations for mathematical logic” has a single sort of
variable and the basic relations = and €; its axioms are Extensionality and Stratified
Comprehension. For reasons below, I shall use capital letters A, B,C,...,X,Y,Z for

4 Just one universe of this kind is assumed in my 1969 paper; that is all one needs for the appli-
cations. In the 2004 paper, I assumed a sequence of such universes U, € U, 4 for each n € o, in
order to relate the idea more directly to Russell’s idea of typical ambiguity.
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its variables; the objects these range over will be called classes.” A formula @ is said
to be stratified if it results from a formula of simple type theory by suppressing type
distinctions, equivalently if it is possible to assign natural number fype superscripts
to each variable in ¢ in such a way that (i) each variable is assigned the same type
at all its occurrences, (ii) for each subformula of ¢ of the form X =Y, the variables
X and Y are assigned the same type, and (iii) for each subformula of ¢ of the form
X €7, the variable Y is assigned type n+ 1 when X is assigned type 7.

Examples: X € Y and Y € X are stratified (for X, Y distinct variables) but X € X
isnotand (X € Y AY € X) is not.

The Stratified Comprehension Axiom scheme consists of (the universal closures
of) all formulas of the form

(SCA) JAVX[X € A < ¢

where @ is stratified and the variable A does not occur in @.

Extensionality (Ext) is stated as usual. Thus NF = Ext + SCA. To this day it is
not known whether NF is consistent. For an exposition of the considerable work
that has been done exploring NF and some of its variants, see Forster (1995) and
Holmes (1998). The variant that occupies our attention here and that has been shown
to be consistent by Jensen (1969) is called NFU, because it allows for the possible
existence of more than one “urelement”, i.e., a class which has no members. This is
done by weakening Extensionality as follows to apply to non-urelements:

(Ext') IX(X €A)AVX(X €A~ X€EB)—A=8B

Thus NFU = Ext' + SCA. NFU is very weak as systems go; Jensen proved its
consistency relative to Peano Arithmetic, PA. One cannot prove the existence of an
infinite class in NFU.°

By (SCA) there is at least one empty class; fix any such and denote it by A.
For each stratified ¢ with free variables included in {X,Y,...,Y,}, we define {X |
o(X,Y1,...,Y,)} to be the unique A satisfying SCA for ¢ if IX@(X,Y1,...,Y,),
otherwise A.

In particular, we can define the familiar set-theoretical operations as usual in
NFU: {Y}, {Y1,Y>}, Y1 UY, and Y| NY>; more generally we can define the union of
any class of classes UY as {X | 3Z(Z€ X AX €Y)}. WritingX CY forVZ(Z e X —
Z €7Y), we can also define ¢(Y) = {X | X C Y}. Constructions that are distinctive
to classes are =Y = {X | X €Y} and V ={X | X =X}; we have —A =NA =V.
Also, self-membership makes its first appearance withV € V.

When dealing with relations R in a typed or stratified set-up, for example those
that are binary, it is natural to consider them as classes of ordered pairs (X,Y) such
that

5 Lower case letters will also be used for classes in some contexts below.

6 Actually, NFU is quite weak, proof-theoretically, compared to PA (Solovay, unpublished). As
shown by Enayat (2004), one can obtain an extension of NFU equivalent in strength to PA by
adding “every set is finite” and “every Cantorian set is strongly Cantorian” as axioms (cf. the final
section below for the notions of Cantorian and strongly Cantorian sets in the framework of NFU).
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(*) the types assigned to X, Y, and (X, Y) are all the same.

The usual way of defining pairs in set theory as (X,Y) = {{X},{X,Y}} is not
stratified in this sense. Quine (1945) showed how to define a pairing operation in
NF to satisfy (*), but his definition requires full Extensionality and an Axiom of
Infinity (Rosser (1952)). Let L, be the language L augmented by a binary operation
(.,.) symbol. By the Pairing Axiom in L, is meant the following:

P) (X1,X2) =1, 1h) = Xi =Y AXo =1,

The terms s,7,... of L, are generated from the variables by closing under the
pairing operation: whenever s, ¢ are terms, so also is (s,7). The system NFUp consists
of Ext' + SCA + P, where now the notion of stratification in SCA has to be expanded
to accord with (¥); this can be achieved by modifying the definition of a formula ¢
being stratified as follows:

1. Each term ¢ occurring in ¢ is assigned a natural number as type
2. The type assigned to a term ¢ of ¢ is the same as the type assigned to each variable
occurring in ¢

. Each variable of ¢ has the same type assigned to it at all occurrences

4. For each subformula of ¢ of the form s = ¢, the types assigned to s and t are the
same

5. For each subformula of ¢ of the form s € ¢ and type n assigned to s, the type
assigned to ¢t isn+ 1.

Examples: (X,Y) € Zis L, stratified, but not [(X,Y) € ZAX €Y].

W

Theorem 1 NFUp is consistent.

This theorem may be proved by a straightforward modification of the proof of
consistency of NFU + Inf in Theorem 1 of Jensen (1969), where Inf is an Axiom of
Infinity. Consistency of a much stronger system than NFUp is stated in the penulti-
mate section below and an outline of how that is proved is given in the Appendix.’

4 First-order structures in NFUp

For any classes A, B, define A x B to be the class of all (X,Y) with X € AAY € B. De-
fine n-tuples inductively by (X;) = X; and (X1,..., Xy, Xnt1) = (X1, -+, Xn), Xnt1)-
Then for any A, n, define A" to be the class of all n-tuples (Xi,...,X,) with X; € A.
An n-ary relation R on A is a subclass of A”. A function F on A into B, in symbols,
F : A — B, is a subclass of A x B such that for each X € A there is exactly one Y
with (X,Y) € F; we write F(X) =Y in this case. Note that B* = {F | F : A — B}
exists by SCA. An n-ary function from A to Bisan F : A" — B.
A single-sorted first-order structure is a tuple

7 Independently, Holmes (1991) showed that NFUp is interpretable in NFU + Inf, giving a more
direct proof of Theorem 1 assuming Jensen’s work.
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A= (O,Rl,...,Rj,F],...,Fk,K],...K[)

where the domain O of objects of A is non-empty and each R; is an n;-ary relation
on O for some n;, each F; is an m;-ary function on O to O for some m;, and each K;
is a singleton, K; = {C;} for some C; € O. This is generalized in the obvious way to
many-sorted first-order structures. Given a sentence 8 in the first-order language of
such structures, we write as usual, A |= 0 to express that A satisfies 6, or is a model
of 6. By Model(6) we mean the class of all A such that A = 6. Associated with
each such 6 is an Lp stratified formula 6*(X) such that Model(8) = {X | 6*(X)}
Examples:

i) Consider structures A = (O,R) with R a binary relation on O. The class PO
is defined to be the class of all such A that are partially ordered. Then PO =
Model(0) = {X | 6*(X)} where 68*(X) is the following formula:

Y,Z[X = (Y,Z) AFV(V €Y)
ANVUWU eZ—IV,W(VEYAW €Y AU = (V,W))
AW (V €Y — (V,V) € Z)
AWV, W((V,W)EZANW,V)EZ—V =W)
AV, W,U((V,W) € ZA(W,U) € Z— (V,U) € Z)]

0* is Lp stratified by assigning type 1 to the variables X,Y,Z and type O to the
variables U,V,W.

ii) We treat similarly the class Equiv of all A = (O, R) such that R is an equivalence
relation on O. A € Equiv iff A |= 6 where 0 is a first-order formula, and then
Equiv =Model(0) = {X | 6*(X)} with Lp stratified 6*.

iii) Consider structures A = (O, F,G,{E}) where F is a binary operation on O, G is
a unary operation on O and E € O. The class Grp is defined to be the class of
all such A that are groups, in which F is the multiplication operation on O, G
is the inverse operation on O, and E is the identity element for . Then Grp =
Model(6) = {X | 6%(X)} for a first-order 6 as usual.

iv) We here treat categories as two-sorted structures A = (O,M,C,Dy,D;) where
O is the collection of its objects, M is the collection of its morphisms, C is the
composition operation on morphisms and Dy, D; give the domain and codomain,
resp., of a morphism, to tell when composition is defined. Thus each D; is a
function from M to O and the ternary relation C C M? is a partial function from
M? to M, with C(f,g) or fg defined for f,g € M when D;(f) = Do(g).® The
defining condition for A to be a category is given by a first-order formula 6 and
we can take Cat = Model(0) = {X | 6*(X)} to be the class of all categories.

As a warm-up for meeting requirement (R1) in the next section, consider the
statement that the class PO is partially ordered under the substructure relation Sub,

8 Asin Mac Lane (1971) we use lower-case letters f, g, A, ... for morphisms in an abstract category,
but this does not signal a new kind of variable in NFUp. Similarly, in the next section, where we
use a, b, ... for objects in a category and 1 for natural transformations.
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where ((O,R),(P,S)) € Sub iff O C P and R C S and SN O? = R. The relation Sub
is provably a class in NFUp since it is defined by an Lp stratified formula. Then the
informal statement can be written as:

(PO, Sub) € PO

Similarly, we can re-express the statement that the relation Isom of isomorphism
is an equivalence relation on the class Equiv of structures as:

(Equiv,Isom) € Equiv

5 Meeting requirements (R1) and (R2) in NFUp
(RI)

The category of all groups has the form
Grp = (Grp7H0m7C,D0aDl)

where Grp is the class of all groups as in the preceding section, Hom is the class of
all F = (Fy,A,B) such that A = (O4,...) and B=(Og,...) are groups and Fy : Oy —
Op is a group homomorphism from A into B, Do(F) = A and D (F) = B, and the
composition C(F,G) of F and G in Hom is defined as usual when D (F) = Dy(G).
Since the classes Grp and Hom and the functions C, Dy, and D exist by SCA, and
the structure Grp satisfies the conditions to be a category, we may state:

Grp € Cat
Similarly we can define the category Top of all topological spaces and verify that
Top € Cat
The category of all categories has the form
Cat = (Cat,Funct,C,Dg,Dy)

where Cat is the class of all categories as in the preceding section, Funct is the
class of all F = (Fy,Fi,A,B) such that A = (O4,My,...) and B= (Op,Mp,...) are
categories and the pair Fy : O4 — Op, F1 : My — Mp determines a functor from A
into B, Dy(F) = A and D (F) = B, and the composition C(F, G) of F and G in Funct
is defined as usual when D (F) = Do(G). Since Cat satisfies the conditions to be a
category, we have:

Cat € Cat

In this way, requirement (R1) is satisfied in NFUp.
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(R2)

Given any two categories A = (O4,My,...) and B = (Op,Mp,...), the category of
all functors from A to B has the form

B* = (Funct(A, B),Nat,C, Dy, D))

where Funct(A, B) is the class consisting of all functors F' from A to B, Nat is the
class of all natural transformations from one such functor F' to another, and C, D,
D are explained below. As usual we write f :a — b for f € My and a,b € O4 when
Dy(f) = a and D;(f) = b, and similarly for morphisms in B. The class Funct(A, B)
is the subclass of the class of all pairs (Fp, Fy) for which Fy : O4 — Op is such that
for each a,b € O4 and f € My with f:a — b, we have Fi(f) € Mg with Fi(f) :
Fy(a) — Fy(b) and the usual conditions on preservation of composition and identity
morphisms are satisfied. Natural transformations are taken to be triples (1, F,G)
where F,G are two such functors, and 1 : O4 — Mp in such a way that for each
a € 04, N(a) : Fy(a) — Gp(a) in B and we have the usual commutative square
associated with any f :a — b in A; Do(n) = F and D;(n) = G. Composition C of
natural transformations is defined in the natural way. Once again we can check that
Nat, C, Dy and D, all exist and that BA is indeed a structure in NFUp. Moreover it
satisfies the conditions to be a category so, finally, we can state

B € Cat

as a theorem in NFUp, just as required by (R2).

6 The requirement (R3); type-shifting problems in NFUp

One can establish the existence of the class N in NFUp and thus the finite type-
theoretic hierarchy over N obtained by iterating the power class operation & and the
construction of function types. More is needed to go to transfinite types as in ZFC;
how that is done is dealt with in the next section. Otherwise, for (R3), we have seen
in secs. 3 and 4 that many of the standard set-theoretic constructions can be carried
out without any obstacle in NFUp. The fact that Extensionality is weakened to Ext/
does not hinder usual arguments either. Here we concentrate on operations that can’t
be carried out without ad hoc adjustments.

i) Equivalence classes. Suppose (O,E) € Equiv, i.e., E is an equivalence relation
on the class O. For each X € O, define X/E ={Y | (X,Y) € E} and O/E =
{X/E|Xe€O0}={Z|IXXecOAVY(Y €Z~ (X,Y) € E))}. This exists by
SCA, assigning type level 1 to O, E, and Z and type level O to X and Y. However,
the usual function F from O to O/E cannot be shown to exist since it consists of
pairs (X,Z) such that Z = X /E is of type level higher than that of X. The ad-hoc
modification in this case is to introduce a new kind of function, from the class of
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singletons associated with O, Sing(0) = {W |IX(X € OAW = {X}}, to O/E.
Alternatively, in the presence of a suitably universal choice function (see the
penultimate section below for the consistency of that), we can deal in a stratified
way with a function to representatives of equivalence classes.

Cartesian products. A sequence of classes Oy indexed by X ranging over a class
I is given by a function F : [ — V with F(X) = Ox for each X € I. The Cartesian
product of this sequence is supposed to be a class [JOx (X € I) whose members
are all G : I — V such that for all X € I, G(X) € Ox. Thus each such G consists
of pairs (X,Y) such that Y € Z where (X,Z) € F; this cannot be arranged in a
stratified way in NFUp. Again, an ad hoc solution is to modify the notion of
function, say by taking F : Sing(/) — V for the initial sequence of classes.
Cartesian closedness of Class. In the context of NFUp, one deals with the
category Class of all classes in place of the category of all sets in ordinary
set-theoretical foundations. The latter is Cartesian closed, one of whose con-
ditions is that we have an adjoint to Cartesian product (cf. Mac Lane, 1971,
p. 95). This yields the exponentiation operation with the evaluation morphisms
ev: b? x a — b given by ev(f,x) = f(x) for each f : a — b. But that can’t be
done for Class in a stratified way in NFUp. More definitively and more generally,
McLarty (1992) showed that Cartesian closedness of Class and Cat provably fail
in NF; his argument works equally well in NFUp.

Yoneda lemma. Given an abstract category A = (Og,Mp,...), the Hom classes
associated with A are the classes

Homy (a,b) = {f | S EMsAADy(f)=aAD(f) = b}

As in iii), Class is the category of all classes, with the usual mappings from one
class into another constituting its morphisms. For each a € O4 we have a functor
H? from A into Class given by

H%(b) =Homy(a,b)

for each b € Oy, with the obvious choice of H?(f) : H*(b) — H%(c) whenever
f:b— cin A. What the Yoneda Lemma does is set up a natural isomorphism
between F(a) and the natural transformations from H into F' for each functor F
from A into Class (cf. Mac Lane, 1971, p. 61). Closer inspection shows that there
is a lot of mixing of types here that can’t be represented in NFUp without ad hoc
modifications, to begin with of H* as a function, since the type level of H%(b) is
one higher than that of its elements f : a — b, which are of the same type level
as those of a and b. Like (iii), this is a serious drawback to the use of NFUp as it
stands as a foundation for category theory.

There is no obvious modification of the notion of stratification for systems with

pairing, that allows pairs (s,¢) of mixed type and is consistent. Type-theoretically,
the natural thing to try is to assign to (s,7) the type level max(n,m) when s is as-
signed n and ¢ is assigned m. The problems i)-iv) all concern situations involving
pairs (s,¢) where s is assigned type n and 7 is assigned type n + 1. However, if SCA
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were expanded to allow stratification in this sense we would derive a contradiction
from
JAVX[X €A~ Y, Z(X = (Y,Z) NY € Z)]

and
VAIBYY[Y € B~ (Y,Y) € A]

B is just the Russell class. A possible out is to restrict oneself to stratified proofs in
a suitable sense, so that the types assigned to a class of pairs don’t change in the
course of the proof. In the example, the elements of A change from pairs of type
(0,1) to pairs of type (0,0). Even if that idea were to lead to a consistent system, it
might require keeping track of things in a cuambersome way.

7 The requirement (R3), continued; building in ZFC

In this section we boost NFUp to incorporate ZFC in a certain way; the resulting
system was denoted S* in “Unlimited”, and for simplicity of notation, we shall fol-
low that here, too. The language L* of S* extends the language L, of NFUp by the
adjunction of a constant symbol Vy and set variables a,b,c, ... ,x,y,z.° The terms of
L* are generated from the constant V and both kinds of variables by closure under
the pairing operation. The atomic formulas are s = ¢ and s € ¢, where s, are arbitrary
terms. The notion of a formula ¢ being L* stratified is modified as follows from the
section that introduced NFUp.

1. Each term ¢ occurring in ¢ is assigned a natural number as type;
2. the type assigned to a term ¢ in @ is the same as the type assigned to each class
variable occurring in ;

. each class variable of ¢ has the same type assigned to it at all occurrences;

4. for each subformula of ¢ of the form s = 7, the types assigned to s and ¢ are the
same; and

5. for each subformula of ¢ of the form s € ¢ and type n assigned to s, the type
assigned to ¢t isn+ 1.

(O8]

N.B. No restrictions are made on the types that are assigned to Vj or set variables;
these may be assigned any type and may be assigned different types at different
occurrences in the same formula.

Examples: The formulas (Vo € X AX € Vo), X € x, and (x,X) € x are all L*
stratified, but not the formula (x,X) € X.

Axioms of S*:

1. Stratified comprehension: JAVX[X € A < @] for each L* stratified ¢ that does
not contain the variable A.

2. Weak extensionality: 3X (X € A)ANVX(X €A~ X €B)—A=B.

3. Pairing. (X],Xz) = (Y],Yz) - X1 =Y1ANXo =Y.

9 In the syntax of S* lower case letters are now used only in this way.
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4. Sets and classes.

a. VadX(x=X)
b. X €V~ Ix(x=X)
c. Xex—XeW

5. Empty set: 2Vy(y € 2).
6. Operations on sets:

a. {x,y} W

b. UxreW

C. [o(x) €W

d. (ny) = {{x}:{xy}}

7. Infinite set: Ja[3z(z € aAVy(y € 2)) AVx(x € a — xU{x} € a)]
8. Replacement: ¥, y1,ya[W(%y1) A W(x,2) — y1 = 2] —
Va3bVyly € b — Ix(x € a A y(x,y))]
9. Foundation: Ixy(x) — Ix[y(x) AVy(y € x — —y(y))], where y(x,...) is any L*
formula that does not contain the variable y.
10. Universal choice:

HC[VX,Yl,Yz((X,Yl) EC/\(X,YQ) eC—" :Yz)

AVX(FY (Y €X)—TY(Y e XA (X,{Y}) €0))]
Remarks.

(i) The axioms of S* as presented here are a slight variant of those in “Unlimited”;
they are interderivable.

(ii) Axioms 1-3 make S* an extension of NFUp.

(iii) The “ontological” Axiom 4 tells us that the sets are exactly the classes that belong
to V.

(iv) Since there is a unique empty set by Axiom 5, and Extensionality holds for non-
empty classes by 2, we have full Extensionality for sets. As in ZF we use 0 to
denote the empty set.

(v) Axiom 6 tells us that Vj is closed under the operations of unordered pair, union
and power as defined for classes above; it also tells us that the ordered pair oper-
ation coincides with its usual definition in set theory when restricted to sets.

(vi) From Axiom 7 and Separation (see next), we can define @ as the least set contain-
ing 0 and closed under the successor operation X' = xU {x}. Again by Separation
(or Foundation) we can apply induction on @ to any formula y(x,...) of L*, not
just stratified formulas.

(vii) The Separation scheme for sets in L* consists of all instances

Va3bVx[x € b — x € anb(x)]

for any formula 6(x,...) of L* that does not contain the variables a,b. This is an
immediate consequence of Replacement (8), using y(x,y) as the formula 0 (x) A
y=ux
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(viii) Foundation (9) is equivalent to transfinite induction on the €-relation restricted
to sets for arbitrary formulas y(x,...) of L*:

Va[Vy(y € x = w(x)) = y(x)] = Vay(x)

(ix) Universal Choice (10) is given in a form appropriate to the use of functions as
treated in NFUp in sec. 4. It implies the following form of Universal Choice (UC)
for sets:

AF[F : Vo — Vo AVx(x # 0 — F(x) € x)]

for, given C as in axiom X, take F = {(x,y) | (x,{y}) € C}. Then UC implies AC,
the usual Axiom of Choice for any set of non-empty sets.

Theorem 2 i) S* is consistent.
ii) S* is an extension of both NFUp and ZFC.
iii) The system of Morse-Kelley MK with UC is interpretable in S™.

The proof of (i) has been given in “Unlimited”; an outline of the ingredients is
presented in the Appendix below. (ii) is immediate from the preceding remarks. As
to (iii), the system MK is what we obtain from BG by allowing any formula 6 (x) in
the language of BG to define a class of sets, not just predicative formulas as in BG.
We can interpret it in S* by simply taking the class variables to range over those
classes X in S* with X C V.

MK is stronger than BG, since we can establish a notion of truth for the language
of ZF, and by its means prove that every theorem of ZF is true; hence MK proves
the consistency of ZF, while BG (which is a conservative extension of ZF) does not.
Similarly, MK + UC is stronger than ZFC, and a fortiori of BG + AC.

S* makes up for the defects of NFUp to a certain extent. Obviously we can deal
with equivalence classes on sets and Cartesian products on sets as usual as in ZFC.
More generally for equivalence relations between classes, the Universal Choice ax-
iom provides the possibility of working with representatives rather than equivalence
classes in a stratified way.'® One can also make the kinds of distinctions used by
Mac Lane to secure the applications of category theory by means of the notions of
“small categories”, “locally small categories”, etc. So all of Mac Lane (1971) can be
directly represented in S*. But one should also revisit results like Yoneda’s Lemma,
the Kan Extension Theorem, the Adjoint Functor Theorem, etc., that so far have
been formulated using such distinctions to see whether the use of NFUp over ZFC
as provided by S* gives any additional flexibility or generality. That remains to be
done. On the other hand, this type of work returns one to the kinds of distinctions
that the aim for a direct foundation of naive category theory is supposed to avoid. It
may be that the use of stratified systems for that purpose cannot be advanced much
beyond what has been illustrated here. But at least it shows that the program to sat-
isfy such requirements as (R1)-(R4) is a reasonable one to pursue by some means
or another.

10 This has been suggested to me by Randall Holmes.
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8 Cantorian classes and extension of NFU in ZFC

By way of comparison with the preceding, much work has been done beginning in
the 1990s on the study of extensions of NFU in which ZFC can be interpreted di-
rectly. This centers around the Cantorian and strongly Cantorian classes, as defined
in Holmes (1998): a class A is Cantorian if it is in one-one correspondence with the
class {Y | 3X(X e ANY = {X})} of its singletons, and it is strongly Cantorian (or
s.c.) if the one-one correspondence is given by the standard map sending X to {X}
on A. Stratification prevents one from showing that every Cantorian class is strongly
Cantorian, let alone that every class has this property; Russell’s paradox precludes
V, among many other classes, from being strongly Cantorian.!' The kinds of type-
shifting problems met above with the development of category theory in NFUp are
avoided by restricting to s.c. classes. Thus it is possible that an enhanced devel-
opment of naive category theory in a stratified framework could be provided by
restriction to s.c. classes and the associated categories defined in terms of them;
clearly this would require that there exist “enough” s.c. classes. On the other hand,
such a restriction would mean giving up requirement (R1), since the collection of
s.c. classes does not form a class (let alone a s.c. class). It is known that the s.c.
classes are closed under exponentiation, but this does not help with (R2) for large
categories, if (R1) can’t be satisfied.

By NFUA is meant the system NFU (with stratified pairing) together with the ax-
ioms of infinity and choice and the axiom “every Cantorian class is strongly Canto-
rian”. In Holmes (1998), Ch. 20, it is shown how to interpret ZFC in an extension of
NFU stronger than NFUA via a certain class of isomorphism types of pointed well-
founded extensional relations; this interpretation works in NFUA as well by recent
results of Enayat (2004). In fact, much stronger extensions of ZFC come along with
that interpretation: in unpublished work, Solovay established the equiconsistency of
NFUA with ZFC + “there exist n-Mahlo cardinals” (for each n € w); a published
proof of that is to be found in Enayat (2004), Theorem 5.5. The strength of the full
system in Holmes (1998) has been shown to be that of Morse-Kelley set theory MK
plus measurability (in a suitable sense) of the proper class ordinal (the class of all
ordinals considered as a virtual ordinal) (Holmes, 2001). An interesting intermedi-
ate system designated NFUB has been proved by Solovay (1997) to be of the same
strength as MK + “the proper class ordinal is weakly compact.”

Compared to these extensions of NFU, the system S* of section 7 interprets ZFC
only by the addition of a constant symbol for a class Vj and axioms concerning its
members. All the members and subclasses of Vj are automatically strongly Can-
torian. It is an open question whether there is a direct interpretation of ZFC in an
extension of NFU without such an additional symbol Vj, in which the sets are taken
to range over some collection C of classes and the membership relation is the re-
striction of the € relation to C. It is also open what the exact consistency strength is

"1 An axiom stating that all sets are Cantorian was first studied by Henson (1973). A related “ax-
iom of counting” was introduced by Rosser (1953) in order to develop a smooth theory of finite
cardinals in NF. It states that the set of finite cardinals is strongly Cantorian; that set is Cantorian
in NF and in NFU + Infinity. (I am indebted to Ali Enayat for this background information.)
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of S*; in my original proof, I assumed the existence of two inaccessible cardinals.
Since seeing a draft of this paper, Ali Enayat has been looking into that question,
and has informed me that — in consistency strength — S* lies strictly between ZFC
+ “there exists an inaccessible cardinal” and ZFC + “there exist at least two inac-
cessible cardinals.” He has also pointed out to me that my original proof (outlined
below) also establishes the consistency of a strengthening S** of it by an axiom
scheme asserting that the extension on Vy of any property given by an arbitrary
formula @(x,...) of the language of S* is a class: 3XVx € Vy[x € X < @(x)]. Fur-
thermore, in the presence of this additional axiom, the Replacement scheme follows
from the statement that no partial map from an initial segment of Vp to Vy can have
a cofinal image, and the scheme of Foundation follows from the usual formulation
of Foundation in ZFC (that every non-empty set contains an €-minimal element). It
may be more tractable to determine the exact consistency strength of S** than that
of S* in terms of more or less standard extensions of ZFC.

Appendix

The methods used to prove Theorem 2(i), the consistency of S*, in “Unlimited”, are
by an extension of those applied by Jensen (1969). They consist of three parts:

1. Specker (1962) reduced the consistency of NF to the existence of models Mr =
((Ui), (€:))iez of type theory with types i ranging over the set of all integers, Z =
{...,—3,-2,-1,0,1,2,3,...}, where €,C U; x U; 1, for which My satisfies the
axioms of typed comprehension and extensionality, and in addition has a type-
shifting automorphism o : U; — Uj4 for all i € Z. The model of NF constructed
from M7y is defined to be M* = (Uy, €*) where for a,b € Uy, a €* b a €y 5(b).
Jensen observed that if My satisfies extensionality only for non-empty classes,
then M* is a model of NFU.

2. Ehrenfeucht and Mostowski (1956) applied the infinite Ramsey theorem to ob-
tain models of first-order theories with indiscernibles {c;}ic; in given order-
ings (I,<). When these models are generated by Skolem functions from the
indiscernibles we get elementary substructures having automorphisms induced
by those of (I,<). Jensen applied the Ehrenfeucht-Mostowski theorem to ob-
tain models M of Zermelo set theory plus the Skolem function axioms having
indiscernibles ¢; in order type (Z,<) and shifting automorphism induced by
6(c;) = ciy1. A Z-typed model as required for the Specker construction of M* is
formed by taking U; = {x | x € ¢;}. Jensen showed that one can also arrange to
have M a model of the axioms of Infinity and Choice, which leads to M* having
the same properties. Thus NFU is consistent with Infinity and Choice. In order to
satisfy NFUp it is only necessary to ensure of the model M that if x,y € ¢; then
{x} and {x,y} € ¢;, hence (x,y) = {{x},{x,y}} € c:.

3. In part IT of his paper, Jensen showed how, given any ordinal «, one can con-
struct M* satisfying these conditions which is an end-extension of o; this uses
the Erdos-Rado (1956) generalization of the Ramsey theorem to certain infinite
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partitions. These methods were extended in “Unlimited” to construct M* which
are end-extensions of any given transitive set A. The main theorem needed for
this and proved in the Appendix of “Unlimited” is in terms of models of Le. o
with indiscernibles satisfying certain prescribed properties. The formulation of
that theorem is too technical to present here. The particular transitive set used in
the application to Theorem 2(i) above is the cumulative hierarchy up to a strongly
inaccessible cardinal k. The proof also assumes the existence of a strongly inac-
cessible cardinal 6 greater than k.
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